+ All Categories
Home > Documents > A new 5 GHz Receiver for a Galactic Experiment

A new 5 GHz Receiver for a Galactic Experiment

Date post: 02-Oct-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
28
9 November 2009 3º Congresso URSI Portugal A new 5 GHz Receiver for a Galactic Experiment Miguel Bergano GRIT Aveiro www.av.it.pt/gem FCT Grants POCTI/CTE-AST/57209/2004 PTDC/CTE-AST/65925/2006 1
Transcript
Page 1: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal

A new 5 GHz Receiver for a Galactic

Experiment

Miguel BerganoGRIT – Aveiro

www.av.it.pt/gem

FCT Grants• POCTI/CTE-AST/57209/2004• PTDC/CTE-AST/65925/2006

1

Page 2: A new 5 GHz Receiver for a Galactic Experiment

Overview

9 November 2009 3º Congresso URSI Portugal 2

Unveil the Sky to CMBR;

Applicable to a Galactic Experiment;

High sensitivity radiometer;

Superheterodyne Receiver with Double Down Conversion – Zero IF;

IF chain developed and tested;

Full Digital Back-end;

Stokes Parameters Calculation.

Page 3: A new 5 GHz Receiver for a Galactic Experiment

What is CMBR?• Cosmic Microwave Background Radiation

• Best “Big-Bang” relic (Fossil);

• First Sky map: 1992 by COBE satellite COBE (PI G. Smoot,

was awarded the Physics Nobel Prize in 2006 for this discovery)

• CMBR fluctuations (anisotropies) allow to determine the geometry, age of the Universe.

9 November 2009 3º Congresso URSI Portugal 3

Page 4: A new 5 GHz Receiver for a Galactic Experiment

GEM – Galactic Emission Mapping

• Survey of Syncrotron Polarization@ 5 GHz

• North/South Hemisphere (Portugal and Brasil)

• 80% sky coverage

9 November 2009 3º Congresso URSI Portugal 4

Page 5: A new 5 GHz Receiver for a Galactic Experiment

Radiometer?

High sensitivity, well calibrated microwave receiver;

Detect and measure celestial sources;

Radiómetro

TA

KJK

WattsKBGTP A

23-101,38BoltzmanndeConstante

,

∫X2

TN

TAVout

9 November 2009 3º Congresso URSI Portugal 5

Page 6: A new 5 GHz Receiver for a Galactic Experiment

Radiometer Types Amplification:

• Direct;

• Superheterodyne

Accuracy:• Dicke Radiometer

• Noise Injection Radiometer

• Total Power Radiometer

B

TTT NA2

9 November 2009 3º Congresso URSI Portugal 6

Page 7: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal

Superheterodyne Receiver

(Base-band Complex Correlator)

Novel approach to digital correlators!

The radiometer/polarimeter gain budget:

7

Page 8: A new 5 GHz Receiver for a Galactic Experiment

Antenna

9 November 2009 3º Congresso URSI Portugal 8

Page 9: A new 5 GHz Receiver for a Galactic Experiment

Receiver

9 November 2009 3º Congresso URSI Portugal

NFTOTAL= 6,1KGainTOTAL= 104 dB9

Page 10: A new 5 GHz Receiver for a Galactic Experiment

Receiver Requirements

9 November 2009 3º Congresso URSI Portugal 10

• System Temperature about ~ 20K

• Sensitivity ~ 2mKs-1/2

• Frequency 5GHz with 200MHz Bandwidth

• Gain ~ 100dB

• Suitable for Stokes Parameters Calculation

• LNA Cryocooled PHEMT Amplifiers

Page 11: A new 5 GHz Receiver for a Galactic Experiment

LNA Characteristics

GaAs HEMT Low Noise Transistors

Noise Figure between 0,1 and 0,3 dB

Total Gain approximately 22 dB

Noise and S-parameters Simulation in ADS

Substrate to be used: RT5880

CompanyNF

(dB)

GAIN

(dB)

@Freq.

(GHz)

MGF4953 Mitsubishi 0,40 13,5 12

MGF4941 Mitsubishi 0,35 13,5 12

MGF4419 Mitsubishi 0,50 12 12

ATF-36077 Agilent 0,5 12 12

MGF4931 Mitsubishi 0,60 11,5 12

NE3511S02 NEC 0,30 13,5 12

FHX13X Fujitsu 0,45 13 12

No longer manufactured

9 November 2009 3º Congresso URSI Portugal 11

Page 12: A new 5 GHz Receiver for a Galactic Experiment

SIMULATIONS S and Noise Parameters provided by the

manufacturer Adjustments of components to obtain the

desired result Challenge is to create good matching networks,

that will provide the lowest NF; Obtain a large frequency band of low NF.

DeviceNF

(dB @ 5GHz)

GAIN

(dB @ 5GHz)

MGF4941 from Mitsubishi 0,25 13,8

MGFC4419 from Mitsubishi 0,28 12,3

MGF4931 from Mitsubishi 0,48 11

ATF-36077 from Agilent 0.32 13

NE3511S02 from NEC 0,25 13

FHX13X from Fujitsu ------ 14

9 November 2009 3º Congresso URSI Portugal 12

Page 13: A new 5 GHz Receiver for a Galactic Experiment

Design Constraints

Using the Noise Parametersprovided, and following theusual procedure to design ainput and output matching

networks, a LNA with

NF=0,35dB and 13,4dB of gain

9 November 2009 3º Congresso URSI Portugal

MB050109

Page 14: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal

IF part designed and tested

IF Chain+RF Filter

4.9GHZ; B=600MHzCoupled Line filter

B=200MHz; 31dB; ButterworthMMIC (best response flatness)

Flat gain; 71dB;Digital attenuation

120dB isolation between portsFrequency 600MHz; VCO; MMIC Amp.;

PLL synthesyzer; 7dBm

14

Page 15: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal

Microwave Passive Filter

Central Frequency = 4,9 GHz;

Bandwidth = 800 MHz;

Coupled Lines;

ADS Design aided;

Electromagnetic Simulation.

Substrate – RO4003C

Substrate Thickness H 20 mil

Relative Dielectric Constant εr 3,38

Conductor Thickness T 0,35μm

Dielectric Loss Tangent tan δ 0,0021

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 190 20

-60

-50

-40

-30

-20

-10

0

-70

10

frequency [GHz]

[dB

]

S - parameter

dB(S(2,1))

dB(S(1,1))

dB(S(1,2))

dB(S(2,2))

15

Page 16: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal

L1 C1

L2 C2

L3

C3

Vcc =8V

IF Pre - Amplifier

Gain = 31 dB

Slope Compensation Network;

Gain variation with frequency;

Gain variation with Temperature;

S-Parameters Simulation.

High Q filter;

Central Frequency = 600 MHz;

Bandwidth = 200 MHz;

T configuration

Butterworth Prototype;

Hand made Inductances

ADS Design aided;

Amplifier Filter

P1dB = -24 dBm

16

Page 17: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal

Vcc =8V

4 4

µC

IF Amplifier

Gain = 71 dB;

Flat gain;

Digital attenuation control;

Slope Compensation Network;

Gain variation with frequency;

Gain variation with Temperature;

S-Parameters Simulation.

P1dB = -61 dBmIP3= -41 dBm

17

Page 18: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal

Converter

75 1455 210

-28

-18

-8

-38

2

Frequency [MHz]

[dB

m]

Converter output

LPF

LPF

LPF

LPF

I

Q

LO0º

LO90º

Zero – IF Conversion (LB = 100MHz);

Phase (I) and Quadrature (Q) Modulation;

Signal Amplification (GSINAL = 16 => 25 dB);

Port Isolation = 120 dB;

Suitable for Stokes Parameters Calculation;

Microstrip Lines with equal lengths;

Protection (outside interference & parasitics).

18

Page 19: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal

Local Oscillator

VCO

50Ω

50Ω

50Ω

50Ω

0 dBm

0 dBm

10 dBm

90º

90º

0º≈ 7 dBm

≈ 7 dBm

≈ 7 dBm

≈ 7 dBm

R1

R2

R2

R3

R3

PLL

0,6 dBm

Frequency = 600 MHz with 7 dBm;

Provides the converter with 4 signals

PLL Sinthesized;

Microstrip Lines with equal lengths;

Protection (outside interference & parasitics).

19

Page 20: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal

Full 4-channel Digital CorrelatorCorrelations computed in aFPGA after signal digitalization(ADC interleaving) and outputsI,Q,U Stokes signals:

Why an FPGA Cyclone II from ALTERA?

• Embedded Multipliers;

• Number of pins;

• Frequency.

20

Page 21: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal

Digital CorrelatorISA Interface output

• ADCs AD9481 from Analog

Devices.

• 250 Msps

• 8 bits of resolution

Analog inputs • FPGA EP2C8Q208C7 Cyclone II from ALTERA

• 8256 LE.

• Number of 9 bits multipliers = 36;

• 208 pins

• Speedgrade 7

Active Serial mode

programming interface

Cristal Oscilator

100 MHz

21

Page 22: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal

1. Signals correlation from the 4 ADCs, (8 bits sum and

multiplications every)

2. Integration of correlated signals.

3. Output Stokes parameters to PC104

FPGA calculates the Stokes parameters (I, Q, U).

(VHDL code implementation by Francisco Fernandes)

Full Digital Correlator

FPGA is an ALTERA

Cyclone II and works at

100 MHzFPGA

I, Q, U

PC104

N

N+1

100 MHz

Cyclone II

ADC 1

N

N+1ADC 2

N

N+1ADC 3

N

N+1ADC 4

8 bits of resolution200 MSPS

0,5Vpp

I,Q,U,V=F(ADC1,ADC2,ADC3,ADC4)

22

Page 23: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal09/11/09 2º Congresso URSI Portugal 23

Main Features of PC104 (MOPSlcdLX*)

Hardware• 500 MHz AMD LX800

TM

Processor• 256 MByte DDR-RAM• ChipDisk IDE 1 GByte• Support: ISA, Ethernet• Power supply: 5V

Software• Linux, kernel 2.4• Dedicated, custom-made

software for FPGA communication via ISA bus (C lang. –implemented by Francisco Fernandes).

• SSH File transfer.

* www.kontron.com/MOPS

23

Page 24: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal

LIRAeLinux for Radio Astronomy embedded

LIRAe is a microlinux distribution, to run on CPU embedded systems and control radioastronomy digital correlators based on FPGA chips.

The system was tested and runs on a PC104 from Kontron, model MOPSlcdLX.

Download available soon.LIRAe main developer: Francisco Fernandes

email : [email protected]

24

Page 25: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal

Mechanical Layout

25

Page 26: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal

Receiver photo

26

Page 27: A new 5 GHz Receiver for a Galactic Experiment

9 November 2009 3º Congresso URSI Portugal

Conclusion : Radiometer facts

Tsys < 20 K; B = 200 MHz; 104 dB gain

High-performance IF strip

Latest RF tech+ microstrip design + MMIC

New Radioastronomy Design:

Zero-IF Converter + I,Q modulation

Digital Correlator : 4-channel, FPGA implemented processing 16Gbps!

An SKA (Potential!) Digital Demodulator

Dynamic Range: Total=20dB, Instantaneous=80dB

Suitable for state of the art RA applications.

MoU with ESA Planck Science Team.27

Page 28: A new 5 GHz Receiver for a Galactic Experiment

FIM

Muito obrigado pela atenção...

9 November 2009 3º Congresso URSI Portugal 28


Recommended