+ All Categories
Home > Documents > A MODEL FOR BIOACCUMULATION OF HEAVY METAL IN THE …€¦ · (NOAA ,2004) APALACHICOLA, FL:...

A MODEL FOR BIOACCUMULATION OF HEAVY METAL IN THE …€¦ · (NOAA ,2004) APALACHICOLA, FL:...

Date post: 25-Oct-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
73
A MODEL FOR BIOACCUMULATION OF HEAVY METAL IN THE AMERICAN OYSTER (Crassostrea virginica) FROM APALACHICOLA BAY Environmental Sciences Institute Florida A&M University, Tallahassee, Florida By Dennis A. Apeti Do not disseminate without author authorization
Transcript

A MODEL FOR BIOACCUMULATION OF HEAVY

METAL IN THE AMERICAN OYSTER (Crassostrea

virginica) FROM APALACHICOLA BAY

Environmental Sciences Institute

Florida A&M University, Tallahassee, Florida

By

Dennis A. Apeti

Do not

disse

minate

withou

t auth

or au

thoriz

ation

(NOAA ,2004)

APALACHICOLA, FL: Landings by Year

Year Millions of Pounds Millions of Dollars

2003 5.1 8.8

2002 5.6 9.2

2001 6.2 10.9

2000 10.3 11.4

1999 6.8 10.3

Background

Do not

disse

minate

withou

t auth

or au

thoriz

ation

• Oyster Bioaccumulation Model (OBM)

• Adapted from FGETS (Barber et al. 1991)

• The main objective: determine long-term BAF factor for Cd and Zn using Crassostrea virginica in Apalachicola Bay.

The ModelThe ModelThe ModelThe Model

Do not

disse

minate

withou

t auth

or au

thoriz

ation

IR

KowWater(overlying

water)

Food(phytoplankton,

detritus,

suspended

sediment)

Oyster

ERkg

Conceptual

Do not

disse

minate

withou

t auth

or au

thoriz

ation

RERIRdt

dW−−=

W

BCi =

FGdt

dB+=

•The model is therefore composed of terms involving oyster weight, bioenergetics and

physiological parameters, metal physico-chemical characteristics

•Total body concentration

•Bioenergetics flux in C. virginica

•Total body burden of metal

Model Formulation

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Modeling uptake from water

G = Sgkg (Cw – Ct)

•Exchange across the gill G: Fick’s first law of diffusion

Eulamellibrach (C. virginica) gill showing parallel filaments (f).

(Medler & Silverman 2001)

•Metal transfer between filaments: can be modeled using the differential equation

0)1( 22

2

2

=−+ fXfX

fdλ

XY

FilamentGraetz classic problem in fluid mechanics Do n

ot dis

semina

te with

out a

uthor

autho

rizati

on

Modeling the uptake from food

•The net uptake from food can be represented by the mass balance equation

F = CpIR - CeER

•Assuming that a constant fraction of the ingested metal is eliminated in the feces

ER = (1 - αf)IR Where αfis the oyster’s assimilation efficiency for food.

F = αcCfIR Where αc

is the oyster’s assimilation efficiency for metal.

•The oyster assimilates a constant fraction of the ingested metals

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Modeling the bioenergetic flux

•The energy budget in C. virginica

growth = Feeding (energy) - respiration - excretion (Dame 1996).

•Parametization of physiological function•Allometric expression Y = Y0W

b is the “life’s universal scaling law”

(West and Brown 2004)

The behavior of complex biological processes:

•Feeding rate

•Oxygen consumption

•Total gill area

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Predicting the bioaccumulation factor (BAF)

• Definition: BAF is a coefficient constant that relates elemental concentrations in the oyster tissue to those in the in the

environmental water

pw

esteadyStat

CC

wholebodyBAF

+=

][

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Simulation

•FORTRAN

•Compiler: g77

•GNUPLOT: data processing & graphing

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Summer data input

Cadmium simulation

[Cd]field2.60±0.16 µg/g

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800

ug/g

dry

-weig

ht)

Age (days)

Cd concentration

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Cadmium simulation

Winter data input [Cd]field 3.39±0.15 µg/g

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500 600 700 800

ug/g

dry

-weig

ht)

Age (days)

Cd concentration

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Zinc simulation

Summer data input [Zn]field 431±58 µg/g

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200 1400 1600

ug

/g d

ry-w

ieg

ht

Age (days)

Zn concentration

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Winter data input

Zinc simulation

[Zn]field 737±134 µg/g

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800

ug

/g d

ry-w

ieg

ht

Age (days)

Zn concentration

Do not

disse

minate

withou

t auth

or au

thoriz

ation

BAF determination

pw

esteadyStat

CC

bodywholeBAF

+

−=

][

2

310*5.5

10*)0.623.0(

4.3=

+=

−ppm

ppmBAFCd

4

310*0.3

10*)0.132.11(

730=

+=

−ppm

ppmBAFZn

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Model validationModel validationModel validationModel validation

Cd Zn

Cw 0.2 (DML-0.2) 1.0-12.0

Cp 9.0 (1.0-9.0) 40.0 (10-

40)

T (°°°°K) 297 (283-2003)

S (ppt) 5-40

Location Chesapeake Bay,

VA

Concentration in oyster

Simulation 3.0 2100

Reported values

0.9 - 4.2 700- 4000

The data were retrieved from the EPA Chesapeake Bay Program (2004) files VA106TOT and VATISSUE. Range of Cw

and Cp are given in (µg L-1) and elemental concentration in C.

virginica is in ((µg g-1 dry-weight).

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Cd simulation

Validation results

Reported: 1.0 - 4.2 µg/g

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800

ug/g

(dry

-weig

ht)

Age (days)

Cd concentration

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Zn simulation

Validation results

Reported: 700 – 4000 µg/g

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800

ug

/g (

dry

-wie

gh

t)

Age (days)

Zn concentration

Do not

disse

minate

withou

t auth

or au

thoriz

ation

•OBM prediction are in agreement with field data.

•OBM model can be used as a biomonitoring tool for a

long-term assessment of heavy metals in the Apalachicola Bay ecosystem.

•OBM model was effectively validated with data sets from Chesapeake Bay.

•C. virginica being ubiquitous and abundant in costal waters, the model can be considered sufficiently

flexible to be used in other estuarine environments.

Conclusion

Do not

disse

minate

withou

t auth

or au

thoriz

ation

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements

FAMU, Environmental Sciences Institute

Dr. Larry Robinson, Chair

Dr. Elijah Johnson

Dr. Michael Abazinge

Dr. Jennifer CherrierANERR:

Mr. Lee Edminston & staff

Funding:

•Title III grant to FAMU

•US DOE grant

•NOAA-ECSC grant

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Do not

disse

minate

withou

t auth

or au

thoriz

ation

ST1 ST2 ST3 ST4 ST5 ST60

1

2

3

4

5s u m m e r w in te r

S i te s

Cd

(u

g/g

dry

wt)

ST1 ST2 ST3 ST4 ST5 ST60

1

2

3

4

S i te s

Cr

(ug

/g d

ry w

t)ST1 ST2 ST3 ST4 ST5 ST6

0

5 0

1 0 0

1 5 0

S i te s

Cu

(u

g/g

dry

wt)

ST1 ST2 ST3 ST4 ST5 ST60 .0 0

0 .2 5

0 .5 0

0 .7 5

S i te s

Pb

(u

g/g

dry

wt)

ST1 ST2 ST3 ST4 ST5 ST60

5 0 0

1 0 0 0

1 5 0 0

S ite s

Zn

(u

g/g

dry

wt)

Seasonal variation in of metals in C. virginica

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Mean seasonal variation of metal in particulate phase (µµµµg kg-1)

Cd Cr Cu Pb Zn

summer winter Summer winter Summer winter summer winter summer winter

St 1 1.9±0.03 1.1±0.1 1.4±0.02 2.1±0.03 2.2±0.3 3.7±0.5 2.4±0.4 3.3±0.7 0.7±0.1 1.1±0.2

St2 1.4±0.1 1.8±0.2 2.8±0.02 3.7±0.1 4.0±0.5 5.8±1.0 3.9±0.6 6.0±1.0 1.2±0.3 2.4±0.4

St3 2.2±0.1 3.9±0.2 3.4±0.05 6.8±0.1 6.2±0.7 11±1.0 6.5±1.0 14±1.0 2.6±0.3 5.1±0.6

St4 1.5±0.1 2.1±0.1 2.1±0.02 3.4±0.1 4.3±0.6 6.8±1.0 4.0±0.4 8.4±1.0 1.7±0.2 2.8±0.4

St5 1.2±0.1 1.4±0.1 2.0±0.03 2.3±0.04 3.8±0.4 4.4±0.5 3.4±1.0 5.5±0.5 1.5±0.2 1.8±0.3

St6 3.8±0.03 1.3±0.2 0.8±0.6 6.3±1.0 0.6±0.10.4±0.1 2.1±0.2 0.7±0.01 1.2±0.1 3.0±0.4

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Correlation between metal content in oyster and particulate phase

0 1 2 3 40.000

0.001

0.002

r=0.63

Cr Oys2

Cr

in P

M

0 25 50 75 100 125 1500.0000

0.0005

0.0010

0.0015

r=0.72

Cu oys2

Cu

in

PM

0.00 0.25 0.50 0.75 1.000.0000

0.0005

0.0010

0.0015

r=0.30

Pb Oys2

Pb

in

PM

0 250 500 750 1000 1250 15000.0000

0.0005

0.0010

0.0015

r=0.50

Zn in OysZ

n in

PM

2.5 3.0 3.5 4.0 4.5 5.00.00000

0.00025

0.00050

0.00075

r=0.41

Cd Oys2

Cd

in

PM

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Modeling the bioenergetic flux

•The energy budget in C. virginica

growth = Feeding (energy) - respiration - excretion (Dame 1996).

•Parametization of physiological function•Allometric expression Y = Y0W

b is the “life’s universal scaling law” (West and Brown 2004)The behavior of complex biological processes such as metabolic, filtration, growth and

respiration rates

•Feeding rate:dT

WcbaY ∗∗+= )]([

•Oxygen consumption: 2

10 ))(exp(f

opt WfTTfY −=

Bougrier et al. (1995)

•Total gill area: baWS =

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Background

• Apalachicola Bay

– Geomorphology

• 260 km2

• Barrier islands

• 3 m depth

•Apalachicola River

•172 km southward

•752 m3/s flow

•Resident time 10

days

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Ecotoxicity of metal

Abnormal

larvae

15 (37 wks)Cd

Inhibition of

phagocytosis

1000Cd, Cu

Reduce shell thickness

elevatedCd, Cu & Zn

Increase

respiration, Damage gill

100

Cu

Gill damage Mortality

100-200Cd

EffectsCw (ug L-1)Metal

Toxic Effect of metals on oysters

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Potential human health effects

Metals and Health Effects

Metal Sources Exposure from Food

Dietary Allowance

Levels of Concern in

oyster

Health Effects

Cd

Industrial waste; AlloyingBatteries; electroplating

2 – 40 ppb 5 ppb in drinking water

TLC=3.7ug/g

CLC=28g/p/d

Damage to: Lung, Kidney, LiverHypertension; Prostate cancer

CrIndustrial process 60 ug/d 50 – 200

ug/dayTLC=13ug/g

CLC=500g/p/d

Mutagenic; TeratogenicDamage to: Liver and Kidney

CuIndustrial process; emission, miningfrom metal recovery

1 mg/d 340 – 900 ug/day

Hypertension; Haemolysis; Gastrointestinal

dysfunction

Pb

Industrial process; Computer chips 0.1 – 10 ppm TLC=1.7ug/g

CLC=83g/p/d

Neurotoxicity; Memory lossLearning deficit in children

ZnFossil fuel; Sewage; Dredging 2 – 29 ppm 8 – 11

mg/day

Metabolism disorder of mineralNausea and vomiting

TLC = total level of concern in tissue. CLC = consumption level of concern (FDA, 1993)Do n

ot dis

semina

te with

out a

uthor

autho

rizati

on

“Design and carry out a comprehensive

monitoring program to enable the reserve to

determine baseline changes in the status of

the lower Apalachicola River and Bay system

over long-term periods”.

ANERR Management Plan 1998 - 2003

Do not

disse

minate

withou

t auth

or au

thoriz

ation

ChattahoocheeRiver

Flint River

Apalachicola

River

Tallahassee

Atlanta

Columbus

Albany

FLORIDAGULF OF

MEXICO

GEORGIA

ALABAMA

Apalachicola

Bay

Pollution Problems(Froelich & Lesley 2001, USGS

2000, Couch et al 1997)

Sources of metal

•Industrial activities

•Land & water use

•Urban/Suburban

•Agricultural

•Local commercial & sport boat activities

•Erosion

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Other Factors of Bioavailability

•Sediment resuspension:Boats

Dredging

Dredging material disposal

•Sediment oxidation

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Crassostrea virginica (Gmelin 1791) Metal sequestration

•Granular deposits

•Metallothionein

American oyster

•Bivalve (protandric hermaphrodism)

•Filter feeder (6-10 L h-1)

•Metals bioaccumulation (5 Cd, 18 Cr, 1100 Cu, 20 Pb, 13000 Zn) (Lin, 1999)

Do not

disse

minate

withou

t auth

or au

thoriz

ation

ObjectivesObjectivesObjectivesObjectives

• Assess Cd, Cr, Cu, Pb and Zn concentrations in

Apalachicola Bay: water, sediment, C. virginica

• Assess seasonal fluctuations of heavy metals in bay

• Investigate the correlations between elemental

concentrations in the bivalve, in water column and in the sediment.

• Develop a computer model to simulate a long-term

bioaccumulation of metal in the oysterDo not

disse

minate

withou

t auth

or au

thoriz

ation

Work Outline

•Assessment of metal concentrations in water, sediment and oyster tissue

•Modeling Heavy Metals (Cd, Zn) Bioaccumulation in C. virginica

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Materials And Methods

Sampling sites

– Summer collect

• Low flow (2002)

• June – Oct.

– Winter collection

• High flow (2003)

• Dec. - April

– Guidelines of US

FDA and NS&T.

Assessment of metal concentrations in Assessment of metal concentrations in Assessment of metal concentrations in Assessment of metal concentrations in

water, sediment and oyster tissuewater, sediment and oyster tissuewater, sediment and oyster tissuewater, sediment and oyster tissue

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Sample collections and preparations• Water

– Vertical water sampler at depth of 3 feet

– Water quality

•Sediment

–Gravity corer

–Sediments (top 10 cm)

–Homogenized and freeze dried

•Oyster

–Oyster tong.

–Composite of 10 animals

shell length

3”-3.5”

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Analysis

• Water/Particulate analysis

– Digestion: EPA Method 3020A

– Analysis GFAAS: EPA 200.12

– SRM: 3108 Cd, 3114 Cu, 3128 Pb and 3168 Zn

• Tissue/sediment analysis

– Digestion: EPA Method 3050B

– FAAS QC standards within 10%

– SRM: 1566b, 1646a

• Grain size analysis: Bouyoucos Hydrometer

• Organic Matter: Loss-On-Ignition (LOI)

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Statistical Analysis

Data processing

– Excel

– Prism statistical software

• One-way ANOVA with Tukey-Kramer post test,

analysis of variance (ANOVA) was conducted

• Student-t

• Regression analysis

• Correlation

• Error at the 95 % CL

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Results

Physical parametersAverage chemical and physical parameters in Apalachicola Bay

Summer season Winter season

Sites pH Sal.

ppt

DOmg/L

T oC pH Sal.

ppt

DOmg/L

T oC

St-1 7.9

20.0 7.8 24.0 7.3 10.8 10.2 9.2

St-2 8.0 18.0 6.5 27.3 7.3 12.7 6.5 10.6

St-3 7.2 4.8 8.6 28.3 7.0 5.3 10.0 19.8

St-4 7.9 28.7 6.0 27.4 7.8 17.1 9.3 18.3

St-5 7.9 30 5.0 27.2 7.8 13.1 12.3 20.6

St-6 8.4 27.8 6.8 28.8 7.8 18.3 9.5 19.1

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Quality assurance with NIST SRM

SRM 1566a

Cd Cr Pb0

1

2

3Measured

Certified

Elements

ug

/g d

ry w

t

SRM 1566b

Cu Zn0

500

1000

1500

Measured

Certified

Elements

ug

/g d

ry w

t

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Liquid SRM

3114 Cu 3108 Cd 3128 Pb 3168 Zn0.0

0.5

1.0

1.5Measured

Certified

SRM

ug

/ml

SRM 1646a

Cd Cr Cu Pb Zn0

25

50

75Measured

Certified

Elements

ug

/g d

ry w

t

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Mean seasonal variation of metal in dissolved phase (µµµµg L-1)

*Reported values are MDL

Site

Cd Cr Cu Pb Zn

Summer winter summer winter summer winter summer winter summer winter

ST1 0.2* 0.2* 1* 1* 2.5* 2.5* 2.0* 2.0* 3.0* 3.0*

ST2 0.2* 0.2* 1.5 2 2.5 2.5* 2.0* 2.0* 11 11

ST3 0.22 0.23 2.2 2.6 4.1 11.4 2.0* 2.0* 11.2 12

ST4 0.22 0.2* 1.6 1.5 3.3 7.1 2.0* 2.0* 5.2 12

ST5 0.2* 0.2* 1* 1.5 2.5* 5.5 2.0* 2.0* 3.0* 10

ST6 0.22 0.22 1* 1.5 2.5* 5.3 2.0* 2.0* 0.4 3.0*

Assessment of metals in the water column

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Illustration of spatial variation: Sediment

ST1 ST2 ST3 ST4 ST5 ST60 .0 0

0 .0 5

0 .1 0

0 .1 5

S ite s

Cd

(u

g/g

dry

wt)

ST1 ST2 ST3 ST4 ST5 ST60

5 0

1 0 0

1 5 0

S ite s

Cr

(ug

/g d

ry w

t)

ST1 ST2 ST3 ST4 ST5 ST60

1 0

2 0

3 0

S ite s

Cu

(u

g/g

dry

wt)

ST1 ST2 ST3 ST4 ST5 ST60

1 0

2 0

3 0

4 0

S ite sP

b (

ug

/g d

ry w

t)

ST1 ST2 ST3 ST4 ST5 ST60

5 0

1 0 0

1 5 0

S ite s

Zn

(u

g/g

dry

wt)

Assessment of metals in the sediment

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Seasonal variation of metals in surficial sediments

ST1 ST2 ST3 ST4 ST5 ST60 .0

0 .1

0 .2S um m er W inter

S ite s

Cd

(u

g/g

dry

wt)

ST1 ST2 ST3 ST4 ST5 ST60

5 0

1 0 0

1 5 0

S ites

Cr

(ug

/g d

ry w

t)

ST1 ST2 ST3 ST4 ST5 ST60

1 0

2 0

3 0

S ite s

Cu

(u

g/g

dry

wt)

ST1 ST2 ST3 ST4 ST5 ST60

1 0

2 0

3 0

4 0

5 0

S ite s

Pb

(u

g/g

dry

wt)

ST1 ST2 ST3 ST4 ST5 ST60

5 0

1 0 0

1 5 0

S ite s

Zn

(u

g/g

dry

wt)

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Sediment standards

National water/sediment criteria

Metal Saltwater (µµµµgL-1)CMC CCC

Source Sediment (µµµµgg-1)NOEL PEL

Source

Cd 40 8.8 EPA 1 7.5 FDEP

Cr 1100 50 EPA 33 240 FDEP

Cu 4.8 3.1 EPA 28 170 FDEP

Pb 210 8.1 EPA 21 160 FDEP

Zn 90 81 EPA 68 300 FDEP

CMC: criteria maximum concentration. CC: criterion continuous concentration. NOEL: no effect level PEL: probable effect level. (EPA, 2002; FDEP, 1994))

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Illustration of spatial variation of metals in C. virginica

ST1 ST2 ST3 ST4 ST5 ST60

1

2

3

4

5

S i t e s

Cd

(u

g/g

dry

-wt)

ST1 ST2 ST3 ST4 ST5 ST60

1

2

3

4

S i t e s

Cr

(ug

/g d

ry-w

t)

ST1 ST2 ST3 ST4 ST5 ST60

5 0

1 0 0

1 5 0

S i t e s

Cu

(u

g/g

dry

-wt)

ST1 ST2 ST3 ST4 ST5 ST60 . 0 0

0 . 2 5

0 . 5 0

0 . 7 5

S i t e s

Pb

(u

g/g

dry

-wt)

ST1 ST2 ST3 ST4 ST5 ST60

5 0 0

1 0 0 0

1 5 0 0

S i te s

Zn

(u

g/g

dry

-wt)

Assessment of metals in C. virginica

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Correlation between metal content in oyster and sediment

0.0 0.5 1.0 1.5 2.0 2.50

25

50

75

100

r = 0.10

Cr in Oyst (ug g -1)

Cr

in S

ed

(u

g g

-1)

0 25 50 75 1000

10

20

30

r = 0.65

Cu in Oyst (ug g -1)

Cu

in

Sed

(u

g g

-1)

0.0 0.1 0.2 0.3 0.4 0.50

10

20

30

40

r = 0.20

Pb in Oyst (ug g -1)

Pb

in

Sed

(u

g g

-1)

0 100 200 300 400 500 600 7000

50

100

150

r = 0.10

Zn in Oyst (ug g -1)

Zn

in

Sed

(u

g g

-1)

0 1 2 3 40.0

0.1

0.2

0.3

r = - 0.04

Cd in Oyst (ug g -1)

Cd

in

Sed

(u

g g

-1)

Do not

disse

minate

withou

t auth

or au

thoriz

ation

• Metal in surficial sediment lower than standard

criteria

• Elemental concentrations in the sediment did not

show true patterns of spatial and temporal

variations

• Concentrations of selected metals were

significantly greater in the oyster tissue than in the

water column

Partial conclusion

Do not

disse

minate

withou

t auth

or au

thoriz

ation

•Metals in C. virginica correlate better with metals in

particulate phase.

•This suggested that C. virginica preferably uptake

metals from the particulate phase.

•Tissue metal content showed patterns of temporal

and seasonal variations suggesting that C. virginica

could be a serious candidate for biomonitoring of

heavy metals in Apalachicola estuary.

Partial conclusions

Do not

disse

minate

withou

t auth

or au

thoriz

ation

• In order to efficiently use C. virginica as

biological indicator one needs to be able to

quantify the time dependent metal

bioaccumulation in the bivalve.

• This is the object of the next study: the

computer modeling of metal accumulation in

C. virginica.

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Metal-Ligand complex formation (Manahan 2000):

Estuarine mixing: exchange of dissolved and particulate

Mn+ (sorbed) Mn+ (aq)

MLn+ (sorbed) MLn+ (aq)

L(sorbed) L(aq)

•Solubility controlled by:

•pH (solubility ~ to 1/pH)

•pE (solubility ~ to pE)

•Salinity (inorganic ligands Cl-1, SO4-2)

•DOC (chelation or complexation)

•Alkalinity (form insoluble complexes CO32- and OH-)

Chemical Form and Bioavailability

Do not

disse

minate

withou

t auth

or au

thoriz

ation

•Solutions to the equation is reduced to the determination of λn and ƒn which are nth eigenvalue and

corresponding eigenfunction respectively. The

eigenvalues were determined (Johnson et al 2005) and using the first eigenvalue λ1 = 1 the mass conductance

can be expressed as follow

)

2

1

)3

2exp(99.01

(

z

z

G

G

g

N

N

h

Dk

−−=

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Model implementation

Cd Zn Source

Cw (µµµµg L-1) 0.23w / 02s 11.2w / 7.0s This study

Cp (µµµµg L-1) 6.0w / 6.0s 13.0w / 11.0w This study

kow 5*105 7*105 Ambrose 1999

Hlamel (cm) 0.05 0.05 Newell et al. 1996

Xlamel (cm) 1.50 1.50 This study

Vlamel (cm s-1) 0.60 0.60 Jones et al. 1992

AE (%) 60.0 73.0 Reinfelder et al. 1997

T (°°°°K) 298 298 This study

S (ppt) 25.0 25.0 This study

pH 7.8 7.8 This study

Cw = dissolved metal Cp = particulate metal S = salinity T = temperature (°°°°K)

Parameter used for model implementation

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Model implementation

Sites

Cd

Winter Summer

Zn

Winter Summer

ST-1 3.78±0.81 2.65±0.07 527±27.4 263±24

ST-2 3.81±0.26 1.86±0.14 837±38.0 593±38

ST-3 3.18±0.25 2.89±0.25 1296±45.0 619±28

ST-4 3.42±0.56 2.33±0.12 806±13.4 395±25

ST-5 3.24±0.52 2.85±0.21 614±18.3 374±26

ST-6 2.88±0.16 2.78±0.10 343±33.4 343±12

Average 3.39±0.15 2.56±0.16 737±134 431±58

Cd and Zn concentrations in C. virginica.

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Do not

disse

minate

withou

t auth

or au

thoriz

ation

• First time application of FGETS for bivalves

• First time modeling heavy metal bioaccumulation

in Apalachicola Bay

• Applicability of the model in other estuaries

Relevance Relevance Relevance Relevance

Do not

disse

minate

withou

t auth

or au

thoriz

ation

RationalRationalRationalRational

Need to: preserve, protect this implies monitoring

“Design and carry out a comprehensive

monitoring program to enable the reserve to

determine baseline changes in the status of

the lower Apalachicola River and Bay system

over long-term periods”, (ANERR, 1998).

Effort to satisfy the primary research objective of

which is :

We propose :

•Crassostrea virginica as bioindicator of

heavy metal uptake in Apalachicola Bay

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Chemical Form and Bioavailability

Chemistry of metals in saline water (fergusson 1990)

Mn+ + xH2O [M(H2O)x]n+ [M(H2O)x-1 OH](n-1)+ + H+(aq)

Solvation hydrolysis

[M(H2O)x-1 OH](n-1)+ [M(H2O)x-2 (OH)2](n-2)+ + H+(aq)

hydrolysis

Metal-Ligand complex formation (Manahan 2000):

Estuarine mixing: exchange of dissolved and particulate

Mn+ (sorbed) Mn+ (aq)

MLn+ (sorbed) MLn+ (aq)

L(sorbed) L(aq)

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Sites

Cd

Oyst (µµµµg g-1) PP (µµµµg 1)

Cr

Oyst (µµµµg g-1) PP (µµµµg L1)

Cu

Oyst (µµµµg g-1) PP ( µµµµg 1)

Pb

Oyst (µµµµg g-1) PP ( µµµµg 1)

Zn

Oyst (µµµµg g-1) PP (µµµµg 1)

ST1 2.65±0.07 5.42±0.40 1.09±0.03 11.32±0.10 26.6±0.54 16.1±2.01 0.20±0.01 15.9±2.50 263±24.1 4.7±1.20

ST2 1.86±0.14 6.43±0.30 1.07±0.05 12.4±0.18 74.0±4.05 20.2±3.17 0.20±0.01 21.7±3.70 593±38.0 6.10±1.30

ST3 2.89±0.25 8.41±0.42 1.31±0.16 13.3±0.20 76.7±1.17 24.2±2.56 0.36±0.02 25.1±4.00 619±28.4 10.0±1.20

ST4 2.33±0.12 8.43±0.53 1.26±0.31 11.8±0.10 55.4±2.77 24.0±3.51 0.21±0.01 12.2±2.30 395±25.6 9.71±1.32

ST5 2.85±0.21 7.53±0.50 1.44±0.16 12.5±0.179 46.1±3.24 24.6±2.36 0.19±0.01 21.5±5.5 374±26.3 9.60±1.40

ST6 2.78±0.10 6.65±0.55 1.05±0.02 12.0±0.11 58.9±2.60 23.5±2.00 0.41±0.01 20.0±2.31 343±12.5 9.50±1.50

Comparison of elemental concentrations ((µg g-1 dry-weight) in tissue vs. particulate collected in the winter season

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Sit

e

Cd

Oyster

Sed

Cr

Oyster Sed

Cu

Oyster

Sed

Pb

Oyster Sed

Zn

Oyster Sed

ST

13.8±0.8

0.14±0.00

21.1±0.4 48.8±4.33 65.0±7.2 9.9±2 0.40±0.1 13.1±5.2 527±27 492±2

ST

2

3.81±0.2

6

0.14±0.00

11.1±0..6 89.36±6.0 84.2±12 19±2 0.36±0.1 28.7±3.4 837±38 97±7

ST

33.18±0.3

0.15±0.00

21.58±0.6 97.31±4.9

101±22.

418.0±1 0.50±0.1 32.5±7.6 129±45 103±1

ST

43.42±0.6

0.15±0.00

11.68±0.4 91.96±6.5

108±21.

016.0±2 0.40±0.1 33.3±2.5 806±13 97±4

ST

53.24±0.5

0.15±0.00

12.1±0.3 84.92±7.3 73.1±12 17.7±1 0.5±0.03 30.1±3.5 614±18 85±5

ST

62.9±0.2

0.15±0.00

11.7±0.3 85.0±5.0 57.5±2.3 21.0±1 0.3±0.04 29.9±1.1 343±33 87±3

Comparison elemental concentrations ((µg g-1 dry-weight) in tissue vs. sediments collected in the winter season

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Cr-Correlation

0 25 50 75 100 1250

1

2

3

r = 0.46

Cr in sediment (ug/g)

Cr

in o

yste

r (u

g/g

)

Cu-Correlation

0 10 20 300

50

100

150Cu Oyst

Cu in sediment (ug/g)

Cu

in

oyste

r (u

g/g

)

r = 0.53

Pb-Correlation

0 10 20 30 400.3

0.4

0.5

0.6Pb-Oyst

Pb in sediment (ug/g)

Pb

in

oyste

r (u

g/g

)

r = -0.18

Zn-Correlation

0 25 50 75 100 1250

500

1000

1500Zn-Oyst

r = 0.65

Zn in sediment (ug/g)

Zn

in

oyste

r (u

g/g

)

Cd-Correlation

0.135 0.140 0.145 0.150 0.1552.5

3.0

3.5

4.0

4.5Cd-Oyst

Cd in sediment (ug/g)

Cd

in

oyste

r (u

g/g

)

r = -0.97

Fig : Oyster vs Sediment colleted in the winter seasonDo n

ot dis

semina

te with

out a

uthor

autho

rizati

on

0 2 5 5 0 7 5 1 0 0 1 2 5

0 .1 4

0 .1 5

0 .1 6

r = 0 .4 5 6

C r ( u g /g )

Cd

(u

g/g

)

0 2 5 5 0 7 5 1 0 0 1 2 50

5 0

1 0 0

1 5 0

r = 0 .9 9 4

C r (u g /g )

Zn

(u

g/g

)

0 2 5 5 0 7 5 1 0 0 1 2 50

1 0

2 0

3 0

4 0

r = 0 .8 3 0

C r (u g /g )

Pb

(u

g/g

)

0 .1 3 5 0 .1 4 0 0 .1 4 5 0 .1 5 0 0 .1 5 50

1 0

2 0

3 0

4 0

r = 0 .5 4 1

C d ( u g /g )

Pb

(u

g/g

)

0 .1 3 5 0 .1 4 0 0 .1 4 5 0 .1 5 0 0 .1 5 50

5 0

1 0 0

1 5 0

r = 0 .3 8 0

C d (u g /g )

Zn

(u

g/g

)

Do not

disse

minate

withou

t auth

or au

thoriz

ation

ST-1 St-2 ST-3 ST-4 ST-5 ST-60

10

20% OM-1

% OM-2

Site

Org

an

ic m

att

er

(%)

Do not

disse

minate

withou

t auth

or au

thoriz

ation

0 10 20 30 4 0

0 .12

0 .13

0 .14

0 .15

0 .16

r = 0.737

% Fine fract ion

Cd

in

sed

imen

t (u

g/g

)

C r-% F P

0 1 0 2 0 3 0 400

2 5

5 0

7 5

1 0 0

r = 0.931

% Fine fraction

Cr

in s

ed

imen

t (u

g/g

)

C u -% F P

0 1 0 2 0 3 0 4 00

1 0

2 0

3 0

r = 0 .738

% Fine fraction

Cu

in

sed

imen

t (u

g/g

)

P b-% FP

0 10 20 30 400

10

20

30

40

r = 0 .900

% Fine fract ion

Pb

in

sed

imen

t (u

g/g

)

Zn-% F P

0 1 0 2 0 3 0 4 00

5 0

1 0 0

1 5 0

r = 0.851

% Fine fraction

Zn

in

sed

imen

t (u

g/g

)

F ig ...: C o rre latio n be twe en m e tals co nce ntratio ns and % f ine f rac tions ed im ents c o lle c ted in the low f lo w se as on. P ears on c o rre latio nc oe f f ic ient values (r) are rep o rted .

Do not

disse

minate

withou

t auth

or au

thoriz

ation

0 5 1 0 1 5 2 0

0 .1 2

0 .1 3

0 .1 4

0 .1 5

0 .1 6

% O M -1

Cd

in

sed

imen

t u

gg

-10 5 1 0 1 5 2 0

0

2 5

5 0

7 5

1 0 0

% O M -1

Cr

in s

ed

imen

t u

gg

-1

0 5 1 0 1 5 2 00

1 0

2 0

3 0

% O M -1

Cu

in

sed

imen

t u

gg

-1

0 5 1 0 1 5 2 00

1 0

2 0

3 0

4 0

% O M -1

Pb

in

sed

imen

t u

gg

-1

0 5 1 0 1 5 2 00

5 0

1 0 0

1 5 0

% O M -1

Zn

in

sed

imen

t u

gg

-1

F ig: C o r r e lat io n be twe e n m e tal in s e d im e n t and % O M c o l le c te d in the s um m e r

Do not

disse

minate

withou

t auth

or au

thoriz

ation

ST-1 ST-2 ST-3 ST-4 ST-5 ST-60

1

2

3

Sites

Cd

(u

g/g

dry

wt)

ST-1 ST-2 ST-3 ST-4 ST-5 ST-60

1

2

Sites

CR

(u

g/g

dry

wt)

ST-1 ST-2 ST-3 ST-4 ST-5 ST-60

25

50

75

100

Sites

Cu

(u

g/g

dry

wt)

ST-1 ST-2 ST-3 ST-4 ST-5 ST-60 .0

0 .1

0 .2

0 .3

0 .4

0 .5

Site s

Pb

(u

g/g

dry

wt)

ST-1 ST-2 ST-3 ST-4 ST-5 ST-60

250

500

750

Sites

Zn

(u

g/g

dry

wt)

Fig. X: Metal conc entrations in C . virginic a collec ted in s um m er form differentsam pling s ites in Apalachic ola Bay. Values are m ean ± SDE at 95 % CL (n = 5) .

Do not

disse

minate

withou

t auth

or au

thoriz

ation

0 .9 1 .0 1 .1 1 .2 1 .3 1 .4 1 .5 1 .60

2 5

5 0

7 5

1 0 0

r = 0 .1 2P < 0 .0 5

C r in o ys t u g /g d r y w t

Cr

in s

ed

imen

t (u

g/g

)

0 2 5 5 0 7 5 1 0 00

1 0

2 0

3 0

r = 0 .7 5P < 0 .0 5

C d in o ys t u g /g d r y w t

Cu

in

sed

imen

t (u

g/g

)

0 .0 0 .1 0 .2 0 .3 0 .4 0 .50

1 0

2 0

3 0

4 0

r = 0 .4 4P < 0 .0 5

Pb in o ys t u g /g d r y w t

Pb

in

sed

imen

t (u

g/g

)

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 00

2 5

5 0

7 5

1 0 0

1 2 5

r = 0 .1 0P < 0 .0 5

Zn in o ys t u g /g d r y w t

Zn

in

sed

imen

t (u

g/g

)

Fig: C o r re lat io n be twe e n m e tal in o ys te r and s e dim e nt c o lle c te d in the s um m e r

1 .7 5 2 .0 0 2 .2 5 2 .5 0 2 .7 5 3 .0 0 3 .2 50 .0

0 .1

0 .2

r = -0 .2 1P < 0 .0 5

C d in o ys t u g /g d r y w t

Cd

in

sed

imen

t (u

g/g

)

Do not

disse

minate

withou

t auth

or au

thoriz

ation

0 .1 2 0 .13 0 .14 0 .1 5 0 .1 60 .0

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

3 .5

r = 0 .2 6 9

C d in o y s t e r (u g /g )

Cd

in

sed

imen

t (u

g/g

)

0 25 5 0 75 1 0 00 .00

0 .25

0 .50

0 .75

1 .00

1 .25

1 .50

1 .75

r = 0 .1 1 3

C r in o y s te r (u g /g )

Cr

in s

ed

imen

t (u

g/g

)

0 1 0 2 0 3 00

2 5

5 0

7 5

1 0 0

r = 0 . 7 5 4

C u in o y s te r ( u g /g )

Cu

in

sed

imen

t (u

g/g

)

0 1 0 2 0 30 4 00 .0

0 .1

0 .2

0 .3

0 .4

0 .5

r = 0 . 4 3 7

P b in o y s te r (u g /g )

Pb

in

sed

imen

t (u

g/g

)

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 80 9 0 10 01 1 012 00

25 0

50 0

75 0

r = 0 . 5 6 5

Zn in o y s t er (u g /g )

Zn

in

sed

imen

t (u

g/g

)

F ig : C o r r e lat io n be tw e e n m e ta l in o y s te r an d s e d im e n t c o l le c te d in th e w i n te r

Do not

disse

minate

withou

t auth

or au

thoriz

ation

C d

St-1 St-2 St-3 St-4 St-5 St-60 .0

0 .1

0 .2

F ig . X : C ad m ium c o nc e n tra tion in s e d im e n t c o lle c te d fo rm d iffe ren ts am p ling s ite s in A pa la c h ic o la B a yVa lu es a re m ea n ± S E M a t 9 5 % C L (n = 5 ). P > 0 .0 5

S a m p lin g s t a t io n s[C

d]

ug

/g d

ry w

t

C r

SS-1 SS-2 SS-3 SS-4 SS-5 SS-60

2 5

5 0

7 5

1 0 0

F ig . X: C h rom iu m c o nc en tra tio n in s ed im en t c o llec ted fo rm d iffe ren ts am p lin g s ites in Ap a lac h ic o la B ay .Va lue s a re m ea n ± S E M a t 9 5 % C L (n = 5 ). P > 0 .0 5

S am p lin g s ta t io n s

[Cr]

ug

/g d

ry w

t

C u

SS-1 SS-2 SS-3 SS-4 SS-5 SS-60

1 0

2 0

3 0

S a m p lin g s t a t io n s

[Cu

] u

g/g

dry

wt

F ig . X: C o pp e r c on c en tra tio n in s ed im e n t c o lle c te d fo rm d iffe ren ts a m p lin g s ite s in Apa la c h ic o la B ayVa lue s a re m ea n ± S E M a t 9 5 % C L (n = 5 ). P > 0 . 0 5

P b

SS-1 SS-2 SS-3 SS-4 SS-5 SS-60

1 0

2 0

3 0

4 0

S a m p lin g s t a t io n s

[Pb

] u

g/g

dry

wt

F ig . X: Lead c onc en tra tion in s ed im ent c o llec ted fo rm d iffe ren ts am p ling s ites in Apa lac h ic o la B ayVa lues are m ean ± S E M a t 9 5 % C L (n = 5 ). P > 0 .0 5

Zn

SS-1 SS-2 SS-3 SS-4 SS-5 SS-60

5 0

1 0 0

1 5 0

S a m p lin g s ta t io n s

[Zn

] u

g/g

dry

wt

F ig . X: Zinc c o nc en tra t ion in s e d im e n t c o lle c ted fo rm d iffe re n ts a m p ling s ite s in Apa la c h ic o la B a yVa lu es a re m e an ± S E M a t 9 5 % C L (n = 5 ). P > 0 . 0 5

F ig : M e a n c o n c e n tr a tio n ( ± u n c e r ta in ty a t 9 5 % c o n f id e n c e le ve l) o f tr a c e m e ta l in r e c e n tse d im e n ts f r o m A p a la c h ic o la B a y

U

SS-1 SS-2 SS-3 SS-4 SS-5 SS-60 .0

2 .5

5 .0

7 .5

S a m p lin g s ite s

[U]

ug

/g d

ry w

t

F ig . X : U ra n ium c on c e n tra tio n in s ed im en t c o lle c ted fo rm d iffe ren ts am p lin g s ite s in Apa la c h ic o la B ayVa lue s a re m ea n ± S E M a t 9 5 % C L (n = 5 ). P > 0 .0 5Do not

disse

minate

withou

t auth

or au

thoriz

ation

Assuming a laminar flow, chemical transport between filaments can be modeled as

2

22 )1(

2

3

XYX

Θ∂=

Θ∂−

where is the chemical dimensionless concentration, X is the dimensionless distance normal to the surface of the filament such that X=0 denote the centerline, and Y is the dimensionless distance along the length of the filament.

Θ

wC

yxC ),(=Θ

h

xX =

Vh

yDY

2=

where C(x,y) is the chemical concentration between the filament at the distance x from the filament surface and y along the length of the filament and D (cm2 /s) is the diffusivity of the chemical.

Do not

disse

minate

withou

t auth

or au

thoriz

ation

The dimensionless length or Graetz number NGz of the filament is defined by Ywhen y = l. Using this definition and the functional notation (X, NGz) to designate the dimensionless chemical concentration of the interfilament water at the position X between adjacent filaments, the normalized bulk concentration, CB/Cw, can be defined as the weighted average

Θ

∫−

−Θ==Θ

1

0

2

1

0

2

)1(

)1)(,(

dXX

dXXNX

C

C Gz

w

BB

Using the Graetz-Nusselt solutions reported by Colton et al. (1971), this equation can be evaluated as

)3

2(exp 2

0

Gzm

m

mB NB λ−=Θ ∑∞

=

where the coefficient Bm is determined by the mth eigenvalue, , and corresponding eigenfunction, fm of the differential equation.

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Boundary conditions:Assuming steady-state diffusion 00 =

Θ=x

dX

d

Θ−=Θ

= wshx NdX

d1

Where is the channel wall Sherwood number, which is defined as wshN

D

hkN w

shw=

where is the permeability or conductance of the wall.

wk

Using the first eigenvalue ( , the bulk concentration of chemical can be estimated by

)11 =λ

)3

2exp(99.0 Gz

w

BB N

C

C−==Θ

Do not

disse

minate

withou

t auth

or au

thoriz

ation

Overall Conclusion

•Metal in surficial sediment lower than standard criteria

•Elemental concentrations in the sediment did not show true patterns of spatial and temporal variations.

•Concentrations of selected metals were greater in the

oyster tissue than in the water column

•Metals in C. virginica correlate better with metals in

particulate phase.

•In addition, differences in tissue metal content showed

patterns of temporal and seasonal variations suggesting that C. virginica could be a serious candidate for biomonitoring of

heavy metals in Apalachicola estuary.

Do not

disse

minate

withou

t auth

or au

thoriz

ation


Recommended