+ All Categories
Home > Documents > A new equation of motion method for multiphonon nuclear spectra .

A new equation of motion method for multiphonon nuclear spectra .

Date post: 02-Feb-2016
Category:
Upload: brooke
View: 14 times
Download: 0 times
Share this document with a friend
Description:
A new equation of motion method for multiphonon nuclear spectra. N. Lo Iudice Universit à di Napoli Federico II Kazimierz08. Acknowledgments. J. Kvasil , F. Knapp, P. Vesely (Prague) F. Andreozzi , A. Porrino (Napoli) Also Ch. Stoyanov (Sofia) A.V. Sushkov ( Dubna ). - PowerPoint PPT Presentation
44
A new equation of motion method for multiphonon nuclear spectra. N. Lo Iudice Università di Napoli Federico II Kazimierz08
Transcript
Page 1: A  new equation of motion method for multiphonon nuclear spectra .

A new equation of motion method for multiphonon nuclear spectra.

N. Lo IudiceUniversità di Napoli Federico II

Kazimierz08

Page 2: A  new equation of motion method for multiphonon nuclear spectra .

Acknowledgments• J. Kvasil, F. Knapp, P. Vesely (Prague)• F. Andreozzi, A. Porrino (Napoli)• Also

Ch. Stoyanov (Sofia)

A.V. Sushkov (Dubna)

Page 3: A  new equation of motion method for multiphonon nuclear spectra .

From mean field to multiphonon approaches

Anharmonic features of nuclear spectra:

Experimental evidence of multiphonon excitations

Necessity of going beyond mean field approaches

A new (in principle exact) multiphonon method

A successful microscopic (QPM) multiphonon approach

Page 4: A  new equation of motion method for multiphonon nuclear spectra .

Collective modes: anharmonic featuresMean field: Landau damping

Beyond mean field:

* Spreading width

* * Multiphon excitations- High-energy (N. Frascaria, NP A482, 245c(1988); T. Auman, P.F. Bortignon, H. Hemling, Ann. Rev. Nucl. Part. Sc. 48, 351 (1998))

Double and triple dipole giant resonances

- Low-energy M. Kneissl. H.H. Pitz, and A. Zilges, Prog. Part. Nucl. Phys. 37, 439 (1996); M. Kneissl. N. Pietralla, and A. Zilges, J.Phys. G, 32, R217 (2006) :

Two- and three-phonon multiplets

Proton-neutron mixed-symmetry states (N. Pietralla et al. PRL 83, 1303 (1999))

Page 5: A  new equation of motion method for multiphonon nuclear spectra .

 

A microscopic multiphonon approach: QPM Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons, Bristol, (1992)

H = Hsp + Vpair + Vpp + Vff

H[(a†a), (a†a†),(aa)] H[(α†α ),(α†α†),(α α ) ]

α†α† O†λ

α α Oλ

Oλ† = Σkl [Xkl(λ) α†

k α†l – Ykl(λ) αk αl]

HQPM= Σnλ ωn (λ) Q†λ Qλ + Hvq

Ψν = Σncn Q†ν(n) |0> + Σij Cij Q† (i) Q†(j) |0>

+ Σijk Cijk Q†(i) Q†(j) Q†(k)|0>

Page 6: A  new equation of motion method for multiphonon nuclear spectra .

π-ν MixedSymmetry • Symmetric |n, ν>s = QS

n |0 > = (Qp + Qn)n |0 >

• MS

|n, ν>MS = QAQS (n-1) |0 >

= (Qp - Qn) (Qp + Qn) (n-1) |0 >

Signature• Preserving symmetry

transitions

M(E2) QS n → n-1

• Changing symmetry transitions

M(M1) Jn – Jp n → n

n=2

n=3

n=1

Sym

E2

E2

E2

E2

E2

M1

M1

n=2

MS n=1

Scissors multipletS | n,J> = (Jp – Jn) |nJ>

= ΣJ’ |n J’> <nJ’| S|nj>

Bsc(M1) = ΣJ’ |<nJ’|M(M1)|nJ>|2

~ 1.5 - 2 μN2

J

J-1J

J+1

M1

Page 7: A  new equation of motion method for multiphonon nuclear spectra .

A QPM calculation: N=90 isotonesN. L, Ch. Stoyanov, D.Tarpanov, PRC 77, 044310 (2008)

M1 E2

Page 8: A  new equation of motion method for multiphonon nuclear spectra .

4+ state in Os isotopesN. L. and A. V. Sushkov submitted to PRC

Hexadecapole one-phonon?

Ψ |n=1,4+>

E4

S(t,α)

Double-g ?

|> E2

E4 2 Eg 2E

R4(E2) = B(E2,4+→ 2+)/B(E2,2+ → 0+)

2

QPM

Ψ 0.60 |n=1,4+> + 0.35 |>

4+

0+

2g+

4+

2g+

0+

Page 9: A  new equation of motion method for multiphonon nuclear spectra .

4+: QPM versus EXP

Page 10: A  new equation of motion method for multiphonon nuclear spectra .

Successes and limitations of the QPMSuccessesIt is fully microscopic and valid at low and high energy.including the double GDR (Ponomarev, Voronov)

Limitations: Valid for separable interactions Antisymmetrization enforced in the quasi-boson approximation, Ground state not explicitly correlated (QBA)

Temptative improvementsMultistep Shell model (MSM) (R.J. Liotta and C. Pomar, Nucl. Phys. A382, 1 (1982))They expand and linearize <α|[[H, O†],O†]|0> ( O† = Σph X(ph) a†

p ah )

Multiphonon model (MPM) (M. Grinberg, R. Piepenbring et al. Nucl. Phys. A597, 355 (1996) Along the same linesBoth MSM and (especially) MPM look involved

Page 11: A  new equation of motion method for multiphonon nuclear spectra .

A new (exact) multiphonon approachEigenvalue problem in a multiphonon space

| Ψ ν > H = Σn Hn Hn |n; β> ( n= 0,1.....N )

An obvious (but prohibitive!!) choice

|n; β> = | ν1, ν2,… νi ,…νn>

where (TDA) | νi > = Σph cph(νi ) a†

p ah |0>

A workable choice |n=1; β> = | νi > = Σph cph (νi ) a†

p ah |0> ( TDA)

H | Ψν > = Eν | Ψν >

Generation of the |n; β> (basis states)

|n; β> = Σαph C(n)αph a†

p ah | n-1; α >

Page 12: A  new equation of motion method for multiphonon nuclear spectra .

EOM: Construction of the Equations

< n; β | [H, a†p ah] | n-1; α>

< n; β |[H, a†p ah]| n-1; α> = ( Eβ

(n) – Eα (n-1) ) < n; β | a†p ah| n-1; α >

(LHS) (RHS)

* request

< n; β | H | n; α > = Eα (n) δαβ

** property

< n; β | a†pah | n’; γ > = δn’,n-1 < n; β | a†

pah | n-1; γ >

It follows from

Preliminary step:

Crucial ingredient

Page 13: A  new equation of motion method for multiphonon nuclear spectra .

Î = Σ γ |n-1; γ >< n-1; γ|

Equations of Motion : LHS

< n; β | [H, a†p ah] | n-1; α > =

(εp- εh) < n; β | a†p ah| n-1; α >. + linear

1/2 Σijp’ Vhjpk < n; β | a†p’ ah a†

i aj | n-1; α > + not linear

Commutator expansion

Linearization

< n; β | [H, a†p ah] | n-1; α > =

= Σp’h’γ Aαγ(n) (ph;p’h’) < n; β | a†

p’ ah’ | n-1; γ >

Page 14: A  new equation of motion method for multiphonon nuclear spectra .

LHS=RHS

A (n ) X

(n) = E (n) X

(n)

Xα(β) (i ) = < n; β | a†

p ah| n-1; α>ρH ≡ {< n-1,γ|a†

hah’ |n-1,α>}

ρP ≡ {< n-1,γ|a†pap’ |n-1,α>}

n =1 TDA A(1) X (1) = E (1) X (1)

A(1) (ij) = δij [(εp–εh )+ E(0) ] + V(p’hh’p)

n=1 |n=1; β> = | νi > = Σph cph a†p ah |0>

n> 1 |n; β> = Σαi Cα(β) (i ) a†

p ah | n-1; α >

Aαγ(n) ( ij) = [(εp–εh ) + Eα

(n-1) ] δij(n-1) δαβ

(n-1) + [VPH ρH + VHPρP + VPPρP + VHHρH ]αiβj

n=1 C = X

n> 1 X= DC

Dαα’ (ij) = < n-1; α’|( a†h’ ap’)( a†

p ah) | n-1; α> overlap matrix

Page 15: A  new equation of motion method for multiphonon nuclear spectra .

General Eigenvalue Problem

A(n) X(n) = E(n) X(n) X(n) = D(n) C(n)

Problem i) how to compute D

Problem ii) redundancy Det D = 0

(AD)C = H C = E DCEigenvalue

Equation

Dαα’ (ij) = < n-1; α’|( a†h’ ap’)( a†

p ah) | n-1; α> overlap matrix

Page 16: A  new equation of motion method for multiphonon nuclear spectra .

General Eigenvalue Problem

• Solution of problem i)

(AD)C = H C = E DC

D = ρH (n-1) – ρP

(n-1) ρH (n-1)

ρP (n-1) = C (n-1) X (n-1) – C (n-1) X (n-1) ρP (n-2)

recursive

relations

Problem i) solved!!!!

Aαγ(n) ( ij) = [εp–εh + Eα

(n-1) ] δij(n-1) δαβ

(n-1)

+ [VPH ρH + VHPρP + VPPρP + VHHρH ]αiβj

Dαα’ (ij) = < n-1; α’|( a†h’ ap’)( a†

p ah) | n-1; α> overlap matrix

Page 17: A  new equation of motion method for multiphonon nuclear spectra .

General Eigenvalue Problem

Solution of Problem ii) (redundancy)

*Choleski decomposition

** Matrix inversion

Exact eigenvectors

HC = (Ď-1AD)C = E C

(AD)C = H C = E DC

D Ď

|n; β> = Σαph Cα(β) (i ) a†

p ah | n-1; α > Hn (phys)

Page 18: A  new equation of motion method for multiphonon nuclear spectra .

Iterative generation of phonon basis Starting point |0>

Solve Ĥ(1) C(1)

= E(1)

C(1)

|n=1, α> X(1) ρ(1)

Solve Ĥ(2) C (2) = E (2) C (2) |n=2,α> X(2) ρ(2)

……… X(n-1) ρ(n-1)

Solve Ĥ(n) C (n) = E (n) C (n)

X(n) ρ(n) |n,α

.>

The multiphonon basis is generated !!!

Page 19: A  new equation of motion method for multiphonon nuclear spectra .

H: Spectral decomposition, diagonalization

Outcome

H |Ψν> = Eν |Ψν>

Off-diagonal terms: Recursive formulas

< n; β | H| n-1; α > = Σphγ ϑαγ (n-1) (ph) Xγ(β) (ph)

< n; β | H| n-2; α > = Σ V pp’hh’ Xγ(β) (ph) Xγ

(α) (p’h’)

H = Σ nα E α(n) |n; α><n;α| + (diagonal)

+ Σ nα β |n; α><n;α| H |n’;β><n’;β| (off-diagonal)

n’ = n ±1, n±2

|Ψν> = Σnα Cα(ν) (n) | n;α>

|n;α> = Σγ Cγ(α) a†

p ah | n-1;γ>

Page 20: A  new equation of motion method for multiphonon nuclear spectra .

E.m. response

C3 | λ1 λ2 λ3 > + C1 | λ1 >

C2 | λ1 λ2> + C0 |0>

Ψ0 Ψν(n)

EMPM

|Ψν> = Σn{λ} C{λ}(ν) (n) | n;{λ1λ2. λn }>

|λ> = Σph cph (λ) a†p ah|0>

W.F.

e.m. operator

Мλμ = rλ Yλμ

Strength Function

S(Eλ) = Σ Bn (Eλ) δ(E- En)

Bn (Eλ) =|<Ψnν|| Мλ ||Ψ0>|2

Page 21: A  new equation of motion method for multiphonon nuclear spectra .

16O: TDA (CM free) response and SM space dimensions

Page 22: A  new equation of motion method for multiphonon nuclear spectra .

SM spaceAll particle-hole (p-h) configurations up to 3ħω

(2s,1d,0g)

(1p,0f)

(1s,0d)

0p

0s

EMPM : Exact implementation in 16O for N=4

Free of CM spurious admixtures

Page 23: A  new equation of motion method for multiphonon nuclear spectra .

Mean field versus EMPM E response

Page 24: A  new equation of motion method for multiphonon nuclear spectra .

NEW running sums

Page 25: A  new equation of motion method for multiphonon nuclear spectra .

EW running sums

Page 26: A  new equation of motion method for multiphonon nuclear spectra .

CM motion

Hamiltonian

H = H0 + V = Σi hNils(i)+ Gbare ( VBonnA Gbare)

H H + Hg

Hg = g [ P2/(2Am) + (½) mA ω2 R2 ]

For g>>1 E CM >> Eintr

CM motion ( F. Palumbo Nucl. Phys. 99 (1967))

Page 27: A  new equation of motion method for multiphonon nuclear spectra .

CM motion in TDA: Isoscalar E1

Page 28: A  new equation of motion method for multiphonon nuclear spectra .

CM motion in EMPM

Page 29: A  new equation of motion method for multiphonon nuclear spectra .

Spectra

Page 30: A  new equation of motion method for multiphonon nuclear spectra .

Perspectives: New formulation

< n; β |[H, a†p ah]| n-1; α> < n; β |[H, O†

λ ]| n-1; α>

O†λ = Σph cph

(λ ) a†p ah

λ’γ Aαγ(n) (λ,λ’) X(β)

γ λ’ = Eβ(n) X (β)

γ λ X(β)αλ = < n; β | O†

λ| n-1; α >

Aαγ(n) (λ,λ’) = [ Eλ + Eα

(n-1) ] δλ λ’ δαγ + ρλλ’ V ραγ(n-1)

ρλλ’ (kl) ≡ < λ’| a†kal |λ> ραγ

(n-1) (kl) = < n-1,γ| a†kal |n-1,α>

|n; β> = Σαλ C(β)αλ O†

λ | n-1; α > = ΣC(β) {λi} |λ1,.…λi….λN >

C (β) {λi} = Σ C(β)αλ1

C(α) γλ2 C (γ)

δλ3

Page 31: A  new equation of motion method for multiphonon nuclear spectra .

Vertices

TDA (n=1) MPEM (n=3)

-------- ---------

Vph’hp’ ρλλ’ V ραγ(n-1)

h p

p’h’ λ’

λ α

γ

Aαγ(n) (λ,λ’) = [ Eλ + Eα

(n-1) ] δλ λ’ δαγ + ρλλ’ V ραγ(n-1)

Page 32: A  new equation of motion method for multiphonon nuclear spectra .

THANK YOU

Page 33: A  new equation of motion method for multiphonon nuclear spectra .

EW sum rule

SEW (E ) = ½ Σμ <[M (E μ),[H, M (E μ)]>

= [(2 + 1)2/16π ](ħ2/2m) A < r2 -2>

SEW (E 1, τ = 0) = [(2 + 1)2]/16π (ħ2/2m)

x A[11< r4> -10 R2<r2> + 3 R4]

Page 34: A  new equation of motion method for multiphonon nuclear spectra .

Ground state

0

10

20

30

40

50

60

70

80

0ph 2ph 4ph 6ph

EMNocoreHJ

0

10

20

30

40

50

60

70

80

0ph 1ph 2ph

P(n) %noCMcorr

|Ψ0> = C0(0) |0>

+ Σλ Cλ(0) |λ, 0>

+ Σ λ1λ2 Cλ1λ2

(0) |λ1 λ2, 0 >

1 = < Ψ0|Ψ0> = P0 + P1 + P2

Page 35: A  new equation of motion method for multiphonon nuclear spectra .

16O negative parity spectrum • Up to three phonons

Page 36: A  new equation of motion method for multiphonon nuclear spectra .

IVGDR

Мλμ = τ3 r Y1μ ≈ Rπ - Rν

|1- > IV ~ |1 (p-h) (1ħω)>(TDA)

TDA

Page 37: A  new equation of motion method for multiphonon nuclear spectra .

ISGDR

Мλμ = r Y1μ ≈ RCM !!!

|1->IS ~ |1(p-h) (3 ħω)> + |2 (p-h) (1ħω + 2ħω)> + |3(p-h) (1ħω )>

Мλμ = r3 Y1μ

Toroidal

Page 38: A  new equation of motion method for multiphonon nuclear spectra .

Octupole modes

Мλμ = r3 Y1μ

|3->IS ~ |1(p-h) (3 ħω)> + |2(p-h) (1ħω + 2ħω)> + |3(p-h) (1ħω )>

Low-lying

Page 39: A  new equation of motion method for multiphonon nuclear spectra .

Effect of CM motion

Page 40: A  new equation of motion method for multiphonon nuclear spectra .

Effect of the CM motion

Page 41: A  new equation of motion method for multiphonon nuclear spectra .

Concluding remarks• The multiphonon eigenvalue equations

- have a simple structure - yield exact eigensolutions of a general H

• The 16O test shows that - an exact calculation in the full multiphonon space is feasible at least up to 3 phonons and 3 ħω.

• To go beyond - Truncation of the space needed !!! - Truncation is feasible (the phonon states are correlated).

- A riformulation for an efficient truncation is in progress

Page 42: A  new equation of motion method for multiphonon nuclear spectra .

Implications of the redundancy

Σj [ <i|H|j> - Ei <i|j> ] Cj = 0

|n; β> = Σ j Cj |i>where

|i > = a†p ah | n-1; α > (not linearly independent )

Eigenvalue problem of general form

But (problems again!!)

i. A direct calculation of <i|H|j> and <i|j> is prohibitive !!

ii. The eigenstates would contain spurious admixtures!!

How to circumvent these problems?

Page 43: A  new equation of motion method for multiphonon nuclear spectra .

Problem: Overcompletness for n>1

p h p h

|n; β> = Σ αph Cαph a†p ah | n-1; α >

a†p ah | n-1; α > are not fully antysymmetrized !!!

a†p ah | n-1; α > ≡

The multiphonon states are not linearly independent

and form an overcomplete set.

Page 44: A  new equation of motion method for multiphonon nuclear spectra .

16O as theoretical lab

Pioneering work: First excited 0+ as deformed 4p-4h excitations G. E. Brown, A. M. Green, Nucl. Phys. 75, 401 (1966)

(TDA) IBM (includes up to 4 TDA Bosons)H. Feshbach and F. Iachello, Phys. Lett. B 45, 7 (1973); Ann. Phys. 84, 211 (194)

SM up to 4p-4h and 4 ħωW.C. Haxton and C. J. Johnson, PRL 65, 1325 (1990)E.K. Warbutton, B.A. Brown, D.J. Millener, Phys. Lett. B293,7(1992)

No-core SM (NCSM) Huge space!!!Symplectic No-core SM (SpNCSM) a promising tool for cutting the SM spaceT. Dytrych, K.D. Sviratcheva, C. Bahri, J. P. Draayer, and J.P. Vary, PRL 98, 162503 (2007)

Self-consistent Green function (SCGF) (extends RPA so as to include dressed s.p propagators and coupling to two-phonons) C. Barbieri and W.H. Dickhoff, PRC 68, 014311 (2003); W.H. Dickhoff and C. Barbieri, Pro. Part. Nucl. Phys. 25, 377 (2004)

Structure of 16O: A theoretical challenge


Recommended