+ All Categories
Home > Documents > A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel...

A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel...

Date post: 04-Mar-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
20
A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University of Warwick Department of Chemical Engineering, Monash University Fuel Cell and Hydrogen Technical Conference 2017, Millennium Point, Birmingham B4 7XG, 14:00-14:20, 1st June, 2017
Transcript
Page 1: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

A molten carbonate fuel cell without CO2

recirculation

Professor Shanwen Tao

School of Engineering, University of Warwick

Department of Chemical Engineering, Monash University

Fuel Cell and Hydrogen Technical Conference 2017,

Millennium Point, Birmingham B4 7XG, 14:00-14:20, 1st June, 2017

Page 2: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

Types of fuel cells

2

B. Steele, Nature, 414 (2001) 345-352.

Page 3: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

Principle of conventional MCFCs

3

For a MCFC using H2 as the fuel.

The reaction at cathode is:

The formed CO32- ions will transport to the anode

through the carbonate electrolyte, then react with

the fuel. At anode:

The overall reaction is:

CO2 circulation from anode to cathode, was believed to be essential.

Page 4: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

Electrode reactions of direct carbon MCFC

2

322 COe2O2/1CO 22 OeO

2

422 2 COeOCO

eCOOC 22 e2CO2COC 2

2

4 e4CO3CO2C 2

2

3

Reactions at cathode:

Reactions at anode:

Presence of CO2 at

the cathode is NOT

required. On the other

hand, CO2 produced

at the anode can

dissolve in molten

carbonate electrolyte

then diffuse to the

cathode. Therefore

recirculation of CO2

in MCFC is NOT

essential.

Page 5: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

Why direct carbon fuel cells (DCFCs)

S. Giddey et al., Progress in Energy and Combustion Science 38 (2012) 360-399

Page 6: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

Direct carbon fuel cells

S. Giddey et al., Progress in Energy and Combustion Science 38 (2012) 360-399

Page 7: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

Challenges on DCFCs

• The challenge for the hydroxide electrolyte is the formation of carbonates inside the electrolyte.

• The main challenges related to Molten Carbonate DCFC are cathode performance loss with time, high cathode polarization, fuel delivery difficulties, corrosion of bipolar metallic plates, shorter cell life. Shorter cell life problem is due to material degradation.

• For DCFCs based on solid oxide electrolyte, availability of materials stable at higher temperatures, degradation of electrode especially in the impurities like sulphur, sealing etc.

In conclusion, the key challenge is stability of materials for DCFCs.

Page 8: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

Biomass – ideal fuels

Nearly carbon neutral, low carbon footprint;

Renewable;

Sustainable.

* Global biomass potential is about 200EJ (exajoule, 1018 J) (up to 600EJ) which is about

one third of world total energy consumption.

* Biomass fuel cell can efficiently generate electricity at low carbon emission.

Page 9: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

Direct biomass/carbon fuel cell

Ag mesh cathode

Carbon/biomass fuel caged in Ag mesh

Page 10: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

TG-DSC analyses of charcoal and wood

0 100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

Mass / %

Temperature (°C)

TG

(A)

-16

-12

-8

-4

0

DSC

DS

C/(

mW

/mg)

←endo−exo→

0 100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

Mass / %

Temperature (°C)

TG

(B)

-10

-8

-6

-4

-2

0

2

DSC

DS

C/(

mW

/mg)

←endo−exo→

charcoal wood

Solid residual 1.47wt% Solid residual 0.90wt%

Page 11: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

Performance of direct charcoal fuel cell

0 500 1000 1500 2000 25000.0

0.2

0.4

0.6

0.8

1.0

600 °C

650 °C

700 °C

750 °C

800 °C

Vo

lta

ge

(V

)

Current density (mA cm-2)

(A)

0 500 1000 1500 2000 25000

100

200

300

400

500

Po

we

r d

en

sity (

mW

cm

-2)

Current density (mA cm-2)

600°C

650°C

700°C

750°C

800°C

(B)

Page 12: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

A.c. impedance of direct charcoal fuel cell

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

600°C

650°C

700°C

750°C

800°C

-Im

Z (c

m2)

Re Z ( cm2)

(C)

0.00 0.05 0.10 0.15 0.20

0.00

0.05

0.10

0.15

0.20

600°C

650°C

700°C

750°C

800°C

Re Z ( cm2)

Page 13: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

Stability of direct charcoal fuel cell

0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

300

Curr

ent density (

mA

cm

-2)

Time (h)

T = 600 °C

(A)

0 2 4 6 8 10 12

0

2

4

6

8

10

12

before stability measurement

after stability measurement-Im

Z (

cm

2)

Re Z ( cm2)

(B)

0.00 0.05 0.10 0.15 0.20

0.00

0.05

0.10

0.15

0.20

before stability measurement

after stability measurement

-Im

Z (

cm

2)

Re Z ( cm2)

Page 14: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

Fuel cell performance of direct wood fuel cell

0 500 1000 1500 20000.0

0.2

0.4

0.6

0.8

1.0

600 °C

650 °C

700 °C

750 °C

800 °C

Vo

lta

ge

(V

)

Current density (mA cm-2)

(A)

0 500 1000 1500 20000

100

200

300

400

500

Pow

er

density (

mW

cm

-2)

Current density (mA cm-2)

600°C

650°C

700°C

750°C

800°C

(B)

Rong Lan and Shanwen Tao, Science Advances, 2 (2016) e1600772

Page 15: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

A.c. impedance of direct wood fuel cell

0 2 4 6 8 10 120

2

4

6

8

10

12

600°C

650°C

700°C

750°C

800°C

-Im

Z (c

m2)

Re Z ( cm2)

(C)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

600°C

650°C

700°C

750°C

800°C

Re Z ( cm2)

Page 16: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

The open circuit voltage of the charcoal and

wood fuel cell

550 600 650 700 750 800 850

0.6

0.7

0.8

0.9

1.0

charcoal

wood

OC

V (

V)

Temperature (°C)

Reverse Boudouard reaction (spontaneous at T > 700 °C.

COCOC 22

Page 17: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

The SEM picture of the charcoal and wood

before and after fuel cell measurements

(A)

(D)(C)

(A) (B)

charcoal

wood

Page 18: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

The typical EDS spectra of the charcoal and wood

before and after fuel cell measurements

0 1 2 3 4 5 6 7 8 9 10

O

C

KeV

(A)

0 1 2 3 4 5 6 7 8 9 10

Mg

O

C

KeV

(B)

0 1 2 3 4 5 6 7 8 9 10

0

500

1000

1500

SiN

O

C

KeV

(C)

0 1 2 3 4 5 6 7 8 9 10

0

2000

4000

6000

SiO

C

B

KeV

(D)

Charcoal before Charcoal after

Wood before Wood after

Page 19: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

Comparison of reported typical fuel cell performances on

using carbon and biomass as the fuelElectrolyte Charge

carrier

Cathode Anode Fuel Oxidant Temperatur

e (°C)

Open circuit

voltage (V)

Power density

(mW cm-2)

References

NaOH/KOH

54:46 m/o

OH- Nickel wound tube Nickel mesh activated carbon O2/air + H2O 500 ~0.91 ~ 38.5 (10)

YSZ O2- La0.8Sr0.2MnO3+Ce0.9Gd0.1

O2-

(Ni0.9-Fe0.1)- Ce0.9Gd0.1O2- charcoal O2 800 1.0 35 (9)

YSZ O2- La0.6Sr0.4CoO3- Ni-YSZ Mixture of pyrolysed fibreboard and Li2CO3–

K2CO3

(62 : 38 mol)

Flowing air 750 1.013 878 (5)

38 % Li2CO3

+ 62 %

K2CO3

CO32- LiNiOx on stainless steel Ni-coated stainless steel soot Flowing

CO2+O2

(molar ratio

1:1)

800 ~ 1.04 ~ 96 (24)

32 wt%

Li2CO3+68wt

% K2CO3

CO32- Ag sheet Porous Ni rod graphite Flowing

CO2+O2

(molar ratio

2:1)

700 ~ 1.0 ~ 640 (25)

Molten

(Li,Na,K)2CO3

CO32-(O2

-) Ag Ag bamboo charcoal Static air 800 0.97 430 This study

Nafion 212 H+ Pt/C Carbon paper/carbon nano-

tube/enzyme

0.01mM maltodextrin air 50 ~ 0.6 0.8 (7)

Nafion 117 H+ Pt/C Pt/C Starch processing waste water air 30 0.49 0.0239 (38)

Nafion 117 H+ Pt/C Carbon clothe (C) Lignin in H3PMo12O40 solution Flowing O2 Room

temperature

~0.37 ~ 0.55 (6)

Ce0.8Sm0.2O2--

(Li,Na)2CO3

O2-/CO32- Lignin+ active carbon

Ce0.8Sm0.2O2--(Li,Na)2CO3

Composite Li/Cu/Ni/Zn

oxides

lignin Flowing air 560 ~ 0.74 25 (16)

62mol%Li2C

O3+38mol%K

2CO3

CO32- Ag Ag 62mol%Li2CO3+38mol%K2CO3+5wt%

carbon

Flowing

CO2+air

700 0.9 34 (11)

Molten

(Li,Na,K)2CO3

CO32-(O2

-) Ag Ag wood Static air 800 0.9 410 This study

Page 20: A molten carbonate fuel cell without CO recirculation · 2017-06-13 · A molten carbonate fuel cell without CO 2 recirculation Professor Shanwen Tao School of Engineering, University

Thank you for your attention !


Recommended