+ All Categories
Home > Documents > A Normalized Transfer Matrix Method for the Free Vibration...

A Normalized Transfer Matrix Method for the Free Vibration...

Date post: 16-Jun-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
24
Research Article A Normalized Transfer Matrix Method for the Free Vibration of Stepped Beams: Comparison with Experimental and FE(3D) Methods Tamer Ahmed El-Sayed and Said Hamed Farghaly Department of Mechanical Design, Faculty of Engineering, Mataria, Helwan University, P.O. Box 11718, Helmeiat-Elzaton, Cairo, Egypt Correspondence should be addressed to Tamer Ahmed El-Sayed; tamer [email protected] Received 2 June 2017; Revised 22 August 2017; Accepted 15 October 2017; Published 28 November 2017 Academic Editor: Toshiaki Natsuki Copyright © 2017 Tamer Ahmed El-Sayed and Said Hamed Farghaly. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e exact solution for multistepped Timoshenko beam is derived using a set of fundamental solutions. is set of solutions is derived to normalize the solution at the origin of the coordinates. e start, end, and intermediate boundary conditions involve concentrated masses and linear and rotational elastic supports. e beam start, end, and intermediate equations are assembled using the present normalized transfer matrix (NTM). e advantage of this method is that it is quicker than the standard method because the size of the complete system coefficient matrix is 4 × 4. In addition, during the assembly of this matrix, there are no inverse matrix steps required. e validity of this method is tested by comparing the results of the current method with the literature. en the validity of the exact stepped analysis is checked using experimental and FE(3D) methods. e experimental results for stepped beams with single step and two steps, for sixteen different test samples, are in excellent agreement with those of the three- dimensional finite element FE(3D). e comparison between the NTM method and the finite element method results shows that the modal percentage deviation is increased when a beam step location coincides with a peak point in the mode shape. Meanwhile, the deviation decreases when a beam step location coincides with a straight portion in the mode shape. 1. Introduction Stepped beam-like structure plays an important role in the construction of mechanical and civil engineering systems. Flexural vibrations were first investigated by Euler-Bernoulli in the eighteenth century. e rotary inertia effect was considered by Rayleigh [1]. Almost 95 years ago, Timoshenko introduced a correction for the beam theory to include the shear deformation effect [2]. e effect of rotary inertia and shear deformations on the beam natural frequencies is small at the lower normal modes and large at the higher normal modes. Cowper [3] derived formulae for the precise evaluation of the shear coefficient for rectangular and round cross sections as a function of Poisson’s ratio ]. e free vibrations of beams with discontinuities can be solved using either exact or approximate solution. e exact methods include the derivation of the transcendental eigenvalue equations in order to evaluate the beam natural frequencies. In the case of relatively simple problems closed form solutions for the eigenvalue problem were obtained [4, 5]. For complicated problems, the beam eigenvalues are obtained by the decomposition of the domain. Numerical assembly technique (NAT) is one of the common methods used for the evaluation of the eigenvalue problem for beams with multiple discontinuity [6–8]. In this method, the size of the frequency equation determinant is 4 × 4 for beam with segments. Dynamic stiffness matrix is one of methods that is similar to the finite element method in assembling of the elements but with exact element rather than approx- imate element [9, 10]. e frequency equation determinant size for segments is (2 + 2) × (2 + 2). e Laplace transformation method is used to obtain a solution for a Timoshenko beam mounted on elastic foundation with sev- eral combinations of discrete in-span attachments and with several combinations of attachments at the boundaries [11]. Hindawi Shock and Vibration Volume 2017, Article ID 8186976, 23 pages https://doi.org/10.1155/2017/8186976
Transcript
Page 1: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

Research ArticleA Normalized Transfer Matrix Method for theFree Vibration of Stepped Beams Comparison withExperimental and FE(3D) Methods

Tamer Ahmed El-Sayed and Said Hamed Farghaly

Department ofMechanical Design Faculty of EngineeringMataria HelwanUniversity PO Box 11718 Helmeiat-Elzaton Cairo Egypt

Correspondence should be addressed to Tamer Ahmed El-Sayed tamer alsayedm-enghelwanedueg

Received 2 June 2017 Revised 22 August 2017 Accepted 15 October 2017 Published 28 November 2017

Academic Editor Toshiaki Natsuki

Copyright copy 2017 Tamer Ahmed El-Sayed and Said Hamed Farghaly This is an open access article distributed under the CreativeCommons Attribution License which permits unrestricted use distribution and reproduction in any medium provided theoriginal work is properly cited

The exact solution for multistepped Timoshenko beam is derived using a set of fundamental solutions This set of solutions isderived to normalize the solution at the origin of the coordinates The start end and intermediate boundary conditions involveconcentrated masses and linear and rotational elastic supports The beam start end and intermediate equations are assembledusing the present normalized transfer matrix (NTM) The advantage of this method is that it is quicker than the standard methodbecause the size of the complete system coefficient matrix is 4 times 4 In addition during the assembly of this matrix there are noinversematrix steps requiredThe validity of thismethod is tested by comparing the results of the currentmethodwith the literatureThen the validity of the exact stepped analysis is checked using experimental and FE(3D) methods The experimental results forstepped beams with single step and two steps for sixteen different test samples are in excellent agreement with those of the three-dimensional finite element FE(3D) The comparison between the NTM method and the finite element method results shows thatthe modal percentage deviation is increased when a beam step location coincides with a peak point in the mode shape Meanwhilethe deviation decreases when a beam step location coincides with a straight portion in the mode shape

1 Introduction

Stepped beam-like structure plays an important role in theconstruction of mechanical and civil engineering systemsFlexural vibrations were first investigated by Euler-Bernoulliin the eighteenth century The rotary inertia effect wasconsidered by Rayleigh [1] Almost 95 years ago Timoshenkointroduced a correction for the beam theory to include theshear deformation effect [2] The effect of rotary inertiaand shear deformations on the beam natural frequencies issmall at the lower normal modes and large at the highernormal modes Cowper [3] derived formulae for the preciseevaluation of the shear coefficient for rectangular and roundcross sections as a function of Poissonrsquos ratio ]

The free vibrations of beams with discontinuities canbe solved using either exact or approximate solution Theexact methods include the derivation of the transcendentaleigenvalue equations in order to evaluate the beam natural

frequencies In the case of relatively simple problems closedform solutions for the eigenvalue problem were obtained[4 5]

For complicated problems the beam eigenvalues areobtained by the decomposition of the domain Numericalassembly technique (NAT) is one of the common methodsused for the evaluation of the eigenvalue problem for beamswith multiple discontinuity [6ndash8] In this method the sizeof the frequency equation determinant is 4119899 times 4119899 for beamwith 119899 segments Dynamic stiffness matrix is one of methodsthat is similar to the finite element method in assemblingof the elements but with exact element rather than approx-imate element [9 10] The frequency equation determinantsize for 119899 segments is (2119899 + 2) times (2119899 + 2) The Laplacetransformation method is used to obtain a solution for aTimoshenko beam mounted on elastic foundation with sev-eral combinations of discrete in-span attachments and withseveral combinations of attachments at the boundaries [11]

HindawiShock and VibrationVolume 2017 Article ID 8186976 23 pageshttpsdoiorg10115520178186976

2 Shock and Vibration

The attachments include translation and rotational springsmasses and undamped single degree of freedom systemThe characteristics equation for beam with 119899 segments is2119899 times 2119899 The transfer matrix method (TMM) is one of thefavorable methods in the analysis of multispan beams Manyresearchers used it to derive the frequency equation of a com-plicated beam system [12ndash14]The advantage of thismethod isthat for 119899 segments beam the size of the frequency equationdeterminant is 4 times 4 which reduces the computational timeOn the other hand during the formulation of the beamfrequency equation 119899 minus 1 inverse matrix steps are requiredto form the final system transcendental eigenvalue problemThe use of linearly independent fundamental set of solutionin solving the buckling and free vibrations of nonuniformrods was introduced by Li [15] and Li et al [16] Thismethod enables obtaining the closed form solution of a mul-tispan beam A set of fundamental solutions which suit theanalysis of single-span Timoshenko beams was introduced[17]

On the other hand there are numerous approximatemethods to approximate the eigenvalue problem for thetransverse vibrations of beams [21ndash23] Finite elementmethod is one of the most dominant methods for solvingthe free vibration of beams The effect of step ratios andeccentricity on the free vibration of arbitrarily beam wasinvestigated by Ju et al [21] The lowest three naturalfrequencies of a multistep up and down cantilever beamusing a global Rayleigh-Ritz formulation component modalanalyses (CMA) ANSYS and experimental are evaluated[24] Adomian decomposition method (ADM) was used toobtain the effect of step ratio and step location on the beamnatural frequencies [25 26]The free and forced vibrations ofbeams with either single- or multiple-step changes using thecomposite element method (CEM) were introduced by Lu etal [27] The accuracy and convergence of CEM were com-pared with existing theoretical and experimental results Dif-ferential transformationmethod (DTM) was applied in orderto analyze the natural frequencies for different geometricallyand material parameters stepped Bernoulli-Euler beam [28]The differential quadrature element method (DQEM) wasproposed to analyze the free vibration problem of beams withany discontinuities in cross-section [20] Discrete singularconvolution (DSC) was proposed for solving the free vibra-tion analysis of stepped beams [29]The solution formultistepTimoshenko beam using both numerical assembly techniqueanddifferential transformationmethod is proposed byYesilce[19] Experimental measurements were considered as a goodtool for the validation of the analytical results

The exact free vibration of two-span Timoshenko steppedbeams has been investigated by Gutierrez et al [18] andRossi et al [32] Farghaly [33] derived the exact solution forfour-span Timoshenko beam with attachments Yesilce [19]investigated the free vibration of stepped beams using exactnumerical assembly technique (NAT) and using approximatedifferential transformation method Recently Farghaly andEl-Sayed [6] drive the exact solution for the lateral vibra-tion of Timoshenko beam with generalized start end andintermediate conditions using numerical assembly technique(NAT)

The exact free vibration of amechanical system composedof two elastic Timoshenko segments carried on an intermedi-ate eccentric rigid body or on elastic supports was introducedby Farghaly and El-Sayed [34] Their analysis was based onboth analytical and experimental methods They claimed agood agreement between the analytical and experimentalresults Experimental setup using electromagnetic-acoustictransducer (EMAT) was introduced by Dıaz-De-Anda et al[35] They compared the experimental results with thoseobtained theoretically using Timoshenko beam theory (TBT)with one and two shear coefficients The flexural frequenciesand amplitudes for cylindrical and rectangular Timoshenkobeams were examined experimentally [35] They found thatthe experimental results coincide very well with theoreti-cal predictions The transverse vibration of Bernoulli-Eulerbeams with discontinuous geometry and elastic support wasinvestigated experimentally and analytically [36]

During the last decades many literatures were focusedon the problem of free and forced vibration analysis ofTimoshenko beam and the accuracy of the natural frequencypredictions To the authorsrsquo knowledge there is not enoughresearch that has tackled the experimental modal frequenciesof stepped thick beams computationally and experimentallyTherefore the main aim of this work is to investigate theresults of the modal frequencies for such beams usinganalytical experimental and the three-dimensional finiteelement FE(3D) An analytical analysis is proposed which isbased on the derivation of a set of fundamental solutions thatsuits the analysis of Timoshenko beams This set of solutionsis used to modify the TMM to include no inverse matrixprocedure which may be called normalized transfer matrixmethod (NTM) The comparison between the experimentalNTM and FE(3D) is done for selected single-step and two-step application models The percentage deviations betweenNTM and FE(3D) are investigated The results show thatthe finite element results are very close to the experimentalresults The study includes the effect of increasing the stepratio (119889) step location parameter (120583) and the length ratioFinally the capability of the present analysis to solve the freevibration of tapered beams has been investigated

2 Mathematical Model

The mathematical model for beam with multiple-steppedsections is shown in Figure 1 The total length of the beamis 119871 The beam model is divided into 119899 segments Thebeam has (119899 + 1) stations as shown in Figure 1 The stationnumbering corresponding to the start intermediate and endlocation is represented by (1 119894 + 1 119899 + 1) respectively Ateach station there are linear and rotational elastic supportsand concentrated mass with mass moment of inertia Asshown in Figure 1 the beam segments are described bytheir material and cross-sectional properties 120588119894 119864119894 119866119894 119860 119894 and119868119894 (119894 = 1 2 119899) which are the density Youngrsquos modulus ofelasticity rigidity modulus cross-sectional area and secondmoment of inertia respectively In this section the frequencyequation of the model is driven using the proposed normal-ized transfer matrix method Since the current analysis isbased on Timoshenko beam theory the rotary inertia and

Shock and Vibration 3

1 2 i+1n n+1

L1 Li Li+1 Ln

m1 m2 mi+1

mn mn+1

J1 J2pan i

Station 1Station(n + 1)

Ji+1Jn

Jn+1

k1 k2 ki+1 kn kn+1

L

1 2

tation i + 1S

pan i + 1SS

Figure 1 Stepped multispan model

shear deformations effects are considered In the currentanalysis the analytical solution is subject to the assumptionsthat the shear strain is assumed constant over the cross-section therefore a shear coefficient 1198961015840119894 is used to compensatethis assumption In addition the effect of stress concentrationat the beam steps is neglected

21 AnalyticalMethod andFrequency Equation Theobjectiveof this section is to derive the system frequency equationwhich represents the model shown in Figure 1 Timoshenkodifferential coupled equations of motion may be written herefor 119894th span as follows

(1198961015840119866119860)119894(11991010158401015840119894 minus 1205951015840119894 ) (119909119894 119905) minus 120588119894119860 119894 119910119894 (119909119894 119905) = 0

(119864119868)119894 12059510158401015840119894 (119909119894 119905) minus 120588119894119868119894119894 (119909119894 119905)+ (1198961015840119866119860)

119894(1199101015840119894 minus 120595119894) (119909119894 119905) = 0

(1)

Let

119910119894 = 119884119894 (120585119894) 119890119895120596119905120595119894 = Ψ119894 (120585119894) 119890119895120596119905120585119894 = 119909119894119871 119894

(2)

where 119884119894 is the normal function of 119910119894 Ψ119894 is the normalfunction of120595119894 120585119894 is nondimensional length of each beam span119894 and 119895 = radicminus1

Substituting (2) into (1) and omitting the factor 119890119895120596119905 thefollowing equations can be derived

11988410158401015840119894 (120585119894) + 1205824119894 1199042119894 119884119894 (120585119894) minus 119871 119894Ψ1015840119894 (120585119894) = 0 (3)

1199042119894 119871 119894Ψ10158401015840119894 (120585119894) + (1205824119894 1199032119894 1199042119894 minus 1) 119871 119894Ψ119894 (120585119894) + 1198841015840119894 (120585119894) = 0 (4)

where

1205824119894 = 120588119894119860 11989411987141198941205962119864119894119868119894 (5a)

1199042119894 = 21199032119894 (1 + ]119894)1198961015840119894 (5b)

1199032119894 = 119868119894119860 1198941198712119894 (5c)

After decoupling the functions 119884119894(120585119894) and 119871 119894Ψ119894(120585119894) in ((3)-(4)) the decoupled fourth-order differential equations in thenondimensional form can be written as

1198841015840101584010158401015840119894 (120585119894) + 12057211989411988410158401015840119894 (120585119894) + 1205732119894 119884119894 (120585119894) = 0 (6)

119871 119894Ψ1015840101584010158401015840119894 (120585119894) + 120572119894119871 119894Ψ10158401015840119894 (120585119894) + 1205732119894 119871 119894Ψ119894 (120585119894) = 0 (7)

where

120572119894 = 1205824119894 (1199032119894 + 1199042119894 ) (7a)1205732119894 = 1205824119894 (1205824119894 1199032119894 1199042119894 minus 1) (7b)

The general solution of (6) and (7) can be written respec-tively in the form

119884119894 (120585119894) = 1198621119894 sin (119886119894120585119894) + 1198622119894 cos (119886119894120585119894)+ 1198623119894 sinh (119887119894120585119894) + 1198624119894cosh (119887119894120585119894)

119871 119894Ψ119894 (120585119894) = minus(1205751119894119886119894 )1198621119894 cos (119886119894120585119894)+ (1205751119894119886119894 )1198622119894 sin (119886119894120585119894)+ (1205752119894119887119894 )1198623119894 cosh (119887119894120585119894)+ (1205752119894119887119894 )1198624119894 sinh (119887119894120585119894)

(8)

Here

1198862119894 = (1205721198942 ) + radic(1205721198942 )2 minus 1205732119894 (9a)

1198872119894 = minus(1205721198942 ) + radic(1205721198942 )2 minus 1205732119894 (9b)

4 Shock and Vibration

One can derive the expressions of 1205751119894 and 1205752119894 using (8)together with (3) or (4) in the form

1205751119894 = 1199042119894 1205824119894 minus 1198862119894 (10a)

1205752119894 = 1199042119894 1205824119894 + 1198872119894 (10b)

Here 119894 denotes the 119894th span 119894 = 1 2 119899 in the case ofmultispan model

In order to introduce the current analysis the linearlyindependent fundamental solutions 1198781198841119894(120585) 1198781198842119894(120585) 1198781198843119894(120585)1198781198844119894(120585) and the corresponding 119878Ψ1119894(120585) 119878Ψ2119894(120585) 119878Ψ3119894(120585)119878Ψ4119894(120585) are derived In order to simplify the solution ofTimoshenko beam the following dependent functions aredefined

Γ119894 (120585) = 1198841015840119894 (120585) minus 119871 119894Ψ119894 (120585) (11a)

119878Γ1119894 (120585) = 11987811988410158401119894 (120585) minus 119878Ψ1119894 (120585) (11b)

119878Γ2119894 (120585) = 11987811988410158402119894 (120585) minus 119878Ψ2119894 (120585) (11c)

119878Γ3119894 (120585) = 11987811988410158403119894 (120585) minus 119878Ψ3119894 (120585) (11d)

119878Γ4119894 (120585) = 11987811988410158404119894 (120585) minus 119878Ψ4119894 (120585) (11e)

The Timoshenko solution will be normalized at the origin ofcoordinates as follows

[[[[[[[

1198781198841119894 (0) 119878Ψ1119894 (0) 119878Ψ10158401119894 (0) 119878Γ1119894 (0)1198781198842119894 (0) 119878Ψ2119894 (0) 119878Ψ10158402119894 (0) 119878Γ2119894 (0)1198781198843119894 (0) 119878Ψ3119894 (0) 119878Ψ10158403119894 (0) 119878Γ3119894 (0)1198781198844119894 (0) 119878Ψ4119894 (0) 119878Ψ10158404119894 (0) 119878Γ4119894 (0)

]]]]]]]

= [[[[[[

1 0 0 00 1 0 00 0 1 00 0 0 1

]]]]]]

(12)

Substituting the general solution of (8) in each raw in (12) weget the following set of fundamental solutions

1198781198841119894 (120585119894) = 11205751119894 minus 1205752119894 (minus1205752119894 cos (119886119894120585119894)+ 1205751119894 cosh (119887119894120585119894))

(13a)

1198781198842119894 (120585119894) = 1(12057521198941198862119894 + 12057511198941198872119894 ) (119886119894 (1205752119894 minus 1198872119894 ) sin (119886119894120585119894)

+ 119887119894 (1205751119894 + 1198862119894 ) sinh (119887119894120585119894)) (13b)

1198781198843119894 (120585119894) = 11205751119894 minus 1205752119894 (cos (119886119894120585119894) minus cosh (119887119894120585119894)) (13c)

1198781198844119894 (120585119894) = 1(12057521198941198862119894 + 12057511198941198872119894 ) (1205752119894119886119894 sin (119886119894120585119894)+ 1205751119894119887119894 sinh (119887119894120585119894))

(13d)

119878Ψ1119894 (120585119894) = 120575111989412057521198941205751119894 minus 1205752119894 (minus1119886119894 sin (119886119894120585119894)

+ 1119887119894 sinh (119887119894120585119894)) (13e)

119878Ψ2119894 (120585119894) = 1(12057521198941198862119894 + 12057511198941198872119894 ) (minus1205751119894 (1205752119894 minus 1198872119894 ) cos (119886119894120585119894)

+ 1205752119894 (1205751119894 + 1198862119894 ) cosh (119887119894120585119894)) (13f)

119878Ψ3119894 (120585119894) = 11205751119894 minus 1205752119894 (1205751119894119886119894 sin (119886119894120585119894)

minus 1205752119894119887119894 sinh (119887119894120585119894)) (13g)

119878Ψ4119894 (120585119894) = 12057511198941205752119894(12057521198941198862119894 + 12057511198941198872119894 ) (minus cos (119886119894120585119894)+ cosh (119887119894120585119894))

(13h)

The general solution of the beam can be presented in termsof the set of fundamental solutions as

119884119894 (120585119894) = 11991011989401198781198841119894 (120585119894) + 12059511989401198781198842119894 (120585119894) + 120595101584011989401198781198843119894 (120585119894)+ 12057411989401198781198844119894 (120585119894)

119871 119894Ψ119894 (120585119894) = 1199101198940119878Ψ1119894 (120585119894) + 1205951198940119878Ψ2119894 (120585) + 12059510158401198940119878Ψ3119894 (120585)+ 1205741198940119878Ψ4119894 (120585119894)

Γ119894 (120585119894) = 1199101198940119878Γ1119894 (120585119894) + 1205951198940119878Γ2119894 (120585119894) + 12059510158401198940119878Γ3119894 (120585119894)+ 1205741198940119878Γ4119894 (120585119894)

(14)

where 1199101198940 = 119884119894(0) 1205951198940 = 119871 119894Ψ119894(0) 12059510158401198940 = 119871 119894Ψ1015840119894 (0) and1205741198940= Γ119894(0)The beam start boundary conditions at the point of

attachment 1 can be presented in nondimensional form as

1198711Ψ10158401 (0) + (119869112058241 minus Φ1) 1198711Ψ1 (0) = 0Γ1 (0) + 11990421 (119898112058241 minus 1198851) 1198841 (0) = 0 (15)

where

1198691 = 11986911205881119860111987131 (16a)

12058241 = 1205881119860111987141120596211986411198681 (16b)

1198851 = 11989611198713111986411198681 (16c)

Shock and Vibration 5

Φ1 = 1206011119871111986411198681 (16d)

1198981 = 1198981120588111986011198711 (16e)

where 1198691 is the mass moment of inertia at station 1 1198961 and1206011 are the linear and rotational elastic supports at station 1respectively and1198981 is the concentrated mass at station 1 seeFigure 1 for details

Substituting the solutions presented in (13a) (13b) (13c)(13d) (13e) (13f) (13g) (13h)-(14) into (15) the followingequations are obtained

(119869112058241 minus Φ1) 12059510 + 120595101584010 = 011990421 (119898112058241 minus 1198851) 11991010 + 12057410 = 0 (17)

The start boundary conditions in (17) can be presented inmatrix form as

[[

0 (119869112058241 minus 1206011) 1 011990421 (119898112058241 minus 1198851) 0 0 1]]

119910101205951012059510158401012057410

= 0 (18)

This equation can be simply written as

[Us] Δ1 = 0 (19)

where

Δ1 = 11991010 12059510 120595101584010 12057410119905 (20)

where the superscript 119905 indicates vector transposeAt station (119899 + 1) the beam end boundary conditions can

be written in the nondimensional form as

Ψ1015840119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1)Ψ119899 (1) = 0Γ119899 (1) + (119885119899+1 minus 119898119899+11205824119899) 1199042119899119884119899 (1) = 0 (21)

where

119869119899+1 = 119869119899+11205881198991198601198991198713119899 (22a)

1205824119899 = 12058811989911986011989911987141198991205962119864119899119868119899 (22b)

119885119899+1 = 119896119899+11198713119899119864119899119868119899 (22c)

Φ119899+1 = 120601119899+1119871119899119864119899119868119899 (22d)

119898119899+1 = 119898119899+1120588119899119860119899119871119899 (22e)

where 119869119899+1 is the mass moment of inertia at station (119899 + 1)119896119899+1 and 120601119899+1 are the linear and rotational elastic supports atstation (119899+1) respectively and119898119899+1 is the concentratedmassat station (119899 + 1)

Substituting the solutions in (13a) (13b) (13c) (13d)(13e) (13f) (13g) (13h)-(14) into (21) the following equationsare obtained

1199101198990 (119878Ψ10158401119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ1119899)+ 1205951198990 (119878Ψ10158402119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ2119899)+ 12059510158401198990 (119878Ψ10158403119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ3119899)+ 1205741198990 (119878Ψ10158404119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ4119899) = 0

1199101198990 (119878Γ1119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198841119899 (1))+ 1205951198990 (119878Γ2119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198842119899 (1))+ 12059510158401198990 (119878Γ3119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198843119899 (1))+ 1205741198990 (119878Γ4119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198844119899 (1))= 0

(23)

Equation (23) can be written in the matrix form as

[[

(119878Ψ10158401119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ1119899) (119878Ψ10158402119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ2119899) (119878Ψ10158403119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ3119899) (119878Ψ10158404119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ4119899)(119878Γ1119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198841119899 (1)) (119878Γ2119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198842119899 (1)) (119878Γ3119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198843119899 (1)) (119878Γ4119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198844119899 (1))

]]

11991011989901205951198990120595101584011989901205741198990

= 0

(24)

This equation can be simply written as

[UE]2times4

Δ119899 = 0 (25)

where

Δ119899 = 1199101198990 1205951198990 12059510158401198990 1205741198990119905 (26)

The beam intermediate continuity conditions can be pre-sented in nondimensional form as

119884119894 (1) = 119884119894+1 (0) 119871 (119894+1)119894119871 119894Ψ119894 (1) = 119871 (119894+1)Ψ119894+1 (0)

6 Shock and Vibration

(119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (Ψ1015840119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 )Ψ119894 (1))= 119871 (119894+1)Ψ1015840119894+1 (0)

(1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (Γ119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 119884119894 (1))= Γ119894+1 (0)

(27)

where

119869119894+1 = 119869119894+1120588119894119860 1198941198713119894 (28a)

1205824119894 = 120588119894119860 11989411987141198941205962119864119894119868119894 (28b)

119885119894+1 = 119896119894+11198713119894119864119894119868119894 (28c)

Φ119894+1 = 120601119894+1119871 119894119864119894119868119894 (28d)

119898119894+1 = 119898119894+1120588119894119860 119894119871 119894 (28e)

where 119869119894+1 is the mass moment of inertia at station (119894+1) 119896119894+1and 120601119894+1 are the linear and rotational stiffness at station (119894 +1) respectively and 119898119894+1 is the concentrated mass at station(119894 + 1)

Substituting the solutions in (13a) (13b) (13c) (13d)(13e) (13f) (13g) (13h)-(14) into (27) we get the followingequations

119910(119894+1)0 = 11991011989401198781198841119894 (1) + 12059511989401198781198842119894 (1) + 120595101584011989401198781198843119894 (1)+ 12057411989401198781198844119894 (1)

120595(119894+1)0 = 119871 (119894+1)119894 (1199101198940119878Ψ1119894 (1) + 1205951198940119878Ψ2119894 (1)+ 12059510158401198940119878Ψ3119894 (1) + 1205741198940119878Ψ4119894 (1))

1205951015840(119894+1)0 = (119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (1199101198940 (119878Ψ10158401119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ1119894 (1)) + 1205951198940 (119878Ψ10158402119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ2119894 (1)) + 12059510158401198940 (119878Ψ10158403119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ3119894 (1)) + 1205741198940 (119878Ψ10158404119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ4119894 (1)))

120574(119894+1)0 = (1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (1199101198940 (119878Γ1119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198841119894 (1)) + 1205951198940 (119878Γ2119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198842119894 (1)) + 12059510158401198940 (119878Γ3119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198843119894 (1)) + 1205741198940 (119878Γ4119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198844119894 (1)))

(29)

Equation (29) can be written in matrix form as

[[[[[[[

1198781198841119894 (1) 1198781198842119894 (1) 1198781198843119894 (1) 1198781198844119894 (1)119871 (119894+1)119894119878Ψ1119894 (1) 119871 (119894+1)119894119878Ψ2119894 (1) 119871 (119894+1)119894119878Ψ3119894 (1) 119871 (119894+1)119894119878Ψ4119894 (1)1198821119894 (119878Ψ10158401119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ1119894 (1)) 1198821119894 (119878Ψ10158402119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ2119894 (1)) 1198821119894 (119878Ψ10158403119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ3119894 (1)) 1198821119894 (119878Ψ10158404119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ4119894 (1))1198822119894 (119878Γ1119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198841119894 (1)) 1198822119894 (119878Γ2119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198842119894 (1)) 1198822119894 (119878Γ3119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198843119894 (1)) 1198822119894 (119878Γ4119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198844119894 (1))

]]]]]]]

11991011989401205951198940120595101584011989401205741198940

=

119910(119894+1)0120595(119894+1)01205951015840(119894+1)0120574(119894+1)0

(30)

where

1198821119894 = (119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (31a)

1198822119894 = (1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (31b)

Equation (30) can be presented as

[T]1198944times4 lowast Δ119894 = Δ119894+1 (32)

where

Δ119894 = 1199101198940 1205951198940 12059510158401198940 1205741198940119905 (33a)

Δ119894+1 = 119910(119894+1)0 120595(119894+1)0 1205951015840(119894+1)0 120574(119894+1)0119905 (33b)

From (32) one can find that

Δ119899 = [T]119899minus1 Δ119899minus1 = [T]119899minus1 [T]119899minus2 sdot sdot sdot [T]2 Δ1 (34)

The intermediate spans transfer matrix can be presented as

[T]4times4 = [T]119899minus1 [T]119899minus2 sdot sdot sdot [T]2 (35)

then (34) can be presented as

Δ119899 = [T]4times4 Δ1 (36)

Shock and Vibration 7

0002000

40006000

Z X

Y

8000 (mm)

Figure 2 Finite element 3D mesh

Substituting (36) into the end condition of (25) results in thefollowing equations

[UE]2times4

[T]4times4 Δ1 = 0 (37)

[UIE]2times4

= [UE]2times4

[T]4times4 (38)

[UIE]2times4

Δ1 = 0 (39)

The general beam equation can be presented using the startboundary condition in (19) and the beam intermediate andend condition in (39) as shown below

[Utot]4times4

Δ1 = 0 (40)

where

[Utot]4times4

= [[[US]2times4[UIE]2times4

]] (41)

Equating the determinant of [Utot] by zero results in thesystem frequency equation In general the TMM has advan-tages over the traditional methods in that the final frequencyequation is 4 times 4 for any number of beam segments Theadvantage of the current method NTM over the TMM issignificant in the using of tailored solution that is normalizedat the origin of coordinates This type of solution enables theformulation of the system equations without the need to anyinverse matrix procedures as shown previously This reducesthe computational time comparing with the TMM

22 Finite Element Method Among the numerical toolsfinite element method is considered one of most efficientmethods to perform the vibration analysis of mechanical andstructural components In this section finite element is usedto obtain the natural frequencies andmode shapes of uniformand stepped beams ANSYS finite element commercial pack-age is used to perform the finite element analysisThe analysisis done using three-dimensional (3D) solid element modelsand SOLID95 elements are used for meshing Since all theexperimentally investigated samples in the current work are

round and stepped The beam cross-section is free meshedusing 87 SOLID95 elements for smaller cross-section and171 elements for the larger cross-section This mesh is thenextruded using 40 elements along the length of the beamThe total number of the element is ranging from 3480 (40times 87) to 6840 (40 times 171) elements based on the locationof the step see Figure 2 Modal analysis module is usedin this analysis and Block Lanczos method is used for themode extraction method The finite element model FE(3D)results are compared with those obtained experimentally andanalytically

3 Results and Discussion

31 Verification and Validation of NTM Results

311 Verification Example 1 In this example the first fivenondimensional natural frequencies (120582lowast4119894 = 120588111986011198714120596211986411198681)of stepped beam are compared with the exact solutionpresented by Gutierrez et al [18] see Figure 3 The modelis solved at two different step locations and several valuesof 11988721 and ℎ21 as shown in Table 1 Three different valuesof rotary inertia 11990321 = V119904 00036 and 001 are consideredin order to validate the current model in case of Bernoulli-Euler and Timoshenko beams The value of 11990421 = 31211990321 isconsidered in order to evaluate the shear deformation [18]The values of nondimensional linear and rotational elasticsupports stiffness at start and the end are (1198851 = 10Φ1 = V119897)(1198853 = V119904 Φ3 = V119897) respectively The results of Table 1 showthat the present NTM results are in good agreement with theexact solution presented by Gutierrez et al [18]

312 Verification Example 2 In this example Timoshenkobeam with three-step round cross-section presented in [19]is investigated see Figure 4 An intermediate lumped massof 119898lowast3 = 119898312058811198601119871 = 1 is located at a distance of 750mmfrom point 1 The input data for this example is listed inthe caption of Figure 4 Table 2 shows the results of the firstfive natural frequencies 120596119894 in (radsec) for pinned-pinnedfree-clamped clamped-free clamped-pinned and clamped-clamped configurations The results of reference [19] are

8 Shock and Vibration

Table 1 The first five natural frequencies 120582lowast2119894 for stepped Timoshenko beam in the case where the beam is rigidly restrained against rotation120601lowast1 = V119897 and elastically restrained in translation 119885lowast1 = 10 in comparison with [18]

11990321 120583 11988721 ℎ21 120582lowast21 120582lowast22 120582lowast23 120582lowast24 120582lowast2510minus7[18]

025

10 08 3010 9696 34010 74430 132341Present NTM 30098 96956 340101 744300 1323410[18] 08 08 3249 9664 34315 74645 131803Present NTM 32490 96638 343151 746445 1317507[18] 08 06 3385 8117 28630 60997 103439Present NTM 33851 81171 286302 609947 1034075[18]

050

10 08 2958 10046 34993 80145 139666Present NTM 29579 100460 349931 801455 1396667[18] 08 08 3124 10165 34688 80570 139175Present NTM 31240 101655 346882 805707 1391759[18] 08 06 3284 9499 28501 70123 118482Present NTM 32841 94989 285006 701232 1184830

00036[18]

025

10 08 3007 9668 33571 72393 126111Present NTM 30066 96678 335711 723926 1261107[18] 08 08 3245 9635 33862 72607 125617Present NTM 32454 96354 338621 726068 1256169[18] 08 06 3381 8103 28364 59839 100245Present NTM 33812 81031 283643 598385 1002447[18]

050

10 08 2946 9919 33205 71469 116725Present NTM 29462 99192 332046 714693 1167245[18] 08 08 3112 10030 32926 71741 116362Present NTM 31120 100304 329259 717415 1163618[18] 08 06 3272 9391 27449 64020 102697Present NTM 32721 93908 274490 640200 1026966

001[18]

025

10 08 3001 9619 32841 69229 117238Present NTM 30009 96192 328407 692292 1172380[18] 08 08 3239 9586 33109 69444 116798Present NTM 32390 95858 331092 694435 1167981[18] 08 06 3374 8078 27914 57970 95370Present NTM 33744 80784 279139 579705 953698[18]

050

10 08 2926 9710 30711 61768 95623Present NTM 29255 97104 307111 617680 956230[18] 08 08 3019 9809 30464 61912 95326Present NTM 30908 98086 304643 619117 953257[18] 08 06 3251 9211 25893 56578 86647Present NTM 32511 92111 258933 565776 866473

1

A

A

1

L1

k1

2

B

B

L2

3

3

k3

b1

ℎ1

b2

ℎ2

Sec AA Sec BB

Figure 3 Verification Example 1 [18] two-span stepped beam

Shock and Vibration 9

Table 2 Comparison of the first five natural frequencies in radsec using the present NTM results with those obtained in [19] for the exampleshown in Figure 4

120596119899(radsec) Method Bernoulli-Euler119903lowast21 = 0 Timoshenko119903lowast21 = 0

Pinned-pinned(P-P)

1205961 NAT [19] 3194341 3165288NTM 3194340 3164855

1205962 NAT [19] 18533864 17894207NTM 18533864 17848723

1205963 NAT [19] 41101341 38258438NTM 41101341 38365347

1205964 NAT [19] 77095714 66429094NTM 77095712 66392170

1205965 NAT [19] 116217699 98866243NTM 116217698 99188328

Free-clamped(F-C)

1205961 NAT [19] 3715354 3679440NTM 3715354 3671487

1205962 NAT [19] 12439063 12166220NTM 12439065 12115531

1205963 NAT [19] 30820846 28270352NTM 30820845 28491465

1205964 NAT [19] 55411410 49579240NTM 55411409 50037433

1205965 NAT [19] 95993810 76737578NTM 95993810 77513336

Clamped-free(C-F)

1205961 NTM 551257 5501301205962 NTM 6166018 59859171205963 NTM 27023238 253214831205964 NTM 54832379 496916591205965 NTM 95709586 79565299

Clamped-pinned(C-P)

1205961 NTM 4808915 46984441205962 NTM 20980556 199196111205963 NTM 50073315 458956761205964 NTM 83668073 704953931205965 NTM 136787112 112150349

Clamped-clamped(C-C)

1205961 NTM 8363527 80709971205962 NTM 30195886 277227321205963 NTM 55836469 498055381205964 NTM 96258943 773483191205965 NTM 144033163 115381581

750

Oslash100 Oslash150 Oslash200Oslash250

1 2 3 4 5 6

500 500 500 500

2000 mm

m3

Figure 4 Verification Example 2 [19] three-step beam having 119864 = 2069GPa 120588 = 78369 kgm3 119866 = 795769GPa and 1198961015840 = 075

10 Shock and Vibration

Table 3 Comparison of the present NTM results with those obtained in [5 20] for F-F beam shown in Figure 5

Mode number DQEM [20] Exp [5] NTM(40) FE(3D) error

I II III IV (II amp IV)1 292440 291 290316 290120 03022 1181300 1165 1162158 1167100 minus01803 1804100 1771 1767321 1772200 minus0068

1

254 140

32

549

254mm19

05

mm

Figure 5 Verification Example 3 [5 20] single-step (F-F) aluminum beam having 119864 = 717GPa 120588 = 2830Kgm3 and ] = 033

L20

L

1

1

mi

2 3 ik1

19 2021

21

k21

Figure 6 Verification Example 4 twenty equal span uniform beams carrying equally spaced nineteen concentrated masses with general endflexibilities conditions

calculated using two methods The first method is numericalassembly technique (NAT) and this method is the exactsolution The second method is differential transformationmethod and thismethod is approximatemethodThepinned-pinned and free-clamped boundary conditions results arefound in [19] The results of the current analysis are in goodagreement with the results presented in [19] As can be seenfromTable 2 the rotary inertia and shear deformation reducethemodal frequency especially for highermodes Comparingthe results of the clamped-free beam with the results of thefree-clamped beam shows that the natural frequency resultsof the clamped-free beam are lower than that of free-clampedbeam This may be explained by the fact that fixing thebeam from the thinner span results in lowering of the beamstiffness

313 Verification Example 3 The third verification exampleis shown in Figure 5 with identical dimensions to that usedin [5 20] The rotary inertia and shear deformation areconsidered The shear coefficient 1198961015840 is calculated based on[3] keeping Poissonrsquosrsquo ratio ] = 033 Table 3 shows thefirst three nonzero free-free (F-F) eigenvalues in Hz and incomparison with [5 20] The present results are computedusing both numerically (40) and FE(3D)methodsThe resultsof Table 3 show that the present analysis results are very closeto the experimental resultsThe percentage error between the

present FE(3D) results and the experimental results of [5] isless than 0302This represents the importance of includingthe effect of rotary inertia and shear deformation

314 Verification Example 4 The fourth example is shownin Figure 6 It is for a twenty-span uniform beam carrying19 equally spaced concentrated masses with 119898lowast119894 = 01Several beam start and end conditions are investigated aslisted in Table 4 The results are evaluated using the presentNTM method and previously published numerical assemblytechniqueNAT [6]methodThe computational time requiredto obtain the first three frequency parameters 120582lowast1 120582lowast2 and 120582lowast3using both NAT and NTM methods is calculated and listedin Table 4 Considerable reduction in computational time isobserved in all the investigated cases as shown in Table 4

32 Test Samples and Experimental Procedures In order tomeasure the natural frequencies of the system under studythe free-free test samples were put in free oscillations byusing an instrumented hammer model B and K 8202 Anaccelerometer model B and K 4366 is fixed to the shaft inorder to capture the vibration signal The output of thecharge amplifier B and K 2635 is connected to NI 6216data acquisition card This card is connected to the PC andmanaged by Lab VIEW software Figure 10 shows a photo ofthe current experimental setup The used card settings are

Shock and Vibration 11

Table 4 Validation of the present NTM using 20-span uniform beam with 19 equally spaced concentrated masses119898lowast119894 = 01 (119903lowast21 = 119904lowast21 = V119904)in comparison with [6]

Method 119885lowast1 Φlowast1 119885lowast21 Φlowast21 120582lowast1 120582lowast2 120582lowast3 Computational time (sec)NAT [6] V119904 V119904 V119904 V119904 37177 61716 86392 4817Present NTM V119904 V119904 V119904 V119904 37177 61716 86392 1353NAT [6] V119897 V119904 V119897 V119904 23871 47742 71612 3467Present NTM V119897 V119904 V119897 V119904 23871 47742 71612 1214NAT [6] V119897 V119897 V119897 V119897 35941 59671 835471 4040Present NTM V119897 V119897 V119897 V119897 35941 59671 835471 1347NAT [6] 10 10 10 10 15989 25329 45969 2213Present NTM 10 10 10 10 15989 25329 45969 1023

Table 5 Typical samples dimension of group S2 with 119889 = 075 shown in Figure 7

Group S2 (Single-step beam samples of steel rod Oslash 40 119871 = 200mm and 119889 = 3040)119871 1198711 120583 1198712 1198891 1198892 119898119905 (kg) 119903lowast21

S2-4040 200 40 02 160 40 30 1282 0002S2-40100 200 100 05 100 40 30 1375 0002S2-40140 200 140 07 60 40 30 1541 0002

Oslash40

40

S2-4040

Oslash20

Oslash25

Oslash30

Oslash35

= 02

S2-40100100

Oslash40

200

= 05

S2-40140140

d =20

40= 05

d =25

40= 0625

d =30

40= 075

d =35

40= 0875

= 07

Group S2

Figure 7 Schematic drawings for the experimental samples Group S2

sample frequency of 20 kHz sampling time of 3 5 8 sec andthe size of samples block to read is 1 k The time domaindata is captured and transformed into frequency domainThe resonant frequencies were obtained by the average of theresults of 10 impacts applied in three different locations ofthe sample Figures 7ndash9 show two groups of different steppedtest samples S2 and S3 respectively All the test samplesare manufactured from steel rods of dimensions Oslash 80 andOslash 40mm The common data for the steel test samples are120588 = 7850 kgm3 119864 = 2068GPa and 1198961015840 = 0845

Two-span twelve test samples are shown in group S2namely S2-4040 S2-40100 and S2-40140 shown inFigure 7 The dimensions of these samples are presentedin Table 5 The natural frequency results of these samples

are presented in Table 7 using experimental analytical andFE(3D) methods The captured signal for the free vibrationresponse for selected case from Table 7 is shown in Figure 11This case is italicized in the table The results of Table 7show that the three-dimensional FE solution is closer tothe experimental results than the analytical results Themaximum percentage error between the experimental andthe FE results is less than 05

Group S3 consists of four different samples namely S3-80250 S3-80200 S3-80150 and S3-80100 More detailsabout the geometrical dimensions and material propertiesfor these samples are shown in Table 6 and Figure 8 Theresults of Table 8 show that the deviation between the FE(3D)and the experimental is less than 116 The free vibration

12 Shock and Vibration

Table 6 The sample dimensions of group S3 as shown in Figure 8

Group S3 (Four cylindrical samples have two steps of steel rod Oslash 80 119871 = 500mm)119871 1198711 1198712 1198891 1198892 119898119905 (kg) 119871lowast2 119903lowast21

S3-80250 500 200 250 20 80 10480 05 0000100S3-80200 500 225 200 20 80 7398 04 0000100S3-80150 500 250 150 20 80 6781 03 0000100S3-80100 500 275 100 20 80 4932 02 0000100

Oslash20

200 250

Oslash80

S3-80250

225 200

S3-80200

250 150

S3-80150

275 100

S3-80100

500

Group S3

Figure 8 Schematic drawings for the experimental samples Group S3

S2- 40140S2- 40100

S2- 4040

S3- 80100S3- 80150S3- 80200S3- 80250

Figure 9 Real image for typical experimental test samples

Shock and Vibration 13

Figure 10 Test setup

24302 651063

121867

193593

minus140

minus120

minus100

minus80

minus60

minus40

minus20

0

Am

plitu

de (d

Bvo

lt)

2000 4000 6000 8000 1000012000140001600018000200000Frequency (Hz)

Figure 11 Experiment first four natural frequencies for test sample S2-4040

35479

17279

229149

453138

500 1000 1500 2000 2500 3000 3500 4000 4500 50000Frequency (Hz)

00005

0010015

0020025

0030035

0040045

Am

plitu

de (v

olt)

Figure 12 Experimental first four natural frequencies for test sample S3-80200

signals of selected case italicized in Table 8 are plotted inFigure 12 In general the results of the three-span samplesreveal the same conclusion drawn from the two-span samplesthat the FE(3D) results are closer to the experimental resultsthan the analytical results The conclusion driven from theinvestigated two- and three-span samples is that the three-dimensional finite element can be trusted in the prediction ofthe natural frequency of stepped beam

33 Percentage Modal Deviation between FE(3D) and NTMMethod The results of the previous section show theaccuracy of the FE(3D) model in evaluating the natural

frequencies of stepped beam Therefore in this section afree-free two-span model is deeply investigated using (40)and FE(3D) methods to justify the validity of the analyticalsolution in predicting the stepped beam results Two cate-gories of samples are considered as shown in Figure 13 Thefirst category includes 600mm length samples with 119903lowast21 =278 times 10minus4 and the second category includes 200mm lengthsamples with 119903lowast21 = 205 times 10minus3 The effects of changing 120583and 119889 are investigated 120583 varies from 0 to 1 and meanwhileonly three values are listed in Table 9 Four different valuesof 119889 are investigated 05 0625 075 and 0875 The study in

14 Shock and Vibration

Table 7 Percentage error between the computational and experimental results for single-step test samples (Group S2) Lowest four nonzerofree-free modes

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

2040

40 02

(A) EXP 1848940 5028140 9854 16303(B) NTM 1873981 5194229 1021179 16776400(C) FE(3D) 1859490 5056749 9893345 16380170

(D) error (A B) 1354 3303 3630 2903(E) error (A C) 0570 0568 0399 0473

100 05

(A) EXP 2153900 7713530 13701800 19845900(B) NTM 2244601 7923127 13661990 20230700(C) FE(3D) 2142012 7700169 13663580 19793360

(D) error (A B) 4211 2717 minus0290 1938(E) error (A C) minus0551 minus0173 minus0278 minus0264

140 07

(A) EXP 3596820 8103960 15773100 20733800(B) NTM 3813426 8160003 15739160 21174340(C) FE(3D) 3581521 8090723 15705070 20634360

(D) error (A B) 6022 0691 minus0215 2124(E) error (A C) minus0425 minus0163 minus0431 minus0479

2540

40 02

(A) EXP (Figure 11) 2430240 6510630 12186700 19359300(B) NTM 2444111 6638069 12492520 19588580(C) FE(3D) 2430512 6518094 12223080 19314540

(D) error (A B) 0570 1957 2509 1184(E) error (A C) 0011 0114 0298 minus0231

100 05

(A) EXP 2796050 8693500 14542200 22134(B) NTM 2912321 8781311 14633780 22182430(C) FE(3D) 2806782 8698963 14551070 22095920

(D) error (A B) 4158 1010 0629 0218(E) error (A C) 0383 0062 0060 minus0172

140 07

(A) EXP 4015620 8665980 162389 22684(B) NTM 4167385 8797248 16074330 22814460(C) FE(3D) 4021237 8655476 16159230 22610690

(D) error (A B) 3779 1514 minus1013 0575(E) error (A C) 0139 minus0121 minus0490 minus0323

3040

40 02

(A) EXP 3023690 7906 14381400 21856600(B) NTM 3023321 7946457 14429850 21806140(C) FE(3D) 3014442 7878443 14307960 21781750

(D) error (A B) minus0012 0511 0336 minus0230(E) error (A C) minus0305 minus0348 minus0510 minus0342

100 05

(A) EXP 3401940 9329910 15681400 23607700(B) NTM 3478703 9293555 15691770 23326460(C) FE(3D) 3405324 9313349 15645690 23513650

(D) error (A B) 2256 minus0389 0066 minus1191(E) error (A C) 0099 minus0177 minus0227 minus0398

140 07

(A) EXP 4201680 9322630 16596400 23967700(B) NTM 4268272 9431643 16437830 23729240(C) FE(3D) 4211100 9322286 16530200 23881400

(D) error (A B) 1584 1169 minus0955 minus0994(E) error (A C) 0224 minus0003 minus0398 minus0360

Shock and Vibration 15

Table 7 Continued

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

3540

40 02

(A) EXP 3608280 9126360 16128600 238173(B) NTM 3607895 9104530 16000810 23500960(C) FE(3D) 3607465 9106544 16054460 23720110

(D) error (A B) minus0010 minus0239 minus0792 minus1328(E) error (A C) minus0022 minus0217 minus0459 minus0408

100 05

(A) EXP 3885030 9778800 16719900 24538800(B) NTM 3906518 9705047 16577640 24125780(C) FE(3D) 3882419 9759382 16658180 2441741

(D) error (A B) 0553 minus0754 minus0850 minus1683(E) error (A C) minus0067 minus0198 minus0369 minus0495

140 07

(A) EXP 4248240 9888540 17028 24738400(B) NTM 4253660 9878822 16849850 24311230(C) FE(3D) 4247271 9870286 16963900 24616760

(D) error (A B) 0127 minus0098 minus1046 minus1726(E) error (A C) minus0022 minus0184 minus0376 minus0491

Table 8 Percentage error between the computational and experimental results for two-step samples (Group S3) Lowest four nonzero free-free modes

Method Modal frequencies in Hz1 2 3 4

S3-80250(A) EXP 403148 2126460 4139830 5153500(B) NTM 420212 2203984 4334192 5605556(C) FE(3D) 404180 2126900 4153700 5169800

(D) error (A B) minus3966 3517 4484 minus8428(E) error (A C) minus0255 minus0020 minus0333 minus0315

S3-80200(A) EXP (Figure 12) 354790 1727900 2291490 4531380

(B) NTM 367381 1788472 2551555 4660983(C) FE(3D) 355230 1728300 2318400 4532200

(D) error (A B) minus3549 3386 10192 minus2860(E) error (A C) 0124 0023 1160 0018

S3-80150(A) EXP 335859 1360050 1545130 3778200(B) NTM 346243 1434113 1638174 3889033(C) FE(3D) 336440 1364200 1548500 3781900

(D) error (A B) minus3091 minus5445 minus6021 minus2933(E) error (A C) 0172 0305 0218 0097

S3-80100(A) EXP 337400 1018240 1371070 3221200(B) NTM 345942 1074574 1424992 3303837(C) FE(3D) 337480 1024 1372900 3215

(D) error (A B) minus2531 minus5532 minus3932 minus2565(E) error (A C) 0023 0565 0133 minus0192

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 2: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

2 Shock and Vibration

The attachments include translation and rotational springsmasses and undamped single degree of freedom systemThe characteristics equation for beam with 119899 segments is2119899 times 2119899 The transfer matrix method (TMM) is one of thefavorable methods in the analysis of multispan beams Manyresearchers used it to derive the frequency equation of a com-plicated beam system [12ndash14]The advantage of thismethod isthat for 119899 segments beam the size of the frequency equationdeterminant is 4 times 4 which reduces the computational timeOn the other hand during the formulation of the beamfrequency equation 119899 minus 1 inverse matrix steps are requiredto form the final system transcendental eigenvalue problemThe use of linearly independent fundamental set of solutionin solving the buckling and free vibrations of nonuniformrods was introduced by Li [15] and Li et al [16] Thismethod enables obtaining the closed form solution of a mul-tispan beam A set of fundamental solutions which suit theanalysis of single-span Timoshenko beams was introduced[17]

On the other hand there are numerous approximatemethods to approximate the eigenvalue problem for thetransverse vibrations of beams [21ndash23] Finite elementmethod is one of the most dominant methods for solvingthe free vibration of beams The effect of step ratios andeccentricity on the free vibration of arbitrarily beam wasinvestigated by Ju et al [21] The lowest three naturalfrequencies of a multistep up and down cantilever beamusing a global Rayleigh-Ritz formulation component modalanalyses (CMA) ANSYS and experimental are evaluated[24] Adomian decomposition method (ADM) was used toobtain the effect of step ratio and step location on the beamnatural frequencies [25 26]The free and forced vibrations ofbeams with either single- or multiple-step changes using thecomposite element method (CEM) were introduced by Lu etal [27] The accuracy and convergence of CEM were com-pared with existing theoretical and experimental results Dif-ferential transformationmethod (DTM) was applied in orderto analyze the natural frequencies for different geometricallyand material parameters stepped Bernoulli-Euler beam [28]The differential quadrature element method (DQEM) wasproposed to analyze the free vibration problem of beams withany discontinuities in cross-section [20] Discrete singularconvolution (DSC) was proposed for solving the free vibra-tion analysis of stepped beams [29]The solution formultistepTimoshenko beam using both numerical assembly techniqueanddifferential transformationmethod is proposed byYesilce[19] Experimental measurements were considered as a goodtool for the validation of the analytical results

The exact free vibration of two-span Timoshenko steppedbeams has been investigated by Gutierrez et al [18] andRossi et al [32] Farghaly [33] derived the exact solution forfour-span Timoshenko beam with attachments Yesilce [19]investigated the free vibration of stepped beams using exactnumerical assembly technique (NAT) and using approximatedifferential transformation method Recently Farghaly andEl-Sayed [6] drive the exact solution for the lateral vibra-tion of Timoshenko beam with generalized start end andintermediate conditions using numerical assembly technique(NAT)

The exact free vibration of amechanical system composedof two elastic Timoshenko segments carried on an intermedi-ate eccentric rigid body or on elastic supports was introducedby Farghaly and El-Sayed [34] Their analysis was based onboth analytical and experimental methods They claimed agood agreement between the analytical and experimentalresults Experimental setup using electromagnetic-acoustictransducer (EMAT) was introduced by Dıaz-De-Anda et al[35] They compared the experimental results with thoseobtained theoretically using Timoshenko beam theory (TBT)with one and two shear coefficients The flexural frequenciesand amplitudes for cylindrical and rectangular Timoshenkobeams were examined experimentally [35] They found thatthe experimental results coincide very well with theoreti-cal predictions The transverse vibration of Bernoulli-Eulerbeams with discontinuous geometry and elastic support wasinvestigated experimentally and analytically [36]

During the last decades many literatures were focusedon the problem of free and forced vibration analysis ofTimoshenko beam and the accuracy of the natural frequencypredictions To the authorsrsquo knowledge there is not enoughresearch that has tackled the experimental modal frequenciesof stepped thick beams computationally and experimentallyTherefore the main aim of this work is to investigate theresults of the modal frequencies for such beams usinganalytical experimental and the three-dimensional finiteelement FE(3D) An analytical analysis is proposed which isbased on the derivation of a set of fundamental solutions thatsuits the analysis of Timoshenko beams This set of solutionsis used to modify the TMM to include no inverse matrixprocedure which may be called normalized transfer matrixmethod (NTM) The comparison between the experimentalNTM and FE(3D) is done for selected single-step and two-step application models The percentage deviations betweenNTM and FE(3D) are investigated The results show thatthe finite element results are very close to the experimentalresults The study includes the effect of increasing the stepratio (119889) step location parameter (120583) and the length ratioFinally the capability of the present analysis to solve the freevibration of tapered beams has been investigated

2 Mathematical Model

The mathematical model for beam with multiple-steppedsections is shown in Figure 1 The total length of the beamis 119871 The beam model is divided into 119899 segments Thebeam has (119899 + 1) stations as shown in Figure 1 The stationnumbering corresponding to the start intermediate and endlocation is represented by (1 119894 + 1 119899 + 1) respectively Ateach station there are linear and rotational elastic supportsand concentrated mass with mass moment of inertia Asshown in Figure 1 the beam segments are described bytheir material and cross-sectional properties 120588119894 119864119894 119866119894 119860 119894 and119868119894 (119894 = 1 2 119899) which are the density Youngrsquos modulus ofelasticity rigidity modulus cross-sectional area and secondmoment of inertia respectively In this section the frequencyequation of the model is driven using the proposed normal-ized transfer matrix method Since the current analysis isbased on Timoshenko beam theory the rotary inertia and

Shock and Vibration 3

1 2 i+1n n+1

L1 Li Li+1 Ln

m1 m2 mi+1

mn mn+1

J1 J2pan i

Station 1Station(n + 1)

Ji+1Jn

Jn+1

k1 k2 ki+1 kn kn+1

L

1 2

tation i + 1S

pan i + 1SS

Figure 1 Stepped multispan model

shear deformations effects are considered In the currentanalysis the analytical solution is subject to the assumptionsthat the shear strain is assumed constant over the cross-section therefore a shear coefficient 1198961015840119894 is used to compensatethis assumption In addition the effect of stress concentrationat the beam steps is neglected

21 AnalyticalMethod andFrequency Equation Theobjectiveof this section is to derive the system frequency equationwhich represents the model shown in Figure 1 Timoshenkodifferential coupled equations of motion may be written herefor 119894th span as follows

(1198961015840119866119860)119894(11991010158401015840119894 minus 1205951015840119894 ) (119909119894 119905) minus 120588119894119860 119894 119910119894 (119909119894 119905) = 0

(119864119868)119894 12059510158401015840119894 (119909119894 119905) minus 120588119894119868119894119894 (119909119894 119905)+ (1198961015840119866119860)

119894(1199101015840119894 minus 120595119894) (119909119894 119905) = 0

(1)

Let

119910119894 = 119884119894 (120585119894) 119890119895120596119905120595119894 = Ψ119894 (120585119894) 119890119895120596119905120585119894 = 119909119894119871 119894

(2)

where 119884119894 is the normal function of 119910119894 Ψ119894 is the normalfunction of120595119894 120585119894 is nondimensional length of each beam span119894 and 119895 = radicminus1

Substituting (2) into (1) and omitting the factor 119890119895120596119905 thefollowing equations can be derived

11988410158401015840119894 (120585119894) + 1205824119894 1199042119894 119884119894 (120585119894) minus 119871 119894Ψ1015840119894 (120585119894) = 0 (3)

1199042119894 119871 119894Ψ10158401015840119894 (120585119894) + (1205824119894 1199032119894 1199042119894 minus 1) 119871 119894Ψ119894 (120585119894) + 1198841015840119894 (120585119894) = 0 (4)

where

1205824119894 = 120588119894119860 11989411987141198941205962119864119894119868119894 (5a)

1199042119894 = 21199032119894 (1 + ]119894)1198961015840119894 (5b)

1199032119894 = 119868119894119860 1198941198712119894 (5c)

After decoupling the functions 119884119894(120585119894) and 119871 119894Ψ119894(120585119894) in ((3)-(4)) the decoupled fourth-order differential equations in thenondimensional form can be written as

1198841015840101584010158401015840119894 (120585119894) + 12057211989411988410158401015840119894 (120585119894) + 1205732119894 119884119894 (120585119894) = 0 (6)

119871 119894Ψ1015840101584010158401015840119894 (120585119894) + 120572119894119871 119894Ψ10158401015840119894 (120585119894) + 1205732119894 119871 119894Ψ119894 (120585119894) = 0 (7)

where

120572119894 = 1205824119894 (1199032119894 + 1199042119894 ) (7a)1205732119894 = 1205824119894 (1205824119894 1199032119894 1199042119894 minus 1) (7b)

The general solution of (6) and (7) can be written respec-tively in the form

119884119894 (120585119894) = 1198621119894 sin (119886119894120585119894) + 1198622119894 cos (119886119894120585119894)+ 1198623119894 sinh (119887119894120585119894) + 1198624119894cosh (119887119894120585119894)

119871 119894Ψ119894 (120585119894) = minus(1205751119894119886119894 )1198621119894 cos (119886119894120585119894)+ (1205751119894119886119894 )1198622119894 sin (119886119894120585119894)+ (1205752119894119887119894 )1198623119894 cosh (119887119894120585119894)+ (1205752119894119887119894 )1198624119894 sinh (119887119894120585119894)

(8)

Here

1198862119894 = (1205721198942 ) + radic(1205721198942 )2 minus 1205732119894 (9a)

1198872119894 = minus(1205721198942 ) + radic(1205721198942 )2 minus 1205732119894 (9b)

4 Shock and Vibration

One can derive the expressions of 1205751119894 and 1205752119894 using (8)together with (3) or (4) in the form

1205751119894 = 1199042119894 1205824119894 minus 1198862119894 (10a)

1205752119894 = 1199042119894 1205824119894 + 1198872119894 (10b)

Here 119894 denotes the 119894th span 119894 = 1 2 119899 in the case ofmultispan model

In order to introduce the current analysis the linearlyindependent fundamental solutions 1198781198841119894(120585) 1198781198842119894(120585) 1198781198843119894(120585)1198781198844119894(120585) and the corresponding 119878Ψ1119894(120585) 119878Ψ2119894(120585) 119878Ψ3119894(120585)119878Ψ4119894(120585) are derived In order to simplify the solution ofTimoshenko beam the following dependent functions aredefined

Γ119894 (120585) = 1198841015840119894 (120585) minus 119871 119894Ψ119894 (120585) (11a)

119878Γ1119894 (120585) = 11987811988410158401119894 (120585) minus 119878Ψ1119894 (120585) (11b)

119878Γ2119894 (120585) = 11987811988410158402119894 (120585) minus 119878Ψ2119894 (120585) (11c)

119878Γ3119894 (120585) = 11987811988410158403119894 (120585) minus 119878Ψ3119894 (120585) (11d)

119878Γ4119894 (120585) = 11987811988410158404119894 (120585) minus 119878Ψ4119894 (120585) (11e)

The Timoshenko solution will be normalized at the origin ofcoordinates as follows

[[[[[[[

1198781198841119894 (0) 119878Ψ1119894 (0) 119878Ψ10158401119894 (0) 119878Γ1119894 (0)1198781198842119894 (0) 119878Ψ2119894 (0) 119878Ψ10158402119894 (0) 119878Γ2119894 (0)1198781198843119894 (0) 119878Ψ3119894 (0) 119878Ψ10158403119894 (0) 119878Γ3119894 (0)1198781198844119894 (0) 119878Ψ4119894 (0) 119878Ψ10158404119894 (0) 119878Γ4119894 (0)

]]]]]]]

= [[[[[[

1 0 0 00 1 0 00 0 1 00 0 0 1

]]]]]]

(12)

Substituting the general solution of (8) in each raw in (12) weget the following set of fundamental solutions

1198781198841119894 (120585119894) = 11205751119894 minus 1205752119894 (minus1205752119894 cos (119886119894120585119894)+ 1205751119894 cosh (119887119894120585119894))

(13a)

1198781198842119894 (120585119894) = 1(12057521198941198862119894 + 12057511198941198872119894 ) (119886119894 (1205752119894 minus 1198872119894 ) sin (119886119894120585119894)

+ 119887119894 (1205751119894 + 1198862119894 ) sinh (119887119894120585119894)) (13b)

1198781198843119894 (120585119894) = 11205751119894 minus 1205752119894 (cos (119886119894120585119894) minus cosh (119887119894120585119894)) (13c)

1198781198844119894 (120585119894) = 1(12057521198941198862119894 + 12057511198941198872119894 ) (1205752119894119886119894 sin (119886119894120585119894)+ 1205751119894119887119894 sinh (119887119894120585119894))

(13d)

119878Ψ1119894 (120585119894) = 120575111989412057521198941205751119894 minus 1205752119894 (minus1119886119894 sin (119886119894120585119894)

+ 1119887119894 sinh (119887119894120585119894)) (13e)

119878Ψ2119894 (120585119894) = 1(12057521198941198862119894 + 12057511198941198872119894 ) (minus1205751119894 (1205752119894 minus 1198872119894 ) cos (119886119894120585119894)

+ 1205752119894 (1205751119894 + 1198862119894 ) cosh (119887119894120585119894)) (13f)

119878Ψ3119894 (120585119894) = 11205751119894 minus 1205752119894 (1205751119894119886119894 sin (119886119894120585119894)

minus 1205752119894119887119894 sinh (119887119894120585119894)) (13g)

119878Ψ4119894 (120585119894) = 12057511198941205752119894(12057521198941198862119894 + 12057511198941198872119894 ) (minus cos (119886119894120585119894)+ cosh (119887119894120585119894))

(13h)

The general solution of the beam can be presented in termsof the set of fundamental solutions as

119884119894 (120585119894) = 11991011989401198781198841119894 (120585119894) + 12059511989401198781198842119894 (120585119894) + 120595101584011989401198781198843119894 (120585119894)+ 12057411989401198781198844119894 (120585119894)

119871 119894Ψ119894 (120585119894) = 1199101198940119878Ψ1119894 (120585119894) + 1205951198940119878Ψ2119894 (120585) + 12059510158401198940119878Ψ3119894 (120585)+ 1205741198940119878Ψ4119894 (120585119894)

Γ119894 (120585119894) = 1199101198940119878Γ1119894 (120585119894) + 1205951198940119878Γ2119894 (120585119894) + 12059510158401198940119878Γ3119894 (120585119894)+ 1205741198940119878Γ4119894 (120585119894)

(14)

where 1199101198940 = 119884119894(0) 1205951198940 = 119871 119894Ψ119894(0) 12059510158401198940 = 119871 119894Ψ1015840119894 (0) and1205741198940= Γ119894(0)The beam start boundary conditions at the point of

attachment 1 can be presented in nondimensional form as

1198711Ψ10158401 (0) + (119869112058241 minus Φ1) 1198711Ψ1 (0) = 0Γ1 (0) + 11990421 (119898112058241 minus 1198851) 1198841 (0) = 0 (15)

where

1198691 = 11986911205881119860111987131 (16a)

12058241 = 1205881119860111987141120596211986411198681 (16b)

1198851 = 11989611198713111986411198681 (16c)

Shock and Vibration 5

Φ1 = 1206011119871111986411198681 (16d)

1198981 = 1198981120588111986011198711 (16e)

where 1198691 is the mass moment of inertia at station 1 1198961 and1206011 are the linear and rotational elastic supports at station 1respectively and1198981 is the concentrated mass at station 1 seeFigure 1 for details

Substituting the solutions presented in (13a) (13b) (13c)(13d) (13e) (13f) (13g) (13h)-(14) into (15) the followingequations are obtained

(119869112058241 minus Φ1) 12059510 + 120595101584010 = 011990421 (119898112058241 minus 1198851) 11991010 + 12057410 = 0 (17)

The start boundary conditions in (17) can be presented inmatrix form as

[[

0 (119869112058241 minus 1206011) 1 011990421 (119898112058241 minus 1198851) 0 0 1]]

119910101205951012059510158401012057410

= 0 (18)

This equation can be simply written as

[Us] Δ1 = 0 (19)

where

Δ1 = 11991010 12059510 120595101584010 12057410119905 (20)

where the superscript 119905 indicates vector transposeAt station (119899 + 1) the beam end boundary conditions can

be written in the nondimensional form as

Ψ1015840119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1)Ψ119899 (1) = 0Γ119899 (1) + (119885119899+1 minus 119898119899+11205824119899) 1199042119899119884119899 (1) = 0 (21)

where

119869119899+1 = 119869119899+11205881198991198601198991198713119899 (22a)

1205824119899 = 12058811989911986011989911987141198991205962119864119899119868119899 (22b)

119885119899+1 = 119896119899+11198713119899119864119899119868119899 (22c)

Φ119899+1 = 120601119899+1119871119899119864119899119868119899 (22d)

119898119899+1 = 119898119899+1120588119899119860119899119871119899 (22e)

where 119869119899+1 is the mass moment of inertia at station (119899 + 1)119896119899+1 and 120601119899+1 are the linear and rotational elastic supports atstation (119899+1) respectively and119898119899+1 is the concentratedmassat station (119899 + 1)

Substituting the solutions in (13a) (13b) (13c) (13d)(13e) (13f) (13g) (13h)-(14) into (21) the following equationsare obtained

1199101198990 (119878Ψ10158401119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ1119899)+ 1205951198990 (119878Ψ10158402119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ2119899)+ 12059510158401198990 (119878Ψ10158403119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ3119899)+ 1205741198990 (119878Ψ10158404119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ4119899) = 0

1199101198990 (119878Γ1119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198841119899 (1))+ 1205951198990 (119878Γ2119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198842119899 (1))+ 12059510158401198990 (119878Γ3119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198843119899 (1))+ 1205741198990 (119878Γ4119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198844119899 (1))= 0

(23)

Equation (23) can be written in the matrix form as

[[

(119878Ψ10158401119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ1119899) (119878Ψ10158402119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ2119899) (119878Ψ10158403119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ3119899) (119878Ψ10158404119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ4119899)(119878Γ1119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198841119899 (1)) (119878Γ2119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198842119899 (1)) (119878Γ3119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198843119899 (1)) (119878Γ4119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198844119899 (1))

]]

11991011989901205951198990120595101584011989901205741198990

= 0

(24)

This equation can be simply written as

[UE]2times4

Δ119899 = 0 (25)

where

Δ119899 = 1199101198990 1205951198990 12059510158401198990 1205741198990119905 (26)

The beam intermediate continuity conditions can be pre-sented in nondimensional form as

119884119894 (1) = 119884119894+1 (0) 119871 (119894+1)119894119871 119894Ψ119894 (1) = 119871 (119894+1)Ψ119894+1 (0)

6 Shock and Vibration

(119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (Ψ1015840119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 )Ψ119894 (1))= 119871 (119894+1)Ψ1015840119894+1 (0)

(1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (Γ119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 119884119894 (1))= Γ119894+1 (0)

(27)

where

119869119894+1 = 119869119894+1120588119894119860 1198941198713119894 (28a)

1205824119894 = 120588119894119860 11989411987141198941205962119864119894119868119894 (28b)

119885119894+1 = 119896119894+11198713119894119864119894119868119894 (28c)

Φ119894+1 = 120601119894+1119871 119894119864119894119868119894 (28d)

119898119894+1 = 119898119894+1120588119894119860 119894119871 119894 (28e)

where 119869119894+1 is the mass moment of inertia at station (119894+1) 119896119894+1and 120601119894+1 are the linear and rotational stiffness at station (119894 +1) respectively and 119898119894+1 is the concentrated mass at station(119894 + 1)

Substituting the solutions in (13a) (13b) (13c) (13d)(13e) (13f) (13g) (13h)-(14) into (27) we get the followingequations

119910(119894+1)0 = 11991011989401198781198841119894 (1) + 12059511989401198781198842119894 (1) + 120595101584011989401198781198843119894 (1)+ 12057411989401198781198844119894 (1)

120595(119894+1)0 = 119871 (119894+1)119894 (1199101198940119878Ψ1119894 (1) + 1205951198940119878Ψ2119894 (1)+ 12059510158401198940119878Ψ3119894 (1) + 1205741198940119878Ψ4119894 (1))

1205951015840(119894+1)0 = (119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (1199101198940 (119878Ψ10158401119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ1119894 (1)) + 1205951198940 (119878Ψ10158402119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ2119894 (1)) + 12059510158401198940 (119878Ψ10158403119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ3119894 (1)) + 1205741198940 (119878Ψ10158404119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ4119894 (1)))

120574(119894+1)0 = (1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (1199101198940 (119878Γ1119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198841119894 (1)) + 1205951198940 (119878Γ2119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198842119894 (1)) + 12059510158401198940 (119878Γ3119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198843119894 (1)) + 1205741198940 (119878Γ4119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198844119894 (1)))

(29)

Equation (29) can be written in matrix form as

[[[[[[[

1198781198841119894 (1) 1198781198842119894 (1) 1198781198843119894 (1) 1198781198844119894 (1)119871 (119894+1)119894119878Ψ1119894 (1) 119871 (119894+1)119894119878Ψ2119894 (1) 119871 (119894+1)119894119878Ψ3119894 (1) 119871 (119894+1)119894119878Ψ4119894 (1)1198821119894 (119878Ψ10158401119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ1119894 (1)) 1198821119894 (119878Ψ10158402119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ2119894 (1)) 1198821119894 (119878Ψ10158403119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ3119894 (1)) 1198821119894 (119878Ψ10158404119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ4119894 (1))1198822119894 (119878Γ1119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198841119894 (1)) 1198822119894 (119878Γ2119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198842119894 (1)) 1198822119894 (119878Γ3119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198843119894 (1)) 1198822119894 (119878Γ4119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198844119894 (1))

]]]]]]]

11991011989401205951198940120595101584011989401205741198940

=

119910(119894+1)0120595(119894+1)01205951015840(119894+1)0120574(119894+1)0

(30)

where

1198821119894 = (119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (31a)

1198822119894 = (1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (31b)

Equation (30) can be presented as

[T]1198944times4 lowast Δ119894 = Δ119894+1 (32)

where

Δ119894 = 1199101198940 1205951198940 12059510158401198940 1205741198940119905 (33a)

Δ119894+1 = 119910(119894+1)0 120595(119894+1)0 1205951015840(119894+1)0 120574(119894+1)0119905 (33b)

From (32) one can find that

Δ119899 = [T]119899minus1 Δ119899minus1 = [T]119899minus1 [T]119899minus2 sdot sdot sdot [T]2 Δ1 (34)

The intermediate spans transfer matrix can be presented as

[T]4times4 = [T]119899minus1 [T]119899minus2 sdot sdot sdot [T]2 (35)

then (34) can be presented as

Δ119899 = [T]4times4 Δ1 (36)

Shock and Vibration 7

0002000

40006000

Z X

Y

8000 (mm)

Figure 2 Finite element 3D mesh

Substituting (36) into the end condition of (25) results in thefollowing equations

[UE]2times4

[T]4times4 Δ1 = 0 (37)

[UIE]2times4

= [UE]2times4

[T]4times4 (38)

[UIE]2times4

Δ1 = 0 (39)

The general beam equation can be presented using the startboundary condition in (19) and the beam intermediate andend condition in (39) as shown below

[Utot]4times4

Δ1 = 0 (40)

where

[Utot]4times4

= [[[US]2times4[UIE]2times4

]] (41)

Equating the determinant of [Utot] by zero results in thesystem frequency equation In general the TMM has advan-tages over the traditional methods in that the final frequencyequation is 4 times 4 for any number of beam segments Theadvantage of the current method NTM over the TMM issignificant in the using of tailored solution that is normalizedat the origin of coordinates This type of solution enables theformulation of the system equations without the need to anyinverse matrix procedures as shown previously This reducesthe computational time comparing with the TMM

22 Finite Element Method Among the numerical toolsfinite element method is considered one of most efficientmethods to perform the vibration analysis of mechanical andstructural components In this section finite element is usedto obtain the natural frequencies andmode shapes of uniformand stepped beams ANSYS finite element commercial pack-age is used to perform the finite element analysisThe analysisis done using three-dimensional (3D) solid element modelsand SOLID95 elements are used for meshing Since all theexperimentally investigated samples in the current work are

round and stepped The beam cross-section is free meshedusing 87 SOLID95 elements for smaller cross-section and171 elements for the larger cross-section This mesh is thenextruded using 40 elements along the length of the beamThe total number of the element is ranging from 3480 (40times 87) to 6840 (40 times 171) elements based on the locationof the step see Figure 2 Modal analysis module is usedin this analysis and Block Lanczos method is used for themode extraction method The finite element model FE(3D)results are compared with those obtained experimentally andanalytically

3 Results and Discussion

31 Verification and Validation of NTM Results

311 Verification Example 1 In this example the first fivenondimensional natural frequencies (120582lowast4119894 = 120588111986011198714120596211986411198681)of stepped beam are compared with the exact solutionpresented by Gutierrez et al [18] see Figure 3 The modelis solved at two different step locations and several valuesof 11988721 and ℎ21 as shown in Table 1 Three different valuesof rotary inertia 11990321 = V119904 00036 and 001 are consideredin order to validate the current model in case of Bernoulli-Euler and Timoshenko beams The value of 11990421 = 31211990321 isconsidered in order to evaluate the shear deformation [18]The values of nondimensional linear and rotational elasticsupports stiffness at start and the end are (1198851 = 10Φ1 = V119897)(1198853 = V119904 Φ3 = V119897) respectively The results of Table 1 showthat the present NTM results are in good agreement with theexact solution presented by Gutierrez et al [18]

312 Verification Example 2 In this example Timoshenkobeam with three-step round cross-section presented in [19]is investigated see Figure 4 An intermediate lumped massof 119898lowast3 = 119898312058811198601119871 = 1 is located at a distance of 750mmfrom point 1 The input data for this example is listed inthe caption of Figure 4 Table 2 shows the results of the firstfive natural frequencies 120596119894 in (radsec) for pinned-pinnedfree-clamped clamped-free clamped-pinned and clamped-clamped configurations The results of reference [19] are

8 Shock and Vibration

Table 1 The first five natural frequencies 120582lowast2119894 for stepped Timoshenko beam in the case where the beam is rigidly restrained against rotation120601lowast1 = V119897 and elastically restrained in translation 119885lowast1 = 10 in comparison with [18]

11990321 120583 11988721 ℎ21 120582lowast21 120582lowast22 120582lowast23 120582lowast24 120582lowast2510minus7[18]

025

10 08 3010 9696 34010 74430 132341Present NTM 30098 96956 340101 744300 1323410[18] 08 08 3249 9664 34315 74645 131803Present NTM 32490 96638 343151 746445 1317507[18] 08 06 3385 8117 28630 60997 103439Present NTM 33851 81171 286302 609947 1034075[18]

050

10 08 2958 10046 34993 80145 139666Present NTM 29579 100460 349931 801455 1396667[18] 08 08 3124 10165 34688 80570 139175Present NTM 31240 101655 346882 805707 1391759[18] 08 06 3284 9499 28501 70123 118482Present NTM 32841 94989 285006 701232 1184830

00036[18]

025

10 08 3007 9668 33571 72393 126111Present NTM 30066 96678 335711 723926 1261107[18] 08 08 3245 9635 33862 72607 125617Present NTM 32454 96354 338621 726068 1256169[18] 08 06 3381 8103 28364 59839 100245Present NTM 33812 81031 283643 598385 1002447[18]

050

10 08 2946 9919 33205 71469 116725Present NTM 29462 99192 332046 714693 1167245[18] 08 08 3112 10030 32926 71741 116362Present NTM 31120 100304 329259 717415 1163618[18] 08 06 3272 9391 27449 64020 102697Present NTM 32721 93908 274490 640200 1026966

001[18]

025

10 08 3001 9619 32841 69229 117238Present NTM 30009 96192 328407 692292 1172380[18] 08 08 3239 9586 33109 69444 116798Present NTM 32390 95858 331092 694435 1167981[18] 08 06 3374 8078 27914 57970 95370Present NTM 33744 80784 279139 579705 953698[18]

050

10 08 2926 9710 30711 61768 95623Present NTM 29255 97104 307111 617680 956230[18] 08 08 3019 9809 30464 61912 95326Present NTM 30908 98086 304643 619117 953257[18] 08 06 3251 9211 25893 56578 86647Present NTM 32511 92111 258933 565776 866473

1

A

A

1

L1

k1

2

B

B

L2

3

3

k3

b1

ℎ1

b2

ℎ2

Sec AA Sec BB

Figure 3 Verification Example 1 [18] two-span stepped beam

Shock and Vibration 9

Table 2 Comparison of the first five natural frequencies in radsec using the present NTM results with those obtained in [19] for the exampleshown in Figure 4

120596119899(radsec) Method Bernoulli-Euler119903lowast21 = 0 Timoshenko119903lowast21 = 0

Pinned-pinned(P-P)

1205961 NAT [19] 3194341 3165288NTM 3194340 3164855

1205962 NAT [19] 18533864 17894207NTM 18533864 17848723

1205963 NAT [19] 41101341 38258438NTM 41101341 38365347

1205964 NAT [19] 77095714 66429094NTM 77095712 66392170

1205965 NAT [19] 116217699 98866243NTM 116217698 99188328

Free-clamped(F-C)

1205961 NAT [19] 3715354 3679440NTM 3715354 3671487

1205962 NAT [19] 12439063 12166220NTM 12439065 12115531

1205963 NAT [19] 30820846 28270352NTM 30820845 28491465

1205964 NAT [19] 55411410 49579240NTM 55411409 50037433

1205965 NAT [19] 95993810 76737578NTM 95993810 77513336

Clamped-free(C-F)

1205961 NTM 551257 5501301205962 NTM 6166018 59859171205963 NTM 27023238 253214831205964 NTM 54832379 496916591205965 NTM 95709586 79565299

Clamped-pinned(C-P)

1205961 NTM 4808915 46984441205962 NTM 20980556 199196111205963 NTM 50073315 458956761205964 NTM 83668073 704953931205965 NTM 136787112 112150349

Clamped-clamped(C-C)

1205961 NTM 8363527 80709971205962 NTM 30195886 277227321205963 NTM 55836469 498055381205964 NTM 96258943 773483191205965 NTM 144033163 115381581

750

Oslash100 Oslash150 Oslash200Oslash250

1 2 3 4 5 6

500 500 500 500

2000 mm

m3

Figure 4 Verification Example 2 [19] three-step beam having 119864 = 2069GPa 120588 = 78369 kgm3 119866 = 795769GPa and 1198961015840 = 075

10 Shock and Vibration

Table 3 Comparison of the present NTM results with those obtained in [5 20] for F-F beam shown in Figure 5

Mode number DQEM [20] Exp [5] NTM(40) FE(3D) error

I II III IV (II amp IV)1 292440 291 290316 290120 03022 1181300 1165 1162158 1167100 minus01803 1804100 1771 1767321 1772200 minus0068

1

254 140

32

549

254mm19

05

mm

Figure 5 Verification Example 3 [5 20] single-step (F-F) aluminum beam having 119864 = 717GPa 120588 = 2830Kgm3 and ] = 033

L20

L

1

1

mi

2 3 ik1

19 2021

21

k21

Figure 6 Verification Example 4 twenty equal span uniform beams carrying equally spaced nineteen concentrated masses with general endflexibilities conditions

calculated using two methods The first method is numericalassembly technique (NAT) and this method is the exactsolution The second method is differential transformationmethod and thismethod is approximatemethodThepinned-pinned and free-clamped boundary conditions results arefound in [19] The results of the current analysis are in goodagreement with the results presented in [19] As can be seenfromTable 2 the rotary inertia and shear deformation reducethemodal frequency especially for highermodes Comparingthe results of the clamped-free beam with the results of thefree-clamped beam shows that the natural frequency resultsof the clamped-free beam are lower than that of free-clampedbeam This may be explained by the fact that fixing thebeam from the thinner span results in lowering of the beamstiffness

313 Verification Example 3 The third verification exampleis shown in Figure 5 with identical dimensions to that usedin [5 20] The rotary inertia and shear deformation areconsidered The shear coefficient 1198961015840 is calculated based on[3] keeping Poissonrsquosrsquo ratio ] = 033 Table 3 shows thefirst three nonzero free-free (F-F) eigenvalues in Hz and incomparison with [5 20] The present results are computedusing both numerically (40) and FE(3D)methodsThe resultsof Table 3 show that the present analysis results are very closeto the experimental resultsThe percentage error between the

present FE(3D) results and the experimental results of [5] isless than 0302This represents the importance of includingthe effect of rotary inertia and shear deformation

314 Verification Example 4 The fourth example is shownin Figure 6 It is for a twenty-span uniform beam carrying19 equally spaced concentrated masses with 119898lowast119894 = 01Several beam start and end conditions are investigated aslisted in Table 4 The results are evaluated using the presentNTM method and previously published numerical assemblytechniqueNAT [6]methodThe computational time requiredto obtain the first three frequency parameters 120582lowast1 120582lowast2 and 120582lowast3using both NAT and NTM methods is calculated and listedin Table 4 Considerable reduction in computational time isobserved in all the investigated cases as shown in Table 4

32 Test Samples and Experimental Procedures In order tomeasure the natural frequencies of the system under studythe free-free test samples were put in free oscillations byusing an instrumented hammer model B and K 8202 Anaccelerometer model B and K 4366 is fixed to the shaft inorder to capture the vibration signal The output of thecharge amplifier B and K 2635 is connected to NI 6216data acquisition card This card is connected to the PC andmanaged by Lab VIEW software Figure 10 shows a photo ofthe current experimental setup The used card settings are

Shock and Vibration 11

Table 4 Validation of the present NTM using 20-span uniform beam with 19 equally spaced concentrated masses119898lowast119894 = 01 (119903lowast21 = 119904lowast21 = V119904)in comparison with [6]

Method 119885lowast1 Φlowast1 119885lowast21 Φlowast21 120582lowast1 120582lowast2 120582lowast3 Computational time (sec)NAT [6] V119904 V119904 V119904 V119904 37177 61716 86392 4817Present NTM V119904 V119904 V119904 V119904 37177 61716 86392 1353NAT [6] V119897 V119904 V119897 V119904 23871 47742 71612 3467Present NTM V119897 V119904 V119897 V119904 23871 47742 71612 1214NAT [6] V119897 V119897 V119897 V119897 35941 59671 835471 4040Present NTM V119897 V119897 V119897 V119897 35941 59671 835471 1347NAT [6] 10 10 10 10 15989 25329 45969 2213Present NTM 10 10 10 10 15989 25329 45969 1023

Table 5 Typical samples dimension of group S2 with 119889 = 075 shown in Figure 7

Group S2 (Single-step beam samples of steel rod Oslash 40 119871 = 200mm and 119889 = 3040)119871 1198711 120583 1198712 1198891 1198892 119898119905 (kg) 119903lowast21

S2-4040 200 40 02 160 40 30 1282 0002S2-40100 200 100 05 100 40 30 1375 0002S2-40140 200 140 07 60 40 30 1541 0002

Oslash40

40

S2-4040

Oslash20

Oslash25

Oslash30

Oslash35

= 02

S2-40100100

Oslash40

200

= 05

S2-40140140

d =20

40= 05

d =25

40= 0625

d =30

40= 075

d =35

40= 0875

= 07

Group S2

Figure 7 Schematic drawings for the experimental samples Group S2

sample frequency of 20 kHz sampling time of 3 5 8 sec andthe size of samples block to read is 1 k The time domaindata is captured and transformed into frequency domainThe resonant frequencies were obtained by the average of theresults of 10 impacts applied in three different locations ofthe sample Figures 7ndash9 show two groups of different steppedtest samples S2 and S3 respectively All the test samplesare manufactured from steel rods of dimensions Oslash 80 andOslash 40mm The common data for the steel test samples are120588 = 7850 kgm3 119864 = 2068GPa and 1198961015840 = 0845

Two-span twelve test samples are shown in group S2namely S2-4040 S2-40100 and S2-40140 shown inFigure 7 The dimensions of these samples are presentedin Table 5 The natural frequency results of these samples

are presented in Table 7 using experimental analytical andFE(3D) methods The captured signal for the free vibrationresponse for selected case from Table 7 is shown in Figure 11This case is italicized in the table The results of Table 7show that the three-dimensional FE solution is closer tothe experimental results than the analytical results Themaximum percentage error between the experimental andthe FE results is less than 05

Group S3 consists of four different samples namely S3-80250 S3-80200 S3-80150 and S3-80100 More detailsabout the geometrical dimensions and material propertiesfor these samples are shown in Table 6 and Figure 8 Theresults of Table 8 show that the deviation between the FE(3D)and the experimental is less than 116 The free vibration

12 Shock and Vibration

Table 6 The sample dimensions of group S3 as shown in Figure 8

Group S3 (Four cylindrical samples have two steps of steel rod Oslash 80 119871 = 500mm)119871 1198711 1198712 1198891 1198892 119898119905 (kg) 119871lowast2 119903lowast21

S3-80250 500 200 250 20 80 10480 05 0000100S3-80200 500 225 200 20 80 7398 04 0000100S3-80150 500 250 150 20 80 6781 03 0000100S3-80100 500 275 100 20 80 4932 02 0000100

Oslash20

200 250

Oslash80

S3-80250

225 200

S3-80200

250 150

S3-80150

275 100

S3-80100

500

Group S3

Figure 8 Schematic drawings for the experimental samples Group S3

S2- 40140S2- 40100

S2- 4040

S3- 80100S3- 80150S3- 80200S3- 80250

Figure 9 Real image for typical experimental test samples

Shock and Vibration 13

Figure 10 Test setup

24302 651063

121867

193593

minus140

minus120

minus100

minus80

minus60

minus40

minus20

0

Am

plitu

de (d

Bvo

lt)

2000 4000 6000 8000 1000012000140001600018000200000Frequency (Hz)

Figure 11 Experiment first four natural frequencies for test sample S2-4040

35479

17279

229149

453138

500 1000 1500 2000 2500 3000 3500 4000 4500 50000Frequency (Hz)

00005

0010015

0020025

0030035

0040045

Am

plitu

de (v

olt)

Figure 12 Experimental first four natural frequencies for test sample S3-80200

signals of selected case italicized in Table 8 are plotted inFigure 12 In general the results of the three-span samplesreveal the same conclusion drawn from the two-span samplesthat the FE(3D) results are closer to the experimental resultsthan the analytical results The conclusion driven from theinvestigated two- and three-span samples is that the three-dimensional finite element can be trusted in the prediction ofthe natural frequency of stepped beam

33 Percentage Modal Deviation between FE(3D) and NTMMethod The results of the previous section show theaccuracy of the FE(3D) model in evaluating the natural

frequencies of stepped beam Therefore in this section afree-free two-span model is deeply investigated using (40)and FE(3D) methods to justify the validity of the analyticalsolution in predicting the stepped beam results Two cate-gories of samples are considered as shown in Figure 13 Thefirst category includes 600mm length samples with 119903lowast21 =278 times 10minus4 and the second category includes 200mm lengthsamples with 119903lowast21 = 205 times 10minus3 The effects of changing 120583and 119889 are investigated 120583 varies from 0 to 1 and meanwhileonly three values are listed in Table 9 Four different valuesof 119889 are investigated 05 0625 075 and 0875 The study in

14 Shock and Vibration

Table 7 Percentage error between the computational and experimental results for single-step test samples (Group S2) Lowest four nonzerofree-free modes

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

2040

40 02

(A) EXP 1848940 5028140 9854 16303(B) NTM 1873981 5194229 1021179 16776400(C) FE(3D) 1859490 5056749 9893345 16380170

(D) error (A B) 1354 3303 3630 2903(E) error (A C) 0570 0568 0399 0473

100 05

(A) EXP 2153900 7713530 13701800 19845900(B) NTM 2244601 7923127 13661990 20230700(C) FE(3D) 2142012 7700169 13663580 19793360

(D) error (A B) 4211 2717 minus0290 1938(E) error (A C) minus0551 minus0173 minus0278 minus0264

140 07

(A) EXP 3596820 8103960 15773100 20733800(B) NTM 3813426 8160003 15739160 21174340(C) FE(3D) 3581521 8090723 15705070 20634360

(D) error (A B) 6022 0691 minus0215 2124(E) error (A C) minus0425 minus0163 minus0431 minus0479

2540

40 02

(A) EXP (Figure 11) 2430240 6510630 12186700 19359300(B) NTM 2444111 6638069 12492520 19588580(C) FE(3D) 2430512 6518094 12223080 19314540

(D) error (A B) 0570 1957 2509 1184(E) error (A C) 0011 0114 0298 minus0231

100 05

(A) EXP 2796050 8693500 14542200 22134(B) NTM 2912321 8781311 14633780 22182430(C) FE(3D) 2806782 8698963 14551070 22095920

(D) error (A B) 4158 1010 0629 0218(E) error (A C) 0383 0062 0060 minus0172

140 07

(A) EXP 4015620 8665980 162389 22684(B) NTM 4167385 8797248 16074330 22814460(C) FE(3D) 4021237 8655476 16159230 22610690

(D) error (A B) 3779 1514 minus1013 0575(E) error (A C) 0139 minus0121 minus0490 minus0323

3040

40 02

(A) EXP 3023690 7906 14381400 21856600(B) NTM 3023321 7946457 14429850 21806140(C) FE(3D) 3014442 7878443 14307960 21781750

(D) error (A B) minus0012 0511 0336 minus0230(E) error (A C) minus0305 minus0348 minus0510 minus0342

100 05

(A) EXP 3401940 9329910 15681400 23607700(B) NTM 3478703 9293555 15691770 23326460(C) FE(3D) 3405324 9313349 15645690 23513650

(D) error (A B) 2256 minus0389 0066 minus1191(E) error (A C) 0099 minus0177 minus0227 minus0398

140 07

(A) EXP 4201680 9322630 16596400 23967700(B) NTM 4268272 9431643 16437830 23729240(C) FE(3D) 4211100 9322286 16530200 23881400

(D) error (A B) 1584 1169 minus0955 minus0994(E) error (A C) 0224 minus0003 minus0398 minus0360

Shock and Vibration 15

Table 7 Continued

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

3540

40 02

(A) EXP 3608280 9126360 16128600 238173(B) NTM 3607895 9104530 16000810 23500960(C) FE(3D) 3607465 9106544 16054460 23720110

(D) error (A B) minus0010 minus0239 minus0792 minus1328(E) error (A C) minus0022 minus0217 minus0459 minus0408

100 05

(A) EXP 3885030 9778800 16719900 24538800(B) NTM 3906518 9705047 16577640 24125780(C) FE(3D) 3882419 9759382 16658180 2441741

(D) error (A B) 0553 minus0754 minus0850 minus1683(E) error (A C) minus0067 minus0198 minus0369 minus0495

140 07

(A) EXP 4248240 9888540 17028 24738400(B) NTM 4253660 9878822 16849850 24311230(C) FE(3D) 4247271 9870286 16963900 24616760

(D) error (A B) 0127 minus0098 minus1046 minus1726(E) error (A C) minus0022 minus0184 minus0376 minus0491

Table 8 Percentage error between the computational and experimental results for two-step samples (Group S3) Lowest four nonzero free-free modes

Method Modal frequencies in Hz1 2 3 4

S3-80250(A) EXP 403148 2126460 4139830 5153500(B) NTM 420212 2203984 4334192 5605556(C) FE(3D) 404180 2126900 4153700 5169800

(D) error (A B) minus3966 3517 4484 minus8428(E) error (A C) minus0255 minus0020 minus0333 minus0315

S3-80200(A) EXP (Figure 12) 354790 1727900 2291490 4531380

(B) NTM 367381 1788472 2551555 4660983(C) FE(3D) 355230 1728300 2318400 4532200

(D) error (A B) minus3549 3386 10192 minus2860(E) error (A C) 0124 0023 1160 0018

S3-80150(A) EXP 335859 1360050 1545130 3778200(B) NTM 346243 1434113 1638174 3889033(C) FE(3D) 336440 1364200 1548500 3781900

(D) error (A B) minus3091 minus5445 minus6021 minus2933(E) error (A C) 0172 0305 0218 0097

S3-80100(A) EXP 337400 1018240 1371070 3221200(B) NTM 345942 1074574 1424992 3303837(C) FE(3D) 337480 1024 1372900 3215

(D) error (A B) minus2531 minus5532 minus3932 minus2565(E) error (A C) 0023 0565 0133 minus0192

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 3: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

Shock and Vibration 3

1 2 i+1n n+1

L1 Li Li+1 Ln

m1 m2 mi+1

mn mn+1

J1 J2pan i

Station 1Station(n + 1)

Ji+1Jn

Jn+1

k1 k2 ki+1 kn kn+1

L

1 2

tation i + 1S

pan i + 1SS

Figure 1 Stepped multispan model

shear deformations effects are considered In the currentanalysis the analytical solution is subject to the assumptionsthat the shear strain is assumed constant over the cross-section therefore a shear coefficient 1198961015840119894 is used to compensatethis assumption In addition the effect of stress concentrationat the beam steps is neglected

21 AnalyticalMethod andFrequency Equation Theobjectiveof this section is to derive the system frequency equationwhich represents the model shown in Figure 1 Timoshenkodifferential coupled equations of motion may be written herefor 119894th span as follows

(1198961015840119866119860)119894(11991010158401015840119894 minus 1205951015840119894 ) (119909119894 119905) minus 120588119894119860 119894 119910119894 (119909119894 119905) = 0

(119864119868)119894 12059510158401015840119894 (119909119894 119905) minus 120588119894119868119894119894 (119909119894 119905)+ (1198961015840119866119860)

119894(1199101015840119894 minus 120595119894) (119909119894 119905) = 0

(1)

Let

119910119894 = 119884119894 (120585119894) 119890119895120596119905120595119894 = Ψ119894 (120585119894) 119890119895120596119905120585119894 = 119909119894119871 119894

(2)

where 119884119894 is the normal function of 119910119894 Ψ119894 is the normalfunction of120595119894 120585119894 is nondimensional length of each beam span119894 and 119895 = radicminus1

Substituting (2) into (1) and omitting the factor 119890119895120596119905 thefollowing equations can be derived

11988410158401015840119894 (120585119894) + 1205824119894 1199042119894 119884119894 (120585119894) minus 119871 119894Ψ1015840119894 (120585119894) = 0 (3)

1199042119894 119871 119894Ψ10158401015840119894 (120585119894) + (1205824119894 1199032119894 1199042119894 minus 1) 119871 119894Ψ119894 (120585119894) + 1198841015840119894 (120585119894) = 0 (4)

where

1205824119894 = 120588119894119860 11989411987141198941205962119864119894119868119894 (5a)

1199042119894 = 21199032119894 (1 + ]119894)1198961015840119894 (5b)

1199032119894 = 119868119894119860 1198941198712119894 (5c)

After decoupling the functions 119884119894(120585119894) and 119871 119894Ψ119894(120585119894) in ((3)-(4)) the decoupled fourth-order differential equations in thenondimensional form can be written as

1198841015840101584010158401015840119894 (120585119894) + 12057211989411988410158401015840119894 (120585119894) + 1205732119894 119884119894 (120585119894) = 0 (6)

119871 119894Ψ1015840101584010158401015840119894 (120585119894) + 120572119894119871 119894Ψ10158401015840119894 (120585119894) + 1205732119894 119871 119894Ψ119894 (120585119894) = 0 (7)

where

120572119894 = 1205824119894 (1199032119894 + 1199042119894 ) (7a)1205732119894 = 1205824119894 (1205824119894 1199032119894 1199042119894 minus 1) (7b)

The general solution of (6) and (7) can be written respec-tively in the form

119884119894 (120585119894) = 1198621119894 sin (119886119894120585119894) + 1198622119894 cos (119886119894120585119894)+ 1198623119894 sinh (119887119894120585119894) + 1198624119894cosh (119887119894120585119894)

119871 119894Ψ119894 (120585119894) = minus(1205751119894119886119894 )1198621119894 cos (119886119894120585119894)+ (1205751119894119886119894 )1198622119894 sin (119886119894120585119894)+ (1205752119894119887119894 )1198623119894 cosh (119887119894120585119894)+ (1205752119894119887119894 )1198624119894 sinh (119887119894120585119894)

(8)

Here

1198862119894 = (1205721198942 ) + radic(1205721198942 )2 minus 1205732119894 (9a)

1198872119894 = minus(1205721198942 ) + radic(1205721198942 )2 minus 1205732119894 (9b)

4 Shock and Vibration

One can derive the expressions of 1205751119894 and 1205752119894 using (8)together with (3) or (4) in the form

1205751119894 = 1199042119894 1205824119894 minus 1198862119894 (10a)

1205752119894 = 1199042119894 1205824119894 + 1198872119894 (10b)

Here 119894 denotes the 119894th span 119894 = 1 2 119899 in the case ofmultispan model

In order to introduce the current analysis the linearlyindependent fundamental solutions 1198781198841119894(120585) 1198781198842119894(120585) 1198781198843119894(120585)1198781198844119894(120585) and the corresponding 119878Ψ1119894(120585) 119878Ψ2119894(120585) 119878Ψ3119894(120585)119878Ψ4119894(120585) are derived In order to simplify the solution ofTimoshenko beam the following dependent functions aredefined

Γ119894 (120585) = 1198841015840119894 (120585) minus 119871 119894Ψ119894 (120585) (11a)

119878Γ1119894 (120585) = 11987811988410158401119894 (120585) minus 119878Ψ1119894 (120585) (11b)

119878Γ2119894 (120585) = 11987811988410158402119894 (120585) minus 119878Ψ2119894 (120585) (11c)

119878Γ3119894 (120585) = 11987811988410158403119894 (120585) minus 119878Ψ3119894 (120585) (11d)

119878Γ4119894 (120585) = 11987811988410158404119894 (120585) minus 119878Ψ4119894 (120585) (11e)

The Timoshenko solution will be normalized at the origin ofcoordinates as follows

[[[[[[[

1198781198841119894 (0) 119878Ψ1119894 (0) 119878Ψ10158401119894 (0) 119878Γ1119894 (0)1198781198842119894 (0) 119878Ψ2119894 (0) 119878Ψ10158402119894 (0) 119878Γ2119894 (0)1198781198843119894 (0) 119878Ψ3119894 (0) 119878Ψ10158403119894 (0) 119878Γ3119894 (0)1198781198844119894 (0) 119878Ψ4119894 (0) 119878Ψ10158404119894 (0) 119878Γ4119894 (0)

]]]]]]]

= [[[[[[

1 0 0 00 1 0 00 0 1 00 0 0 1

]]]]]]

(12)

Substituting the general solution of (8) in each raw in (12) weget the following set of fundamental solutions

1198781198841119894 (120585119894) = 11205751119894 minus 1205752119894 (minus1205752119894 cos (119886119894120585119894)+ 1205751119894 cosh (119887119894120585119894))

(13a)

1198781198842119894 (120585119894) = 1(12057521198941198862119894 + 12057511198941198872119894 ) (119886119894 (1205752119894 minus 1198872119894 ) sin (119886119894120585119894)

+ 119887119894 (1205751119894 + 1198862119894 ) sinh (119887119894120585119894)) (13b)

1198781198843119894 (120585119894) = 11205751119894 minus 1205752119894 (cos (119886119894120585119894) minus cosh (119887119894120585119894)) (13c)

1198781198844119894 (120585119894) = 1(12057521198941198862119894 + 12057511198941198872119894 ) (1205752119894119886119894 sin (119886119894120585119894)+ 1205751119894119887119894 sinh (119887119894120585119894))

(13d)

119878Ψ1119894 (120585119894) = 120575111989412057521198941205751119894 minus 1205752119894 (minus1119886119894 sin (119886119894120585119894)

+ 1119887119894 sinh (119887119894120585119894)) (13e)

119878Ψ2119894 (120585119894) = 1(12057521198941198862119894 + 12057511198941198872119894 ) (minus1205751119894 (1205752119894 minus 1198872119894 ) cos (119886119894120585119894)

+ 1205752119894 (1205751119894 + 1198862119894 ) cosh (119887119894120585119894)) (13f)

119878Ψ3119894 (120585119894) = 11205751119894 minus 1205752119894 (1205751119894119886119894 sin (119886119894120585119894)

minus 1205752119894119887119894 sinh (119887119894120585119894)) (13g)

119878Ψ4119894 (120585119894) = 12057511198941205752119894(12057521198941198862119894 + 12057511198941198872119894 ) (minus cos (119886119894120585119894)+ cosh (119887119894120585119894))

(13h)

The general solution of the beam can be presented in termsof the set of fundamental solutions as

119884119894 (120585119894) = 11991011989401198781198841119894 (120585119894) + 12059511989401198781198842119894 (120585119894) + 120595101584011989401198781198843119894 (120585119894)+ 12057411989401198781198844119894 (120585119894)

119871 119894Ψ119894 (120585119894) = 1199101198940119878Ψ1119894 (120585119894) + 1205951198940119878Ψ2119894 (120585) + 12059510158401198940119878Ψ3119894 (120585)+ 1205741198940119878Ψ4119894 (120585119894)

Γ119894 (120585119894) = 1199101198940119878Γ1119894 (120585119894) + 1205951198940119878Γ2119894 (120585119894) + 12059510158401198940119878Γ3119894 (120585119894)+ 1205741198940119878Γ4119894 (120585119894)

(14)

where 1199101198940 = 119884119894(0) 1205951198940 = 119871 119894Ψ119894(0) 12059510158401198940 = 119871 119894Ψ1015840119894 (0) and1205741198940= Γ119894(0)The beam start boundary conditions at the point of

attachment 1 can be presented in nondimensional form as

1198711Ψ10158401 (0) + (119869112058241 minus Φ1) 1198711Ψ1 (0) = 0Γ1 (0) + 11990421 (119898112058241 minus 1198851) 1198841 (0) = 0 (15)

where

1198691 = 11986911205881119860111987131 (16a)

12058241 = 1205881119860111987141120596211986411198681 (16b)

1198851 = 11989611198713111986411198681 (16c)

Shock and Vibration 5

Φ1 = 1206011119871111986411198681 (16d)

1198981 = 1198981120588111986011198711 (16e)

where 1198691 is the mass moment of inertia at station 1 1198961 and1206011 are the linear and rotational elastic supports at station 1respectively and1198981 is the concentrated mass at station 1 seeFigure 1 for details

Substituting the solutions presented in (13a) (13b) (13c)(13d) (13e) (13f) (13g) (13h)-(14) into (15) the followingequations are obtained

(119869112058241 minus Φ1) 12059510 + 120595101584010 = 011990421 (119898112058241 minus 1198851) 11991010 + 12057410 = 0 (17)

The start boundary conditions in (17) can be presented inmatrix form as

[[

0 (119869112058241 minus 1206011) 1 011990421 (119898112058241 minus 1198851) 0 0 1]]

119910101205951012059510158401012057410

= 0 (18)

This equation can be simply written as

[Us] Δ1 = 0 (19)

where

Δ1 = 11991010 12059510 120595101584010 12057410119905 (20)

where the superscript 119905 indicates vector transposeAt station (119899 + 1) the beam end boundary conditions can

be written in the nondimensional form as

Ψ1015840119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1)Ψ119899 (1) = 0Γ119899 (1) + (119885119899+1 minus 119898119899+11205824119899) 1199042119899119884119899 (1) = 0 (21)

where

119869119899+1 = 119869119899+11205881198991198601198991198713119899 (22a)

1205824119899 = 12058811989911986011989911987141198991205962119864119899119868119899 (22b)

119885119899+1 = 119896119899+11198713119899119864119899119868119899 (22c)

Φ119899+1 = 120601119899+1119871119899119864119899119868119899 (22d)

119898119899+1 = 119898119899+1120588119899119860119899119871119899 (22e)

where 119869119899+1 is the mass moment of inertia at station (119899 + 1)119896119899+1 and 120601119899+1 are the linear and rotational elastic supports atstation (119899+1) respectively and119898119899+1 is the concentratedmassat station (119899 + 1)

Substituting the solutions in (13a) (13b) (13c) (13d)(13e) (13f) (13g) (13h)-(14) into (21) the following equationsare obtained

1199101198990 (119878Ψ10158401119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ1119899)+ 1205951198990 (119878Ψ10158402119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ2119899)+ 12059510158401198990 (119878Ψ10158403119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ3119899)+ 1205741198990 (119878Ψ10158404119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ4119899) = 0

1199101198990 (119878Γ1119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198841119899 (1))+ 1205951198990 (119878Γ2119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198842119899 (1))+ 12059510158401198990 (119878Γ3119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198843119899 (1))+ 1205741198990 (119878Γ4119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198844119899 (1))= 0

(23)

Equation (23) can be written in the matrix form as

[[

(119878Ψ10158401119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ1119899) (119878Ψ10158402119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ2119899) (119878Ψ10158403119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ3119899) (119878Ψ10158404119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ4119899)(119878Γ1119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198841119899 (1)) (119878Γ2119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198842119899 (1)) (119878Γ3119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198843119899 (1)) (119878Γ4119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198844119899 (1))

]]

11991011989901205951198990120595101584011989901205741198990

= 0

(24)

This equation can be simply written as

[UE]2times4

Δ119899 = 0 (25)

where

Δ119899 = 1199101198990 1205951198990 12059510158401198990 1205741198990119905 (26)

The beam intermediate continuity conditions can be pre-sented in nondimensional form as

119884119894 (1) = 119884119894+1 (0) 119871 (119894+1)119894119871 119894Ψ119894 (1) = 119871 (119894+1)Ψ119894+1 (0)

6 Shock and Vibration

(119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (Ψ1015840119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 )Ψ119894 (1))= 119871 (119894+1)Ψ1015840119894+1 (0)

(1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (Γ119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 119884119894 (1))= Γ119894+1 (0)

(27)

where

119869119894+1 = 119869119894+1120588119894119860 1198941198713119894 (28a)

1205824119894 = 120588119894119860 11989411987141198941205962119864119894119868119894 (28b)

119885119894+1 = 119896119894+11198713119894119864119894119868119894 (28c)

Φ119894+1 = 120601119894+1119871 119894119864119894119868119894 (28d)

119898119894+1 = 119898119894+1120588119894119860 119894119871 119894 (28e)

where 119869119894+1 is the mass moment of inertia at station (119894+1) 119896119894+1and 120601119894+1 are the linear and rotational stiffness at station (119894 +1) respectively and 119898119894+1 is the concentrated mass at station(119894 + 1)

Substituting the solutions in (13a) (13b) (13c) (13d)(13e) (13f) (13g) (13h)-(14) into (27) we get the followingequations

119910(119894+1)0 = 11991011989401198781198841119894 (1) + 12059511989401198781198842119894 (1) + 120595101584011989401198781198843119894 (1)+ 12057411989401198781198844119894 (1)

120595(119894+1)0 = 119871 (119894+1)119894 (1199101198940119878Ψ1119894 (1) + 1205951198940119878Ψ2119894 (1)+ 12059510158401198940119878Ψ3119894 (1) + 1205741198940119878Ψ4119894 (1))

1205951015840(119894+1)0 = (119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (1199101198940 (119878Ψ10158401119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ1119894 (1)) + 1205951198940 (119878Ψ10158402119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ2119894 (1)) + 12059510158401198940 (119878Ψ10158403119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ3119894 (1)) + 1205741198940 (119878Ψ10158404119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ4119894 (1)))

120574(119894+1)0 = (1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (1199101198940 (119878Γ1119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198841119894 (1)) + 1205951198940 (119878Γ2119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198842119894 (1)) + 12059510158401198940 (119878Γ3119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198843119894 (1)) + 1205741198940 (119878Γ4119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198844119894 (1)))

(29)

Equation (29) can be written in matrix form as

[[[[[[[

1198781198841119894 (1) 1198781198842119894 (1) 1198781198843119894 (1) 1198781198844119894 (1)119871 (119894+1)119894119878Ψ1119894 (1) 119871 (119894+1)119894119878Ψ2119894 (1) 119871 (119894+1)119894119878Ψ3119894 (1) 119871 (119894+1)119894119878Ψ4119894 (1)1198821119894 (119878Ψ10158401119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ1119894 (1)) 1198821119894 (119878Ψ10158402119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ2119894 (1)) 1198821119894 (119878Ψ10158403119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ3119894 (1)) 1198821119894 (119878Ψ10158404119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ4119894 (1))1198822119894 (119878Γ1119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198841119894 (1)) 1198822119894 (119878Γ2119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198842119894 (1)) 1198822119894 (119878Γ3119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198843119894 (1)) 1198822119894 (119878Γ4119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198844119894 (1))

]]]]]]]

11991011989401205951198940120595101584011989401205741198940

=

119910(119894+1)0120595(119894+1)01205951015840(119894+1)0120574(119894+1)0

(30)

where

1198821119894 = (119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (31a)

1198822119894 = (1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (31b)

Equation (30) can be presented as

[T]1198944times4 lowast Δ119894 = Δ119894+1 (32)

where

Δ119894 = 1199101198940 1205951198940 12059510158401198940 1205741198940119905 (33a)

Δ119894+1 = 119910(119894+1)0 120595(119894+1)0 1205951015840(119894+1)0 120574(119894+1)0119905 (33b)

From (32) one can find that

Δ119899 = [T]119899minus1 Δ119899minus1 = [T]119899minus1 [T]119899minus2 sdot sdot sdot [T]2 Δ1 (34)

The intermediate spans transfer matrix can be presented as

[T]4times4 = [T]119899minus1 [T]119899minus2 sdot sdot sdot [T]2 (35)

then (34) can be presented as

Δ119899 = [T]4times4 Δ1 (36)

Shock and Vibration 7

0002000

40006000

Z X

Y

8000 (mm)

Figure 2 Finite element 3D mesh

Substituting (36) into the end condition of (25) results in thefollowing equations

[UE]2times4

[T]4times4 Δ1 = 0 (37)

[UIE]2times4

= [UE]2times4

[T]4times4 (38)

[UIE]2times4

Δ1 = 0 (39)

The general beam equation can be presented using the startboundary condition in (19) and the beam intermediate andend condition in (39) as shown below

[Utot]4times4

Δ1 = 0 (40)

where

[Utot]4times4

= [[[US]2times4[UIE]2times4

]] (41)

Equating the determinant of [Utot] by zero results in thesystem frequency equation In general the TMM has advan-tages over the traditional methods in that the final frequencyequation is 4 times 4 for any number of beam segments Theadvantage of the current method NTM over the TMM issignificant in the using of tailored solution that is normalizedat the origin of coordinates This type of solution enables theformulation of the system equations without the need to anyinverse matrix procedures as shown previously This reducesthe computational time comparing with the TMM

22 Finite Element Method Among the numerical toolsfinite element method is considered one of most efficientmethods to perform the vibration analysis of mechanical andstructural components In this section finite element is usedto obtain the natural frequencies andmode shapes of uniformand stepped beams ANSYS finite element commercial pack-age is used to perform the finite element analysisThe analysisis done using three-dimensional (3D) solid element modelsand SOLID95 elements are used for meshing Since all theexperimentally investigated samples in the current work are

round and stepped The beam cross-section is free meshedusing 87 SOLID95 elements for smaller cross-section and171 elements for the larger cross-section This mesh is thenextruded using 40 elements along the length of the beamThe total number of the element is ranging from 3480 (40times 87) to 6840 (40 times 171) elements based on the locationof the step see Figure 2 Modal analysis module is usedin this analysis and Block Lanczos method is used for themode extraction method The finite element model FE(3D)results are compared with those obtained experimentally andanalytically

3 Results and Discussion

31 Verification and Validation of NTM Results

311 Verification Example 1 In this example the first fivenondimensional natural frequencies (120582lowast4119894 = 120588111986011198714120596211986411198681)of stepped beam are compared with the exact solutionpresented by Gutierrez et al [18] see Figure 3 The modelis solved at two different step locations and several valuesof 11988721 and ℎ21 as shown in Table 1 Three different valuesof rotary inertia 11990321 = V119904 00036 and 001 are consideredin order to validate the current model in case of Bernoulli-Euler and Timoshenko beams The value of 11990421 = 31211990321 isconsidered in order to evaluate the shear deformation [18]The values of nondimensional linear and rotational elasticsupports stiffness at start and the end are (1198851 = 10Φ1 = V119897)(1198853 = V119904 Φ3 = V119897) respectively The results of Table 1 showthat the present NTM results are in good agreement with theexact solution presented by Gutierrez et al [18]

312 Verification Example 2 In this example Timoshenkobeam with three-step round cross-section presented in [19]is investigated see Figure 4 An intermediate lumped massof 119898lowast3 = 119898312058811198601119871 = 1 is located at a distance of 750mmfrom point 1 The input data for this example is listed inthe caption of Figure 4 Table 2 shows the results of the firstfive natural frequencies 120596119894 in (radsec) for pinned-pinnedfree-clamped clamped-free clamped-pinned and clamped-clamped configurations The results of reference [19] are

8 Shock and Vibration

Table 1 The first five natural frequencies 120582lowast2119894 for stepped Timoshenko beam in the case where the beam is rigidly restrained against rotation120601lowast1 = V119897 and elastically restrained in translation 119885lowast1 = 10 in comparison with [18]

11990321 120583 11988721 ℎ21 120582lowast21 120582lowast22 120582lowast23 120582lowast24 120582lowast2510minus7[18]

025

10 08 3010 9696 34010 74430 132341Present NTM 30098 96956 340101 744300 1323410[18] 08 08 3249 9664 34315 74645 131803Present NTM 32490 96638 343151 746445 1317507[18] 08 06 3385 8117 28630 60997 103439Present NTM 33851 81171 286302 609947 1034075[18]

050

10 08 2958 10046 34993 80145 139666Present NTM 29579 100460 349931 801455 1396667[18] 08 08 3124 10165 34688 80570 139175Present NTM 31240 101655 346882 805707 1391759[18] 08 06 3284 9499 28501 70123 118482Present NTM 32841 94989 285006 701232 1184830

00036[18]

025

10 08 3007 9668 33571 72393 126111Present NTM 30066 96678 335711 723926 1261107[18] 08 08 3245 9635 33862 72607 125617Present NTM 32454 96354 338621 726068 1256169[18] 08 06 3381 8103 28364 59839 100245Present NTM 33812 81031 283643 598385 1002447[18]

050

10 08 2946 9919 33205 71469 116725Present NTM 29462 99192 332046 714693 1167245[18] 08 08 3112 10030 32926 71741 116362Present NTM 31120 100304 329259 717415 1163618[18] 08 06 3272 9391 27449 64020 102697Present NTM 32721 93908 274490 640200 1026966

001[18]

025

10 08 3001 9619 32841 69229 117238Present NTM 30009 96192 328407 692292 1172380[18] 08 08 3239 9586 33109 69444 116798Present NTM 32390 95858 331092 694435 1167981[18] 08 06 3374 8078 27914 57970 95370Present NTM 33744 80784 279139 579705 953698[18]

050

10 08 2926 9710 30711 61768 95623Present NTM 29255 97104 307111 617680 956230[18] 08 08 3019 9809 30464 61912 95326Present NTM 30908 98086 304643 619117 953257[18] 08 06 3251 9211 25893 56578 86647Present NTM 32511 92111 258933 565776 866473

1

A

A

1

L1

k1

2

B

B

L2

3

3

k3

b1

ℎ1

b2

ℎ2

Sec AA Sec BB

Figure 3 Verification Example 1 [18] two-span stepped beam

Shock and Vibration 9

Table 2 Comparison of the first five natural frequencies in radsec using the present NTM results with those obtained in [19] for the exampleshown in Figure 4

120596119899(radsec) Method Bernoulli-Euler119903lowast21 = 0 Timoshenko119903lowast21 = 0

Pinned-pinned(P-P)

1205961 NAT [19] 3194341 3165288NTM 3194340 3164855

1205962 NAT [19] 18533864 17894207NTM 18533864 17848723

1205963 NAT [19] 41101341 38258438NTM 41101341 38365347

1205964 NAT [19] 77095714 66429094NTM 77095712 66392170

1205965 NAT [19] 116217699 98866243NTM 116217698 99188328

Free-clamped(F-C)

1205961 NAT [19] 3715354 3679440NTM 3715354 3671487

1205962 NAT [19] 12439063 12166220NTM 12439065 12115531

1205963 NAT [19] 30820846 28270352NTM 30820845 28491465

1205964 NAT [19] 55411410 49579240NTM 55411409 50037433

1205965 NAT [19] 95993810 76737578NTM 95993810 77513336

Clamped-free(C-F)

1205961 NTM 551257 5501301205962 NTM 6166018 59859171205963 NTM 27023238 253214831205964 NTM 54832379 496916591205965 NTM 95709586 79565299

Clamped-pinned(C-P)

1205961 NTM 4808915 46984441205962 NTM 20980556 199196111205963 NTM 50073315 458956761205964 NTM 83668073 704953931205965 NTM 136787112 112150349

Clamped-clamped(C-C)

1205961 NTM 8363527 80709971205962 NTM 30195886 277227321205963 NTM 55836469 498055381205964 NTM 96258943 773483191205965 NTM 144033163 115381581

750

Oslash100 Oslash150 Oslash200Oslash250

1 2 3 4 5 6

500 500 500 500

2000 mm

m3

Figure 4 Verification Example 2 [19] three-step beam having 119864 = 2069GPa 120588 = 78369 kgm3 119866 = 795769GPa and 1198961015840 = 075

10 Shock and Vibration

Table 3 Comparison of the present NTM results with those obtained in [5 20] for F-F beam shown in Figure 5

Mode number DQEM [20] Exp [5] NTM(40) FE(3D) error

I II III IV (II amp IV)1 292440 291 290316 290120 03022 1181300 1165 1162158 1167100 minus01803 1804100 1771 1767321 1772200 minus0068

1

254 140

32

549

254mm19

05

mm

Figure 5 Verification Example 3 [5 20] single-step (F-F) aluminum beam having 119864 = 717GPa 120588 = 2830Kgm3 and ] = 033

L20

L

1

1

mi

2 3 ik1

19 2021

21

k21

Figure 6 Verification Example 4 twenty equal span uniform beams carrying equally spaced nineteen concentrated masses with general endflexibilities conditions

calculated using two methods The first method is numericalassembly technique (NAT) and this method is the exactsolution The second method is differential transformationmethod and thismethod is approximatemethodThepinned-pinned and free-clamped boundary conditions results arefound in [19] The results of the current analysis are in goodagreement with the results presented in [19] As can be seenfromTable 2 the rotary inertia and shear deformation reducethemodal frequency especially for highermodes Comparingthe results of the clamped-free beam with the results of thefree-clamped beam shows that the natural frequency resultsof the clamped-free beam are lower than that of free-clampedbeam This may be explained by the fact that fixing thebeam from the thinner span results in lowering of the beamstiffness

313 Verification Example 3 The third verification exampleis shown in Figure 5 with identical dimensions to that usedin [5 20] The rotary inertia and shear deformation areconsidered The shear coefficient 1198961015840 is calculated based on[3] keeping Poissonrsquosrsquo ratio ] = 033 Table 3 shows thefirst three nonzero free-free (F-F) eigenvalues in Hz and incomparison with [5 20] The present results are computedusing both numerically (40) and FE(3D)methodsThe resultsof Table 3 show that the present analysis results are very closeto the experimental resultsThe percentage error between the

present FE(3D) results and the experimental results of [5] isless than 0302This represents the importance of includingthe effect of rotary inertia and shear deformation

314 Verification Example 4 The fourth example is shownin Figure 6 It is for a twenty-span uniform beam carrying19 equally spaced concentrated masses with 119898lowast119894 = 01Several beam start and end conditions are investigated aslisted in Table 4 The results are evaluated using the presentNTM method and previously published numerical assemblytechniqueNAT [6]methodThe computational time requiredto obtain the first three frequency parameters 120582lowast1 120582lowast2 and 120582lowast3using both NAT and NTM methods is calculated and listedin Table 4 Considerable reduction in computational time isobserved in all the investigated cases as shown in Table 4

32 Test Samples and Experimental Procedures In order tomeasure the natural frequencies of the system under studythe free-free test samples were put in free oscillations byusing an instrumented hammer model B and K 8202 Anaccelerometer model B and K 4366 is fixed to the shaft inorder to capture the vibration signal The output of thecharge amplifier B and K 2635 is connected to NI 6216data acquisition card This card is connected to the PC andmanaged by Lab VIEW software Figure 10 shows a photo ofthe current experimental setup The used card settings are

Shock and Vibration 11

Table 4 Validation of the present NTM using 20-span uniform beam with 19 equally spaced concentrated masses119898lowast119894 = 01 (119903lowast21 = 119904lowast21 = V119904)in comparison with [6]

Method 119885lowast1 Φlowast1 119885lowast21 Φlowast21 120582lowast1 120582lowast2 120582lowast3 Computational time (sec)NAT [6] V119904 V119904 V119904 V119904 37177 61716 86392 4817Present NTM V119904 V119904 V119904 V119904 37177 61716 86392 1353NAT [6] V119897 V119904 V119897 V119904 23871 47742 71612 3467Present NTM V119897 V119904 V119897 V119904 23871 47742 71612 1214NAT [6] V119897 V119897 V119897 V119897 35941 59671 835471 4040Present NTM V119897 V119897 V119897 V119897 35941 59671 835471 1347NAT [6] 10 10 10 10 15989 25329 45969 2213Present NTM 10 10 10 10 15989 25329 45969 1023

Table 5 Typical samples dimension of group S2 with 119889 = 075 shown in Figure 7

Group S2 (Single-step beam samples of steel rod Oslash 40 119871 = 200mm and 119889 = 3040)119871 1198711 120583 1198712 1198891 1198892 119898119905 (kg) 119903lowast21

S2-4040 200 40 02 160 40 30 1282 0002S2-40100 200 100 05 100 40 30 1375 0002S2-40140 200 140 07 60 40 30 1541 0002

Oslash40

40

S2-4040

Oslash20

Oslash25

Oslash30

Oslash35

= 02

S2-40100100

Oslash40

200

= 05

S2-40140140

d =20

40= 05

d =25

40= 0625

d =30

40= 075

d =35

40= 0875

= 07

Group S2

Figure 7 Schematic drawings for the experimental samples Group S2

sample frequency of 20 kHz sampling time of 3 5 8 sec andthe size of samples block to read is 1 k The time domaindata is captured and transformed into frequency domainThe resonant frequencies were obtained by the average of theresults of 10 impacts applied in three different locations ofthe sample Figures 7ndash9 show two groups of different steppedtest samples S2 and S3 respectively All the test samplesare manufactured from steel rods of dimensions Oslash 80 andOslash 40mm The common data for the steel test samples are120588 = 7850 kgm3 119864 = 2068GPa and 1198961015840 = 0845

Two-span twelve test samples are shown in group S2namely S2-4040 S2-40100 and S2-40140 shown inFigure 7 The dimensions of these samples are presentedin Table 5 The natural frequency results of these samples

are presented in Table 7 using experimental analytical andFE(3D) methods The captured signal for the free vibrationresponse for selected case from Table 7 is shown in Figure 11This case is italicized in the table The results of Table 7show that the three-dimensional FE solution is closer tothe experimental results than the analytical results Themaximum percentage error between the experimental andthe FE results is less than 05

Group S3 consists of four different samples namely S3-80250 S3-80200 S3-80150 and S3-80100 More detailsabout the geometrical dimensions and material propertiesfor these samples are shown in Table 6 and Figure 8 Theresults of Table 8 show that the deviation between the FE(3D)and the experimental is less than 116 The free vibration

12 Shock and Vibration

Table 6 The sample dimensions of group S3 as shown in Figure 8

Group S3 (Four cylindrical samples have two steps of steel rod Oslash 80 119871 = 500mm)119871 1198711 1198712 1198891 1198892 119898119905 (kg) 119871lowast2 119903lowast21

S3-80250 500 200 250 20 80 10480 05 0000100S3-80200 500 225 200 20 80 7398 04 0000100S3-80150 500 250 150 20 80 6781 03 0000100S3-80100 500 275 100 20 80 4932 02 0000100

Oslash20

200 250

Oslash80

S3-80250

225 200

S3-80200

250 150

S3-80150

275 100

S3-80100

500

Group S3

Figure 8 Schematic drawings for the experimental samples Group S3

S2- 40140S2- 40100

S2- 4040

S3- 80100S3- 80150S3- 80200S3- 80250

Figure 9 Real image for typical experimental test samples

Shock and Vibration 13

Figure 10 Test setup

24302 651063

121867

193593

minus140

minus120

minus100

minus80

minus60

minus40

minus20

0

Am

plitu

de (d

Bvo

lt)

2000 4000 6000 8000 1000012000140001600018000200000Frequency (Hz)

Figure 11 Experiment first four natural frequencies for test sample S2-4040

35479

17279

229149

453138

500 1000 1500 2000 2500 3000 3500 4000 4500 50000Frequency (Hz)

00005

0010015

0020025

0030035

0040045

Am

plitu

de (v

olt)

Figure 12 Experimental first four natural frequencies for test sample S3-80200

signals of selected case italicized in Table 8 are plotted inFigure 12 In general the results of the three-span samplesreveal the same conclusion drawn from the two-span samplesthat the FE(3D) results are closer to the experimental resultsthan the analytical results The conclusion driven from theinvestigated two- and three-span samples is that the three-dimensional finite element can be trusted in the prediction ofthe natural frequency of stepped beam

33 Percentage Modal Deviation between FE(3D) and NTMMethod The results of the previous section show theaccuracy of the FE(3D) model in evaluating the natural

frequencies of stepped beam Therefore in this section afree-free two-span model is deeply investigated using (40)and FE(3D) methods to justify the validity of the analyticalsolution in predicting the stepped beam results Two cate-gories of samples are considered as shown in Figure 13 Thefirst category includes 600mm length samples with 119903lowast21 =278 times 10minus4 and the second category includes 200mm lengthsamples with 119903lowast21 = 205 times 10minus3 The effects of changing 120583and 119889 are investigated 120583 varies from 0 to 1 and meanwhileonly three values are listed in Table 9 Four different valuesof 119889 are investigated 05 0625 075 and 0875 The study in

14 Shock and Vibration

Table 7 Percentage error between the computational and experimental results for single-step test samples (Group S2) Lowest four nonzerofree-free modes

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

2040

40 02

(A) EXP 1848940 5028140 9854 16303(B) NTM 1873981 5194229 1021179 16776400(C) FE(3D) 1859490 5056749 9893345 16380170

(D) error (A B) 1354 3303 3630 2903(E) error (A C) 0570 0568 0399 0473

100 05

(A) EXP 2153900 7713530 13701800 19845900(B) NTM 2244601 7923127 13661990 20230700(C) FE(3D) 2142012 7700169 13663580 19793360

(D) error (A B) 4211 2717 minus0290 1938(E) error (A C) minus0551 minus0173 minus0278 minus0264

140 07

(A) EXP 3596820 8103960 15773100 20733800(B) NTM 3813426 8160003 15739160 21174340(C) FE(3D) 3581521 8090723 15705070 20634360

(D) error (A B) 6022 0691 minus0215 2124(E) error (A C) minus0425 minus0163 minus0431 minus0479

2540

40 02

(A) EXP (Figure 11) 2430240 6510630 12186700 19359300(B) NTM 2444111 6638069 12492520 19588580(C) FE(3D) 2430512 6518094 12223080 19314540

(D) error (A B) 0570 1957 2509 1184(E) error (A C) 0011 0114 0298 minus0231

100 05

(A) EXP 2796050 8693500 14542200 22134(B) NTM 2912321 8781311 14633780 22182430(C) FE(3D) 2806782 8698963 14551070 22095920

(D) error (A B) 4158 1010 0629 0218(E) error (A C) 0383 0062 0060 minus0172

140 07

(A) EXP 4015620 8665980 162389 22684(B) NTM 4167385 8797248 16074330 22814460(C) FE(3D) 4021237 8655476 16159230 22610690

(D) error (A B) 3779 1514 minus1013 0575(E) error (A C) 0139 minus0121 minus0490 minus0323

3040

40 02

(A) EXP 3023690 7906 14381400 21856600(B) NTM 3023321 7946457 14429850 21806140(C) FE(3D) 3014442 7878443 14307960 21781750

(D) error (A B) minus0012 0511 0336 minus0230(E) error (A C) minus0305 minus0348 minus0510 minus0342

100 05

(A) EXP 3401940 9329910 15681400 23607700(B) NTM 3478703 9293555 15691770 23326460(C) FE(3D) 3405324 9313349 15645690 23513650

(D) error (A B) 2256 minus0389 0066 minus1191(E) error (A C) 0099 minus0177 minus0227 minus0398

140 07

(A) EXP 4201680 9322630 16596400 23967700(B) NTM 4268272 9431643 16437830 23729240(C) FE(3D) 4211100 9322286 16530200 23881400

(D) error (A B) 1584 1169 minus0955 minus0994(E) error (A C) 0224 minus0003 minus0398 minus0360

Shock and Vibration 15

Table 7 Continued

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

3540

40 02

(A) EXP 3608280 9126360 16128600 238173(B) NTM 3607895 9104530 16000810 23500960(C) FE(3D) 3607465 9106544 16054460 23720110

(D) error (A B) minus0010 minus0239 minus0792 minus1328(E) error (A C) minus0022 minus0217 minus0459 minus0408

100 05

(A) EXP 3885030 9778800 16719900 24538800(B) NTM 3906518 9705047 16577640 24125780(C) FE(3D) 3882419 9759382 16658180 2441741

(D) error (A B) 0553 minus0754 minus0850 minus1683(E) error (A C) minus0067 minus0198 minus0369 minus0495

140 07

(A) EXP 4248240 9888540 17028 24738400(B) NTM 4253660 9878822 16849850 24311230(C) FE(3D) 4247271 9870286 16963900 24616760

(D) error (A B) 0127 minus0098 minus1046 minus1726(E) error (A C) minus0022 minus0184 minus0376 minus0491

Table 8 Percentage error between the computational and experimental results for two-step samples (Group S3) Lowest four nonzero free-free modes

Method Modal frequencies in Hz1 2 3 4

S3-80250(A) EXP 403148 2126460 4139830 5153500(B) NTM 420212 2203984 4334192 5605556(C) FE(3D) 404180 2126900 4153700 5169800

(D) error (A B) minus3966 3517 4484 minus8428(E) error (A C) minus0255 minus0020 minus0333 minus0315

S3-80200(A) EXP (Figure 12) 354790 1727900 2291490 4531380

(B) NTM 367381 1788472 2551555 4660983(C) FE(3D) 355230 1728300 2318400 4532200

(D) error (A B) minus3549 3386 10192 minus2860(E) error (A C) 0124 0023 1160 0018

S3-80150(A) EXP 335859 1360050 1545130 3778200(B) NTM 346243 1434113 1638174 3889033(C) FE(3D) 336440 1364200 1548500 3781900

(D) error (A B) minus3091 minus5445 minus6021 minus2933(E) error (A C) 0172 0305 0218 0097

S3-80100(A) EXP 337400 1018240 1371070 3221200(B) NTM 345942 1074574 1424992 3303837(C) FE(3D) 337480 1024 1372900 3215

(D) error (A B) minus2531 minus5532 minus3932 minus2565(E) error (A C) 0023 0565 0133 minus0192

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 4: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

4 Shock and Vibration

One can derive the expressions of 1205751119894 and 1205752119894 using (8)together with (3) or (4) in the form

1205751119894 = 1199042119894 1205824119894 minus 1198862119894 (10a)

1205752119894 = 1199042119894 1205824119894 + 1198872119894 (10b)

Here 119894 denotes the 119894th span 119894 = 1 2 119899 in the case ofmultispan model

In order to introduce the current analysis the linearlyindependent fundamental solutions 1198781198841119894(120585) 1198781198842119894(120585) 1198781198843119894(120585)1198781198844119894(120585) and the corresponding 119878Ψ1119894(120585) 119878Ψ2119894(120585) 119878Ψ3119894(120585)119878Ψ4119894(120585) are derived In order to simplify the solution ofTimoshenko beam the following dependent functions aredefined

Γ119894 (120585) = 1198841015840119894 (120585) minus 119871 119894Ψ119894 (120585) (11a)

119878Γ1119894 (120585) = 11987811988410158401119894 (120585) minus 119878Ψ1119894 (120585) (11b)

119878Γ2119894 (120585) = 11987811988410158402119894 (120585) minus 119878Ψ2119894 (120585) (11c)

119878Γ3119894 (120585) = 11987811988410158403119894 (120585) minus 119878Ψ3119894 (120585) (11d)

119878Γ4119894 (120585) = 11987811988410158404119894 (120585) minus 119878Ψ4119894 (120585) (11e)

The Timoshenko solution will be normalized at the origin ofcoordinates as follows

[[[[[[[

1198781198841119894 (0) 119878Ψ1119894 (0) 119878Ψ10158401119894 (0) 119878Γ1119894 (0)1198781198842119894 (0) 119878Ψ2119894 (0) 119878Ψ10158402119894 (0) 119878Γ2119894 (0)1198781198843119894 (0) 119878Ψ3119894 (0) 119878Ψ10158403119894 (0) 119878Γ3119894 (0)1198781198844119894 (0) 119878Ψ4119894 (0) 119878Ψ10158404119894 (0) 119878Γ4119894 (0)

]]]]]]]

= [[[[[[

1 0 0 00 1 0 00 0 1 00 0 0 1

]]]]]]

(12)

Substituting the general solution of (8) in each raw in (12) weget the following set of fundamental solutions

1198781198841119894 (120585119894) = 11205751119894 minus 1205752119894 (minus1205752119894 cos (119886119894120585119894)+ 1205751119894 cosh (119887119894120585119894))

(13a)

1198781198842119894 (120585119894) = 1(12057521198941198862119894 + 12057511198941198872119894 ) (119886119894 (1205752119894 minus 1198872119894 ) sin (119886119894120585119894)

+ 119887119894 (1205751119894 + 1198862119894 ) sinh (119887119894120585119894)) (13b)

1198781198843119894 (120585119894) = 11205751119894 minus 1205752119894 (cos (119886119894120585119894) minus cosh (119887119894120585119894)) (13c)

1198781198844119894 (120585119894) = 1(12057521198941198862119894 + 12057511198941198872119894 ) (1205752119894119886119894 sin (119886119894120585119894)+ 1205751119894119887119894 sinh (119887119894120585119894))

(13d)

119878Ψ1119894 (120585119894) = 120575111989412057521198941205751119894 minus 1205752119894 (minus1119886119894 sin (119886119894120585119894)

+ 1119887119894 sinh (119887119894120585119894)) (13e)

119878Ψ2119894 (120585119894) = 1(12057521198941198862119894 + 12057511198941198872119894 ) (minus1205751119894 (1205752119894 minus 1198872119894 ) cos (119886119894120585119894)

+ 1205752119894 (1205751119894 + 1198862119894 ) cosh (119887119894120585119894)) (13f)

119878Ψ3119894 (120585119894) = 11205751119894 minus 1205752119894 (1205751119894119886119894 sin (119886119894120585119894)

minus 1205752119894119887119894 sinh (119887119894120585119894)) (13g)

119878Ψ4119894 (120585119894) = 12057511198941205752119894(12057521198941198862119894 + 12057511198941198872119894 ) (minus cos (119886119894120585119894)+ cosh (119887119894120585119894))

(13h)

The general solution of the beam can be presented in termsof the set of fundamental solutions as

119884119894 (120585119894) = 11991011989401198781198841119894 (120585119894) + 12059511989401198781198842119894 (120585119894) + 120595101584011989401198781198843119894 (120585119894)+ 12057411989401198781198844119894 (120585119894)

119871 119894Ψ119894 (120585119894) = 1199101198940119878Ψ1119894 (120585119894) + 1205951198940119878Ψ2119894 (120585) + 12059510158401198940119878Ψ3119894 (120585)+ 1205741198940119878Ψ4119894 (120585119894)

Γ119894 (120585119894) = 1199101198940119878Γ1119894 (120585119894) + 1205951198940119878Γ2119894 (120585119894) + 12059510158401198940119878Γ3119894 (120585119894)+ 1205741198940119878Γ4119894 (120585119894)

(14)

where 1199101198940 = 119884119894(0) 1205951198940 = 119871 119894Ψ119894(0) 12059510158401198940 = 119871 119894Ψ1015840119894 (0) and1205741198940= Γ119894(0)The beam start boundary conditions at the point of

attachment 1 can be presented in nondimensional form as

1198711Ψ10158401 (0) + (119869112058241 minus Φ1) 1198711Ψ1 (0) = 0Γ1 (0) + 11990421 (119898112058241 minus 1198851) 1198841 (0) = 0 (15)

where

1198691 = 11986911205881119860111987131 (16a)

12058241 = 1205881119860111987141120596211986411198681 (16b)

1198851 = 11989611198713111986411198681 (16c)

Shock and Vibration 5

Φ1 = 1206011119871111986411198681 (16d)

1198981 = 1198981120588111986011198711 (16e)

where 1198691 is the mass moment of inertia at station 1 1198961 and1206011 are the linear and rotational elastic supports at station 1respectively and1198981 is the concentrated mass at station 1 seeFigure 1 for details

Substituting the solutions presented in (13a) (13b) (13c)(13d) (13e) (13f) (13g) (13h)-(14) into (15) the followingequations are obtained

(119869112058241 minus Φ1) 12059510 + 120595101584010 = 011990421 (119898112058241 minus 1198851) 11991010 + 12057410 = 0 (17)

The start boundary conditions in (17) can be presented inmatrix form as

[[

0 (119869112058241 minus 1206011) 1 011990421 (119898112058241 minus 1198851) 0 0 1]]

119910101205951012059510158401012057410

= 0 (18)

This equation can be simply written as

[Us] Δ1 = 0 (19)

where

Δ1 = 11991010 12059510 120595101584010 12057410119905 (20)

where the superscript 119905 indicates vector transposeAt station (119899 + 1) the beam end boundary conditions can

be written in the nondimensional form as

Ψ1015840119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1)Ψ119899 (1) = 0Γ119899 (1) + (119885119899+1 minus 119898119899+11205824119899) 1199042119899119884119899 (1) = 0 (21)

where

119869119899+1 = 119869119899+11205881198991198601198991198713119899 (22a)

1205824119899 = 12058811989911986011989911987141198991205962119864119899119868119899 (22b)

119885119899+1 = 119896119899+11198713119899119864119899119868119899 (22c)

Φ119899+1 = 120601119899+1119871119899119864119899119868119899 (22d)

119898119899+1 = 119898119899+1120588119899119860119899119871119899 (22e)

where 119869119899+1 is the mass moment of inertia at station (119899 + 1)119896119899+1 and 120601119899+1 are the linear and rotational elastic supports atstation (119899+1) respectively and119898119899+1 is the concentratedmassat station (119899 + 1)

Substituting the solutions in (13a) (13b) (13c) (13d)(13e) (13f) (13g) (13h)-(14) into (21) the following equationsare obtained

1199101198990 (119878Ψ10158401119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ1119899)+ 1205951198990 (119878Ψ10158402119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ2119899)+ 12059510158401198990 (119878Ψ10158403119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ3119899)+ 1205741198990 (119878Ψ10158404119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ4119899) = 0

1199101198990 (119878Γ1119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198841119899 (1))+ 1205951198990 (119878Γ2119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198842119899 (1))+ 12059510158401198990 (119878Γ3119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198843119899 (1))+ 1205741198990 (119878Γ4119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198844119899 (1))= 0

(23)

Equation (23) can be written in the matrix form as

[[

(119878Ψ10158401119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ1119899) (119878Ψ10158402119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ2119899) (119878Ψ10158403119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ3119899) (119878Ψ10158404119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ4119899)(119878Γ1119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198841119899 (1)) (119878Γ2119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198842119899 (1)) (119878Γ3119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198843119899 (1)) (119878Γ4119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198844119899 (1))

]]

11991011989901205951198990120595101584011989901205741198990

= 0

(24)

This equation can be simply written as

[UE]2times4

Δ119899 = 0 (25)

where

Δ119899 = 1199101198990 1205951198990 12059510158401198990 1205741198990119905 (26)

The beam intermediate continuity conditions can be pre-sented in nondimensional form as

119884119894 (1) = 119884119894+1 (0) 119871 (119894+1)119894119871 119894Ψ119894 (1) = 119871 (119894+1)Ψ119894+1 (0)

6 Shock and Vibration

(119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (Ψ1015840119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 )Ψ119894 (1))= 119871 (119894+1)Ψ1015840119894+1 (0)

(1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (Γ119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 119884119894 (1))= Γ119894+1 (0)

(27)

where

119869119894+1 = 119869119894+1120588119894119860 1198941198713119894 (28a)

1205824119894 = 120588119894119860 11989411987141198941205962119864119894119868119894 (28b)

119885119894+1 = 119896119894+11198713119894119864119894119868119894 (28c)

Φ119894+1 = 120601119894+1119871 119894119864119894119868119894 (28d)

119898119894+1 = 119898119894+1120588119894119860 119894119871 119894 (28e)

where 119869119894+1 is the mass moment of inertia at station (119894+1) 119896119894+1and 120601119894+1 are the linear and rotational stiffness at station (119894 +1) respectively and 119898119894+1 is the concentrated mass at station(119894 + 1)

Substituting the solutions in (13a) (13b) (13c) (13d)(13e) (13f) (13g) (13h)-(14) into (27) we get the followingequations

119910(119894+1)0 = 11991011989401198781198841119894 (1) + 12059511989401198781198842119894 (1) + 120595101584011989401198781198843119894 (1)+ 12057411989401198781198844119894 (1)

120595(119894+1)0 = 119871 (119894+1)119894 (1199101198940119878Ψ1119894 (1) + 1205951198940119878Ψ2119894 (1)+ 12059510158401198940119878Ψ3119894 (1) + 1205741198940119878Ψ4119894 (1))

1205951015840(119894+1)0 = (119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (1199101198940 (119878Ψ10158401119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ1119894 (1)) + 1205951198940 (119878Ψ10158402119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ2119894 (1)) + 12059510158401198940 (119878Ψ10158403119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ3119894 (1)) + 1205741198940 (119878Ψ10158404119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ4119894 (1)))

120574(119894+1)0 = (1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (1199101198940 (119878Γ1119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198841119894 (1)) + 1205951198940 (119878Γ2119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198842119894 (1)) + 12059510158401198940 (119878Γ3119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198843119894 (1)) + 1205741198940 (119878Γ4119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198844119894 (1)))

(29)

Equation (29) can be written in matrix form as

[[[[[[[

1198781198841119894 (1) 1198781198842119894 (1) 1198781198843119894 (1) 1198781198844119894 (1)119871 (119894+1)119894119878Ψ1119894 (1) 119871 (119894+1)119894119878Ψ2119894 (1) 119871 (119894+1)119894119878Ψ3119894 (1) 119871 (119894+1)119894119878Ψ4119894 (1)1198821119894 (119878Ψ10158401119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ1119894 (1)) 1198821119894 (119878Ψ10158402119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ2119894 (1)) 1198821119894 (119878Ψ10158403119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ3119894 (1)) 1198821119894 (119878Ψ10158404119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ4119894 (1))1198822119894 (119878Γ1119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198841119894 (1)) 1198822119894 (119878Γ2119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198842119894 (1)) 1198822119894 (119878Γ3119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198843119894 (1)) 1198822119894 (119878Γ4119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198844119894 (1))

]]]]]]]

11991011989401205951198940120595101584011989401205741198940

=

119910(119894+1)0120595(119894+1)01205951015840(119894+1)0120574(119894+1)0

(30)

where

1198821119894 = (119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (31a)

1198822119894 = (1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (31b)

Equation (30) can be presented as

[T]1198944times4 lowast Δ119894 = Δ119894+1 (32)

where

Δ119894 = 1199101198940 1205951198940 12059510158401198940 1205741198940119905 (33a)

Δ119894+1 = 119910(119894+1)0 120595(119894+1)0 1205951015840(119894+1)0 120574(119894+1)0119905 (33b)

From (32) one can find that

Δ119899 = [T]119899minus1 Δ119899minus1 = [T]119899minus1 [T]119899minus2 sdot sdot sdot [T]2 Δ1 (34)

The intermediate spans transfer matrix can be presented as

[T]4times4 = [T]119899minus1 [T]119899minus2 sdot sdot sdot [T]2 (35)

then (34) can be presented as

Δ119899 = [T]4times4 Δ1 (36)

Shock and Vibration 7

0002000

40006000

Z X

Y

8000 (mm)

Figure 2 Finite element 3D mesh

Substituting (36) into the end condition of (25) results in thefollowing equations

[UE]2times4

[T]4times4 Δ1 = 0 (37)

[UIE]2times4

= [UE]2times4

[T]4times4 (38)

[UIE]2times4

Δ1 = 0 (39)

The general beam equation can be presented using the startboundary condition in (19) and the beam intermediate andend condition in (39) as shown below

[Utot]4times4

Δ1 = 0 (40)

where

[Utot]4times4

= [[[US]2times4[UIE]2times4

]] (41)

Equating the determinant of [Utot] by zero results in thesystem frequency equation In general the TMM has advan-tages over the traditional methods in that the final frequencyequation is 4 times 4 for any number of beam segments Theadvantage of the current method NTM over the TMM issignificant in the using of tailored solution that is normalizedat the origin of coordinates This type of solution enables theformulation of the system equations without the need to anyinverse matrix procedures as shown previously This reducesthe computational time comparing with the TMM

22 Finite Element Method Among the numerical toolsfinite element method is considered one of most efficientmethods to perform the vibration analysis of mechanical andstructural components In this section finite element is usedto obtain the natural frequencies andmode shapes of uniformand stepped beams ANSYS finite element commercial pack-age is used to perform the finite element analysisThe analysisis done using three-dimensional (3D) solid element modelsand SOLID95 elements are used for meshing Since all theexperimentally investigated samples in the current work are

round and stepped The beam cross-section is free meshedusing 87 SOLID95 elements for smaller cross-section and171 elements for the larger cross-section This mesh is thenextruded using 40 elements along the length of the beamThe total number of the element is ranging from 3480 (40times 87) to 6840 (40 times 171) elements based on the locationof the step see Figure 2 Modal analysis module is usedin this analysis and Block Lanczos method is used for themode extraction method The finite element model FE(3D)results are compared with those obtained experimentally andanalytically

3 Results and Discussion

31 Verification and Validation of NTM Results

311 Verification Example 1 In this example the first fivenondimensional natural frequencies (120582lowast4119894 = 120588111986011198714120596211986411198681)of stepped beam are compared with the exact solutionpresented by Gutierrez et al [18] see Figure 3 The modelis solved at two different step locations and several valuesof 11988721 and ℎ21 as shown in Table 1 Three different valuesof rotary inertia 11990321 = V119904 00036 and 001 are consideredin order to validate the current model in case of Bernoulli-Euler and Timoshenko beams The value of 11990421 = 31211990321 isconsidered in order to evaluate the shear deformation [18]The values of nondimensional linear and rotational elasticsupports stiffness at start and the end are (1198851 = 10Φ1 = V119897)(1198853 = V119904 Φ3 = V119897) respectively The results of Table 1 showthat the present NTM results are in good agreement with theexact solution presented by Gutierrez et al [18]

312 Verification Example 2 In this example Timoshenkobeam with three-step round cross-section presented in [19]is investigated see Figure 4 An intermediate lumped massof 119898lowast3 = 119898312058811198601119871 = 1 is located at a distance of 750mmfrom point 1 The input data for this example is listed inthe caption of Figure 4 Table 2 shows the results of the firstfive natural frequencies 120596119894 in (radsec) for pinned-pinnedfree-clamped clamped-free clamped-pinned and clamped-clamped configurations The results of reference [19] are

8 Shock and Vibration

Table 1 The first five natural frequencies 120582lowast2119894 for stepped Timoshenko beam in the case where the beam is rigidly restrained against rotation120601lowast1 = V119897 and elastically restrained in translation 119885lowast1 = 10 in comparison with [18]

11990321 120583 11988721 ℎ21 120582lowast21 120582lowast22 120582lowast23 120582lowast24 120582lowast2510minus7[18]

025

10 08 3010 9696 34010 74430 132341Present NTM 30098 96956 340101 744300 1323410[18] 08 08 3249 9664 34315 74645 131803Present NTM 32490 96638 343151 746445 1317507[18] 08 06 3385 8117 28630 60997 103439Present NTM 33851 81171 286302 609947 1034075[18]

050

10 08 2958 10046 34993 80145 139666Present NTM 29579 100460 349931 801455 1396667[18] 08 08 3124 10165 34688 80570 139175Present NTM 31240 101655 346882 805707 1391759[18] 08 06 3284 9499 28501 70123 118482Present NTM 32841 94989 285006 701232 1184830

00036[18]

025

10 08 3007 9668 33571 72393 126111Present NTM 30066 96678 335711 723926 1261107[18] 08 08 3245 9635 33862 72607 125617Present NTM 32454 96354 338621 726068 1256169[18] 08 06 3381 8103 28364 59839 100245Present NTM 33812 81031 283643 598385 1002447[18]

050

10 08 2946 9919 33205 71469 116725Present NTM 29462 99192 332046 714693 1167245[18] 08 08 3112 10030 32926 71741 116362Present NTM 31120 100304 329259 717415 1163618[18] 08 06 3272 9391 27449 64020 102697Present NTM 32721 93908 274490 640200 1026966

001[18]

025

10 08 3001 9619 32841 69229 117238Present NTM 30009 96192 328407 692292 1172380[18] 08 08 3239 9586 33109 69444 116798Present NTM 32390 95858 331092 694435 1167981[18] 08 06 3374 8078 27914 57970 95370Present NTM 33744 80784 279139 579705 953698[18]

050

10 08 2926 9710 30711 61768 95623Present NTM 29255 97104 307111 617680 956230[18] 08 08 3019 9809 30464 61912 95326Present NTM 30908 98086 304643 619117 953257[18] 08 06 3251 9211 25893 56578 86647Present NTM 32511 92111 258933 565776 866473

1

A

A

1

L1

k1

2

B

B

L2

3

3

k3

b1

ℎ1

b2

ℎ2

Sec AA Sec BB

Figure 3 Verification Example 1 [18] two-span stepped beam

Shock and Vibration 9

Table 2 Comparison of the first five natural frequencies in radsec using the present NTM results with those obtained in [19] for the exampleshown in Figure 4

120596119899(radsec) Method Bernoulli-Euler119903lowast21 = 0 Timoshenko119903lowast21 = 0

Pinned-pinned(P-P)

1205961 NAT [19] 3194341 3165288NTM 3194340 3164855

1205962 NAT [19] 18533864 17894207NTM 18533864 17848723

1205963 NAT [19] 41101341 38258438NTM 41101341 38365347

1205964 NAT [19] 77095714 66429094NTM 77095712 66392170

1205965 NAT [19] 116217699 98866243NTM 116217698 99188328

Free-clamped(F-C)

1205961 NAT [19] 3715354 3679440NTM 3715354 3671487

1205962 NAT [19] 12439063 12166220NTM 12439065 12115531

1205963 NAT [19] 30820846 28270352NTM 30820845 28491465

1205964 NAT [19] 55411410 49579240NTM 55411409 50037433

1205965 NAT [19] 95993810 76737578NTM 95993810 77513336

Clamped-free(C-F)

1205961 NTM 551257 5501301205962 NTM 6166018 59859171205963 NTM 27023238 253214831205964 NTM 54832379 496916591205965 NTM 95709586 79565299

Clamped-pinned(C-P)

1205961 NTM 4808915 46984441205962 NTM 20980556 199196111205963 NTM 50073315 458956761205964 NTM 83668073 704953931205965 NTM 136787112 112150349

Clamped-clamped(C-C)

1205961 NTM 8363527 80709971205962 NTM 30195886 277227321205963 NTM 55836469 498055381205964 NTM 96258943 773483191205965 NTM 144033163 115381581

750

Oslash100 Oslash150 Oslash200Oslash250

1 2 3 4 5 6

500 500 500 500

2000 mm

m3

Figure 4 Verification Example 2 [19] three-step beam having 119864 = 2069GPa 120588 = 78369 kgm3 119866 = 795769GPa and 1198961015840 = 075

10 Shock and Vibration

Table 3 Comparison of the present NTM results with those obtained in [5 20] for F-F beam shown in Figure 5

Mode number DQEM [20] Exp [5] NTM(40) FE(3D) error

I II III IV (II amp IV)1 292440 291 290316 290120 03022 1181300 1165 1162158 1167100 minus01803 1804100 1771 1767321 1772200 minus0068

1

254 140

32

549

254mm19

05

mm

Figure 5 Verification Example 3 [5 20] single-step (F-F) aluminum beam having 119864 = 717GPa 120588 = 2830Kgm3 and ] = 033

L20

L

1

1

mi

2 3 ik1

19 2021

21

k21

Figure 6 Verification Example 4 twenty equal span uniform beams carrying equally spaced nineteen concentrated masses with general endflexibilities conditions

calculated using two methods The first method is numericalassembly technique (NAT) and this method is the exactsolution The second method is differential transformationmethod and thismethod is approximatemethodThepinned-pinned and free-clamped boundary conditions results arefound in [19] The results of the current analysis are in goodagreement with the results presented in [19] As can be seenfromTable 2 the rotary inertia and shear deformation reducethemodal frequency especially for highermodes Comparingthe results of the clamped-free beam with the results of thefree-clamped beam shows that the natural frequency resultsof the clamped-free beam are lower than that of free-clampedbeam This may be explained by the fact that fixing thebeam from the thinner span results in lowering of the beamstiffness

313 Verification Example 3 The third verification exampleis shown in Figure 5 with identical dimensions to that usedin [5 20] The rotary inertia and shear deformation areconsidered The shear coefficient 1198961015840 is calculated based on[3] keeping Poissonrsquosrsquo ratio ] = 033 Table 3 shows thefirst three nonzero free-free (F-F) eigenvalues in Hz and incomparison with [5 20] The present results are computedusing both numerically (40) and FE(3D)methodsThe resultsof Table 3 show that the present analysis results are very closeto the experimental resultsThe percentage error between the

present FE(3D) results and the experimental results of [5] isless than 0302This represents the importance of includingthe effect of rotary inertia and shear deformation

314 Verification Example 4 The fourth example is shownin Figure 6 It is for a twenty-span uniform beam carrying19 equally spaced concentrated masses with 119898lowast119894 = 01Several beam start and end conditions are investigated aslisted in Table 4 The results are evaluated using the presentNTM method and previously published numerical assemblytechniqueNAT [6]methodThe computational time requiredto obtain the first three frequency parameters 120582lowast1 120582lowast2 and 120582lowast3using both NAT and NTM methods is calculated and listedin Table 4 Considerable reduction in computational time isobserved in all the investigated cases as shown in Table 4

32 Test Samples and Experimental Procedures In order tomeasure the natural frequencies of the system under studythe free-free test samples were put in free oscillations byusing an instrumented hammer model B and K 8202 Anaccelerometer model B and K 4366 is fixed to the shaft inorder to capture the vibration signal The output of thecharge amplifier B and K 2635 is connected to NI 6216data acquisition card This card is connected to the PC andmanaged by Lab VIEW software Figure 10 shows a photo ofthe current experimental setup The used card settings are

Shock and Vibration 11

Table 4 Validation of the present NTM using 20-span uniform beam with 19 equally spaced concentrated masses119898lowast119894 = 01 (119903lowast21 = 119904lowast21 = V119904)in comparison with [6]

Method 119885lowast1 Φlowast1 119885lowast21 Φlowast21 120582lowast1 120582lowast2 120582lowast3 Computational time (sec)NAT [6] V119904 V119904 V119904 V119904 37177 61716 86392 4817Present NTM V119904 V119904 V119904 V119904 37177 61716 86392 1353NAT [6] V119897 V119904 V119897 V119904 23871 47742 71612 3467Present NTM V119897 V119904 V119897 V119904 23871 47742 71612 1214NAT [6] V119897 V119897 V119897 V119897 35941 59671 835471 4040Present NTM V119897 V119897 V119897 V119897 35941 59671 835471 1347NAT [6] 10 10 10 10 15989 25329 45969 2213Present NTM 10 10 10 10 15989 25329 45969 1023

Table 5 Typical samples dimension of group S2 with 119889 = 075 shown in Figure 7

Group S2 (Single-step beam samples of steel rod Oslash 40 119871 = 200mm and 119889 = 3040)119871 1198711 120583 1198712 1198891 1198892 119898119905 (kg) 119903lowast21

S2-4040 200 40 02 160 40 30 1282 0002S2-40100 200 100 05 100 40 30 1375 0002S2-40140 200 140 07 60 40 30 1541 0002

Oslash40

40

S2-4040

Oslash20

Oslash25

Oslash30

Oslash35

= 02

S2-40100100

Oslash40

200

= 05

S2-40140140

d =20

40= 05

d =25

40= 0625

d =30

40= 075

d =35

40= 0875

= 07

Group S2

Figure 7 Schematic drawings for the experimental samples Group S2

sample frequency of 20 kHz sampling time of 3 5 8 sec andthe size of samples block to read is 1 k The time domaindata is captured and transformed into frequency domainThe resonant frequencies were obtained by the average of theresults of 10 impacts applied in three different locations ofthe sample Figures 7ndash9 show two groups of different steppedtest samples S2 and S3 respectively All the test samplesare manufactured from steel rods of dimensions Oslash 80 andOslash 40mm The common data for the steel test samples are120588 = 7850 kgm3 119864 = 2068GPa and 1198961015840 = 0845

Two-span twelve test samples are shown in group S2namely S2-4040 S2-40100 and S2-40140 shown inFigure 7 The dimensions of these samples are presentedin Table 5 The natural frequency results of these samples

are presented in Table 7 using experimental analytical andFE(3D) methods The captured signal for the free vibrationresponse for selected case from Table 7 is shown in Figure 11This case is italicized in the table The results of Table 7show that the three-dimensional FE solution is closer tothe experimental results than the analytical results Themaximum percentage error between the experimental andthe FE results is less than 05

Group S3 consists of four different samples namely S3-80250 S3-80200 S3-80150 and S3-80100 More detailsabout the geometrical dimensions and material propertiesfor these samples are shown in Table 6 and Figure 8 Theresults of Table 8 show that the deviation between the FE(3D)and the experimental is less than 116 The free vibration

12 Shock and Vibration

Table 6 The sample dimensions of group S3 as shown in Figure 8

Group S3 (Four cylindrical samples have two steps of steel rod Oslash 80 119871 = 500mm)119871 1198711 1198712 1198891 1198892 119898119905 (kg) 119871lowast2 119903lowast21

S3-80250 500 200 250 20 80 10480 05 0000100S3-80200 500 225 200 20 80 7398 04 0000100S3-80150 500 250 150 20 80 6781 03 0000100S3-80100 500 275 100 20 80 4932 02 0000100

Oslash20

200 250

Oslash80

S3-80250

225 200

S3-80200

250 150

S3-80150

275 100

S3-80100

500

Group S3

Figure 8 Schematic drawings for the experimental samples Group S3

S2- 40140S2- 40100

S2- 4040

S3- 80100S3- 80150S3- 80200S3- 80250

Figure 9 Real image for typical experimental test samples

Shock and Vibration 13

Figure 10 Test setup

24302 651063

121867

193593

minus140

minus120

minus100

minus80

minus60

minus40

minus20

0

Am

plitu

de (d

Bvo

lt)

2000 4000 6000 8000 1000012000140001600018000200000Frequency (Hz)

Figure 11 Experiment first four natural frequencies for test sample S2-4040

35479

17279

229149

453138

500 1000 1500 2000 2500 3000 3500 4000 4500 50000Frequency (Hz)

00005

0010015

0020025

0030035

0040045

Am

plitu

de (v

olt)

Figure 12 Experimental first four natural frequencies for test sample S3-80200

signals of selected case italicized in Table 8 are plotted inFigure 12 In general the results of the three-span samplesreveal the same conclusion drawn from the two-span samplesthat the FE(3D) results are closer to the experimental resultsthan the analytical results The conclusion driven from theinvestigated two- and three-span samples is that the three-dimensional finite element can be trusted in the prediction ofthe natural frequency of stepped beam

33 Percentage Modal Deviation between FE(3D) and NTMMethod The results of the previous section show theaccuracy of the FE(3D) model in evaluating the natural

frequencies of stepped beam Therefore in this section afree-free two-span model is deeply investigated using (40)and FE(3D) methods to justify the validity of the analyticalsolution in predicting the stepped beam results Two cate-gories of samples are considered as shown in Figure 13 Thefirst category includes 600mm length samples with 119903lowast21 =278 times 10minus4 and the second category includes 200mm lengthsamples with 119903lowast21 = 205 times 10minus3 The effects of changing 120583and 119889 are investigated 120583 varies from 0 to 1 and meanwhileonly three values are listed in Table 9 Four different valuesof 119889 are investigated 05 0625 075 and 0875 The study in

14 Shock and Vibration

Table 7 Percentage error between the computational and experimental results for single-step test samples (Group S2) Lowest four nonzerofree-free modes

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

2040

40 02

(A) EXP 1848940 5028140 9854 16303(B) NTM 1873981 5194229 1021179 16776400(C) FE(3D) 1859490 5056749 9893345 16380170

(D) error (A B) 1354 3303 3630 2903(E) error (A C) 0570 0568 0399 0473

100 05

(A) EXP 2153900 7713530 13701800 19845900(B) NTM 2244601 7923127 13661990 20230700(C) FE(3D) 2142012 7700169 13663580 19793360

(D) error (A B) 4211 2717 minus0290 1938(E) error (A C) minus0551 minus0173 minus0278 minus0264

140 07

(A) EXP 3596820 8103960 15773100 20733800(B) NTM 3813426 8160003 15739160 21174340(C) FE(3D) 3581521 8090723 15705070 20634360

(D) error (A B) 6022 0691 minus0215 2124(E) error (A C) minus0425 minus0163 minus0431 minus0479

2540

40 02

(A) EXP (Figure 11) 2430240 6510630 12186700 19359300(B) NTM 2444111 6638069 12492520 19588580(C) FE(3D) 2430512 6518094 12223080 19314540

(D) error (A B) 0570 1957 2509 1184(E) error (A C) 0011 0114 0298 minus0231

100 05

(A) EXP 2796050 8693500 14542200 22134(B) NTM 2912321 8781311 14633780 22182430(C) FE(3D) 2806782 8698963 14551070 22095920

(D) error (A B) 4158 1010 0629 0218(E) error (A C) 0383 0062 0060 minus0172

140 07

(A) EXP 4015620 8665980 162389 22684(B) NTM 4167385 8797248 16074330 22814460(C) FE(3D) 4021237 8655476 16159230 22610690

(D) error (A B) 3779 1514 minus1013 0575(E) error (A C) 0139 minus0121 minus0490 minus0323

3040

40 02

(A) EXP 3023690 7906 14381400 21856600(B) NTM 3023321 7946457 14429850 21806140(C) FE(3D) 3014442 7878443 14307960 21781750

(D) error (A B) minus0012 0511 0336 minus0230(E) error (A C) minus0305 minus0348 minus0510 minus0342

100 05

(A) EXP 3401940 9329910 15681400 23607700(B) NTM 3478703 9293555 15691770 23326460(C) FE(3D) 3405324 9313349 15645690 23513650

(D) error (A B) 2256 minus0389 0066 minus1191(E) error (A C) 0099 minus0177 minus0227 minus0398

140 07

(A) EXP 4201680 9322630 16596400 23967700(B) NTM 4268272 9431643 16437830 23729240(C) FE(3D) 4211100 9322286 16530200 23881400

(D) error (A B) 1584 1169 minus0955 minus0994(E) error (A C) 0224 minus0003 minus0398 minus0360

Shock and Vibration 15

Table 7 Continued

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

3540

40 02

(A) EXP 3608280 9126360 16128600 238173(B) NTM 3607895 9104530 16000810 23500960(C) FE(3D) 3607465 9106544 16054460 23720110

(D) error (A B) minus0010 minus0239 minus0792 minus1328(E) error (A C) minus0022 minus0217 minus0459 minus0408

100 05

(A) EXP 3885030 9778800 16719900 24538800(B) NTM 3906518 9705047 16577640 24125780(C) FE(3D) 3882419 9759382 16658180 2441741

(D) error (A B) 0553 minus0754 minus0850 minus1683(E) error (A C) minus0067 minus0198 minus0369 minus0495

140 07

(A) EXP 4248240 9888540 17028 24738400(B) NTM 4253660 9878822 16849850 24311230(C) FE(3D) 4247271 9870286 16963900 24616760

(D) error (A B) 0127 minus0098 minus1046 minus1726(E) error (A C) minus0022 minus0184 minus0376 minus0491

Table 8 Percentage error between the computational and experimental results for two-step samples (Group S3) Lowest four nonzero free-free modes

Method Modal frequencies in Hz1 2 3 4

S3-80250(A) EXP 403148 2126460 4139830 5153500(B) NTM 420212 2203984 4334192 5605556(C) FE(3D) 404180 2126900 4153700 5169800

(D) error (A B) minus3966 3517 4484 minus8428(E) error (A C) minus0255 minus0020 minus0333 minus0315

S3-80200(A) EXP (Figure 12) 354790 1727900 2291490 4531380

(B) NTM 367381 1788472 2551555 4660983(C) FE(3D) 355230 1728300 2318400 4532200

(D) error (A B) minus3549 3386 10192 minus2860(E) error (A C) 0124 0023 1160 0018

S3-80150(A) EXP 335859 1360050 1545130 3778200(B) NTM 346243 1434113 1638174 3889033(C) FE(3D) 336440 1364200 1548500 3781900

(D) error (A B) minus3091 minus5445 minus6021 minus2933(E) error (A C) 0172 0305 0218 0097

S3-80100(A) EXP 337400 1018240 1371070 3221200(B) NTM 345942 1074574 1424992 3303837(C) FE(3D) 337480 1024 1372900 3215

(D) error (A B) minus2531 minus5532 minus3932 minus2565(E) error (A C) 0023 0565 0133 minus0192

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 5: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

Shock and Vibration 5

Φ1 = 1206011119871111986411198681 (16d)

1198981 = 1198981120588111986011198711 (16e)

where 1198691 is the mass moment of inertia at station 1 1198961 and1206011 are the linear and rotational elastic supports at station 1respectively and1198981 is the concentrated mass at station 1 seeFigure 1 for details

Substituting the solutions presented in (13a) (13b) (13c)(13d) (13e) (13f) (13g) (13h)-(14) into (15) the followingequations are obtained

(119869112058241 minus Φ1) 12059510 + 120595101584010 = 011990421 (119898112058241 minus 1198851) 11991010 + 12057410 = 0 (17)

The start boundary conditions in (17) can be presented inmatrix form as

[[

0 (119869112058241 minus 1206011) 1 011990421 (119898112058241 minus 1198851) 0 0 1]]

119910101205951012059510158401012057410

= 0 (18)

This equation can be simply written as

[Us] Δ1 = 0 (19)

where

Δ1 = 11991010 12059510 120595101584010 12057410119905 (20)

where the superscript 119905 indicates vector transposeAt station (119899 + 1) the beam end boundary conditions can

be written in the nondimensional form as

Ψ1015840119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1)Ψ119899 (1) = 0Γ119899 (1) + (119885119899+1 minus 119898119899+11205824119899) 1199042119899119884119899 (1) = 0 (21)

where

119869119899+1 = 119869119899+11205881198991198601198991198713119899 (22a)

1205824119899 = 12058811989911986011989911987141198991205962119864119899119868119899 (22b)

119885119899+1 = 119896119899+11198713119899119864119899119868119899 (22c)

Φ119899+1 = 120601119899+1119871119899119864119899119868119899 (22d)

119898119899+1 = 119898119899+1120588119899119860119899119871119899 (22e)

where 119869119899+1 is the mass moment of inertia at station (119899 + 1)119896119899+1 and 120601119899+1 are the linear and rotational elastic supports atstation (119899+1) respectively and119898119899+1 is the concentratedmassat station (119899 + 1)

Substituting the solutions in (13a) (13b) (13c) (13d)(13e) (13f) (13g) (13h)-(14) into (21) the following equationsare obtained

1199101198990 (119878Ψ10158401119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ1119899)+ 1205951198990 (119878Ψ10158402119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ2119899)+ 12059510158401198990 (119878Ψ10158403119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ3119899)+ 1205741198990 (119878Ψ10158404119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ4119899) = 0

1199101198990 (119878Γ1119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198841119899 (1))+ 1205951198990 (119878Γ2119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198842119899 (1))+ 12059510158401198990 (119878Γ3119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198843119899 (1))+ 1205741198990 (119878Γ4119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198844119899 (1))= 0

(23)

Equation (23) can be written in the matrix form as

[[

(119878Ψ10158401119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ1119899) (119878Ψ10158402119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ2119899) (119878Ψ10158403119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ3119899) (119878Ψ10158404119899 (1) + (Φ119899+1 minus 1205824119899119869119899+1) 119878Ψ4119899)(119878Γ1119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198841119899 (1)) (119878Γ2119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198842119899 (1)) (119878Γ3119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198843119899 (1)) (119878Γ4119899 (1) + 1199042119899 (119885119899+1 minus 119898119899+11205824119899) 1198781198844119899 (1))

]]

11991011989901205951198990120595101584011989901205741198990

= 0

(24)

This equation can be simply written as

[UE]2times4

Δ119899 = 0 (25)

where

Δ119899 = 1199101198990 1205951198990 12059510158401198990 1205741198990119905 (26)

The beam intermediate continuity conditions can be pre-sented in nondimensional form as

119884119894 (1) = 119884119894+1 (0) 119871 (119894+1)119894119871 119894Ψ119894 (1) = 119871 (119894+1)Ψ119894+1 (0)

6 Shock and Vibration

(119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (Ψ1015840119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 )Ψ119894 (1))= 119871 (119894+1)Ψ1015840119894+1 (0)

(1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (Γ119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 119884119894 (1))= Γ119894+1 (0)

(27)

where

119869119894+1 = 119869119894+1120588119894119860 1198941198713119894 (28a)

1205824119894 = 120588119894119860 11989411987141198941205962119864119894119868119894 (28b)

119885119894+1 = 119896119894+11198713119894119864119894119868119894 (28c)

Φ119894+1 = 120601119894+1119871 119894119864119894119868119894 (28d)

119898119894+1 = 119898119894+1120588119894119860 119894119871 119894 (28e)

where 119869119894+1 is the mass moment of inertia at station (119894+1) 119896119894+1and 120601119894+1 are the linear and rotational stiffness at station (119894 +1) respectively and 119898119894+1 is the concentrated mass at station(119894 + 1)

Substituting the solutions in (13a) (13b) (13c) (13d)(13e) (13f) (13g) (13h)-(14) into (27) we get the followingequations

119910(119894+1)0 = 11991011989401198781198841119894 (1) + 12059511989401198781198842119894 (1) + 120595101584011989401198781198843119894 (1)+ 12057411989401198781198844119894 (1)

120595(119894+1)0 = 119871 (119894+1)119894 (1199101198940119878Ψ1119894 (1) + 1205951198940119878Ψ2119894 (1)+ 12059510158401198940119878Ψ3119894 (1) + 1205741198940119878Ψ4119894 (1))

1205951015840(119894+1)0 = (119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (1199101198940 (119878Ψ10158401119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ1119894 (1)) + 1205951198940 (119878Ψ10158402119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ2119894 (1)) + 12059510158401198940 (119878Ψ10158403119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ3119894 (1)) + 1205741198940 (119878Ψ10158404119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ4119894 (1)))

120574(119894+1)0 = (1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (1199101198940 (119878Γ1119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198841119894 (1)) + 1205951198940 (119878Γ2119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198842119894 (1)) + 12059510158401198940 (119878Γ3119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198843119894 (1)) + 1205741198940 (119878Γ4119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198844119894 (1)))

(29)

Equation (29) can be written in matrix form as

[[[[[[[

1198781198841119894 (1) 1198781198842119894 (1) 1198781198843119894 (1) 1198781198844119894 (1)119871 (119894+1)119894119878Ψ1119894 (1) 119871 (119894+1)119894119878Ψ2119894 (1) 119871 (119894+1)119894119878Ψ3119894 (1) 119871 (119894+1)119894119878Ψ4119894 (1)1198821119894 (119878Ψ10158401119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ1119894 (1)) 1198821119894 (119878Ψ10158402119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ2119894 (1)) 1198821119894 (119878Ψ10158403119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ3119894 (1)) 1198821119894 (119878Ψ10158404119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ4119894 (1))1198822119894 (119878Γ1119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198841119894 (1)) 1198822119894 (119878Γ2119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198842119894 (1)) 1198822119894 (119878Γ3119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198843119894 (1)) 1198822119894 (119878Γ4119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198844119894 (1))

]]]]]]]

11991011989401205951198940120595101584011989401205741198940

=

119910(119894+1)0120595(119894+1)01205951015840(119894+1)0120574(119894+1)0

(30)

where

1198821119894 = (119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (31a)

1198822119894 = (1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (31b)

Equation (30) can be presented as

[T]1198944times4 lowast Δ119894 = Δ119894+1 (32)

where

Δ119894 = 1199101198940 1205951198940 12059510158401198940 1205741198940119905 (33a)

Δ119894+1 = 119910(119894+1)0 120595(119894+1)0 1205951015840(119894+1)0 120574(119894+1)0119905 (33b)

From (32) one can find that

Δ119899 = [T]119899minus1 Δ119899minus1 = [T]119899minus1 [T]119899minus2 sdot sdot sdot [T]2 Δ1 (34)

The intermediate spans transfer matrix can be presented as

[T]4times4 = [T]119899minus1 [T]119899minus2 sdot sdot sdot [T]2 (35)

then (34) can be presented as

Δ119899 = [T]4times4 Δ1 (36)

Shock and Vibration 7

0002000

40006000

Z X

Y

8000 (mm)

Figure 2 Finite element 3D mesh

Substituting (36) into the end condition of (25) results in thefollowing equations

[UE]2times4

[T]4times4 Δ1 = 0 (37)

[UIE]2times4

= [UE]2times4

[T]4times4 (38)

[UIE]2times4

Δ1 = 0 (39)

The general beam equation can be presented using the startboundary condition in (19) and the beam intermediate andend condition in (39) as shown below

[Utot]4times4

Δ1 = 0 (40)

where

[Utot]4times4

= [[[US]2times4[UIE]2times4

]] (41)

Equating the determinant of [Utot] by zero results in thesystem frequency equation In general the TMM has advan-tages over the traditional methods in that the final frequencyequation is 4 times 4 for any number of beam segments Theadvantage of the current method NTM over the TMM issignificant in the using of tailored solution that is normalizedat the origin of coordinates This type of solution enables theformulation of the system equations without the need to anyinverse matrix procedures as shown previously This reducesthe computational time comparing with the TMM

22 Finite Element Method Among the numerical toolsfinite element method is considered one of most efficientmethods to perform the vibration analysis of mechanical andstructural components In this section finite element is usedto obtain the natural frequencies andmode shapes of uniformand stepped beams ANSYS finite element commercial pack-age is used to perform the finite element analysisThe analysisis done using three-dimensional (3D) solid element modelsand SOLID95 elements are used for meshing Since all theexperimentally investigated samples in the current work are

round and stepped The beam cross-section is free meshedusing 87 SOLID95 elements for smaller cross-section and171 elements for the larger cross-section This mesh is thenextruded using 40 elements along the length of the beamThe total number of the element is ranging from 3480 (40times 87) to 6840 (40 times 171) elements based on the locationof the step see Figure 2 Modal analysis module is usedin this analysis and Block Lanczos method is used for themode extraction method The finite element model FE(3D)results are compared with those obtained experimentally andanalytically

3 Results and Discussion

31 Verification and Validation of NTM Results

311 Verification Example 1 In this example the first fivenondimensional natural frequencies (120582lowast4119894 = 120588111986011198714120596211986411198681)of stepped beam are compared with the exact solutionpresented by Gutierrez et al [18] see Figure 3 The modelis solved at two different step locations and several valuesof 11988721 and ℎ21 as shown in Table 1 Three different valuesof rotary inertia 11990321 = V119904 00036 and 001 are consideredin order to validate the current model in case of Bernoulli-Euler and Timoshenko beams The value of 11990421 = 31211990321 isconsidered in order to evaluate the shear deformation [18]The values of nondimensional linear and rotational elasticsupports stiffness at start and the end are (1198851 = 10Φ1 = V119897)(1198853 = V119904 Φ3 = V119897) respectively The results of Table 1 showthat the present NTM results are in good agreement with theexact solution presented by Gutierrez et al [18]

312 Verification Example 2 In this example Timoshenkobeam with three-step round cross-section presented in [19]is investigated see Figure 4 An intermediate lumped massof 119898lowast3 = 119898312058811198601119871 = 1 is located at a distance of 750mmfrom point 1 The input data for this example is listed inthe caption of Figure 4 Table 2 shows the results of the firstfive natural frequencies 120596119894 in (radsec) for pinned-pinnedfree-clamped clamped-free clamped-pinned and clamped-clamped configurations The results of reference [19] are

8 Shock and Vibration

Table 1 The first five natural frequencies 120582lowast2119894 for stepped Timoshenko beam in the case where the beam is rigidly restrained against rotation120601lowast1 = V119897 and elastically restrained in translation 119885lowast1 = 10 in comparison with [18]

11990321 120583 11988721 ℎ21 120582lowast21 120582lowast22 120582lowast23 120582lowast24 120582lowast2510minus7[18]

025

10 08 3010 9696 34010 74430 132341Present NTM 30098 96956 340101 744300 1323410[18] 08 08 3249 9664 34315 74645 131803Present NTM 32490 96638 343151 746445 1317507[18] 08 06 3385 8117 28630 60997 103439Present NTM 33851 81171 286302 609947 1034075[18]

050

10 08 2958 10046 34993 80145 139666Present NTM 29579 100460 349931 801455 1396667[18] 08 08 3124 10165 34688 80570 139175Present NTM 31240 101655 346882 805707 1391759[18] 08 06 3284 9499 28501 70123 118482Present NTM 32841 94989 285006 701232 1184830

00036[18]

025

10 08 3007 9668 33571 72393 126111Present NTM 30066 96678 335711 723926 1261107[18] 08 08 3245 9635 33862 72607 125617Present NTM 32454 96354 338621 726068 1256169[18] 08 06 3381 8103 28364 59839 100245Present NTM 33812 81031 283643 598385 1002447[18]

050

10 08 2946 9919 33205 71469 116725Present NTM 29462 99192 332046 714693 1167245[18] 08 08 3112 10030 32926 71741 116362Present NTM 31120 100304 329259 717415 1163618[18] 08 06 3272 9391 27449 64020 102697Present NTM 32721 93908 274490 640200 1026966

001[18]

025

10 08 3001 9619 32841 69229 117238Present NTM 30009 96192 328407 692292 1172380[18] 08 08 3239 9586 33109 69444 116798Present NTM 32390 95858 331092 694435 1167981[18] 08 06 3374 8078 27914 57970 95370Present NTM 33744 80784 279139 579705 953698[18]

050

10 08 2926 9710 30711 61768 95623Present NTM 29255 97104 307111 617680 956230[18] 08 08 3019 9809 30464 61912 95326Present NTM 30908 98086 304643 619117 953257[18] 08 06 3251 9211 25893 56578 86647Present NTM 32511 92111 258933 565776 866473

1

A

A

1

L1

k1

2

B

B

L2

3

3

k3

b1

ℎ1

b2

ℎ2

Sec AA Sec BB

Figure 3 Verification Example 1 [18] two-span stepped beam

Shock and Vibration 9

Table 2 Comparison of the first five natural frequencies in radsec using the present NTM results with those obtained in [19] for the exampleshown in Figure 4

120596119899(radsec) Method Bernoulli-Euler119903lowast21 = 0 Timoshenko119903lowast21 = 0

Pinned-pinned(P-P)

1205961 NAT [19] 3194341 3165288NTM 3194340 3164855

1205962 NAT [19] 18533864 17894207NTM 18533864 17848723

1205963 NAT [19] 41101341 38258438NTM 41101341 38365347

1205964 NAT [19] 77095714 66429094NTM 77095712 66392170

1205965 NAT [19] 116217699 98866243NTM 116217698 99188328

Free-clamped(F-C)

1205961 NAT [19] 3715354 3679440NTM 3715354 3671487

1205962 NAT [19] 12439063 12166220NTM 12439065 12115531

1205963 NAT [19] 30820846 28270352NTM 30820845 28491465

1205964 NAT [19] 55411410 49579240NTM 55411409 50037433

1205965 NAT [19] 95993810 76737578NTM 95993810 77513336

Clamped-free(C-F)

1205961 NTM 551257 5501301205962 NTM 6166018 59859171205963 NTM 27023238 253214831205964 NTM 54832379 496916591205965 NTM 95709586 79565299

Clamped-pinned(C-P)

1205961 NTM 4808915 46984441205962 NTM 20980556 199196111205963 NTM 50073315 458956761205964 NTM 83668073 704953931205965 NTM 136787112 112150349

Clamped-clamped(C-C)

1205961 NTM 8363527 80709971205962 NTM 30195886 277227321205963 NTM 55836469 498055381205964 NTM 96258943 773483191205965 NTM 144033163 115381581

750

Oslash100 Oslash150 Oslash200Oslash250

1 2 3 4 5 6

500 500 500 500

2000 mm

m3

Figure 4 Verification Example 2 [19] three-step beam having 119864 = 2069GPa 120588 = 78369 kgm3 119866 = 795769GPa and 1198961015840 = 075

10 Shock and Vibration

Table 3 Comparison of the present NTM results with those obtained in [5 20] for F-F beam shown in Figure 5

Mode number DQEM [20] Exp [5] NTM(40) FE(3D) error

I II III IV (II amp IV)1 292440 291 290316 290120 03022 1181300 1165 1162158 1167100 minus01803 1804100 1771 1767321 1772200 minus0068

1

254 140

32

549

254mm19

05

mm

Figure 5 Verification Example 3 [5 20] single-step (F-F) aluminum beam having 119864 = 717GPa 120588 = 2830Kgm3 and ] = 033

L20

L

1

1

mi

2 3 ik1

19 2021

21

k21

Figure 6 Verification Example 4 twenty equal span uniform beams carrying equally spaced nineteen concentrated masses with general endflexibilities conditions

calculated using two methods The first method is numericalassembly technique (NAT) and this method is the exactsolution The second method is differential transformationmethod and thismethod is approximatemethodThepinned-pinned and free-clamped boundary conditions results arefound in [19] The results of the current analysis are in goodagreement with the results presented in [19] As can be seenfromTable 2 the rotary inertia and shear deformation reducethemodal frequency especially for highermodes Comparingthe results of the clamped-free beam with the results of thefree-clamped beam shows that the natural frequency resultsof the clamped-free beam are lower than that of free-clampedbeam This may be explained by the fact that fixing thebeam from the thinner span results in lowering of the beamstiffness

313 Verification Example 3 The third verification exampleis shown in Figure 5 with identical dimensions to that usedin [5 20] The rotary inertia and shear deformation areconsidered The shear coefficient 1198961015840 is calculated based on[3] keeping Poissonrsquosrsquo ratio ] = 033 Table 3 shows thefirst three nonzero free-free (F-F) eigenvalues in Hz and incomparison with [5 20] The present results are computedusing both numerically (40) and FE(3D)methodsThe resultsof Table 3 show that the present analysis results are very closeto the experimental resultsThe percentage error between the

present FE(3D) results and the experimental results of [5] isless than 0302This represents the importance of includingthe effect of rotary inertia and shear deformation

314 Verification Example 4 The fourth example is shownin Figure 6 It is for a twenty-span uniform beam carrying19 equally spaced concentrated masses with 119898lowast119894 = 01Several beam start and end conditions are investigated aslisted in Table 4 The results are evaluated using the presentNTM method and previously published numerical assemblytechniqueNAT [6]methodThe computational time requiredto obtain the first three frequency parameters 120582lowast1 120582lowast2 and 120582lowast3using both NAT and NTM methods is calculated and listedin Table 4 Considerable reduction in computational time isobserved in all the investigated cases as shown in Table 4

32 Test Samples and Experimental Procedures In order tomeasure the natural frequencies of the system under studythe free-free test samples were put in free oscillations byusing an instrumented hammer model B and K 8202 Anaccelerometer model B and K 4366 is fixed to the shaft inorder to capture the vibration signal The output of thecharge amplifier B and K 2635 is connected to NI 6216data acquisition card This card is connected to the PC andmanaged by Lab VIEW software Figure 10 shows a photo ofthe current experimental setup The used card settings are

Shock and Vibration 11

Table 4 Validation of the present NTM using 20-span uniform beam with 19 equally spaced concentrated masses119898lowast119894 = 01 (119903lowast21 = 119904lowast21 = V119904)in comparison with [6]

Method 119885lowast1 Φlowast1 119885lowast21 Φlowast21 120582lowast1 120582lowast2 120582lowast3 Computational time (sec)NAT [6] V119904 V119904 V119904 V119904 37177 61716 86392 4817Present NTM V119904 V119904 V119904 V119904 37177 61716 86392 1353NAT [6] V119897 V119904 V119897 V119904 23871 47742 71612 3467Present NTM V119897 V119904 V119897 V119904 23871 47742 71612 1214NAT [6] V119897 V119897 V119897 V119897 35941 59671 835471 4040Present NTM V119897 V119897 V119897 V119897 35941 59671 835471 1347NAT [6] 10 10 10 10 15989 25329 45969 2213Present NTM 10 10 10 10 15989 25329 45969 1023

Table 5 Typical samples dimension of group S2 with 119889 = 075 shown in Figure 7

Group S2 (Single-step beam samples of steel rod Oslash 40 119871 = 200mm and 119889 = 3040)119871 1198711 120583 1198712 1198891 1198892 119898119905 (kg) 119903lowast21

S2-4040 200 40 02 160 40 30 1282 0002S2-40100 200 100 05 100 40 30 1375 0002S2-40140 200 140 07 60 40 30 1541 0002

Oslash40

40

S2-4040

Oslash20

Oslash25

Oslash30

Oslash35

= 02

S2-40100100

Oslash40

200

= 05

S2-40140140

d =20

40= 05

d =25

40= 0625

d =30

40= 075

d =35

40= 0875

= 07

Group S2

Figure 7 Schematic drawings for the experimental samples Group S2

sample frequency of 20 kHz sampling time of 3 5 8 sec andthe size of samples block to read is 1 k The time domaindata is captured and transformed into frequency domainThe resonant frequencies were obtained by the average of theresults of 10 impacts applied in three different locations ofthe sample Figures 7ndash9 show two groups of different steppedtest samples S2 and S3 respectively All the test samplesare manufactured from steel rods of dimensions Oslash 80 andOslash 40mm The common data for the steel test samples are120588 = 7850 kgm3 119864 = 2068GPa and 1198961015840 = 0845

Two-span twelve test samples are shown in group S2namely S2-4040 S2-40100 and S2-40140 shown inFigure 7 The dimensions of these samples are presentedin Table 5 The natural frequency results of these samples

are presented in Table 7 using experimental analytical andFE(3D) methods The captured signal for the free vibrationresponse for selected case from Table 7 is shown in Figure 11This case is italicized in the table The results of Table 7show that the three-dimensional FE solution is closer tothe experimental results than the analytical results Themaximum percentage error between the experimental andthe FE results is less than 05

Group S3 consists of four different samples namely S3-80250 S3-80200 S3-80150 and S3-80100 More detailsabout the geometrical dimensions and material propertiesfor these samples are shown in Table 6 and Figure 8 Theresults of Table 8 show that the deviation between the FE(3D)and the experimental is less than 116 The free vibration

12 Shock and Vibration

Table 6 The sample dimensions of group S3 as shown in Figure 8

Group S3 (Four cylindrical samples have two steps of steel rod Oslash 80 119871 = 500mm)119871 1198711 1198712 1198891 1198892 119898119905 (kg) 119871lowast2 119903lowast21

S3-80250 500 200 250 20 80 10480 05 0000100S3-80200 500 225 200 20 80 7398 04 0000100S3-80150 500 250 150 20 80 6781 03 0000100S3-80100 500 275 100 20 80 4932 02 0000100

Oslash20

200 250

Oslash80

S3-80250

225 200

S3-80200

250 150

S3-80150

275 100

S3-80100

500

Group S3

Figure 8 Schematic drawings for the experimental samples Group S3

S2- 40140S2- 40100

S2- 4040

S3- 80100S3- 80150S3- 80200S3- 80250

Figure 9 Real image for typical experimental test samples

Shock and Vibration 13

Figure 10 Test setup

24302 651063

121867

193593

minus140

minus120

minus100

minus80

minus60

minus40

minus20

0

Am

plitu

de (d

Bvo

lt)

2000 4000 6000 8000 1000012000140001600018000200000Frequency (Hz)

Figure 11 Experiment first four natural frequencies for test sample S2-4040

35479

17279

229149

453138

500 1000 1500 2000 2500 3000 3500 4000 4500 50000Frequency (Hz)

00005

0010015

0020025

0030035

0040045

Am

plitu

de (v

olt)

Figure 12 Experimental first four natural frequencies for test sample S3-80200

signals of selected case italicized in Table 8 are plotted inFigure 12 In general the results of the three-span samplesreveal the same conclusion drawn from the two-span samplesthat the FE(3D) results are closer to the experimental resultsthan the analytical results The conclusion driven from theinvestigated two- and three-span samples is that the three-dimensional finite element can be trusted in the prediction ofthe natural frequency of stepped beam

33 Percentage Modal Deviation between FE(3D) and NTMMethod The results of the previous section show theaccuracy of the FE(3D) model in evaluating the natural

frequencies of stepped beam Therefore in this section afree-free two-span model is deeply investigated using (40)and FE(3D) methods to justify the validity of the analyticalsolution in predicting the stepped beam results Two cate-gories of samples are considered as shown in Figure 13 Thefirst category includes 600mm length samples with 119903lowast21 =278 times 10minus4 and the second category includes 200mm lengthsamples with 119903lowast21 = 205 times 10minus3 The effects of changing 120583and 119889 are investigated 120583 varies from 0 to 1 and meanwhileonly three values are listed in Table 9 Four different valuesof 119889 are investigated 05 0625 075 and 0875 The study in

14 Shock and Vibration

Table 7 Percentage error between the computational and experimental results for single-step test samples (Group S2) Lowest four nonzerofree-free modes

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

2040

40 02

(A) EXP 1848940 5028140 9854 16303(B) NTM 1873981 5194229 1021179 16776400(C) FE(3D) 1859490 5056749 9893345 16380170

(D) error (A B) 1354 3303 3630 2903(E) error (A C) 0570 0568 0399 0473

100 05

(A) EXP 2153900 7713530 13701800 19845900(B) NTM 2244601 7923127 13661990 20230700(C) FE(3D) 2142012 7700169 13663580 19793360

(D) error (A B) 4211 2717 minus0290 1938(E) error (A C) minus0551 minus0173 minus0278 minus0264

140 07

(A) EXP 3596820 8103960 15773100 20733800(B) NTM 3813426 8160003 15739160 21174340(C) FE(3D) 3581521 8090723 15705070 20634360

(D) error (A B) 6022 0691 minus0215 2124(E) error (A C) minus0425 minus0163 minus0431 minus0479

2540

40 02

(A) EXP (Figure 11) 2430240 6510630 12186700 19359300(B) NTM 2444111 6638069 12492520 19588580(C) FE(3D) 2430512 6518094 12223080 19314540

(D) error (A B) 0570 1957 2509 1184(E) error (A C) 0011 0114 0298 minus0231

100 05

(A) EXP 2796050 8693500 14542200 22134(B) NTM 2912321 8781311 14633780 22182430(C) FE(3D) 2806782 8698963 14551070 22095920

(D) error (A B) 4158 1010 0629 0218(E) error (A C) 0383 0062 0060 minus0172

140 07

(A) EXP 4015620 8665980 162389 22684(B) NTM 4167385 8797248 16074330 22814460(C) FE(3D) 4021237 8655476 16159230 22610690

(D) error (A B) 3779 1514 minus1013 0575(E) error (A C) 0139 minus0121 minus0490 minus0323

3040

40 02

(A) EXP 3023690 7906 14381400 21856600(B) NTM 3023321 7946457 14429850 21806140(C) FE(3D) 3014442 7878443 14307960 21781750

(D) error (A B) minus0012 0511 0336 minus0230(E) error (A C) minus0305 minus0348 minus0510 minus0342

100 05

(A) EXP 3401940 9329910 15681400 23607700(B) NTM 3478703 9293555 15691770 23326460(C) FE(3D) 3405324 9313349 15645690 23513650

(D) error (A B) 2256 minus0389 0066 minus1191(E) error (A C) 0099 minus0177 minus0227 minus0398

140 07

(A) EXP 4201680 9322630 16596400 23967700(B) NTM 4268272 9431643 16437830 23729240(C) FE(3D) 4211100 9322286 16530200 23881400

(D) error (A B) 1584 1169 minus0955 minus0994(E) error (A C) 0224 minus0003 minus0398 minus0360

Shock and Vibration 15

Table 7 Continued

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

3540

40 02

(A) EXP 3608280 9126360 16128600 238173(B) NTM 3607895 9104530 16000810 23500960(C) FE(3D) 3607465 9106544 16054460 23720110

(D) error (A B) minus0010 minus0239 minus0792 minus1328(E) error (A C) minus0022 minus0217 minus0459 minus0408

100 05

(A) EXP 3885030 9778800 16719900 24538800(B) NTM 3906518 9705047 16577640 24125780(C) FE(3D) 3882419 9759382 16658180 2441741

(D) error (A B) 0553 minus0754 minus0850 minus1683(E) error (A C) minus0067 minus0198 minus0369 minus0495

140 07

(A) EXP 4248240 9888540 17028 24738400(B) NTM 4253660 9878822 16849850 24311230(C) FE(3D) 4247271 9870286 16963900 24616760

(D) error (A B) 0127 minus0098 minus1046 minus1726(E) error (A C) minus0022 minus0184 minus0376 minus0491

Table 8 Percentage error between the computational and experimental results for two-step samples (Group S3) Lowest four nonzero free-free modes

Method Modal frequencies in Hz1 2 3 4

S3-80250(A) EXP 403148 2126460 4139830 5153500(B) NTM 420212 2203984 4334192 5605556(C) FE(3D) 404180 2126900 4153700 5169800

(D) error (A B) minus3966 3517 4484 minus8428(E) error (A C) minus0255 minus0020 minus0333 minus0315

S3-80200(A) EXP (Figure 12) 354790 1727900 2291490 4531380

(B) NTM 367381 1788472 2551555 4660983(C) FE(3D) 355230 1728300 2318400 4532200

(D) error (A B) minus3549 3386 10192 minus2860(E) error (A C) 0124 0023 1160 0018

S3-80150(A) EXP 335859 1360050 1545130 3778200(B) NTM 346243 1434113 1638174 3889033(C) FE(3D) 336440 1364200 1548500 3781900

(D) error (A B) minus3091 minus5445 minus6021 minus2933(E) error (A C) 0172 0305 0218 0097

S3-80100(A) EXP 337400 1018240 1371070 3221200(B) NTM 345942 1074574 1424992 3303837(C) FE(3D) 337480 1024 1372900 3215

(D) error (A B) minus2531 minus5532 minus3932 minus2565(E) error (A C) 0023 0565 0133 minus0192

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 6: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

6 Shock and Vibration

(119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (Ψ1015840119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 )Ψ119894 (1))= 119871 (119894+1)Ψ1015840119894+1 (0)

(1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (Γ119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 119884119894 (1))= Γ119894+1 (0)

(27)

where

119869119894+1 = 119869119894+1120588119894119860 1198941198713119894 (28a)

1205824119894 = 120588119894119860 11989411987141198941205962119864119894119868119894 (28b)

119885119894+1 = 119896119894+11198713119894119864119894119868119894 (28c)

Φ119894+1 = 120601119894+1119871 119894119864119894119868119894 (28d)

119898119894+1 = 119898119894+1120588119894119860 119894119871 119894 (28e)

where 119869119894+1 is the mass moment of inertia at station (119894+1) 119896119894+1and 120601119894+1 are the linear and rotational stiffness at station (119894 +1) respectively and 119898119894+1 is the concentrated mass at station(119894 + 1)

Substituting the solutions in (13a) (13b) (13c) (13d)(13e) (13f) (13g) (13h)-(14) into (27) we get the followingequations

119910(119894+1)0 = 11991011989401198781198841119894 (1) + 12059511989401198781198842119894 (1) + 120595101584011989401198781198843119894 (1)+ 12057411989401198781198844119894 (1)

120595(119894+1)0 = 119871 (119894+1)119894 (1199101198940119878Ψ1119894 (1) + 1205951198940119878Ψ2119894 (1)+ 12059510158401198940119878Ψ3119894 (1) + 1205741198940119878Ψ4119894 (1))

1205951015840(119894+1)0 = (119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (1199101198940 (119878Ψ10158401119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ1119894 (1)) + 1205951198940 (119878Ψ10158402119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ2119894 (1)) + 12059510158401198940 (119878Ψ10158403119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ3119894 (1)) + 1205741198940 (119878Ψ10158404119894 (1)+ (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ4119894 (1)))

120574(119894+1)0 = (1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (1199101198940 (119878Γ1119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198841119894 (1)) + 1205951198940 (119878Γ2119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198842119894 (1)) + 12059510158401198940 (119878Γ3119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198843119894 (1)) + 1205741198940 (119878Γ4119894 (1)+ 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198844119894 (1)))

(29)

Equation (29) can be written in matrix form as

[[[[[[[

1198781198841119894 (1) 1198781198842119894 (1) 1198781198843119894 (1) 1198781198844119894 (1)119871 (119894+1)119894119878Ψ1119894 (1) 119871 (119894+1)119894119878Ψ2119894 (1) 119871 (119894+1)119894119878Ψ3119894 (1) 119871 (119894+1)119894119878Ψ4119894 (1)1198821119894 (119878Ψ10158401119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ1119894 (1)) 1198821119894 (119878Ψ10158402119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ2119894 (1)) 1198821119894 (119878Ψ10158403119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ3119894 (1)) 1198821119894 (119878Ψ10158404119894 (1) + (Φ119894+1 minus 119869119894+11205824119894 ) 119878Ψ4119894 (1))1198822119894 (119878Γ1119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198841119894 (1)) 1198822119894 (119878Γ2119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198842119894 (1)) 1198822119894 (119878Γ3119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198843119894 (1)) 1198822119894 (119878Γ4119894 (1) + 1199042119894 (119885119894+1 minus 119898119894+11205824119894 ) 1198781198844119894 (1))

]]]]]]]

11991011989401205951198940120595101584011989401205741198940

=

119910(119894+1)0120595(119894+1)01205951015840(119894+1)0120574(119894+1)0

(30)

where

1198821119894 = (119864119868)119894(119894+1) lowast 1198712(119894+1)119894 (31a)

1198822119894 = (1198961015840119866119860)119894(119894+1)

119871 (119894+1)119894 (31b)

Equation (30) can be presented as

[T]1198944times4 lowast Δ119894 = Δ119894+1 (32)

where

Δ119894 = 1199101198940 1205951198940 12059510158401198940 1205741198940119905 (33a)

Δ119894+1 = 119910(119894+1)0 120595(119894+1)0 1205951015840(119894+1)0 120574(119894+1)0119905 (33b)

From (32) one can find that

Δ119899 = [T]119899minus1 Δ119899minus1 = [T]119899minus1 [T]119899minus2 sdot sdot sdot [T]2 Δ1 (34)

The intermediate spans transfer matrix can be presented as

[T]4times4 = [T]119899minus1 [T]119899minus2 sdot sdot sdot [T]2 (35)

then (34) can be presented as

Δ119899 = [T]4times4 Δ1 (36)

Shock and Vibration 7

0002000

40006000

Z X

Y

8000 (mm)

Figure 2 Finite element 3D mesh

Substituting (36) into the end condition of (25) results in thefollowing equations

[UE]2times4

[T]4times4 Δ1 = 0 (37)

[UIE]2times4

= [UE]2times4

[T]4times4 (38)

[UIE]2times4

Δ1 = 0 (39)

The general beam equation can be presented using the startboundary condition in (19) and the beam intermediate andend condition in (39) as shown below

[Utot]4times4

Δ1 = 0 (40)

where

[Utot]4times4

= [[[US]2times4[UIE]2times4

]] (41)

Equating the determinant of [Utot] by zero results in thesystem frequency equation In general the TMM has advan-tages over the traditional methods in that the final frequencyequation is 4 times 4 for any number of beam segments Theadvantage of the current method NTM over the TMM issignificant in the using of tailored solution that is normalizedat the origin of coordinates This type of solution enables theformulation of the system equations without the need to anyinverse matrix procedures as shown previously This reducesthe computational time comparing with the TMM

22 Finite Element Method Among the numerical toolsfinite element method is considered one of most efficientmethods to perform the vibration analysis of mechanical andstructural components In this section finite element is usedto obtain the natural frequencies andmode shapes of uniformand stepped beams ANSYS finite element commercial pack-age is used to perform the finite element analysisThe analysisis done using three-dimensional (3D) solid element modelsand SOLID95 elements are used for meshing Since all theexperimentally investigated samples in the current work are

round and stepped The beam cross-section is free meshedusing 87 SOLID95 elements for smaller cross-section and171 elements for the larger cross-section This mesh is thenextruded using 40 elements along the length of the beamThe total number of the element is ranging from 3480 (40times 87) to 6840 (40 times 171) elements based on the locationof the step see Figure 2 Modal analysis module is usedin this analysis and Block Lanczos method is used for themode extraction method The finite element model FE(3D)results are compared with those obtained experimentally andanalytically

3 Results and Discussion

31 Verification and Validation of NTM Results

311 Verification Example 1 In this example the first fivenondimensional natural frequencies (120582lowast4119894 = 120588111986011198714120596211986411198681)of stepped beam are compared with the exact solutionpresented by Gutierrez et al [18] see Figure 3 The modelis solved at two different step locations and several valuesof 11988721 and ℎ21 as shown in Table 1 Three different valuesof rotary inertia 11990321 = V119904 00036 and 001 are consideredin order to validate the current model in case of Bernoulli-Euler and Timoshenko beams The value of 11990421 = 31211990321 isconsidered in order to evaluate the shear deformation [18]The values of nondimensional linear and rotational elasticsupports stiffness at start and the end are (1198851 = 10Φ1 = V119897)(1198853 = V119904 Φ3 = V119897) respectively The results of Table 1 showthat the present NTM results are in good agreement with theexact solution presented by Gutierrez et al [18]

312 Verification Example 2 In this example Timoshenkobeam with three-step round cross-section presented in [19]is investigated see Figure 4 An intermediate lumped massof 119898lowast3 = 119898312058811198601119871 = 1 is located at a distance of 750mmfrom point 1 The input data for this example is listed inthe caption of Figure 4 Table 2 shows the results of the firstfive natural frequencies 120596119894 in (radsec) for pinned-pinnedfree-clamped clamped-free clamped-pinned and clamped-clamped configurations The results of reference [19] are

8 Shock and Vibration

Table 1 The first five natural frequencies 120582lowast2119894 for stepped Timoshenko beam in the case where the beam is rigidly restrained against rotation120601lowast1 = V119897 and elastically restrained in translation 119885lowast1 = 10 in comparison with [18]

11990321 120583 11988721 ℎ21 120582lowast21 120582lowast22 120582lowast23 120582lowast24 120582lowast2510minus7[18]

025

10 08 3010 9696 34010 74430 132341Present NTM 30098 96956 340101 744300 1323410[18] 08 08 3249 9664 34315 74645 131803Present NTM 32490 96638 343151 746445 1317507[18] 08 06 3385 8117 28630 60997 103439Present NTM 33851 81171 286302 609947 1034075[18]

050

10 08 2958 10046 34993 80145 139666Present NTM 29579 100460 349931 801455 1396667[18] 08 08 3124 10165 34688 80570 139175Present NTM 31240 101655 346882 805707 1391759[18] 08 06 3284 9499 28501 70123 118482Present NTM 32841 94989 285006 701232 1184830

00036[18]

025

10 08 3007 9668 33571 72393 126111Present NTM 30066 96678 335711 723926 1261107[18] 08 08 3245 9635 33862 72607 125617Present NTM 32454 96354 338621 726068 1256169[18] 08 06 3381 8103 28364 59839 100245Present NTM 33812 81031 283643 598385 1002447[18]

050

10 08 2946 9919 33205 71469 116725Present NTM 29462 99192 332046 714693 1167245[18] 08 08 3112 10030 32926 71741 116362Present NTM 31120 100304 329259 717415 1163618[18] 08 06 3272 9391 27449 64020 102697Present NTM 32721 93908 274490 640200 1026966

001[18]

025

10 08 3001 9619 32841 69229 117238Present NTM 30009 96192 328407 692292 1172380[18] 08 08 3239 9586 33109 69444 116798Present NTM 32390 95858 331092 694435 1167981[18] 08 06 3374 8078 27914 57970 95370Present NTM 33744 80784 279139 579705 953698[18]

050

10 08 2926 9710 30711 61768 95623Present NTM 29255 97104 307111 617680 956230[18] 08 08 3019 9809 30464 61912 95326Present NTM 30908 98086 304643 619117 953257[18] 08 06 3251 9211 25893 56578 86647Present NTM 32511 92111 258933 565776 866473

1

A

A

1

L1

k1

2

B

B

L2

3

3

k3

b1

ℎ1

b2

ℎ2

Sec AA Sec BB

Figure 3 Verification Example 1 [18] two-span stepped beam

Shock and Vibration 9

Table 2 Comparison of the first five natural frequencies in radsec using the present NTM results with those obtained in [19] for the exampleshown in Figure 4

120596119899(radsec) Method Bernoulli-Euler119903lowast21 = 0 Timoshenko119903lowast21 = 0

Pinned-pinned(P-P)

1205961 NAT [19] 3194341 3165288NTM 3194340 3164855

1205962 NAT [19] 18533864 17894207NTM 18533864 17848723

1205963 NAT [19] 41101341 38258438NTM 41101341 38365347

1205964 NAT [19] 77095714 66429094NTM 77095712 66392170

1205965 NAT [19] 116217699 98866243NTM 116217698 99188328

Free-clamped(F-C)

1205961 NAT [19] 3715354 3679440NTM 3715354 3671487

1205962 NAT [19] 12439063 12166220NTM 12439065 12115531

1205963 NAT [19] 30820846 28270352NTM 30820845 28491465

1205964 NAT [19] 55411410 49579240NTM 55411409 50037433

1205965 NAT [19] 95993810 76737578NTM 95993810 77513336

Clamped-free(C-F)

1205961 NTM 551257 5501301205962 NTM 6166018 59859171205963 NTM 27023238 253214831205964 NTM 54832379 496916591205965 NTM 95709586 79565299

Clamped-pinned(C-P)

1205961 NTM 4808915 46984441205962 NTM 20980556 199196111205963 NTM 50073315 458956761205964 NTM 83668073 704953931205965 NTM 136787112 112150349

Clamped-clamped(C-C)

1205961 NTM 8363527 80709971205962 NTM 30195886 277227321205963 NTM 55836469 498055381205964 NTM 96258943 773483191205965 NTM 144033163 115381581

750

Oslash100 Oslash150 Oslash200Oslash250

1 2 3 4 5 6

500 500 500 500

2000 mm

m3

Figure 4 Verification Example 2 [19] three-step beam having 119864 = 2069GPa 120588 = 78369 kgm3 119866 = 795769GPa and 1198961015840 = 075

10 Shock and Vibration

Table 3 Comparison of the present NTM results with those obtained in [5 20] for F-F beam shown in Figure 5

Mode number DQEM [20] Exp [5] NTM(40) FE(3D) error

I II III IV (II amp IV)1 292440 291 290316 290120 03022 1181300 1165 1162158 1167100 minus01803 1804100 1771 1767321 1772200 minus0068

1

254 140

32

549

254mm19

05

mm

Figure 5 Verification Example 3 [5 20] single-step (F-F) aluminum beam having 119864 = 717GPa 120588 = 2830Kgm3 and ] = 033

L20

L

1

1

mi

2 3 ik1

19 2021

21

k21

Figure 6 Verification Example 4 twenty equal span uniform beams carrying equally spaced nineteen concentrated masses with general endflexibilities conditions

calculated using two methods The first method is numericalassembly technique (NAT) and this method is the exactsolution The second method is differential transformationmethod and thismethod is approximatemethodThepinned-pinned and free-clamped boundary conditions results arefound in [19] The results of the current analysis are in goodagreement with the results presented in [19] As can be seenfromTable 2 the rotary inertia and shear deformation reducethemodal frequency especially for highermodes Comparingthe results of the clamped-free beam with the results of thefree-clamped beam shows that the natural frequency resultsof the clamped-free beam are lower than that of free-clampedbeam This may be explained by the fact that fixing thebeam from the thinner span results in lowering of the beamstiffness

313 Verification Example 3 The third verification exampleis shown in Figure 5 with identical dimensions to that usedin [5 20] The rotary inertia and shear deformation areconsidered The shear coefficient 1198961015840 is calculated based on[3] keeping Poissonrsquosrsquo ratio ] = 033 Table 3 shows thefirst three nonzero free-free (F-F) eigenvalues in Hz and incomparison with [5 20] The present results are computedusing both numerically (40) and FE(3D)methodsThe resultsof Table 3 show that the present analysis results are very closeto the experimental resultsThe percentage error between the

present FE(3D) results and the experimental results of [5] isless than 0302This represents the importance of includingthe effect of rotary inertia and shear deformation

314 Verification Example 4 The fourth example is shownin Figure 6 It is for a twenty-span uniform beam carrying19 equally spaced concentrated masses with 119898lowast119894 = 01Several beam start and end conditions are investigated aslisted in Table 4 The results are evaluated using the presentNTM method and previously published numerical assemblytechniqueNAT [6]methodThe computational time requiredto obtain the first three frequency parameters 120582lowast1 120582lowast2 and 120582lowast3using both NAT and NTM methods is calculated and listedin Table 4 Considerable reduction in computational time isobserved in all the investigated cases as shown in Table 4

32 Test Samples and Experimental Procedures In order tomeasure the natural frequencies of the system under studythe free-free test samples were put in free oscillations byusing an instrumented hammer model B and K 8202 Anaccelerometer model B and K 4366 is fixed to the shaft inorder to capture the vibration signal The output of thecharge amplifier B and K 2635 is connected to NI 6216data acquisition card This card is connected to the PC andmanaged by Lab VIEW software Figure 10 shows a photo ofthe current experimental setup The used card settings are

Shock and Vibration 11

Table 4 Validation of the present NTM using 20-span uniform beam with 19 equally spaced concentrated masses119898lowast119894 = 01 (119903lowast21 = 119904lowast21 = V119904)in comparison with [6]

Method 119885lowast1 Φlowast1 119885lowast21 Φlowast21 120582lowast1 120582lowast2 120582lowast3 Computational time (sec)NAT [6] V119904 V119904 V119904 V119904 37177 61716 86392 4817Present NTM V119904 V119904 V119904 V119904 37177 61716 86392 1353NAT [6] V119897 V119904 V119897 V119904 23871 47742 71612 3467Present NTM V119897 V119904 V119897 V119904 23871 47742 71612 1214NAT [6] V119897 V119897 V119897 V119897 35941 59671 835471 4040Present NTM V119897 V119897 V119897 V119897 35941 59671 835471 1347NAT [6] 10 10 10 10 15989 25329 45969 2213Present NTM 10 10 10 10 15989 25329 45969 1023

Table 5 Typical samples dimension of group S2 with 119889 = 075 shown in Figure 7

Group S2 (Single-step beam samples of steel rod Oslash 40 119871 = 200mm and 119889 = 3040)119871 1198711 120583 1198712 1198891 1198892 119898119905 (kg) 119903lowast21

S2-4040 200 40 02 160 40 30 1282 0002S2-40100 200 100 05 100 40 30 1375 0002S2-40140 200 140 07 60 40 30 1541 0002

Oslash40

40

S2-4040

Oslash20

Oslash25

Oslash30

Oslash35

= 02

S2-40100100

Oslash40

200

= 05

S2-40140140

d =20

40= 05

d =25

40= 0625

d =30

40= 075

d =35

40= 0875

= 07

Group S2

Figure 7 Schematic drawings for the experimental samples Group S2

sample frequency of 20 kHz sampling time of 3 5 8 sec andthe size of samples block to read is 1 k The time domaindata is captured and transformed into frequency domainThe resonant frequencies were obtained by the average of theresults of 10 impacts applied in three different locations ofthe sample Figures 7ndash9 show two groups of different steppedtest samples S2 and S3 respectively All the test samplesare manufactured from steel rods of dimensions Oslash 80 andOslash 40mm The common data for the steel test samples are120588 = 7850 kgm3 119864 = 2068GPa and 1198961015840 = 0845

Two-span twelve test samples are shown in group S2namely S2-4040 S2-40100 and S2-40140 shown inFigure 7 The dimensions of these samples are presentedin Table 5 The natural frequency results of these samples

are presented in Table 7 using experimental analytical andFE(3D) methods The captured signal for the free vibrationresponse for selected case from Table 7 is shown in Figure 11This case is italicized in the table The results of Table 7show that the three-dimensional FE solution is closer tothe experimental results than the analytical results Themaximum percentage error between the experimental andthe FE results is less than 05

Group S3 consists of four different samples namely S3-80250 S3-80200 S3-80150 and S3-80100 More detailsabout the geometrical dimensions and material propertiesfor these samples are shown in Table 6 and Figure 8 Theresults of Table 8 show that the deviation between the FE(3D)and the experimental is less than 116 The free vibration

12 Shock and Vibration

Table 6 The sample dimensions of group S3 as shown in Figure 8

Group S3 (Four cylindrical samples have two steps of steel rod Oslash 80 119871 = 500mm)119871 1198711 1198712 1198891 1198892 119898119905 (kg) 119871lowast2 119903lowast21

S3-80250 500 200 250 20 80 10480 05 0000100S3-80200 500 225 200 20 80 7398 04 0000100S3-80150 500 250 150 20 80 6781 03 0000100S3-80100 500 275 100 20 80 4932 02 0000100

Oslash20

200 250

Oslash80

S3-80250

225 200

S3-80200

250 150

S3-80150

275 100

S3-80100

500

Group S3

Figure 8 Schematic drawings for the experimental samples Group S3

S2- 40140S2- 40100

S2- 4040

S3- 80100S3- 80150S3- 80200S3- 80250

Figure 9 Real image for typical experimental test samples

Shock and Vibration 13

Figure 10 Test setup

24302 651063

121867

193593

minus140

minus120

minus100

minus80

minus60

minus40

minus20

0

Am

plitu

de (d

Bvo

lt)

2000 4000 6000 8000 1000012000140001600018000200000Frequency (Hz)

Figure 11 Experiment first four natural frequencies for test sample S2-4040

35479

17279

229149

453138

500 1000 1500 2000 2500 3000 3500 4000 4500 50000Frequency (Hz)

00005

0010015

0020025

0030035

0040045

Am

plitu

de (v

olt)

Figure 12 Experimental first four natural frequencies for test sample S3-80200

signals of selected case italicized in Table 8 are plotted inFigure 12 In general the results of the three-span samplesreveal the same conclusion drawn from the two-span samplesthat the FE(3D) results are closer to the experimental resultsthan the analytical results The conclusion driven from theinvestigated two- and three-span samples is that the three-dimensional finite element can be trusted in the prediction ofthe natural frequency of stepped beam

33 Percentage Modal Deviation between FE(3D) and NTMMethod The results of the previous section show theaccuracy of the FE(3D) model in evaluating the natural

frequencies of stepped beam Therefore in this section afree-free two-span model is deeply investigated using (40)and FE(3D) methods to justify the validity of the analyticalsolution in predicting the stepped beam results Two cate-gories of samples are considered as shown in Figure 13 Thefirst category includes 600mm length samples with 119903lowast21 =278 times 10minus4 and the second category includes 200mm lengthsamples with 119903lowast21 = 205 times 10minus3 The effects of changing 120583and 119889 are investigated 120583 varies from 0 to 1 and meanwhileonly three values are listed in Table 9 Four different valuesof 119889 are investigated 05 0625 075 and 0875 The study in

14 Shock and Vibration

Table 7 Percentage error between the computational and experimental results for single-step test samples (Group S2) Lowest four nonzerofree-free modes

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

2040

40 02

(A) EXP 1848940 5028140 9854 16303(B) NTM 1873981 5194229 1021179 16776400(C) FE(3D) 1859490 5056749 9893345 16380170

(D) error (A B) 1354 3303 3630 2903(E) error (A C) 0570 0568 0399 0473

100 05

(A) EXP 2153900 7713530 13701800 19845900(B) NTM 2244601 7923127 13661990 20230700(C) FE(3D) 2142012 7700169 13663580 19793360

(D) error (A B) 4211 2717 minus0290 1938(E) error (A C) minus0551 minus0173 minus0278 minus0264

140 07

(A) EXP 3596820 8103960 15773100 20733800(B) NTM 3813426 8160003 15739160 21174340(C) FE(3D) 3581521 8090723 15705070 20634360

(D) error (A B) 6022 0691 minus0215 2124(E) error (A C) minus0425 minus0163 minus0431 minus0479

2540

40 02

(A) EXP (Figure 11) 2430240 6510630 12186700 19359300(B) NTM 2444111 6638069 12492520 19588580(C) FE(3D) 2430512 6518094 12223080 19314540

(D) error (A B) 0570 1957 2509 1184(E) error (A C) 0011 0114 0298 minus0231

100 05

(A) EXP 2796050 8693500 14542200 22134(B) NTM 2912321 8781311 14633780 22182430(C) FE(3D) 2806782 8698963 14551070 22095920

(D) error (A B) 4158 1010 0629 0218(E) error (A C) 0383 0062 0060 minus0172

140 07

(A) EXP 4015620 8665980 162389 22684(B) NTM 4167385 8797248 16074330 22814460(C) FE(3D) 4021237 8655476 16159230 22610690

(D) error (A B) 3779 1514 minus1013 0575(E) error (A C) 0139 minus0121 minus0490 minus0323

3040

40 02

(A) EXP 3023690 7906 14381400 21856600(B) NTM 3023321 7946457 14429850 21806140(C) FE(3D) 3014442 7878443 14307960 21781750

(D) error (A B) minus0012 0511 0336 minus0230(E) error (A C) minus0305 minus0348 minus0510 minus0342

100 05

(A) EXP 3401940 9329910 15681400 23607700(B) NTM 3478703 9293555 15691770 23326460(C) FE(3D) 3405324 9313349 15645690 23513650

(D) error (A B) 2256 minus0389 0066 minus1191(E) error (A C) 0099 minus0177 minus0227 minus0398

140 07

(A) EXP 4201680 9322630 16596400 23967700(B) NTM 4268272 9431643 16437830 23729240(C) FE(3D) 4211100 9322286 16530200 23881400

(D) error (A B) 1584 1169 minus0955 minus0994(E) error (A C) 0224 minus0003 minus0398 minus0360

Shock and Vibration 15

Table 7 Continued

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

3540

40 02

(A) EXP 3608280 9126360 16128600 238173(B) NTM 3607895 9104530 16000810 23500960(C) FE(3D) 3607465 9106544 16054460 23720110

(D) error (A B) minus0010 minus0239 minus0792 minus1328(E) error (A C) minus0022 minus0217 minus0459 minus0408

100 05

(A) EXP 3885030 9778800 16719900 24538800(B) NTM 3906518 9705047 16577640 24125780(C) FE(3D) 3882419 9759382 16658180 2441741

(D) error (A B) 0553 minus0754 minus0850 minus1683(E) error (A C) minus0067 minus0198 minus0369 minus0495

140 07

(A) EXP 4248240 9888540 17028 24738400(B) NTM 4253660 9878822 16849850 24311230(C) FE(3D) 4247271 9870286 16963900 24616760

(D) error (A B) 0127 minus0098 minus1046 minus1726(E) error (A C) minus0022 minus0184 minus0376 minus0491

Table 8 Percentage error between the computational and experimental results for two-step samples (Group S3) Lowest four nonzero free-free modes

Method Modal frequencies in Hz1 2 3 4

S3-80250(A) EXP 403148 2126460 4139830 5153500(B) NTM 420212 2203984 4334192 5605556(C) FE(3D) 404180 2126900 4153700 5169800

(D) error (A B) minus3966 3517 4484 minus8428(E) error (A C) minus0255 minus0020 minus0333 minus0315

S3-80200(A) EXP (Figure 12) 354790 1727900 2291490 4531380

(B) NTM 367381 1788472 2551555 4660983(C) FE(3D) 355230 1728300 2318400 4532200

(D) error (A B) minus3549 3386 10192 minus2860(E) error (A C) 0124 0023 1160 0018

S3-80150(A) EXP 335859 1360050 1545130 3778200(B) NTM 346243 1434113 1638174 3889033(C) FE(3D) 336440 1364200 1548500 3781900

(D) error (A B) minus3091 minus5445 minus6021 minus2933(E) error (A C) 0172 0305 0218 0097

S3-80100(A) EXP 337400 1018240 1371070 3221200(B) NTM 345942 1074574 1424992 3303837(C) FE(3D) 337480 1024 1372900 3215

(D) error (A B) minus2531 minus5532 minus3932 minus2565(E) error (A C) 0023 0565 0133 minus0192

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 7: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

Shock and Vibration 7

0002000

40006000

Z X

Y

8000 (mm)

Figure 2 Finite element 3D mesh

Substituting (36) into the end condition of (25) results in thefollowing equations

[UE]2times4

[T]4times4 Δ1 = 0 (37)

[UIE]2times4

= [UE]2times4

[T]4times4 (38)

[UIE]2times4

Δ1 = 0 (39)

The general beam equation can be presented using the startboundary condition in (19) and the beam intermediate andend condition in (39) as shown below

[Utot]4times4

Δ1 = 0 (40)

where

[Utot]4times4

= [[[US]2times4[UIE]2times4

]] (41)

Equating the determinant of [Utot] by zero results in thesystem frequency equation In general the TMM has advan-tages over the traditional methods in that the final frequencyequation is 4 times 4 for any number of beam segments Theadvantage of the current method NTM over the TMM issignificant in the using of tailored solution that is normalizedat the origin of coordinates This type of solution enables theformulation of the system equations without the need to anyinverse matrix procedures as shown previously This reducesthe computational time comparing with the TMM

22 Finite Element Method Among the numerical toolsfinite element method is considered one of most efficientmethods to perform the vibration analysis of mechanical andstructural components In this section finite element is usedto obtain the natural frequencies andmode shapes of uniformand stepped beams ANSYS finite element commercial pack-age is used to perform the finite element analysisThe analysisis done using three-dimensional (3D) solid element modelsand SOLID95 elements are used for meshing Since all theexperimentally investigated samples in the current work are

round and stepped The beam cross-section is free meshedusing 87 SOLID95 elements for smaller cross-section and171 elements for the larger cross-section This mesh is thenextruded using 40 elements along the length of the beamThe total number of the element is ranging from 3480 (40times 87) to 6840 (40 times 171) elements based on the locationof the step see Figure 2 Modal analysis module is usedin this analysis and Block Lanczos method is used for themode extraction method The finite element model FE(3D)results are compared with those obtained experimentally andanalytically

3 Results and Discussion

31 Verification and Validation of NTM Results

311 Verification Example 1 In this example the first fivenondimensional natural frequencies (120582lowast4119894 = 120588111986011198714120596211986411198681)of stepped beam are compared with the exact solutionpresented by Gutierrez et al [18] see Figure 3 The modelis solved at two different step locations and several valuesof 11988721 and ℎ21 as shown in Table 1 Three different valuesof rotary inertia 11990321 = V119904 00036 and 001 are consideredin order to validate the current model in case of Bernoulli-Euler and Timoshenko beams The value of 11990421 = 31211990321 isconsidered in order to evaluate the shear deformation [18]The values of nondimensional linear and rotational elasticsupports stiffness at start and the end are (1198851 = 10Φ1 = V119897)(1198853 = V119904 Φ3 = V119897) respectively The results of Table 1 showthat the present NTM results are in good agreement with theexact solution presented by Gutierrez et al [18]

312 Verification Example 2 In this example Timoshenkobeam with three-step round cross-section presented in [19]is investigated see Figure 4 An intermediate lumped massof 119898lowast3 = 119898312058811198601119871 = 1 is located at a distance of 750mmfrom point 1 The input data for this example is listed inthe caption of Figure 4 Table 2 shows the results of the firstfive natural frequencies 120596119894 in (radsec) for pinned-pinnedfree-clamped clamped-free clamped-pinned and clamped-clamped configurations The results of reference [19] are

8 Shock and Vibration

Table 1 The first five natural frequencies 120582lowast2119894 for stepped Timoshenko beam in the case where the beam is rigidly restrained against rotation120601lowast1 = V119897 and elastically restrained in translation 119885lowast1 = 10 in comparison with [18]

11990321 120583 11988721 ℎ21 120582lowast21 120582lowast22 120582lowast23 120582lowast24 120582lowast2510minus7[18]

025

10 08 3010 9696 34010 74430 132341Present NTM 30098 96956 340101 744300 1323410[18] 08 08 3249 9664 34315 74645 131803Present NTM 32490 96638 343151 746445 1317507[18] 08 06 3385 8117 28630 60997 103439Present NTM 33851 81171 286302 609947 1034075[18]

050

10 08 2958 10046 34993 80145 139666Present NTM 29579 100460 349931 801455 1396667[18] 08 08 3124 10165 34688 80570 139175Present NTM 31240 101655 346882 805707 1391759[18] 08 06 3284 9499 28501 70123 118482Present NTM 32841 94989 285006 701232 1184830

00036[18]

025

10 08 3007 9668 33571 72393 126111Present NTM 30066 96678 335711 723926 1261107[18] 08 08 3245 9635 33862 72607 125617Present NTM 32454 96354 338621 726068 1256169[18] 08 06 3381 8103 28364 59839 100245Present NTM 33812 81031 283643 598385 1002447[18]

050

10 08 2946 9919 33205 71469 116725Present NTM 29462 99192 332046 714693 1167245[18] 08 08 3112 10030 32926 71741 116362Present NTM 31120 100304 329259 717415 1163618[18] 08 06 3272 9391 27449 64020 102697Present NTM 32721 93908 274490 640200 1026966

001[18]

025

10 08 3001 9619 32841 69229 117238Present NTM 30009 96192 328407 692292 1172380[18] 08 08 3239 9586 33109 69444 116798Present NTM 32390 95858 331092 694435 1167981[18] 08 06 3374 8078 27914 57970 95370Present NTM 33744 80784 279139 579705 953698[18]

050

10 08 2926 9710 30711 61768 95623Present NTM 29255 97104 307111 617680 956230[18] 08 08 3019 9809 30464 61912 95326Present NTM 30908 98086 304643 619117 953257[18] 08 06 3251 9211 25893 56578 86647Present NTM 32511 92111 258933 565776 866473

1

A

A

1

L1

k1

2

B

B

L2

3

3

k3

b1

ℎ1

b2

ℎ2

Sec AA Sec BB

Figure 3 Verification Example 1 [18] two-span stepped beam

Shock and Vibration 9

Table 2 Comparison of the first five natural frequencies in radsec using the present NTM results with those obtained in [19] for the exampleshown in Figure 4

120596119899(radsec) Method Bernoulli-Euler119903lowast21 = 0 Timoshenko119903lowast21 = 0

Pinned-pinned(P-P)

1205961 NAT [19] 3194341 3165288NTM 3194340 3164855

1205962 NAT [19] 18533864 17894207NTM 18533864 17848723

1205963 NAT [19] 41101341 38258438NTM 41101341 38365347

1205964 NAT [19] 77095714 66429094NTM 77095712 66392170

1205965 NAT [19] 116217699 98866243NTM 116217698 99188328

Free-clamped(F-C)

1205961 NAT [19] 3715354 3679440NTM 3715354 3671487

1205962 NAT [19] 12439063 12166220NTM 12439065 12115531

1205963 NAT [19] 30820846 28270352NTM 30820845 28491465

1205964 NAT [19] 55411410 49579240NTM 55411409 50037433

1205965 NAT [19] 95993810 76737578NTM 95993810 77513336

Clamped-free(C-F)

1205961 NTM 551257 5501301205962 NTM 6166018 59859171205963 NTM 27023238 253214831205964 NTM 54832379 496916591205965 NTM 95709586 79565299

Clamped-pinned(C-P)

1205961 NTM 4808915 46984441205962 NTM 20980556 199196111205963 NTM 50073315 458956761205964 NTM 83668073 704953931205965 NTM 136787112 112150349

Clamped-clamped(C-C)

1205961 NTM 8363527 80709971205962 NTM 30195886 277227321205963 NTM 55836469 498055381205964 NTM 96258943 773483191205965 NTM 144033163 115381581

750

Oslash100 Oslash150 Oslash200Oslash250

1 2 3 4 5 6

500 500 500 500

2000 mm

m3

Figure 4 Verification Example 2 [19] three-step beam having 119864 = 2069GPa 120588 = 78369 kgm3 119866 = 795769GPa and 1198961015840 = 075

10 Shock and Vibration

Table 3 Comparison of the present NTM results with those obtained in [5 20] for F-F beam shown in Figure 5

Mode number DQEM [20] Exp [5] NTM(40) FE(3D) error

I II III IV (II amp IV)1 292440 291 290316 290120 03022 1181300 1165 1162158 1167100 minus01803 1804100 1771 1767321 1772200 minus0068

1

254 140

32

549

254mm19

05

mm

Figure 5 Verification Example 3 [5 20] single-step (F-F) aluminum beam having 119864 = 717GPa 120588 = 2830Kgm3 and ] = 033

L20

L

1

1

mi

2 3 ik1

19 2021

21

k21

Figure 6 Verification Example 4 twenty equal span uniform beams carrying equally spaced nineteen concentrated masses with general endflexibilities conditions

calculated using two methods The first method is numericalassembly technique (NAT) and this method is the exactsolution The second method is differential transformationmethod and thismethod is approximatemethodThepinned-pinned and free-clamped boundary conditions results arefound in [19] The results of the current analysis are in goodagreement with the results presented in [19] As can be seenfromTable 2 the rotary inertia and shear deformation reducethemodal frequency especially for highermodes Comparingthe results of the clamped-free beam with the results of thefree-clamped beam shows that the natural frequency resultsof the clamped-free beam are lower than that of free-clampedbeam This may be explained by the fact that fixing thebeam from the thinner span results in lowering of the beamstiffness

313 Verification Example 3 The third verification exampleis shown in Figure 5 with identical dimensions to that usedin [5 20] The rotary inertia and shear deformation areconsidered The shear coefficient 1198961015840 is calculated based on[3] keeping Poissonrsquosrsquo ratio ] = 033 Table 3 shows thefirst three nonzero free-free (F-F) eigenvalues in Hz and incomparison with [5 20] The present results are computedusing both numerically (40) and FE(3D)methodsThe resultsof Table 3 show that the present analysis results are very closeto the experimental resultsThe percentage error between the

present FE(3D) results and the experimental results of [5] isless than 0302This represents the importance of includingthe effect of rotary inertia and shear deformation

314 Verification Example 4 The fourth example is shownin Figure 6 It is for a twenty-span uniform beam carrying19 equally spaced concentrated masses with 119898lowast119894 = 01Several beam start and end conditions are investigated aslisted in Table 4 The results are evaluated using the presentNTM method and previously published numerical assemblytechniqueNAT [6]methodThe computational time requiredto obtain the first three frequency parameters 120582lowast1 120582lowast2 and 120582lowast3using both NAT and NTM methods is calculated and listedin Table 4 Considerable reduction in computational time isobserved in all the investigated cases as shown in Table 4

32 Test Samples and Experimental Procedures In order tomeasure the natural frequencies of the system under studythe free-free test samples were put in free oscillations byusing an instrumented hammer model B and K 8202 Anaccelerometer model B and K 4366 is fixed to the shaft inorder to capture the vibration signal The output of thecharge amplifier B and K 2635 is connected to NI 6216data acquisition card This card is connected to the PC andmanaged by Lab VIEW software Figure 10 shows a photo ofthe current experimental setup The used card settings are

Shock and Vibration 11

Table 4 Validation of the present NTM using 20-span uniform beam with 19 equally spaced concentrated masses119898lowast119894 = 01 (119903lowast21 = 119904lowast21 = V119904)in comparison with [6]

Method 119885lowast1 Φlowast1 119885lowast21 Φlowast21 120582lowast1 120582lowast2 120582lowast3 Computational time (sec)NAT [6] V119904 V119904 V119904 V119904 37177 61716 86392 4817Present NTM V119904 V119904 V119904 V119904 37177 61716 86392 1353NAT [6] V119897 V119904 V119897 V119904 23871 47742 71612 3467Present NTM V119897 V119904 V119897 V119904 23871 47742 71612 1214NAT [6] V119897 V119897 V119897 V119897 35941 59671 835471 4040Present NTM V119897 V119897 V119897 V119897 35941 59671 835471 1347NAT [6] 10 10 10 10 15989 25329 45969 2213Present NTM 10 10 10 10 15989 25329 45969 1023

Table 5 Typical samples dimension of group S2 with 119889 = 075 shown in Figure 7

Group S2 (Single-step beam samples of steel rod Oslash 40 119871 = 200mm and 119889 = 3040)119871 1198711 120583 1198712 1198891 1198892 119898119905 (kg) 119903lowast21

S2-4040 200 40 02 160 40 30 1282 0002S2-40100 200 100 05 100 40 30 1375 0002S2-40140 200 140 07 60 40 30 1541 0002

Oslash40

40

S2-4040

Oslash20

Oslash25

Oslash30

Oslash35

= 02

S2-40100100

Oslash40

200

= 05

S2-40140140

d =20

40= 05

d =25

40= 0625

d =30

40= 075

d =35

40= 0875

= 07

Group S2

Figure 7 Schematic drawings for the experimental samples Group S2

sample frequency of 20 kHz sampling time of 3 5 8 sec andthe size of samples block to read is 1 k The time domaindata is captured and transformed into frequency domainThe resonant frequencies were obtained by the average of theresults of 10 impacts applied in three different locations ofthe sample Figures 7ndash9 show two groups of different steppedtest samples S2 and S3 respectively All the test samplesare manufactured from steel rods of dimensions Oslash 80 andOslash 40mm The common data for the steel test samples are120588 = 7850 kgm3 119864 = 2068GPa and 1198961015840 = 0845

Two-span twelve test samples are shown in group S2namely S2-4040 S2-40100 and S2-40140 shown inFigure 7 The dimensions of these samples are presentedin Table 5 The natural frequency results of these samples

are presented in Table 7 using experimental analytical andFE(3D) methods The captured signal for the free vibrationresponse for selected case from Table 7 is shown in Figure 11This case is italicized in the table The results of Table 7show that the three-dimensional FE solution is closer tothe experimental results than the analytical results Themaximum percentage error between the experimental andthe FE results is less than 05

Group S3 consists of four different samples namely S3-80250 S3-80200 S3-80150 and S3-80100 More detailsabout the geometrical dimensions and material propertiesfor these samples are shown in Table 6 and Figure 8 Theresults of Table 8 show that the deviation between the FE(3D)and the experimental is less than 116 The free vibration

12 Shock and Vibration

Table 6 The sample dimensions of group S3 as shown in Figure 8

Group S3 (Four cylindrical samples have two steps of steel rod Oslash 80 119871 = 500mm)119871 1198711 1198712 1198891 1198892 119898119905 (kg) 119871lowast2 119903lowast21

S3-80250 500 200 250 20 80 10480 05 0000100S3-80200 500 225 200 20 80 7398 04 0000100S3-80150 500 250 150 20 80 6781 03 0000100S3-80100 500 275 100 20 80 4932 02 0000100

Oslash20

200 250

Oslash80

S3-80250

225 200

S3-80200

250 150

S3-80150

275 100

S3-80100

500

Group S3

Figure 8 Schematic drawings for the experimental samples Group S3

S2- 40140S2- 40100

S2- 4040

S3- 80100S3- 80150S3- 80200S3- 80250

Figure 9 Real image for typical experimental test samples

Shock and Vibration 13

Figure 10 Test setup

24302 651063

121867

193593

minus140

minus120

minus100

minus80

minus60

minus40

minus20

0

Am

plitu

de (d

Bvo

lt)

2000 4000 6000 8000 1000012000140001600018000200000Frequency (Hz)

Figure 11 Experiment first four natural frequencies for test sample S2-4040

35479

17279

229149

453138

500 1000 1500 2000 2500 3000 3500 4000 4500 50000Frequency (Hz)

00005

0010015

0020025

0030035

0040045

Am

plitu

de (v

olt)

Figure 12 Experimental first four natural frequencies for test sample S3-80200

signals of selected case italicized in Table 8 are plotted inFigure 12 In general the results of the three-span samplesreveal the same conclusion drawn from the two-span samplesthat the FE(3D) results are closer to the experimental resultsthan the analytical results The conclusion driven from theinvestigated two- and three-span samples is that the three-dimensional finite element can be trusted in the prediction ofthe natural frequency of stepped beam

33 Percentage Modal Deviation between FE(3D) and NTMMethod The results of the previous section show theaccuracy of the FE(3D) model in evaluating the natural

frequencies of stepped beam Therefore in this section afree-free two-span model is deeply investigated using (40)and FE(3D) methods to justify the validity of the analyticalsolution in predicting the stepped beam results Two cate-gories of samples are considered as shown in Figure 13 Thefirst category includes 600mm length samples with 119903lowast21 =278 times 10minus4 and the second category includes 200mm lengthsamples with 119903lowast21 = 205 times 10minus3 The effects of changing 120583and 119889 are investigated 120583 varies from 0 to 1 and meanwhileonly three values are listed in Table 9 Four different valuesof 119889 are investigated 05 0625 075 and 0875 The study in

14 Shock and Vibration

Table 7 Percentage error between the computational and experimental results for single-step test samples (Group S2) Lowest four nonzerofree-free modes

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

2040

40 02

(A) EXP 1848940 5028140 9854 16303(B) NTM 1873981 5194229 1021179 16776400(C) FE(3D) 1859490 5056749 9893345 16380170

(D) error (A B) 1354 3303 3630 2903(E) error (A C) 0570 0568 0399 0473

100 05

(A) EXP 2153900 7713530 13701800 19845900(B) NTM 2244601 7923127 13661990 20230700(C) FE(3D) 2142012 7700169 13663580 19793360

(D) error (A B) 4211 2717 minus0290 1938(E) error (A C) minus0551 minus0173 minus0278 minus0264

140 07

(A) EXP 3596820 8103960 15773100 20733800(B) NTM 3813426 8160003 15739160 21174340(C) FE(3D) 3581521 8090723 15705070 20634360

(D) error (A B) 6022 0691 minus0215 2124(E) error (A C) minus0425 minus0163 minus0431 minus0479

2540

40 02

(A) EXP (Figure 11) 2430240 6510630 12186700 19359300(B) NTM 2444111 6638069 12492520 19588580(C) FE(3D) 2430512 6518094 12223080 19314540

(D) error (A B) 0570 1957 2509 1184(E) error (A C) 0011 0114 0298 minus0231

100 05

(A) EXP 2796050 8693500 14542200 22134(B) NTM 2912321 8781311 14633780 22182430(C) FE(3D) 2806782 8698963 14551070 22095920

(D) error (A B) 4158 1010 0629 0218(E) error (A C) 0383 0062 0060 minus0172

140 07

(A) EXP 4015620 8665980 162389 22684(B) NTM 4167385 8797248 16074330 22814460(C) FE(3D) 4021237 8655476 16159230 22610690

(D) error (A B) 3779 1514 minus1013 0575(E) error (A C) 0139 minus0121 minus0490 minus0323

3040

40 02

(A) EXP 3023690 7906 14381400 21856600(B) NTM 3023321 7946457 14429850 21806140(C) FE(3D) 3014442 7878443 14307960 21781750

(D) error (A B) minus0012 0511 0336 minus0230(E) error (A C) minus0305 minus0348 minus0510 minus0342

100 05

(A) EXP 3401940 9329910 15681400 23607700(B) NTM 3478703 9293555 15691770 23326460(C) FE(3D) 3405324 9313349 15645690 23513650

(D) error (A B) 2256 minus0389 0066 minus1191(E) error (A C) 0099 minus0177 minus0227 minus0398

140 07

(A) EXP 4201680 9322630 16596400 23967700(B) NTM 4268272 9431643 16437830 23729240(C) FE(3D) 4211100 9322286 16530200 23881400

(D) error (A B) 1584 1169 minus0955 minus0994(E) error (A C) 0224 minus0003 minus0398 minus0360

Shock and Vibration 15

Table 7 Continued

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

3540

40 02

(A) EXP 3608280 9126360 16128600 238173(B) NTM 3607895 9104530 16000810 23500960(C) FE(3D) 3607465 9106544 16054460 23720110

(D) error (A B) minus0010 minus0239 minus0792 minus1328(E) error (A C) minus0022 minus0217 minus0459 minus0408

100 05

(A) EXP 3885030 9778800 16719900 24538800(B) NTM 3906518 9705047 16577640 24125780(C) FE(3D) 3882419 9759382 16658180 2441741

(D) error (A B) 0553 minus0754 minus0850 minus1683(E) error (A C) minus0067 minus0198 minus0369 minus0495

140 07

(A) EXP 4248240 9888540 17028 24738400(B) NTM 4253660 9878822 16849850 24311230(C) FE(3D) 4247271 9870286 16963900 24616760

(D) error (A B) 0127 minus0098 minus1046 minus1726(E) error (A C) minus0022 minus0184 minus0376 minus0491

Table 8 Percentage error between the computational and experimental results for two-step samples (Group S3) Lowest four nonzero free-free modes

Method Modal frequencies in Hz1 2 3 4

S3-80250(A) EXP 403148 2126460 4139830 5153500(B) NTM 420212 2203984 4334192 5605556(C) FE(3D) 404180 2126900 4153700 5169800

(D) error (A B) minus3966 3517 4484 minus8428(E) error (A C) minus0255 minus0020 minus0333 minus0315

S3-80200(A) EXP (Figure 12) 354790 1727900 2291490 4531380

(B) NTM 367381 1788472 2551555 4660983(C) FE(3D) 355230 1728300 2318400 4532200

(D) error (A B) minus3549 3386 10192 minus2860(E) error (A C) 0124 0023 1160 0018

S3-80150(A) EXP 335859 1360050 1545130 3778200(B) NTM 346243 1434113 1638174 3889033(C) FE(3D) 336440 1364200 1548500 3781900

(D) error (A B) minus3091 minus5445 minus6021 minus2933(E) error (A C) 0172 0305 0218 0097

S3-80100(A) EXP 337400 1018240 1371070 3221200(B) NTM 345942 1074574 1424992 3303837(C) FE(3D) 337480 1024 1372900 3215

(D) error (A B) minus2531 minus5532 minus3932 minus2565(E) error (A C) 0023 0565 0133 minus0192

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 8: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

8 Shock and Vibration

Table 1 The first five natural frequencies 120582lowast2119894 for stepped Timoshenko beam in the case where the beam is rigidly restrained against rotation120601lowast1 = V119897 and elastically restrained in translation 119885lowast1 = 10 in comparison with [18]

11990321 120583 11988721 ℎ21 120582lowast21 120582lowast22 120582lowast23 120582lowast24 120582lowast2510minus7[18]

025

10 08 3010 9696 34010 74430 132341Present NTM 30098 96956 340101 744300 1323410[18] 08 08 3249 9664 34315 74645 131803Present NTM 32490 96638 343151 746445 1317507[18] 08 06 3385 8117 28630 60997 103439Present NTM 33851 81171 286302 609947 1034075[18]

050

10 08 2958 10046 34993 80145 139666Present NTM 29579 100460 349931 801455 1396667[18] 08 08 3124 10165 34688 80570 139175Present NTM 31240 101655 346882 805707 1391759[18] 08 06 3284 9499 28501 70123 118482Present NTM 32841 94989 285006 701232 1184830

00036[18]

025

10 08 3007 9668 33571 72393 126111Present NTM 30066 96678 335711 723926 1261107[18] 08 08 3245 9635 33862 72607 125617Present NTM 32454 96354 338621 726068 1256169[18] 08 06 3381 8103 28364 59839 100245Present NTM 33812 81031 283643 598385 1002447[18]

050

10 08 2946 9919 33205 71469 116725Present NTM 29462 99192 332046 714693 1167245[18] 08 08 3112 10030 32926 71741 116362Present NTM 31120 100304 329259 717415 1163618[18] 08 06 3272 9391 27449 64020 102697Present NTM 32721 93908 274490 640200 1026966

001[18]

025

10 08 3001 9619 32841 69229 117238Present NTM 30009 96192 328407 692292 1172380[18] 08 08 3239 9586 33109 69444 116798Present NTM 32390 95858 331092 694435 1167981[18] 08 06 3374 8078 27914 57970 95370Present NTM 33744 80784 279139 579705 953698[18]

050

10 08 2926 9710 30711 61768 95623Present NTM 29255 97104 307111 617680 956230[18] 08 08 3019 9809 30464 61912 95326Present NTM 30908 98086 304643 619117 953257[18] 08 06 3251 9211 25893 56578 86647Present NTM 32511 92111 258933 565776 866473

1

A

A

1

L1

k1

2

B

B

L2

3

3

k3

b1

ℎ1

b2

ℎ2

Sec AA Sec BB

Figure 3 Verification Example 1 [18] two-span stepped beam

Shock and Vibration 9

Table 2 Comparison of the first five natural frequencies in radsec using the present NTM results with those obtained in [19] for the exampleshown in Figure 4

120596119899(radsec) Method Bernoulli-Euler119903lowast21 = 0 Timoshenko119903lowast21 = 0

Pinned-pinned(P-P)

1205961 NAT [19] 3194341 3165288NTM 3194340 3164855

1205962 NAT [19] 18533864 17894207NTM 18533864 17848723

1205963 NAT [19] 41101341 38258438NTM 41101341 38365347

1205964 NAT [19] 77095714 66429094NTM 77095712 66392170

1205965 NAT [19] 116217699 98866243NTM 116217698 99188328

Free-clamped(F-C)

1205961 NAT [19] 3715354 3679440NTM 3715354 3671487

1205962 NAT [19] 12439063 12166220NTM 12439065 12115531

1205963 NAT [19] 30820846 28270352NTM 30820845 28491465

1205964 NAT [19] 55411410 49579240NTM 55411409 50037433

1205965 NAT [19] 95993810 76737578NTM 95993810 77513336

Clamped-free(C-F)

1205961 NTM 551257 5501301205962 NTM 6166018 59859171205963 NTM 27023238 253214831205964 NTM 54832379 496916591205965 NTM 95709586 79565299

Clamped-pinned(C-P)

1205961 NTM 4808915 46984441205962 NTM 20980556 199196111205963 NTM 50073315 458956761205964 NTM 83668073 704953931205965 NTM 136787112 112150349

Clamped-clamped(C-C)

1205961 NTM 8363527 80709971205962 NTM 30195886 277227321205963 NTM 55836469 498055381205964 NTM 96258943 773483191205965 NTM 144033163 115381581

750

Oslash100 Oslash150 Oslash200Oslash250

1 2 3 4 5 6

500 500 500 500

2000 mm

m3

Figure 4 Verification Example 2 [19] three-step beam having 119864 = 2069GPa 120588 = 78369 kgm3 119866 = 795769GPa and 1198961015840 = 075

10 Shock and Vibration

Table 3 Comparison of the present NTM results with those obtained in [5 20] for F-F beam shown in Figure 5

Mode number DQEM [20] Exp [5] NTM(40) FE(3D) error

I II III IV (II amp IV)1 292440 291 290316 290120 03022 1181300 1165 1162158 1167100 minus01803 1804100 1771 1767321 1772200 minus0068

1

254 140

32

549

254mm19

05

mm

Figure 5 Verification Example 3 [5 20] single-step (F-F) aluminum beam having 119864 = 717GPa 120588 = 2830Kgm3 and ] = 033

L20

L

1

1

mi

2 3 ik1

19 2021

21

k21

Figure 6 Verification Example 4 twenty equal span uniform beams carrying equally spaced nineteen concentrated masses with general endflexibilities conditions

calculated using two methods The first method is numericalassembly technique (NAT) and this method is the exactsolution The second method is differential transformationmethod and thismethod is approximatemethodThepinned-pinned and free-clamped boundary conditions results arefound in [19] The results of the current analysis are in goodagreement with the results presented in [19] As can be seenfromTable 2 the rotary inertia and shear deformation reducethemodal frequency especially for highermodes Comparingthe results of the clamped-free beam with the results of thefree-clamped beam shows that the natural frequency resultsof the clamped-free beam are lower than that of free-clampedbeam This may be explained by the fact that fixing thebeam from the thinner span results in lowering of the beamstiffness

313 Verification Example 3 The third verification exampleis shown in Figure 5 with identical dimensions to that usedin [5 20] The rotary inertia and shear deformation areconsidered The shear coefficient 1198961015840 is calculated based on[3] keeping Poissonrsquosrsquo ratio ] = 033 Table 3 shows thefirst three nonzero free-free (F-F) eigenvalues in Hz and incomparison with [5 20] The present results are computedusing both numerically (40) and FE(3D)methodsThe resultsof Table 3 show that the present analysis results are very closeto the experimental resultsThe percentage error between the

present FE(3D) results and the experimental results of [5] isless than 0302This represents the importance of includingthe effect of rotary inertia and shear deformation

314 Verification Example 4 The fourth example is shownin Figure 6 It is for a twenty-span uniform beam carrying19 equally spaced concentrated masses with 119898lowast119894 = 01Several beam start and end conditions are investigated aslisted in Table 4 The results are evaluated using the presentNTM method and previously published numerical assemblytechniqueNAT [6]methodThe computational time requiredto obtain the first three frequency parameters 120582lowast1 120582lowast2 and 120582lowast3using both NAT and NTM methods is calculated and listedin Table 4 Considerable reduction in computational time isobserved in all the investigated cases as shown in Table 4

32 Test Samples and Experimental Procedures In order tomeasure the natural frequencies of the system under studythe free-free test samples were put in free oscillations byusing an instrumented hammer model B and K 8202 Anaccelerometer model B and K 4366 is fixed to the shaft inorder to capture the vibration signal The output of thecharge amplifier B and K 2635 is connected to NI 6216data acquisition card This card is connected to the PC andmanaged by Lab VIEW software Figure 10 shows a photo ofthe current experimental setup The used card settings are

Shock and Vibration 11

Table 4 Validation of the present NTM using 20-span uniform beam with 19 equally spaced concentrated masses119898lowast119894 = 01 (119903lowast21 = 119904lowast21 = V119904)in comparison with [6]

Method 119885lowast1 Φlowast1 119885lowast21 Φlowast21 120582lowast1 120582lowast2 120582lowast3 Computational time (sec)NAT [6] V119904 V119904 V119904 V119904 37177 61716 86392 4817Present NTM V119904 V119904 V119904 V119904 37177 61716 86392 1353NAT [6] V119897 V119904 V119897 V119904 23871 47742 71612 3467Present NTM V119897 V119904 V119897 V119904 23871 47742 71612 1214NAT [6] V119897 V119897 V119897 V119897 35941 59671 835471 4040Present NTM V119897 V119897 V119897 V119897 35941 59671 835471 1347NAT [6] 10 10 10 10 15989 25329 45969 2213Present NTM 10 10 10 10 15989 25329 45969 1023

Table 5 Typical samples dimension of group S2 with 119889 = 075 shown in Figure 7

Group S2 (Single-step beam samples of steel rod Oslash 40 119871 = 200mm and 119889 = 3040)119871 1198711 120583 1198712 1198891 1198892 119898119905 (kg) 119903lowast21

S2-4040 200 40 02 160 40 30 1282 0002S2-40100 200 100 05 100 40 30 1375 0002S2-40140 200 140 07 60 40 30 1541 0002

Oslash40

40

S2-4040

Oslash20

Oslash25

Oslash30

Oslash35

= 02

S2-40100100

Oslash40

200

= 05

S2-40140140

d =20

40= 05

d =25

40= 0625

d =30

40= 075

d =35

40= 0875

= 07

Group S2

Figure 7 Schematic drawings for the experimental samples Group S2

sample frequency of 20 kHz sampling time of 3 5 8 sec andthe size of samples block to read is 1 k The time domaindata is captured and transformed into frequency domainThe resonant frequencies were obtained by the average of theresults of 10 impacts applied in three different locations ofthe sample Figures 7ndash9 show two groups of different steppedtest samples S2 and S3 respectively All the test samplesare manufactured from steel rods of dimensions Oslash 80 andOslash 40mm The common data for the steel test samples are120588 = 7850 kgm3 119864 = 2068GPa and 1198961015840 = 0845

Two-span twelve test samples are shown in group S2namely S2-4040 S2-40100 and S2-40140 shown inFigure 7 The dimensions of these samples are presentedin Table 5 The natural frequency results of these samples

are presented in Table 7 using experimental analytical andFE(3D) methods The captured signal for the free vibrationresponse for selected case from Table 7 is shown in Figure 11This case is italicized in the table The results of Table 7show that the three-dimensional FE solution is closer tothe experimental results than the analytical results Themaximum percentage error between the experimental andthe FE results is less than 05

Group S3 consists of four different samples namely S3-80250 S3-80200 S3-80150 and S3-80100 More detailsabout the geometrical dimensions and material propertiesfor these samples are shown in Table 6 and Figure 8 Theresults of Table 8 show that the deviation between the FE(3D)and the experimental is less than 116 The free vibration

12 Shock and Vibration

Table 6 The sample dimensions of group S3 as shown in Figure 8

Group S3 (Four cylindrical samples have two steps of steel rod Oslash 80 119871 = 500mm)119871 1198711 1198712 1198891 1198892 119898119905 (kg) 119871lowast2 119903lowast21

S3-80250 500 200 250 20 80 10480 05 0000100S3-80200 500 225 200 20 80 7398 04 0000100S3-80150 500 250 150 20 80 6781 03 0000100S3-80100 500 275 100 20 80 4932 02 0000100

Oslash20

200 250

Oslash80

S3-80250

225 200

S3-80200

250 150

S3-80150

275 100

S3-80100

500

Group S3

Figure 8 Schematic drawings for the experimental samples Group S3

S2- 40140S2- 40100

S2- 4040

S3- 80100S3- 80150S3- 80200S3- 80250

Figure 9 Real image for typical experimental test samples

Shock and Vibration 13

Figure 10 Test setup

24302 651063

121867

193593

minus140

minus120

minus100

minus80

minus60

minus40

minus20

0

Am

plitu

de (d

Bvo

lt)

2000 4000 6000 8000 1000012000140001600018000200000Frequency (Hz)

Figure 11 Experiment first four natural frequencies for test sample S2-4040

35479

17279

229149

453138

500 1000 1500 2000 2500 3000 3500 4000 4500 50000Frequency (Hz)

00005

0010015

0020025

0030035

0040045

Am

plitu

de (v

olt)

Figure 12 Experimental first four natural frequencies for test sample S3-80200

signals of selected case italicized in Table 8 are plotted inFigure 12 In general the results of the three-span samplesreveal the same conclusion drawn from the two-span samplesthat the FE(3D) results are closer to the experimental resultsthan the analytical results The conclusion driven from theinvestigated two- and three-span samples is that the three-dimensional finite element can be trusted in the prediction ofthe natural frequency of stepped beam

33 Percentage Modal Deviation between FE(3D) and NTMMethod The results of the previous section show theaccuracy of the FE(3D) model in evaluating the natural

frequencies of stepped beam Therefore in this section afree-free two-span model is deeply investigated using (40)and FE(3D) methods to justify the validity of the analyticalsolution in predicting the stepped beam results Two cate-gories of samples are considered as shown in Figure 13 Thefirst category includes 600mm length samples with 119903lowast21 =278 times 10minus4 and the second category includes 200mm lengthsamples with 119903lowast21 = 205 times 10minus3 The effects of changing 120583and 119889 are investigated 120583 varies from 0 to 1 and meanwhileonly three values are listed in Table 9 Four different valuesof 119889 are investigated 05 0625 075 and 0875 The study in

14 Shock and Vibration

Table 7 Percentage error between the computational and experimental results for single-step test samples (Group S2) Lowest four nonzerofree-free modes

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

2040

40 02

(A) EXP 1848940 5028140 9854 16303(B) NTM 1873981 5194229 1021179 16776400(C) FE(3D) 1859490 5056749 9893345 16380170

(D) error (A B) 1354 3303 3630 2903(E) error (A C) 0570 0568 0399 0473

100 05

(A) EXP 2153900 7713530 13701800 19845900(B) NTM 2244601 7923127 13661990 20230700(C) FE(3D) 2142012 7700169 13663580 19793360

(D) error (A B) 4211 2717 minus0290 1938(E) error (A C) minus0551 minus0173 minus0278 minus0264

140 07

(A) EXP 3596820 8103960 15773100 20733800(B) NTM 3813426 8160003 15739160 21174340(C) FE(3D) 3581521 8090723 15705070 20634360

(D) error (A B) 6022 0691 minus0215 2124(E) error (A C) minus0425 minus0163 minus0431 minus0479

2540

40 02

(A) EXP (Figure 11) 2430240 6510630 12186700 19359300(B) NTM 2444111 6638069 12492520 19588580(C) FE(3D) 2430512 6518094 12223080 19314540

(D) error (A B) 0570 1957 2509 1184(E) error (A C) 0011 0114 0298 minus0231

100 05

(A) EXP 2796050 8693500 14542200 22134(B) NTM 2912321 8781311 14633780 22182430(C) FE(3D) 2806782 8698963 14551070 22095920

(D) error (A B) 4158 1010 0629 0218(E) error (A C) 0383 0062 0060 minus0172

140 07

(A) EXP 4015620 8665980 162389 22684(B) NTM 4167385 8797248 16074330 22814460(C) FE(3D) 4021237 8655476 16159230 22610690

(D) error (A B) 3779 1514 minus1013 0575(E) error (A C) 0139 minus0121 minus0490 minus0323

3040

40 02

(A) EXP 3023690 7906 14381400 21856600(B) NTM 3023321 7946457 14429850 21806140(C) FE(3D) 3014442 7878443 14307960 21781750

(D) error (A B) minus0012 0511 0336 minus0230(E) error (A C) minus0305 minus0348 minus0510 minus0342

100 05

(A) EXP 3401940 9329910 15681400 23607700(B) NTM 3478703 9293555 15691770 23326460(C) FE(3D) 3405324 9313349 15645690 23513650

(D) error (A B) 2256 minus0389 0066 minus1191(E) error (A C) 0099 minus0177 minus0227 minus0398

140 07

(A) EXP 4201680 9322630 16596400 23967700(B) NTM 4268272 9431643 16437830 23729240(C) FE(3D) 4211100 9322286 16530200 23881400

(D) error (A B) 1584 1169 minus0955 minus0994(E) error (A C) 0224 minus0003 minus0398 minus0360

Shock and Vibration 15

Table 7 Continued

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

3540

40 02

(A) EXP 3608280 9126360 16128600 238173(B) NTM 3607895 9104530 16000810 23500960(C) FE(3D) 3607465 9106544 16054460 23720110

(D) error (A B) minus0010 minus0239 minus0792 minus1328(E) error (A C) minus0022 minus0217 minus0459 minus0408

100 05

(A) EXP 3885030 9778800 16719900 24538800(B) NTM 3906518 9705047 16577640 24125780(C) FE(3D) 3882419 9759382 16658180 2441741

(D) error (A B) 0553 minus0754 minus0850 minus1683(E) error (A C) minus0067 minus0198 minus0369 minus0495

140 07

(A) EXP 4248240 9888540 17028 24738400(B) NTM 4253660 9878822 16849850 24311230(C) FE(3D) 4247271 9870286 16963900 24616760

(D) error (A B) 0127 minus0098 minus1046 minus1726(E) error (A C) minus0022 minus0184 minus0376 minus0491

Table 8 Percentage error between the computational and experimental results for two-step samples (Group S3) Lowest four nonzero free-free modes

Method Modal frequencies in Hz1 2 3 4

S3-80250(A) EXP 403148 2126460 4139830 5153500(B) NTM 420212 2203984 4334192 5605556(C) FE(3D) 404180 2126900 4153700 5169800

(D) error (A B) minus3966 3517 4484 minus8428(E) error (A C) minus0255 minus0020 minus0333 minus0315

S3-80200(A) EXP (Figure 12) 354790 1727900 2291490 4531380

(B) NTM 367381 1788472 2551555 4660983(C) FE(3D) 355230 1728300 2318400 4532200

(D) error (A B) minus3549 3386 10192 minus2860(E) error (A C) 0124 0023 1160 0018

S3-80150(A) EXP 335859 1360050 1545130 3778200(B) NTM 346243 1434113 1638174 3889033(C) FE(3D) 336440 1364200 1548500 3781900

(D) error (A B) minus3091 minus5445 minus6021 minus2933(E) error (A C) 0172 0305 0218 0097

S3-80100(A) EXP 337400 1018240 1371070 3221200(B) NTM 345942 1074574 1424992 3303837(C) FE(3D) 337480 1024 1372900 3215

(D) error (A B) minus2531 minus5532 minus3932 minus2565(E) error (A C) 0023 0565 0133 minus0192

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 9: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

Shock and Vibration 9

Table 2 Comparison of the first five natural frequencies in radsec using the present NTM results with those obtained in [19] for the exampleshown in Figure 4

120596119899(radsec) Method Bernoulli-Euler119903lowast21 = 0 Timoshenko119903lowast21 = 0

Pinned-pinned(P-P)

1205961 NAT [19] 3194341 3165288NTM 3194340 3164855

1205962 NAT [19] 18533864 17894207NTM 18533864 17848723

1205963 NAT [19] 41101341 38258438NTM 41101341 38365347

1205964 NAT [19] 77095714 66429094NTM 77095712 66392170

1205965 NAT [19] 116217699 98866243NTM 116217698 99188328

Free-clamped(F-C)

1205961 NAT [19] 3715354 3679440NTM 3715354 3671487

1205962 NAT [19] 12439063 12166220NTM 12439065 12115531

1205963 NAT [19] 30820846 28270352NTM 30820845 28491465

1205964 NAT [19] 55411410 49579240NTM 55411409 50037433

1205965 NAT [19] 95993810 76737578NTM 95993810 77513336

Clamped-free(C-F)

1205961 NTM 551257 5501301205962 NTM 6166018 59859171205963 NTM 27023238 253214831205964 NTM 54832379 496916591205965 NTM 95709586 79565299

Clamped-pinned(C-P)

1205961 NTM 4808915 46984441205962 NTM 20980556 199196111205963 NTM 50073315 458956761205964 NTM 83668073 704953931205965 NTM 136787112 112150349

Clamped-clamped(C-C)

1205961 NTM 8363527 80709971205962 NTM 30195886 277227321205963 NTM 55836469 498055381205964 NTM 96258943 773483191205965 NTM 144033163 115381581

750

Oslash100 Oslash150 Oslash200Oslash250

1 2 3 4 5 6

500 500 500 500

2000 mm

m3

Figure 4 Verification Example 2 [19] three-step beam having 119864 = 2069GPa 120588 = 78369 kgm3 119866 = 795769GPa and 1198961015840 = 075

10 Shock and Vibration

Table 3 Comparison of the present NTM results with those obtained in [5 20] for F-F beam shown in Figure 5

Mode number DQEM [20] Exp [5] NTM(40) FE(3D) error

I II III IV (II amp IV)1 292440 291 290316 290120 03022 1181300 1165 1162158 1167100 minus01803 1804100 1771 1767321 1772200 minus0068

1

254 140

32

549

254mm19

05

mm

Figure 5 Verification Example 3 [5 20] single-step (F-F) aluminum beam having 119864 = 717GPa 120588 = 2830Kgm3 and ] = 033

L20

L

1

1

mi

2 3 ik1

19 2021

21

k21

Figure 6 Verification Example 4 twenty equal span uniform beams carrying equally spaced nineteen concentrated masses with general endflexibilities conditions

calculated using two methods The first method is numericalassembly technique (NAT) and this method is the exactsolution The second method is differential transformationmethod and thismethod is approximatemethodThepinned-pinned and free-clamped boundary conditions results arefound in [19] The results of the current analysis are in goodagreement with the results presented in [19] As can be seenfromTable 2 the rotary inertia and shear deformation reducethemodal frequency especially for highermodes Comparingthe results of the clamped-free beam with the results of thefree-clamped beam shows that the natural frequency resultsof the clamped-free beam are lower than that of free-clampedbeam This may be explained by the fact that fixing thebeam from the thinner span results in lowering of the beamstiffness

313 Verification Example 3 The third verification exampleis shown in Figure 5 with identical dimensions to that usedin [5 20] The rotary inertia and shear deformation areconsidered The shear coefficient 1198961015840 is calculated based on[3] keeping Poissonrsquosrsquo ratio ] = 033 Table 3 shows thefirst three nonzero free-free (F-F) eigenvalues in Hz and incomparison with [5 20] The present results are computedusing both numerically (40) and FE(3D)methodsThe resultsof Table 3 show that the present analysis results are very closeto the experimental resultsThe percentage error between the

present FE(3D) results and the experimental results of [5] isless than 0302This represents the importance of includingthe effect of rotary inertia and shear deformation

314 Verification Example 4 The fourth example is shownin Figure 6 It is for a twenty-span uniform beam carrying19 equally spaced concentrated masses with 119898lowast119894 = 01Several beam start and end conditions are investigated aslisted in Table 4 The results are evaluated using the presentNTM method and previously published numerical assemblytechniqueNAT [6]methodThe computational time requiredto obtain the first three frequency parameters 120582lowast1 120582lowast2 and 120582lowast3using both NAT and NTM methods is calculated and listedin Table 4 Considerable reduction in computational time isobserved in all the investigated cases as shown in Table 4

32 Test Samples and Experimental Procedures In order tomeasure the natural frequencies of the system under studythe free-free test samples were put in free oscillations byusing an instrumented hammer model B and K 8202 Anaccelerometer model B and K 4366 is fixed to the shaft inorder to capture the vibration signal The output of thecharge amplifier B and K 2635 is connected to NI 6216data acquisition card This card is connected to the PC andmanaged by Lab VIEW software Figure 10 shows a photo ofthe current experimental setup The used card settings are

Shock and Vibration 11

Table 4 Validation of the present NTM using 20-span uniform beam with 19 equally spaced concentrated masses119898lowast119894 = 01 (119903lowast21 = 119904lowast21 = V119904)in comparison with [6]

Method 119885lowast1 Φlowast1 119885lowast21 Φlowast21 120582lowast1 120582lowast2 120582lowast3 Computational time (sec)NAT [6] V119904 V119904 V119904 V119904 37177 61716 86392 4817Present NTM V119904 V119904 V119904 V119904 37177 61716 86392 1353NAT [6] V119897 V119904 V119897 V119904 23871 47742 71612 3467Present NTM V119897 V119904 V119897 V119904 23871 47742 71612 1214NAT [6] V119897 V119897 V119897 V119897 35941 59671 835471 4040Present NTM V119897 V119897 V119897 V119897 35941 59671 835471 1347NAT [6] 10 10 10 10 15989 25329 45969 2213Present NTM 10 10 10 10 15989 25329 45969 1023

Table 5 Typical samples dimension of group S2 with 119889 = 075 shown in Figure 7

Group S2 (Single-step beam samples of steel rod Oslash 40 119871 = 200mm and 119889 = 3040)119871 1198711 120583 1198712 1198891 1198892 119898119905 (kg) 119903lowast21

S2-4040 200 40 02 160 40 30 1282 0002S2-40100 200 100 05 100 40 30 1375 0002S2-40140 200 140 07 60 40 30 1541 0002

Oslash40

40

S2-4040

Oslash20

Oslash25

Oslash30

Oslash35

= 02

S2-40100100

Oslash40

200

= 05

S2-40140140

d =20

40= 05

d =25

40= 0625

d =30

40= 075

d =35

40= 0875

= 07

Group S2

Figure 7 Schematic drawings for the experimental samples Group S2

sample frequency of 20 kHz sampling time of 3 5 8 sec andthe size of samples block to read is 1 k The time domaindata is captured and transformed into frequency domainThe resonant frequencies were obtained by the average of theresults of 10 impacts applied in three different locations ofthe sample Figures 7ndash9 show two groups of different steppedtest samples S2 and S3 respectively All the test samplesare manufactured from steel rods of dimensions Oslash 80 andOslash 40mm The common data for the steel test samples are120588 = 7850 kgm3 119864 = 2068GPa and 1198961015840 = 0845

Two-span twelve test samples are shown in group S2namely S2-4040 S2-40100 and S2-40140 shown inFigure 7 The dimensions of these samples are presentedin Table 5 The natural frequency results of these samples

are presented in Table 7 using experimental analytical andFE(3D) methods The captured signal for the free vibrationresponse for selected case from Table 7 is shown in Figure 11This case is italicized in the table The results of Table 7show that the three-dimensional FE solution is closer tothe experimental results than the analytical results Themaximum percentage error between the experimental andthe FE results is less than 05

Group S3 consists of four different samples namely S3-80250 S3-80200 S3-80150 and S3-80100 More detailsabout the geometrical dimensions and material propertiesfor these samples are shown in Table 6 and Figure 8 Theresults of Table 8 show that the deviation between the FE(3D)and the experimental is less than 116 The free vibration

12 Shock and Vibration

Table 6 The sample dimensions of group S3 as shown in Figure 8

Group S3 (Four cylindrical samples have two steps of steel rod Oslash 80 119871 = 500mm)119871 1198711 1198712 1198891 1198892 119898119905 (kg) 119871lowast2 119903lowast21

S3-80250 500 200 250 20 80 10480 05 0000100S3-80200 500 225 200 20 80 7398 04 0000100S3-80150 500 250 150 20 80 6781 03 0000100S3-80100 500 275 100 20 80 4932 02 0000100

Oslash20

200 250

Oslash80

S3-80250

225 200

S3-80200

250 150

S3-80150

275 100

S3-80100

500

Group S3

Figure 8 Schematic drawings for the experimental samples Group S3

S2- 40140S2- 40100

S2- 4040

S3- 80100S3- 80150S3- 80200S3- 80250

Figure 9 Real image for typical experimental test samples

Shock and Vibration 13

Figure 10 Test setup

24302 651063

121867

193593

minus140

minus120

minus100

minus80

minus60

minus40

minus20

0

Am

plitu

de (d

Bvo

lt)

2000 4000 6000 8000 1000012000140001600018000200000Frequency (Hz)

Figure 11 Experiment first four natural frequencies for test sample S2-4040

35479

17279

229149

453138

500 1000 1500 2000 2500 3000 3500 4000 4500 50000Frequency (Hz)

00005

0010015

0020025

0030035

0040045

Am

plitu

de (v

olt)

Figure 12 Experimental first four natural frequencies for test sample S3-80200

signals of selected case italicized in Table 8 are plotted inFigure 12 In general the results of the three-span samplesreveal the same conclusion drawn from the two-span samplesthat the FE(3D) results are closer to the experimental resultsthan the analytical results The conclusion driven from theinvestigated two- and three-span samples is that the three-dimensional finite element can be trusted in the prediction ofthe natural frequency of stepped beam

33 Percentage Modal Deviation between FE(3D) and NTMMethod The results of the previous section show theaccuracy of the FE(3D) model in evaluating the natural

frequencies of stepped beam Therefore in this section afree-free two-span model is deeply investigated using (40)and FE(3D) methods to justify the validity of the analyticalsolution in predicting the stepped beam results Two cate-gories of samples are considered as shown in Figure 13 Thefirst category includes 600mm length samples with 119903lowast21 =278 times 10minus4 and the second category includes 200mm lengthsamples with 119903lowast21 = 205 times 10minus3 The effects of changing 120583and 119889 are investigated 120583 varies from 0 to 1 and meanwhileonly three values are listed in Table 9 Four different valuesof 119889 are investigated 05 0625 075 and 0875 The study in

14 Shock and Vibration

Table 7 Percentage error between the computational and experimental results for single-step test samples (Group S2) Lowest four nonzerofree-free modes

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

2040

40 02

(A) EXP 1848940 5028140 9854 16303(B) NTM 1873981 5194229 1021179 16776400(C) FE(3D) 1859490 5056749 9893345 16380170

(D) error (A B) 1354 3303 3630 2903(E) error (A C) 0570 0568 0399 0473

100 05

(A) EXP 2153900 7713530 13701800 19845900(B) NTM 2244601 7923127 13661990 20230700(C) FE(3D) 2142012 7700169 13663580 19793360

(D) error (A B) 4211 2717 minus0290 1938(E) error (A C) minus0551 minus0173 minus0278 minus0264

140 07

(A) EXP 3596820 8103960 15773100 20733800(B) NTM 3813426 8160003 15739160 21174340(C) FE(3D) 3581521 8090723 15705070 20634360

(D) error (A B) 6022 0691 minus0215 2124(E) error (A C) minus0425 minus0163 minus0431 minus0479

2540

40 02

(A) EXP (Figure 11) 2430240 6510630 12186700 19359300(B) NTM 2444111 6638069 12492520 19588580(C) FE(3D) 2430512 6518094 12223080 19314540

(D) error (A B) 0570 1957 2509 1184(E) error (A C) 0011 0114 0298 minus0231

100 05

(A) EXP 2796050 8693500 14542200 22134(B) NTM 2912321 8781311 14633780 22182430(C) FE(3D) 2806782 8698963 14551070 22095920

(D) error (A B) 4158 1010 0629 0218(E) error (A C) 0383 0062 0060 minus0172

140 07

(A) EXP 4015620 8665980 162389 22684(B) NTM 4167385 8797248 16074330 22814460(C) FE(3D) 4021237 8655476 16159230 22610690

(D) error (A B) 3779 1514 minus1013 0575(E) error (A C) 0139 minus0121 minus0490 minus0323

3040

40 02

(A) EXP 3023690 7906 14381400 21856600(B) NTM 3023321 7946457 14429850 21806140(C) FE(3D) 3014442 7878443 14307960 21781750

(D) error (A B) minus0012 0511 0336 minus0230(E) error (A C) minus0305 minus0348 minus0510 minus0342

100 05

(A) EXP 3401940 9329910 15681400 23607700(B) NTM 3478703 9293555 15691770 23326460(C) FE(3D) 3405324 9313349 15645690 23513650

(D) error (A B) 2256 minus0389 0066 minus1191(E) error (A C) 0099 minus0177 minus0227 minus0398

140 07

(A) EXP 4201680 9322630 16596400 23967700(B) NTM 4268272 9431643 16437830 23729240(C) FE(3D) 4211100 9322286 16530200 23881400

(D) error (A B) 1584 1169 minus0955 minus0994(E) error (A C) 0224 minus0003 minus0398 minus0360

Shock and Vibration 15

Table 7 Continued

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

3540

40 02

(A) EXP 3608280 9126360 16128600 238173(B) NTM 3607895 9104530 16000810 23500960(C) FE(3D) 3607465 9106544 16054460 23720110

(D) error (A B) minus0010 minus0239 minus0792 minus1328(E) error (A C) minus0022 minus0217 minus0459 minus0408

100 05

(A) EXP 3885030 9778800 16719900 24538800(B) NTM 3906518 9705047 16577640 24125780(C) FE(3D) 3882419 9759382 16658180 2441741

(D) error (A B) 0553 minus0754 minus0850 minus1683(E) error (A C) minus0067 minus0198 minus0369 minus0495

140 07

(A) EXP 4248240 9888540 17028 24738400(B) NTM 4253660 9878822 16849850 24311230(C) FE(3D) 4247271 9870286 16963900 24616760

(D) error (A B) 0127 minus0098 minus1046 minus1726(E) error (A C) minus0022 minus0184 minus0376 minus0491

Table 8 Percentage error between the computational and experimental results for two-step samples (Group S3) Lowest four nonzero free-free modes

Method Modal frequencies in Hz1 2 3 4

S3-80250(A) EXP 403148 2126460 4139830 5153500(B) NTM 420212 2203984 4334192 5605556(C) FE(3D) 404180 2126900 4153700 5169800

(D) error (A B) minus3966 3517 4484 minus8428(E) error (A C) minus0255 minus0020 minus0333 minus0315

S3-80200(A) EXP (Figure 12) 354790 1727900 2291490 4531380

(B) NTM 367381 1788472 2551555 4660983(C) FE(3D) 355230 1728300 2318400 4532200

(D) error (A B) minus3549 3386 10192 minus2860(E) error (A C) 0124 0023 1160 0018

S3-80150(A) EXP 335859 1360050 1545130 3778200(B) NTM 346243 1434113 1638174 3889033(C) FE(3D) 336440 1364200 1548500 3781900

(D) error (A B) minus3091 minus5445 minus6021 minus2933(E) error (A C) 0172 0305 0218 0097

S3-80100(A) EXP 337400 1018240 1371070 3221200(B) NTM 345942 1074574 1424992 3303837(C) FE(3D) 337480 1024 1372900 3215

(D) error (A B) minus2531 minus5532 minus3932 minus2565(E) error (A C) 0023 0565 0133 minus0192

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 10: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

10 Shock and Vibration

Table 3 Comparison of the present NTM results with those obtained in [5 20] for F-F beam shown in Figure 5

Mode number DQEM [20] Exp [5] NTM(40) FE(3D) error

I II III IV (II amp IV)1 292440 291 290316 290120 03022 1181300 1165 1162158 1167100 minus01803 1804100 1771 1767321 1772200 minus0068

1

254 140

32

549

254mm19

05

mm

Figure 5 Verification Example 3 [5 20] single-step (F-F) aluminum beam having 119864 = 717GPa 120588 = 2830Kgm3 and ] = 033

L20

L

1

1

mi

2 3 ik1

19 2021

21

k21

Figure 6 Verification Example 4 twenty equal span uniform beams carrying equally spaced nineteen concentrated masses with general endflexibilities conditions

calculated using two methods The first method is numericalassembly technique (NAT) and this method is the exactsolution The second method is differential transformationmethod and thismethod is approximatemethodThepinned-pinned and free-clamped boundary conditions results arefound in [19] The results of the current analysis are in goodagreement with the results presented in [19] As can be seenfromTable 2 the rotary inertia and shear deformation reducethemodal frequency especially for highermodes Comparingthe results of the clamped-free beam with the results of thefree-clamped beam shows that the natural frequency resultsof the clamped-free beam are lower than that of free-clampedbeam This may be explained by the fact that fixing thebeam from the thinner span results in lowering of the beamstiffness

313 Verification Example 3 The third verification exampleis shown in Figure 5 with identical dimensions to that usedin [5 20] The rotary inertia and shear deformation areconsidered The shear coefficient 1198961015840 is calculated based on[3] keeping Poissonrsquosrsquo ratio ] = 033 Table 3 shows thefirst three nonzero free-free (F-F) eigenvalues in Hz and incomparison with [5 20] The present results are computedusing both numerically (40) and FE(3D)methodsThe resultsof Table 3 show that the present analysis results are very closeto the experimental resultsThe percentage error between the

present FE(3D) results and the experimental results of [5] isless than 0302This represents the importance of includingthe effect of rotary inertia and shear deformation

314 Verification Example 4 The fourth example is shownin Figure 6 It is for a twenty-span uniform beam carrying19 equally spaced concentrated masses with 119898lowast119894 = 01Several beam start and end conditions are investigated aslisted in Table 4 The results are evaluated using the presentNTM method and previously published numerical assemblytechniqueNAT [6]methodThe computational time requiredto obtain the first three frequency parameters 120582lowast1 120582lowast2 and 120582lowast3using both NAT and NTM methods is calculated and listedin Table 4 Considerable reduction in computational time isobserved in all the investigated cases as shown in Table 4

32 Test Samples and Experimental Procedures In order tomeasure the natural frequencies of the system under studythe free-free test samples were put in free oscillations byusing an instrumented hammer model B and K 8202 Anaccelerometer model B and K 4366 is fixed to the shaft inorder to capture the vibration signal The output of thecharge amplifier B and K 2635 is connected to NI 6216data acquisition card This card is connected to the PC andmanaged by Lab VIEW software Figure 10 shows a photo ofthe current experimental setup The used card settings are

Shock and Vibration 11

Table 4 Validation of the present NTM using 20-span uniform beam with 19 equally spaced concentrated masses119898lowast119894 = 01 (119903lowast21 = 119904lowast21 = V119904)in comparison with [6]

Method 119885lowast1 Φlowast1 119885lowast21 Φlowast21 120582lowast1 120582lowast2 120582lowast3 Computational time (sec)NAT [6] V119904 V119904 V119904 V119904 37177 61716 86392 4817Present NTM V119904 V119904 V119904 V119904 37177 61716 86392 1353NAT [6] V119897 V119904 V119897 V119904 23871 47742 71612 3467Present NTM V119897 V119904 V119897 V119904 23871 47742 71612 1214NAT [6] V119897 V119897 V119897 V119897 35941 59671 835471 4040Present NTM V119897 V119897 V119897 V119897 35941 59671 835471 1347NAT [6] 10 10 10 10 15989 25329 45969 2213Present NTM 10 10 10 10 15989 25329 45969 1023

Table 5 Typical samples dimension of group S2 with 119889 = 075 shown in Figure 7

Group S2 (Single-step beam samples of steel rod Oslash 40 119871 = 200mm and 119889 = 3040)119871 1198711 120583 1198712 1198891 1198892 119898119905 (kg) 119903lowast21

S2-4040 200 40 02 160 40 30 1282 0002S2-40100 200 100 05 100 40 30 1375 0002S2-40140 200 140 07 60 40 30 1541 0002

Oslash40

40

S2-4040

Oslash20

Oslash25

Oslash30

Oslash35

= 02

S2-40100100

Oslash40

200

= 05

S2-40140140

d =20

40= 05

d =25

40= 0625

d =30

40= 075

d =35

40= 0875

= 07

Group S2

Figure 7 Schematic drawings for the experimental samples Group S2

sample frequency of 20 kHz sampling time of 3 5 8 sec andthe size of samples block to read is 1 k The time domaindata is captured and transformed into frequency domainThe resonant frequencies were obtained by the average of theresults of 10 impacts applied in three different locations ofthe sample Figures 7ndash9 show two groups of different steppedtest samples S2 and S3 respectively All the test samplesare manufactured from steel rods of dimensions Oslash 80 andOslash 40mm The common data for the steel test samples are120588 = 7850 kgm3 119864 = 2068GPa and 1198961015840 = 0845

Two-span twelve test samples are shown in group S2namely S2-4040 S2-40100 and S2-40140 shown inFigure 7 The dimensions of these samples are presentedin Table 5 The natural frequency results of these samples

are presented in Table 7 using experimental analytical andFE(3D) methods The captured signal for the free vibrationresponse for selected case from Table 7 is shown in Figure 11This case is italicized in the table The results of Table 7show that the three-dimensional FE solution is closer tothe experimental results than the analytical results Themaximum percentage error between the experimental andthe FE results is less than 05

Group S3 consists of four different samples namely S3-80250 S3-80200 S3-80150 and S3-80100 More detailsabout the geometrical dimensions and material propertiesfor these samples are shown in Table 6 and Figure 8 Theresults of Table 8 show that the deviation between the FE(3D)and the experimental is less than 116 The free vibration

12 Shock and Vibration

Table 6 The sample dimensions of group S3 as shown in Figure 8

Group S3 (Four cylindrical samples have two steps of steel rod Oslash 80 119871 = 500mm)119871 1198711 1198712 1198891 1198892 119898119905 (kg) 119871lowast2 119903lowast21

S3-80250 500 200 250 20 80 10480 05 0000100S3-80200 500 225 200 20 80 7398 04 0000100S3-80150 500 250 150 20 80 6781 03 0000100S3-80100 500 275 100 20 80 4932 02 0000100

Oslash20

200 250

Oslash80

S3-80250

225 200

S3-80200

250 150

S3-80150

275 100

S3-80100

500

Group S3

Figure 8 Schematic drawings for the experimental samples Group S3

S2- 40140S2- 40100

S2- 4040

S3- 80100S3- 80150S3- 80200S3- 80250

Figure 9 Real image for typical experimental test samples

Shock and Vibration 13

Figure 10 Test setup

24302 651063

121867

193593

minus140

minus120

minus100

minus80

minus60

minus40

minus20

0

Am

plitu

de (d

Bvo

lt)

2000 4000 6000 8000 1000012000140001600018000200000Frequency (Hz)

Figure 11 Experiment first four natural frequencies for test sample S2-4040

35479

17279

229149

453138

500 1000 1500 2000 2500 3000 3500 4000 4500 50000Frequency (Hz)

00005

0010015

0020025

0030035

0040045

Am

plitu

de (v

olt)

Figure 12 Experimental first four natural frequencies for test sample S3-80200

signals of selected case italicized in Table 8 are plotted inFigure 12 In general the results of the three-span samplesreveal the same conclusion drawn from the two-span samplesthat the FE(3D) results are closer to the experimental resultsthan the analytical results The conclusion driven from theinvestigated two- and three-span samples is that the three-dimensional finite element can be trusted in the prediction ofthe natural frequency of stepped beam

33 Percentage Modal Deviation between FE(3D) and NTMMethod The results of the previous section show theaccuracy of the FE(3D) model in evaluating the natural

frequencies of stepped beam Therefore in this section afree-free two-span model is deeply investigated using (40)and FE(3D) methods to justify the validity of the analyticalsolution in predicting the stepped beam results Two cate-gories of samples are considered as shown in Figure 13 Thefirst category includes 600mm length samples with 119903lowast21 =278 times 10minus4 and the second category includes 200mm lengthsamples with 119903lowast21 = 205 times 10minus3 The effects of changing 120583and 119889 are investigated 120583 varies from 0 to 1 and meanwhileonly three values are listed in Table 9 Four different valuesof 119889 are investigated 05 0625 075 and 0875 The study in

14 Shock and Vibration

Table 7 Percentage error between the computational and experimental results for single-step test samples (Group S2) Lowest four nonzerofree-free modes

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

2040

40 02

(A) EXP 1848940 5028140 9854 16303(B) NTM 1873981 5194229 1021179 16776400(C) FE(3D) 1859490 5056749 9893345 16380170

(D) error (A B) 1354 3303 3630 2903(E) error (A C) 0570 0568 0399 0473

100 05

(A) EXP 2153900 7713530 13701800 19845900(B) NTM 2244601 7923127 13661990 20230700(C) FE(3D) 2142012 7700169 13663580 19793360

(D) error (A B) 4211 2717 minus0290 1938(E) error (A C) minus0551 minus0173 minus0278 minus0264

140 07

(A) EXP 3596820 8103960 15773100 20733800(B) NTM 3813426 8160003 15739160 21174340(C) FE(3D) 3581521 8090723 15705070 20634360

(D) error (A B) 6022 0691 minus0215 2124(E) error (A C) minus0425 minus0163 minus0431 minus0479

2540

40 02

(A) EXP (Figure 11) 2430240 6510630 12186700 19359300(B) NTM 2444111 6638069 12492520 19588580(C) FE(3D) 2430512 6518094 12223080 19314540

(D) error (A B) 0570 1957 2509 1184(E) error (A C) 0011 0114 0298 minus0231

100 05

(A) EXP 2796050 8693500 14542200 22134(B) NTM 2912321 8781311 14633780 22182430(C) FE(3D) 2806782 8698963 14551070 22095920

(D) error (A B) 4158 1010 0629 0218(E) error (A C) 0383 0062 0060 minus0172

140 07

(A) EXP 4015620 8665980 162389 22684(B) NTM 4167385 8797248 16074330 22814460(C) FE(3D) 4021237 8655476 16159230 22610690

(D) error (A B) 3779 1514 minus1013 0575(E) error (A C) 0139 minus0121 minus0490 minus0323

3040

40 02

(A) EXP 3023690 7906 14381400 21856600(B) NTM 3023321 7946457 14429850 21806140(C) FE(3D) 3014442 7878443 14307960 21781750

(D) error (A B) minus0012 0511 0336 minus0230(E) error (A C) minus0305 minus0348 minus0510 minus0342

100 05

(A) EXP 3401940 9329910 15681400 23607700(B) NTM 3478703 9293555 15691770 23326460(C) FE(3D) 3405324 9313349 15645690 23513650

(D) error (A B) 2256 minus0389 0066 minus1191(E) error (A C) 0099 minus0177 minus0227 minus0398

140 07

(A) EXP 4201680 9322630 16596400 23967700(B) NTM 4268272 9431643 16437830 23729240(C) FE(3D) 4211100 9322286 16530200 23881400

(D) error (A B) 1584 1169 minus0955 minus0994(E) error (A C) 0224 minus0003 minus0398 minus0360

Shock and Vibration 15

Table 7 Continued

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

3540

40 02

(A) EXP 3608280 9126360 16128600 238173(B) NTM 3607895 9104530 16000810 23500960(C) FE(3D) 3607465 9106544 16054460 23720110

(D) error (A B) minus0010 minus0239 minus0792 minus1328(E) error (A C) minus0022 minus0217 minus0459 minus0408

100 05

(A) EXP 3885030 9778800 16719900 24538800(B) NTM 3906518 9705047 16577640 24125780(C) FE(3D) 3882419 9759382 16658180 2441741

(D) error (A B) 0553 minus0754 minus0850 minus1683(E) error (A C) minus0067 minus0198 minus0369 minus0495

140 07

(A) EXP 4248240 9888540 17028 24738400(B) NTM 4253660 9878822 16849850 24311230(C) FE(3D) 4247271 9870286 16963900 24616760

(D) error (A B) 0127 minus0098 minus1046 minus1726(E) error (A C) minus0022 minus0184 minus0376 minus0491

Table 8 Percentage error between the computational and experimental results for two-step samples (Group S3) Lowest four nonzero free-free modes

Method Modal frequencies in Hz1 2 3 4

S3-80250(A) EXP 403148 2126460 4139830 5153500(B) NTM 420212 2203984 4334192 5605556(C) FE(3D) 404180 2126900 4153700 5169800

(D) error (A B) minus3966 3517 4484 minus8428(E) error (A C) minus0255 minus0020 minus0333 minus0315

S3-80200(A) EXP (Figure 12) 354790 1727900 2291490 4531380

(B) NTM 367381 1788472 2551555 4660983(C) FE(3D) 355230 1728300 2318400 4532200

(D) error (A B) minus3549 3386 10192 minus2860(E) error (A C) 0124 0023 1160 0018

S3-80150(A) EXP 335859 1360050 1545130 3778200(B) NTM 346243 1434113 1638174 3889033(C) FE(3D) 336440 1364200 1548500 3781900

(D) error (A B) minus3091 minus5445 minus6021 minus2933(E) error (A C) 0172 0305 0218 0097

S3-80100(A) EXP 337400 1018240 1371070 3221200(B) NTM 345942 1074574 1424992 3303837(C) FE(3D) 337480 1024 1372900 3215

(D) error (A B) minus2531 minus5532 minus3932 minus2565(E) error (A C) 0023 0565 0133 minus0192

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 11: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

Shock and Vibration 11

Table 4 Validation of the present NTM using 20-span uniform beam with 19 equally spaced concentrated masses119898lowast119894 = 01 (119903lowast21 = 119904lowast21 = V119904)in comparison with [6]

Method 119885lowast1 Φlowast1 119885lowast21 Φlowast21 120582lowast1 120582lowast2 120582lowast3 Computational time (sec)NAT [6] V119904 V119904 V119904 V119904 37177 61716 86392 4817Present NTM V119904 V119904 V119904 V119904 37177 61716 86392 1353NAT [6] V119897 V119904 V119897 V119904 23871 47742 71612 3467Present NTM V119897 V119904 V119897 V119904 23871 47742 71612 1214NAT [6] V119897 V119897 V119897 V119897 35941 59671 835471 4040Present NTM V119897 V119897 V119897 V119897 35941 59671 835471 1347NAT [6] 10 10 10 10 15989 25329 45969 2213Present NTM 10 10 10 10 15989 25329 45969 1023

Table 5 Typical samples dimension of group S2 with 119889 = 075 shown in Figure 7

Group S2 (Single-step beam samples of steel rod Oslash 40 119871 = 200mm and 119889 = 3040)119871 1198711 120583 1198712 1198891 1198892 119898119905 (kg) 119903lowast21

S2-4040 200 40 02 160 40 30 1282 0002S2-40100 200 100 05 100 40 30 1375 0002S2-40140 200 140 07 60 40 30 1541 0002

Oslash40

40

S2-4040

Oslash20

Oslash25

Oslash30

Oslash35

= 02

S2-40100100

Oslash40

200

= 05

S2-40140140

d =20

40= 05

d =25

40= 0625

d =30

40= 075

d =35

40= 0875

= 07

Group S2

Figure 7 Schematic drawings for the experimental samples Group S2

sample frequency of 20 kHz sampling time of 3 5 8 sec andthe size of samples block to read is 1 k The time domaindata is captured and transformed into frequency domainThe resonant frequencies were obtained by the average of theresults of 10 impacts applied in three different locations ofthe sample Figures 7ndash9 show two groups of different steppedtest samples S2 and S3 respectively All the test samplesare manufactured from steel rods of dimensions Oslash 80 andOslash 40mm The common data for the steel test samples are120588 = 7850 kgm3 119864 = 2068GPa and 1198961015840 = 0845

Two-span twelve test samples are shown in group S2namely S2-4040 S2-40100 and S2-40140 shown inFigure 7 The dimensions of these samples are presentedin Table 5 The natural frequency results of these samples

are presented in Table 7 using experimental analytical andFE(3D) methods The captured signal for the free vibrationresponse for selected case from Table 7 is shown in Figure 11This case is italicized in the table The results of Table 7show that the three-dimensional FE solution is closer tothe experimental results than the analytical results Themaximum percentage error between the experimental andthe FE results is less than 05

Group S3 consists of four different samples namely S3-80250 S3-80200 S3-80150 and S3-80100 More detailsabout the geometrical dimensions and material propertiesfor these samples are shown in Table 6 and Figure 8 Theresults of Table 8 show that the deviation between the FE(3D)and the experimental is less than 116 The free vibration

12 Shock and Vibration

Table 6 The sample dimensions of group S3 as shown in Figure 8

Group S3 (Four cylindrical samples have two steps of steel rod Oslash 80 119871 = 500mm)119871 1198711 1198712 1198891 1198892 119898119905 (kg) 119871lowast2 119903lowast21

S3-80250 500 200 250 20 80 10480 05 0000100S3-80200 500 225 200 20 80 7398 04 0000100S3-80150 500 250 150 20 80 6781 03 0000100S3-80100 500 275 100 20 80 4932 02 0000100

Oslash20

200 250

Oslash80

S3-80250

225 200

S3-80200

250 150

S3-80150

275 100

S3-80100

500

Group S3

Figure 8 Schematic drawings for the experimental samples Group S3

S2- 40140S2- 40100

S2- 4040

S3- 80100S3- 80150S3- 80200S3- 80250

Figure 9 Real image for typical experimental test samples

Shock and Vibration 13

Figure 10 Test setup

24302 651063

121867

193593

minus140

minus120

minus100

minus80

minus60

minus40

minus20

0

Am

plitu

de (d

Bvo

lt)

2000 4000 6000 8000 1000012000140001600018000200000Frequency (Hz)

Figure 11 Experiment first four natural frequencies for test sample S2-4040

35479

17279

229149

453138

500 1000 1500 2000 2500 3000 3500 4000 4500 50000Frequency (Hz)

00005

0010015

0020025

0030035

0040045

Am

plitu

de (v

olt)

Figure 12 Experimental first four natural frequencies for test sample S3-80200

signals of selected case italicized in Table 8 are plotted inFigure 12 In general the results of the three-span samplesreveal the same conclusion drawn from the two-span samplesthat the FE(3D) results are closer to the experimental resultsthan the analytical results The conclusion driven from theinvestigated two- and three-span samples is that the three-dimensional finite element can be trusted in the prediction ofthe natural frequency of stepped beam

33 Percentage Modal Deviation between FE(3D) and NTMMethod The results of the previous section show theaccuracy of the FE(3D) model in evaluating the natural

frequencies of stepped beam Therefore in this section afree-free two-span model is deeply investigated using (40)and FE(3D) methods to justify the validity of the analyticalsolution in predicting the stepped beam results Two cate-gories of samples are considered as shown in Figure 13 Thefirst category includes 600mm length samples with 119903lowast21 =278 times 10minus4 and the second category includes 200mm lengthsamples with 119903lowast21 = 205 times 10minus3 The effects of changing 120583and 119889 are investigated 120583 varies from 0 to 1 and meanwhileonly three values are listed in Table 9 Four different valuesof 119889 are investigated 05 0625 075 and 0875 The study in

14 Shock and Vibration

Table 7 Percentage error between the computational and experimental results for single-step test samples (Group S2) Lowest four nonzerofree-free modes

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

2040

40 02

(A) EXP 1848940 5028140 9854 16303(B) NTM 1873981 5194229 1021179 16776400(C) FE(3D) 1859490 5056749 9893345 16380170

(D) error (A B) 1354 3303 3630 2903(E) error (A C) 0570 0568 0399 0473

100 05

(A) EXP 2153900 7713530 13701800 19845900(B) NTM 2244601 7923127 13661990 20230700(C) FE(3D) 2142012 7700169 13663580 19793360

(D) error (A B) 4211 2717 minus0290 1938(E) error (A C) minus0551 minus0173 minus0278 minus0264

140 07

(A) EXP 3596820 8103960 15773100 20733800(B) NTM 3813426 8160003 15739160 21174340(C) FE(3D) 3581521 8090723 15705070 20634360

(D) error (A B) 6022 0691 minus0215 2124(E) error (A C) minus0425 minus0163 minus0431 minus0479

2540

40 02

(A) EXP (Figure 11) 2430240 6510630 12186700 19359300(B) NTM 2444111 6638069 12492520 19588580(C) FE(3D) 2430512 6518094 12223080 19314540

(D) error (A B) 0570 1957 2509 1184(E) error (A C) 0011 0114 0298 minus0231

100 05

(A) EXP 2796050 8693500 14542200 22134(B) NTM 2912321 8781311 14633780 22182430(C) FE(3D) 2806782 8698963 14551070 22095920

(D) error (A B) 4158 1010 0629 0218(E) error (A C) 0383 0062 0060 minus0172

140 07

(A) EXP 4015620 8665980 162389 22684(B) NTM 4167385 8797248 16074330 22814460(C) FE(3D) 4021237 8655476 16159230 22610690

(D) error (A B) 3779 1514 minus1013 0575(E) error (A C) 0139 minus0121 minus0490 minus0323

3040

40 02

(A) EXP 3023690 7906 14381400 21856600(B) NTM 3023321 7946457 14429850 21806140(C) FE(3D) 3014442 7878443 14307960 21781750

(D) error (A B) minus0012 0511 0336 minus0230(E) error (A C) minus0305 minus0348 minus0510 minus0342

100 05

(A) EXP 3401940 9329910 15681400 23607700(B) NTM 3478703 9293555 15691770 23326460(C) FE(3D) 3405324 9313349 15645690 23513650

(D) error (A B) 2256 minus0389 0066 minus1191(E) error (A C) 0099 minus0177 minus0227 minus0398

140 07

(A) EXP 4201680 9322630 16596400 23967700(B) NTM 4268272 9431643 16437830 23729240(C) FE(3D) 4211100 9322286 16530200 23881400

(D) error (A B) 1584 1169 minus0955 minus0994(E) error (A C) 0224 minus0003 minus0398 minus0360

Shock and Vibration 15

Table 7 Continued

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

3540

40 02

(A) EXP 3608280 9126360 16128600 238173(B) NTM 3607895 9104530 16000810 23500960(C) FE(3D) 3607465 9106544 16054460 23720110

(D) error (A B) minus0010 minus0239 minus0792 minus1328(E) error (A C) minus0022 minus0217 minus0459 minus0408

100 05

(A) EXP 3885030 9778800 16719900 24538800(B) NTM 3906518 9705047 16577640 24125780(C) FE(3D) 3882419 9759382 16658180 2441741

(D) error (A B) 0553 minus0754 minus0850 minus1683(E) error (A C) minus0067 minus0198 minus0369 minus0495

140 07

(A) EXP 4248240 9888540 17028 24738400(B) NTM 4253660 9878822 16849850 24311230(C) FE(3D) 4247271 9870286 16963900 24616760

(D) error (A B) 0127 minus0098 minus1046 minus1726(E) error (A C) minus0022 minus0184 minus0376 minus0491

Table 8 Percentage error between the computational and experimental results for two-step samples (Group S3) Lowest four nonzero free-free modes

Method Modal frequencies in Hz1 2 3 4

S3-80250(A) EXP 403148 2126460 4139830 5153500(B) NTM 420212 2203984 4334192 5605556(C) FE(3D) 404180 2126900 4153700 5169800

(D) error (A B) minus3966 3517 4484 minus8428(E) error (A C) minus0255 minus0020 minus0333 minus0315

S3-80200(A) EXP (Figure 12) 354790 1727900 2291490 4531380

(B) NTM 367381 1788472 2551555 4660983(C) FE(3D) 355230 1728300 2318400 4532200

(D) error (A B) minus3549 3386 10192 minus2860(E) error (A C) 0124 0023 1160 0018

S3-80150(A) EXP 335859 1360050 1545130 3778200(B) NTM 346243 1434113 1638174 3889033(C) FE(3D) 336440 1364200 1548500 3781900

(D) error (A B) minus3091 minus5445 minus6021 minus2933(E) error (A C) 0172 0305 0218 0097

S3-80100(A) EXP 337400 1018240 1371070 3221200(B) NTM 345942 1074574 1424992 3303837(C) FE(3D) 337480 1024 1372900 3215

(D) error (A B) minus2531 minus5532 minus3932 minus2565(E) error (A C) 0023 0565 0133 minus0192

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 12: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

12 Shock and Vibration

Table 6 The sample dimensions of group S3 as shown in Figure 8

Group S3 (Four cylindrical samples have two steps of steel rod Oslash 80 119871 = 500mm)119871 1198711 1198712 1198891 1198892 119898119905 (kg) 119871lowast2 119903lowast21

S3-80250 500 200 250 20 80 10480 05 0000100S3-80200 500 225 200 20 80 7398 04 0000100S3-80150 500 250 150 20 80 6781 03 0000100S3-80100 500 275 100 20 80 4932 02 0000100

Oslash20

200 250

Oslash80

S3-80250

225 200

S3-80200

250 150

S3-80150

275 100

S3-80100

500

Group S3

Figure 8 Schematic drawings for the experimental samples Group S3

S2- 40140S2- 40100

S2- 4040

S3- 80100S3- 80150S3- 80200S3- 80250

Figure 9 Real image for typical experimental test samples

Shock and Vibration 13

Figure 10 Test setup

24302 651063

121867

193593

minus140

minus120

minus100

minus80

minus60

minus40

minus20

0

Am

plitu

de (d

Bvo

lt)

2000 4000 6000 8000 1000012000140001600018000200000Frequency (Hz)

Figure 11 Experiment first four natural frequencies for test sample S2-4040

35479

17279

229149

453138

500 1000 1500 2000 2500 3000 3500 4000 4500 50000Frequency (Hz)

00005

0010015

0020025

0030035

0040045

Am

plitu

de (v

olt)

Figure 12 Experimental first four natural frequencies for test sample S3-80200

signals of selected case italicized in Table 8 are plotted inFigure 12 In general the results of the three-span samplesreveal the same conclusion drawn from the two-span samplesthat the FE(3D) results are closer to the experimental resultsthan the analytical results The conclusion driven from theinvestigated two- and three-span samples is that the three-dimensional finite element can be trusted in the prediction ofthe natural frequency of stepped beam

33 Percentage Modal Deviation between FE(3D) and NTMMethod The results of the previous section show theaccuracy of the FE(3D) model in evaluating the natural

frequencies of stepped beam Therefore in this section afree-free two-span model is deeply investigated using (40)and FE(3D) methods to justify the validity of the analyticalsolution in predicting the stepped beam results Two cate-gories of samples are considered as shown in Figure 13 Thefirst category includes 600mm length samples with 119903lowast21 =278 times 10minus4 and the second category includes 200mm lengthsamples with 119903lowast21 = 205 times 10minus3 The effects of changing 120583and 119889 are investigated 120583 varies from 0 to 1 and meanwhileonly three values are listed in Table 9 Four different valuesof 119889 are investigated 05 0625 075 and 0875 The study in

14 Shock and Vibration

Table 7 Percentage error between the computational and experimental results for single-step test samples (Group S2) Lowest four nonzerofree-free modes

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

2040

40 02

(A) EXP 1848940 5028140 9854 16303(B) NTM 1873981 5194229 1021179 16776400(C) FE(3D) 1859490 5056749 9893345 16380170

(D) error (A B) 1354 3303 3630 2903(E) error (A C) 0570 0568 0399 0473

100 05

(A) EXP 2153900 7713530 13701800 19845900(B) NTM 2244601 7923127 13661990 20230700(C) FE(3D) 2142012 7700169 13663580 19793360

(D) error (A B) 4211 2717 minus0290 1938(E) error (A C) minus0551 minus0173 minus0278 minus0264

140 07

(A) EXP 3596820 8103960 15773100 20733800(B) NTM 3813426 8160003 15739160 21174340(C) FE(3D) 3581521 8090723 15705070 20634360

(D) error (A B) 6022 0691 minus0215 2124(E) error (A C) minus0425 minus0163 minus0431 minus0479

2540

40 02

(A) EXP (Figure 11) 2430240 6510630 12186700 19359300(B) NTM 2444111 6638069 12492520 19588580(C) FE(3D) 2430512 6518094 12223080 19314540

(D) error (A B) 0570 1957 2509 1184(E) error (A C) 0011 0114 0298 minus0231

100 05

(A) EXP 2796050 8693500 14542200 22134(B) NTM 2912321 8781311 14633780 22182430(C) FE(3D) 2806782 8698963 14551070 22095920

(D) error (A B) 4158 1010 0629 0218(E) error (A C) 0383 0062 0060 minus0172

140 07

(A) EXP 4015620 8665980 162389 22684(B) NTM 4167385 8797248 16074330 22814460(C) FE(3D) 4021237 8655476 16159230 22610690

(D) error (A B) 3779 1514 minus1013 0575(E) error (A C) 0139 minus0121 minus0490 minus0323

3040

40 02

(A) EXP 3023690 7906 14381400 21856600(B) NTM 3023321 7946457 14429850 21806140(C) FE(3D) 3014442 7878443 14307960 21781750

(D) error (A B) minus0012 0511 0336 minus0230(E) error (A C) minus0305 minus0348 minus0510 minus0342

100 05

(A) EXP 3401940 9329910 15681400 23607700(B) NTM 3478703 9293555 15691770 23326460(C) FE(3D) 3405324 9313349 15645690 23513650

(D) error (A B) 2256 minus0389 0066 minus1191(E) error (A C) 0099 minus0177 minus0227 minus0398

140 07

(A) EXP 4201680 9322630 16596400 23967700(B) NTM 4268272 9431643 16437830 23729240(C) FE(3D) 4211100 9322286 16530200 23881400

(D) error (A B) 1584 1169 minus0955 minus0994(E) error (A C) 0224 minus0003 minus0398 minus0360

Shock and Vibration 15

Table 7 Continued

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

3540

40 02

(A) EXP 3608280 9126360 16128600 238173(B) NTM 3607895 9104530 16000810 23500960(C) FE(3D) 3607465 9106544 16054460 23720110

(D) error (A B) minus0010 minus0239 minus0792 minus1328(E) error (A C) minus0022 minus0217 minus0459 minus0408

100 05

(A) EXP 3885030 9778800 16719900 24538800(B) NTM 3906518 9705047 16577640 24125780(C) FE(3D) 3882419 9759382 16658180 2441741

(D) error (A B) 0553 minus0754 minus0850 minus1683(E) error (A C) minus0067 minus0198 minus0369 minus0495

140 07

(A) EXP 4248240 9888540 17028 24738400(B) NTM 4253660 9878822 16849850 24311230(C) FE(3D) 4247271 9870286 16963900 24616760

(D) error (A B) 0127 minus0098 minus1046 minus1726(E) error (A C) minus0022 minus0184 minus0376 minus0491

Table 8 Percentage error between the computational and experimental results for two-step samples (Group S3) Lowest four nonzero free-free modes

Method Modal frequencies in Hz1 2 3 4

S3-80250(A) EXP 403148 2126460 4139830 5153500(B) NTM 420212 2203984 4334192 5605556(C) FE(3D) 404180 2126900 4153700 5169800

(D) error (A B) minus3966 3517 4484 minus8428(E) error (A C) minus0255 minus0020 minus0333 minus0315

S3-80200(A) EXP (Figure 12) 354790 1727900 2291490 4531380

(B) NTM 367381 1788472 2551555 4660983(C) FE(3D) 355230 1728300 2318400 4532200

(D) error (A B) minus3549 3386 10192 minus2860(E) error (A C) 0124 0023 1160 0018

S3-80150(A) EXP 335859 1360050 1545130 3778200(B) NTM 346243 1434113 1638174 3889033(C) FE(3D) 336440 1364200 1548500 3781900

(D) error (A B) minus3091 minus5445 minus6021 minus2933(E) error (A C) 0172 0305 0218 0097

S3-80100(A) EXP 337400 1018240 1371070 3221200(B) NTM 345942 1074574 1424992 3303837(C) FE(3D) 337480 1024 1372900 3215

(D) error (A B) minus2531 minus5532 minus3932 minus2565(E) error (A C) 0023 0565 0133 minus0192

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 13: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

Shock and Vibration 13

Figure 10 Test setup

24302 651063

121867

193593

minus140

minus120

minus100

minus80

minus60

minus40

minus20

0

Am

plitu

de (d

Bvo

lt)

2000 4000 6000 8000 1000012000140001600018000200000Frequency (Hz)

Figure 11 Experiment first four natural frequencies for test sample S2-4040

35479

17279

229149

453138

500 1000 1500 2000 2500 3000 3500 4000 4500 50000Frequency (Hz)

00005

0010015

0020025

0030035

0040045

Am

plitu

de (v

olt)

Figure 12 Experimental first four natural frequencies for test sample S3-80200

signals of selected case italicized in Table 8 are plotted inFigure 12 In general the results of the three-span samplesreveal the same conclusion drawn from the two-span samplesthat the FE(3D) results are closer to the experimental resultsthan the analytical results The conclusion driven from theinvestigated two- and three-span samples is that the three-dimensional finite element can be trusted in the prediction ofthe natural frequency of stepped beam

33 Percentage Modal Deviation between FE(3D) and NTMMethod The results of the previous section show theaccuracy of the FE(3D) model in evaluating the natural

frequencies of stepped beam Therefore in this section afree-free two-span model is deeply investigated using (40)and FE(3D) methods to justify the validity of the analyticalsolution in predicting the stepped beam results Two cate-gories of samples are considered as shown in Figure 13 Thefirst category includes 600mm length samples with 119903lowast21 =278 times 10minus4 and the second category includes 200mm lengthsamples with 119903lowast21 = 205 times 10minus3 The effects of changing 120583and 119889 are investigated 120583 varies from 0 to 1 and meanwhileonly three values are listed in Table 9 Four different valuesof 119889 are investigated 05 0625 075 and 0875 The study in

14 Shock and Vibration

Table 7 Percentage error between the computational and experimental results for single-step test samples (Group S2) Lowest four nonzerofree-free modes

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

2040

40 02

(A) EXP 1848940 5028140 9854 16303(B) NTM 1873981 5194229 1021179 16776400(C) FE(3D) 1859490 5056749 9893345 16380170

(D) error (A B) 1354 3303 3630 2903(E) error (A C) 0570 0568 0399 0473

100 05

(A) EXP 2153900 7713530 13701800 19845900(B) NTM 2244601 7923127 13661990 20230700(C) FE(3D) 2142012 7700169 13663580 19793360

(D) error (A B) 4211 2717 minus0290 1938(E) error (A C) minus0551 minus0173 minus0278 minus0264

140 07

(A) EXP 3596820 8103960 15773100 20733800(B) NTM 3813426 8160003 15739160 21174340(C) FE(3D) 3581521 8090723 15705070 20634360

(D) error (A B) 6022 0691 minus0215 2124(E) error (A C) minus0425 minus0163 minus0431 minus0479

2540

40 02

(A) EXP (Figure 11) 2430240 6510630 12186700 19359300(B) NTM 2444111 6638069 12492520 19588580(C) FE(3D) 2430512 6518094 12223080 19314540

(D) error (A B) 0570 1957 2509 1184(E) error (A C) 0011 0114 0298 minus0231

100 05

(A) EXP 2796050 8693500 14542200 22134(B) NTM 2912321 8781311 14633780 22182430(C) FE(3D) 2806782 8698963 14551070 22095920

(D) error (A B) 4158 1010 0629 0218(E) error (A C) 0383 0062 0060 minus0172

140 07

(A) EXP 4015620 8665980 162389 22684(B) NTM 4167385 8797248 16074330 22814460(C) FE(3D) 4021237 8655476 16159230 22610690

(D) error (A B) 3779 1514 minus1013 0575(E) error (A C) 0139 minus0121 minus0490 minus0323

3040

40 02

(A) EXP 3023690 7906 14381400 21856600(B) NTM 3023321 7946457 14429850 21806140(C) FE(3D) 3014442 7878443 14307960 21781750

(D) error (A B) minus0012 0511 0336 minus0230(E) error (A C) minus0305 minus0348 minus0510 minus0342

100 05

(A) EXP 3401940 9329910 15681400 23607700(B) NTM 3478703 9293555 15691770 23326460(C) FE(3D) 3405324 9313349 15645690 23513650

(D) error (A B) 2256 minus0389 0066 minus1191(E) error (A C) 0099 minus0177 minus0227 minus0398

140 07

(A) EXP 4201680 9322630 16596400 23967700(B) NTM 4268272 9431643 16437830 23729240(C) FE(3D) 4211100 9322286 16530200 23881400

(D) error (A B) 1584 1169 minus0955 minus0994(E) error (A C) 0224 minus0003 minus0398 minus0360

Shock and Vibration 15

Table 7 Continued

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

3540

40 02

(A) EXP 3608280 9126360 16128600 238173(B) NTM 3607895 9104530 16000810 23500960(C) FE(3D) 3607465 9106544 16054460 23720110

(D) error (A B) minus0010 minus0239 minus0792 minus1328(E) error (A C) minus0022 minus0217 minus0459 minus0408

100 05

(A) EXP 3885030 9778800 16719900 24538800(B) NTM 3906518 9705047 16577640 24125780(C) FE(3D) 3882419 9759382 16658180 2441741

(D) error (A B) 0553 minus0754 minus0850 minus1683(E) error (A C) minus0067 minus0198 minus0369 minus0495

140 07

(A) EXP 4248240 9888540 17028 24738400(B) NTM 4253660 9878822 16849850 24311230(C) FE(3D) 4247271 9870286 16963900 24616760

(D) error (A B) 0127 minus0098 minus1046 minus1726(E) error (A C) minus0022 minus0184 minus0376 minus0491

Table 8 Percentage error between the computational and experimental results for two-step samples (Group S3) Lowest four nonzero free-free modes

Method Modal frequencies in Hz1 2 3 4

S3-80250(A) EXP 403148 2126460 4139830 5153500(B) NTM 420212 2203984 4334192 5605556(C) FE(3D) 404180 2126900 4153700 5169800

(D) error (A B) minus3966 3517 4484 minus8428(E) error (A C) minus0255 minus0020 minus0333 minus0315

S3-80200(A) EXP (Figure 12) 354790 1727900 2291490 4531380

(B) NTM 367381 1788472 2551555 4660983(C) FE(3D) 355230 1728300 2318400 4532200

(D) error (A B) minus3549 3386 10192 minus2860(E) error (A C) 0124 0023 1160 0018

S3-80150(A) EXP 335859 1360050 1545130 3778200(B) NTM 346243 1434113 1638174 3889033(C) FE(3D) 336440 1364200 1548500 3781900

(D) error (A B) minus3091 minus5445 minus6021 minus2933(E) error (A C) 0172 0305 0218 0097

S3-80100(A) EXP 337400 1018240 1371070 3221200(B) NTM 345942 1074574 1424992 3303837(C) FE(3D) 337480 1024 1372900 3215

(D) error (A B) minus2531 minus5532 minus3932 minus2565(E) error (A C) 0023 0565 0133 minus0192

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 14: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

14 Shock and Vibration

Table 7 Percentage error between the computational and experimental results for single-step test samples (Group S2) Lowest four nonzerofree-free modes

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

2040

40 02

(A) EXP 1848940 5028140 9854 16303(B) NTM 1873981 5194229 1021179 16776400(C) FE(3D) 1859490 5056749 9893345 16380170

(D) error (A B) 1354 3303 3630 2903(E) error (A C) 0570 0568 0399 0473

100 05

(A) EXP 2153900 7713530 13701800 19845900(B) NTM 2244601 7923127 13661990 20230700(C) FE(3D) 2142012 7700169 13663580 19793360

(D) error (A B) 4211 2717 minus0290 1938(E) error (A C) minus0551 minus0173 minus0278 minus0264

140 07

(A) EXP 3596820 8103960 15773100 20733800(B) NTM 3813426 8160003 15739160 21174340(C) FE(3D) 3581521 8090723 15705070 20634360

(D) error (A B) 6022 0691 minus0215 2124(E) error (A C) minus0425 minus0163 minus0431 minus0479

2540

40 02

(A) EXP (Figure 11) 2430240 6510630 12186700 19359300(B) NTM 2444111 6638069 12492520 19588580(C) FE(3D) 2430512 6518094 12223080 19314540

(D) error (A B) 0570 1957 2509 1184(E) error (A C) 0011 0114 0298 minus0231

100 05

(A) EXP 2796050 8693500 14542200 22134(B) NTM 2912321 8781311 14633780 22182430(C) FE(3D) 2806782 8698963 14551070 22095920

(D) error (A B) 4158 1010 0629 0218(E) error (A C) 0383 0062 0060 minus0172

140 07

(A) EXP 4015620 8665980 162389 22684(B) NTM 4167385 8797248 16074330 22814460(C) FE(3D) 4021237 8655476 16159230 22610690

(D) error (A B) 3779 1514 minus1013 0575(E) error (A C) 0139 minus0121 minus0490 minus0323

3040

40 02

(A) EXP 3023690 7906 14381400 21856600(B) NTM 3023321 7946457 14429850 21806140(C) FE(3D) 3014442 7878443 14307960 21781750

(D) error (A B) minus0012 0511 0336 minus0230(E) error (A C) minus0305 minus0348 minus0510 minus0342

100 05

(A) EXP 3401940 9329910 15681400 23607700(B) NTM 3478703 9293555 15691770 23326460(C) FE(3D) 3405324 9313349 15645690 23513650

(D) error (A B) 2256 minus0389 0066 minus1191(E) error (A C) 0099 minus0177 minus0227 minus0398

140 07

(A) EXP 4201680 9322630 16596400 23967700(B) NTM 4268272 9431643 16437830 23729240(C) FE(3D) 4211100 9322286 16530200 23881400

(D) error (A B) 1584 1169 minus0955 minus0994(E) error (A C) 0224 minus0003 minus0398 minus0360

Shock and Vibration 15

Table 7 Continued

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

3540

40 02

(A) EXP 3608280 9126360 16128600 238173(B) NTM 3607895 9104530 16000810 23500960(C) FE(3D) 3607465 9106544 16054460 23720110

(D) error (A B) minus0010 minus0239 minus0792 minus1328(E) error (A C) minus0022 minus0217 minus0459 minus0408

100 05

(A) EXP 3885030 9778800 16719900 24538800(B) NTM 3906518 9705047 16577640 24125780(C) FE(3D) 3882419 9759382 16658180 2441741

(D) error (A B) 0553 minus0754 minus0850 minus1683(E) error (A C) minus0067 minus0198 minus0369 minus0495

140 07

(A) EXP 4248240 9888540 17028 24738400(B) NTM 4253660 9878822 16849850 24311230(C) FE(3D) 4247271 9870286 16963900 24616760

(D) error (A B) 0127 minus0098 minus1046 minus1726(E) error (A C) minus0022 minus0184 minus0376 minus0491

Table 8 Percentage error between the computational and experimental results for two-step samples (Group S3) Lowest four nonzero free-free modes

Method Modal frequencies in Hz1 2 3 4

S3-80250(A) EXP 403148 2126460 4139830 5153500(B) NTM 420212 2203984 4334192 5605556(C) FE(3D) 404180 2126900 4153700 5169800

(D) error (A B) minus3966 3517 4484 minus8428(E) error (A C) minus0255 minus0020 minus0333 minus0315

S3-80200(A) EXP (Figure 12) 354790 1727900 2291490 4531380

(B) NTM 367381 1788472 2551555 4660983(C) FE(3D) 355230 1728300 2318400 4532200

(D) error (A B) minus3549 3386 10192 minus2860(E) error (A C) 0124 0023 1160 0018

S3-80150(A) EXP 335859 1360050 1545130 3778200(B) NTM 346243 1434113 1638174 3889033(C) FE(3D) 336440 1364200 1548500 3781900

(D) error (A B) minus3091 minus5445 minus6021 minus2933(E) error (A C) 0172 0305 0218 0097

S3-80100(A) EXP 337400 1018240 1371070 3221200(B) NTM 345942 1074574 1424992 3303837(C) FE(3D) 337480 1024 1372900 3215

(D) error (A B) minus2531 minus5532 minus3932 minus2565(E) error (A C) 0023 0565 0133 minus0192

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 15: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

Shock and Vibration 15

Table 7 Continued

119889 1198711 120583 Method Modal frequencies in Hz1 2 3 4

3540

40 02

(A) EXP 3608280 9126360 16128600 238173(B) NTM 3607895 9104530 16000810 23500960(C) FE(3D) 3607465 9106544 16054460 23720110

(D) error (A B) minus0010 minus0239 minus0792 minus1328(E) error (A C) minus0022 minus0217 minus0459 minus0408

100 05

(A) EXP 3885030 9778800 16719900 24538800(B) NTM 3906518 9705047 16577640 24125780(C) FE(3D) 3882419 9759382 16658180 2441741

(D) error (A B) 0553 minus0754 minus0850 minus1683(E) error (A C) minus0067 minus0198 minus0369 minus0495

140 07

(A) EXP 4248240 9888540 17028 24738400(B) NTM 4253660 9878822 16849850 24311230(C) FE(3D) 4247271 9870286 16963900 24616760

(D) error (A B) 0127 minus0098 minus1046 minus1726(E) error (A C) minus0022 minus0184 minus0376 minus0491

Table 8 Percentage error between the computational and experimental results for two-step samples (Group S3) Lowest four nonzero free-free modes

Method Modal frequencies in Hz1 2 3 4

S3-80250(A) EXP 403148 2126460 4139830 5153500(B) NTM 420212 2203984 4334192 5605556(C) FE(3D) 404180 2126900 4153700 5169800

(D) error (A B) minus3966 3517 4484 minus8428(E) error (A C) minus0255 minus0020 minus0333 minus0315

S3-80200(A) EXP (Figure 12) 354790 1727900 2291490 4531380

(B) NTM 367381 1788472 2551555 4660983(C) FE(3D) 355230 1728300 2318400 4532200

(D) error (A B) minus3549 3386 10192 minus2860(E) error (A C) 0124 0023 1160 0018

S3-80150(A) EXP 335859 1360050 1545130 3778200(B) NTM 346243 1434113 1638174 3889033(C) FE(3D) 336440 1364200 1548500 3781900

(D) error (A B) minus3091 minus5445 minus6021 minus2933(E) error (A C) 0172 0305 0218 0097

S3-80100(A) EXP 337400 1018240 1371070 3221200(B) NTM 345942 1074574 1424992 3303837(C) FE(3D) 337480 1024 1372900 3215

(D) error (A B) minus2531 minus5532 minus3932 minus2565(E) error (A C) 0023 0565 0133 minus0192

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 16: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

16 Shock and Vibration

Oslash40

Oslash20

60

600

Oslash25

Oslash30

Oslash35

= 01

240

Oslash40

600

= 04

420

= 07

d = 05

d = 0625

d = 075

d = 0875

Long samples

Oslash40

80

Oslash25

Oslash30

Oslash35

= 01

Oslash40

Oslash20

200

= 04

140

= 07

d = 05

d = 0625

d = 075

d = 0875

Short samples

200

20

Figure 13 Long and short stepped samples at three values of 120583 = 01 04 and 07 and four values of 119889 = ℎ21 = 05 0625 075 and 0875

this section focuses only on the first three nonzero free-freemodes The percentage modal deviation in analytical NTMsolution prediction in reference to the FE(3D) solution ispresented in Figure 13 for long samples and in Figure 14 forshort samples This percentage deviation is calculated usingthe following formula

Dev119894 = 119891(NTM)119894 minus 119891(FE)119894119891(FE)119894 lowast 100 (42)

whereDev119894 is the percentage deviation in the 119894th modalfrequency119891(FE)119894 is the 119894th mode natural frequency using three-dimensional finite element119891(NTM)119894 is the 119894th mode natural frequency usinganalytical NTMmethod

The results of Table 9 show that for the investigatedexamples with step ratio smaller than one the increase in120583 andor 119889 increases the modal frequencies The percentagedeviations in the analytical NTM results for the short samplesare higher than those for the longer samples The percentagedeviations in the analytical natural frequency prediction areplotted for the long and short examples in Figures 14 and15 respectively Figures 14(a) and 15(a) present a plot forDev1 Figures 14(b) and 15(b) present a plot for Dev2 andFigures 14(c) and 15(c) present a plot for Dev3 Figure 16(a)presents the first mode shape at the conditions of the peakpoint in Figure 15(a) Figure 16(b) presents the second modeshape at the conditions of the peak point in Figure 15(b) andFigure 16(c) presents the third mode shape at the conditionsof the peak point in Figure 15(c)

Figures 14(a) and 15(a) show that for long and shortstepped samples the Dev1 attains the peak when 120583 lies

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 17: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

Shock and Vibration 17

Table 9 Typical relative deviation between present NTM and finite element (3D) results Lowest three nonzero modes for two categories ofsingle-step F-F beam see Figure 13

119889 Method 120583 Modal frequencies in Hz119871 = 600mm 119871 = 200mm1 2 3 1 2 3

05

NTM01 217034 635604 1267590 1878302 5163860 964565004 232036 797543 1834110 1995497 6510740 138314007 447629 1037270 2253940 3813426 8160 15739200

FE(3D)01 216987 634850 1263259 1876267 5123790 944813804 229554 785722 1819305 1930166 6271645 1364231407 437591 1033915 2245125 3583014 8091330 15706439

dev01 minus0022 minus0119 minus0343 minus0108 minus0782 minus209004 minus1082 minus1504 minus0814 minus3385 minus3812 minus138607 minus2294 minus0324 minus0392 minus6431 minus0849 minus0208

0625

NTM01 283930 812357 1608220 2446347 6532940 1197950004 308616 991955 2074890 2639638 7837580 1502570007 495792 1128820 2333290 4167385 8797250 16074300

FE(3D)01 283898 811795 1604956 2445458 6509821 1185570904 305955 981347 2072554 2570408 7647979 1503783907 489234 1121452 2336177 4021301 8655042 16159248

dev01 minus0011 minus0069 minus0203 minus0036 minus0355 minus104404 minus0870 minus1081 minus0113 minus2693 minus2479 008007 minus1341 minus0657 0123 minus3633 minus1643 0526

0750

NTM01 355027 993279 1944090 3030222 7818400 1400404 381639 1149720 2248110 3236367 8841600 1584290007 511227 1230890 2406190 4268272 9431640 16437800

FE(3D)01 355036 993179 1943016 3031657 7819722 1397871604 379583 1144159 2251351 3181291 8759634 1593466407 508439 1224396 2410039 4205930 9312425 16529197

dev01 0002 minus0010 minus0055 0047 0017 minus018104 minus0542 minus0486 0144 minus1731 minus0936 057607 minus0548 minus0530 0160 minus1482 minus1280 0553

0875

NTM01 429273 1177820 2274860 3616212 9013570 1574160004 448134 1269840 2419690 3759295 9566420 1656970007 511380 1312660 2498460 4253660 9878820 16849800

FE(3D)01 429347 1178446 2277013 3621275 9047347 1582904504 447258 1269273 2423695 3739834 9595934 1669549207 510778 1310738 2502153 4247181 9870045 16963843

dev01 0017 0053 0094 0140 0373 055204 minus0196 minus0045 0165 minus0520 0308 075307 minus0118 minus0146 0148 minus0153 minus0089 0672

between 05 and 07 that is the step in the beam is locatedaround the peak of the first free-free mode shape seeFigure 16(a) Figures 14(b) and 15(b) show that there are twopeaks in Dev2 prediction The location of these peaks isfound to be near the position of the peaks of the secondfree-free mode shape see Figure 16(b) In addition the valueof Dev2 approaches zero when the step location lies in thesemistraight line between the two peaks in the second F-Fmode shape The same trend is repeated in the third modeshape as shown in Figures 14(c) 15(c) and 16(c) In additionwhen the location of diametric step in shaft coincides with a

peak point in 119894 mode shape the value of Dev119894 is increasedMeanwhile when the step lies in a straight portion of themode shape the Dev119894 approaches zero

34 Tapered Beam Approach Due to the importance oftapered or conical beams in many engineering applicationsthe current section is devoted to show how to use thepresent analysis to solve the problem of taper beam Thecurrent analysis is based on uniform beams while the partialdifferential equation which represents the lateral vibration oftapered or conical beams is fourth-order Bessel equation [30

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 18: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

18 Shock and Vibration

(0675 minus2307) +

minus3minus25minus2

minus15minus1

minus050

05D

evia

tion

()

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus26941) +minus3

minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus2867)

+minus3minus25minus2

minus15minus1

minus050

05

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 14 Variation of the percentage modal deviation between FE(3D) and NTM results as a function of 120583 and 119889 for free-free long samples119871 = 600mm (a) 1st mode (b) 2nd mode and (c) 3rd mode

31 37 38] To simulate nonuniform beam using the currentanalysis the beam is divided into multiple equal length spansas shown in Figure 17The height andor width of these spansare varying linearly between the start and the end to simulatethe tapered or conical beamThe height andor width ratio of119894 span can be calculated from the following formula

ℎ1198941 = ℎ1198991 + (1 minus ℎ1198991) (minus119909119894119871 + 119871 11989412119899 ) 1198871198941 = 1198871198991 + (1 minus 1198871198991) (minus119909119894119871 + 119871 11989412119899 )

(43)

where

ℎ1198941 = ℎ119894ℎ1 ℎ1198991 = ℎ119899ℎ1 1198871198941 = 1198871198941198871 1198871198991 = 1198871198991198871

119871 1198941 = 119871 1198941198711 (44)

ℎ119894 is the height of 119894 beam segment and 119887119894 is the width of 119894 beamsegment

To verify the suitability of the current model to representconical beams the results of the current model are comparedwith the exact solution for cantilevered (C-F) conical beamwith variable taper ratio ℎ1198991 = 1198871198991 = 02 05 and 07 as shownin Table 10 The model was investigated using the presentNTMandusing several number of spans 119899 = 20 100 200 and1000 The first three eigenvalues are evaluated for each taperratio and number of spans The time used for computing thefirst three natural frequencies is evaluated The model resultsare also evaluated using NAT previously published in [6] at119899 = 20 in order to compare the time saving when using thepresent method

The results of Table 10 show that increasing the numberof spans results in increasing the accuracy of the evaluatedbeam eigenvalues in comparison with the exact solution in[30] On the other hand the results show that increasing thenumber of spans results in increasing the computational timeThe comparison between the computational time using thepresent NTM and previously published NAT shows that the

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 19: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

Shock and Vibration 19

(0675 minus6539)+minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(a)

(0825 minus6374) +minus7minus6minus5minus4minus3minus2minus1

012

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(b)

(0875 minus5917) +minus7

minus5

minus3

minus1

1

Dev

iatio

n (

)

01 02 03 04 05 06 07 08 09 10

d = 05

d = 0625

d = 075

d = 0875

(c)

Figure 15 Percentage modal deviation between FE(3D) and NTM as a function of 120583 and 119889 for free-free short samples 119871 = 200mm (a) 1stmode (b) 2nd mode and (c) 3rd mode

= 0675

minus1minus05

0

Y

051

152

253

02 04 06 08 10(a) First mode

= 0825

minus1minus05

0

Y

051

152

253

02 04 06 08 10(b) Second mode

= 0875

02 04 06 08 10minus1

minus05

Y

005

115

225

3

(c) Third mode

Figure 16 Typical first three modal shapes at the peak points shown in Figure 15 for free-free short sample and 119889 = 05

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 20: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

20 Shock and Vibration

Table10Th

efirstthree

eigenvaluesfor

C-Fconicalbeam

usingNTM

incomparis

onwith

thoseo

fthe

exactsolutionpresentedin

[30]

andNAT

results

usingthep

rogram

of[6]

ℎ 1198991=119887 1198991

[30]

NAT

[6]

119899=20

NTM 119899=20

NTM 119899=100

NTM 119899=200

NTM 119899=1000

Time(s)

Time(s)

Time(s)

Time(s)

Time(s)

02

120582lowast2 161964

61683

661706

1861954

53

61962

105

61963

326

120582lowast2 2183855

182513

182513

183801

183840

183853

120582lowast2 3398336

394809

394809

398194

398300

398336

05

120582lowast2 146252

46155

62

46175

1946249

54

46250

109

46251

34120582lowast2 2

195476

195074

195074

19546

0195472

195477

120582lowast2 3485789

484725

484725

485746

485779

485788

07

120582lowast2 1406

6940615

62

40635

19406

6856

406

69111

40670

35120582lowast2 2

205554

2053

602053

61205547

205553

205554

120582lowast2 3mdash

539625

539625

540131

540147

540152

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 21: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

Shock and Vibration 21

ℎ0

1

k1

xi

V

V

i ℎi

L

n+1

ℎn

kn+1

ℎi

bi

Sec VV

Figure 17 Stepped tapered beam with varying depth and width

present NTM method is quicker than the NAT method [6]for the same number of spans

To investigate the capability of the present model toevaluate the natural frequencies of taper or conical beamwithvariable boundary conditions some cases of nonuniformbeams are selected form [31]The analysis in [31] is numericaland based on solving the taper beam partial differential equa-tion using Runge-Kutta method The boundary conditionsand the taper ratio are listed in Table 11 The number of spansused in evaluating the current example is 119899 = 1000 Theeigenvalue results using the presentNTMmethod are in goodagreement with numerical results of [31]

4 Conclusion

A new proposed normalized transfer matrix NTM uses newset of fundamental solution in combination with the transfermatrix method This method has the advantage of the TMMin that the determinant of the frequency equation is 4 times 4for 119899 number of spans In addition the formation of thesystem frequency equation determinant is not included in anyinverse matrix steps which reduces the computational time

The current work introduces a comparison between theexperimental and analytical NTM and three-dimensionalfinite element analyses for stepped thick beams Differentsystem parameters such as the step diameters ratio 119889 the steplocation parameter 120583 and the elastic segment length ratio 119871lowast2are consideredThe following conclusions can be drawn fromthe present work

(1) An excellent agreement between the present experi-mental results using several test samples and thoseof FE(3D) predictions has been recorded

(2) The results show that the three-dimensional finiteelement can be trusted in the prediction of the modalfrequencies of stepped thick beams in structural andmechanical system

(3) An interesting percentage of modal deviationsbetween the FE(3D) results and those obtained

Table 11 The first four eigenvalues for taper or conical beamsubjected to variable end conditions using the presentNTMand [31]

Beam parameters Frequency parameter 120582lowast21[31] Present NTM

ℎ1198991 = 11198851 = 119885119899+1 = 108Φ1 = 108 Φ119899+1 = 10002194 2195186044 6054611187 11875891964 1964162

1198871198991 = 051198851 = 119885119899+1 = 10Φ1 = Φ119899+1 = 102498 502921250 1242894013 3981548828 880372

1198871198991 = 1 ℎ1198991 = 15131198851 = 102 119885119899+1 = 2 times 102Φ1 = 3 times 102 Φ119899+1 = 4 times 1021363 1367092459 2492704837 4879159728 975762

1198871198991 = ℎ1198991 = 3141198851 = 119885119899+1 = 108Φ1 = Φ119899+1 = 1082583 2583277100 7114611393 13942232303 2304320

using the present frequency equation (40) has beenillustrated An increase in the step down locationparameter (120583) andor (119889) increases the modaldeviations The percentage deviations are higher forshorter beam than for longer one The maximumdeviation value in a specific normal mode is obtainedwhen the step location is adjacent to a peak locationin this normal mode Moreover the minimumpercentage deviation in a specific mode shape isobtained when the step location lies in a straightportion in the mode shape This may be explained bythe smaller effect of stress concentration at the stepunder such conditions

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 22: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

22 Shock and Vibration

(4) Typical example shows that the computational timeusing normalized transfer matrix (NTM) is greatlyreduced in comparison with numerical assemblytechnique (NAT)In addition to the above importance of conclusionone can obtain accurate results for any combinationof classical and elastic end conditions

(5) Based on the stepped beam the current analysis canbe used to evaluate the results of tapered beam Thepresent NTM show a very good stability at verylarge number of spans which enables the accurateevaluation of the tapered beam results using steppedbeam analysis

Nomenclature

119860 Cross-sectional area of the beam119886 119887 Polynomial roots119889 Segment diameter119889 Segment diameter ratio119864 Youngrsquos modulus of elasticity119891 Frequency (Hz)119866 Shear modulus of rigidity119868 Moment of inertia of the beam cross-sectionabout the neutral axis119869119894 Rotational moment of inertia of the stationmass119869119894+1 119869119894+1(1205881198601198713)119894 Shear deformation shape coefficient119896 120601 Elastic stiffness1198961 119896119899+1 End translational spring stiffness119871 Length of the beam (between points1 and 119899 + 1)119871lowast119894 Ratio 119871 119894119871119898119894 Concentrated mass at 119894 point119898119894+1 119898119894120588119894119860 119894119871 119894119898119905 Total mass of beam119903lowast21 Rotary inertia parameter 119868111986011198712119904lowast21 Shear deformation parameter 1198641119903lowast21 11986611198961119884 Nondimensional lateral deflection119909 119910 System coordinate of the beam1198851 119885119899+1 Nondimensional stiffness parameters definedas 11989611198713111986411198681 and 119896119899+11198713119899119864119899119868119899 respectively119885lowast1 119885lowast119899+1 Nondimensional stiffness parameters definedas 1198961119871311986411198681 and 119896119899+1119871311986411198681 respectivelyΓ119894 Nondimensional term (1198841015840119894 minus 119871 119894Ψ119894)1205751 1205752 Set of nondimensional terms defined as in (10a)and (10b)120582lowast41 Frequency parameter (120588111986011198714120596211986411198681)12058241 Frequency parameter (1205881119860111987141120596211986411198681)120583 Nondimensional beam length 1198711119871

] Poissonrsquos ratio120585 Nondimensional beam length 119909119871120588 Mass density of the beam material (kgm3)1206011 120601119899+1 End rotational spring stiffnessΦ1 Φ119899+1 Nondimensional rotational spring parametersdefined as 1206011119871111986411198681 and 120601119899+1119871119899119864119899119868119899respectively

Φlowast1 Φlowast119899+1 Nondimensional rotational springparameters defined as 120601111987111986411198681 and120601119899+111987111986411198681 respectively120595 Slope due to bending(sdot)1015840 1st derivative with respect to 119909 or 120585(sdot)10158401015840 2nd derivative with respect to119909 or 120585(sdot)101584010158401015840 3rd derivative with respect to 119909 or 120585(sdot)1015840101584010158401015840 4th derivative with respect to 119909 or 120585119862 Clamped (fixed) end119865 Free end119875 Pinned (hinged) end

S2 Two-span with single-step sampleS3 Three-span with two-step sampleV119897 10119864 + 12V119904 10119864 minus 12Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

The authors gratefully thank the assistants Eng M Zainworkshop technician and office secretary for their technicalsupport during all stages of this work

References

[1] J W S B RayleighTheTheory of Sound Macmillan 1896[2] S P Timoshenko ldquoLXVI On the correction for shear of the

differential equation for transverse vibrations of prismatic barsrdquoTheLondon Edinburgh andDublin PhilosophicalMagazine andJournal of Science vol 41 pp 744ndash746 1921

[3] G R Cowper ldquoThe Shear Coefficient in Timoshenkorsquos BeamTheoryrdquo Journal of AppliedMechanics vol 33 no 2 p 335 1966

[4] S K Jang and C W Bert ldquoFree vibration of stepped beamsHigher mode frequencies and effects of steps on frequencyrdquoJournal of Sound and Vibration vol 132 no 1 pp 164ndash168 1989

[5] M A Koplow A Bhattacharyya and B P Mann ldquoClosedform solutions for the dynamic response of Euler-Bernoullibeams with step changes in cross sectionrdquo Journal of Sound andVibration vol 295 no 1-2 pp 214ndash225 2006

[6] S H Farghaly and T A El-Sayed ldquoExact free vibration ofmulti-step Timoshenko beam systemwith several attachmentsrdquoMechanical Systems and Signal Processing vol 72-73 pp 525ndash546 2016

[7] H-Y Lin ldquoDynamic analysis of a multi-span uniform beamcarrying a number of various concentrated elementsrdquo Journalof Sound and Vibration vol 309 no 1-2 pp 262ndash275 2008

[8] Y Yesilce ldquoFree and forced vibrations of an axially-loadedTimoshenko multi-span beam carrying a number of variousconcentrated elementsrdquo Shock and Vibration vol 19 no 4 pp735ndash752 2012

[9] J R Banerjee ldquoDynamic stiffness formulation for structuralelements a general approachrdquo Computers amp Structures vol 63no 1 pp 101ndash103 1997

[10] S Yuan K Ye C Xiao F W Williams and D Kennedy ldquoExactdynamic stiffness method for non-uniform Timoshenko beamvibrations and Bernoulli-Euler column bucklingrdquo Journal ofSound and Vibration vol 303 no 3ndash5 pp 526ndash537 2007

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 23: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

Shock and Vibration 23

[11] E B Magrab ldquoNatural frequencies and mode shapes of Tim-oshenko beams with attachmentsrdquo Journal of Vibration andControl vol 13 no 7 pp 905ndash934 2007

[12] J-SWu andB-H Chang ldquoFree vibration of axial-loadedmulti-step Timoshenko beam carrying arbitrary concentrated ele-ments using continuous-mass transfer matrix methodrdquo Euro-pean Journal of Mechanics - ASolids vol 38 pp 20ndash37 2013

[13] M Attar ldquoA transfer matrix method for free vibration analysisand crack identification of stepped beams with multiple edgecracks anddifferent boundary conditionsrdquo International Journalof Mechanical Sciences vol 57 no 1 pp 19ndash33 2012

[14] G Ma M Xu L Chen and Z An ldquoTransverse free vibrationof axially moving stepped beam with different length and tipmassrdquo Shock and Vibration vol 2015 Article ID 507581 2015

[15] Q S Li ldquoExact solutions for free longitudinal vibration ofstepped non-uniform rodsrdquo Applied Acoustics vol 60 no 1 pp13ndash28 2000

[16] Q S Li J Q Fang and A P Jeary ldquoFree vibration analysis ofcantilevered tall structures under various axial loadsrdquo Engineer-ing Structures vol 22 no 5 pp 525ndash534 2000

[17] Q-P Vu J-M Wang G-Q Xu and S-P Yung ldquoSpectralanalysis and system of fundamental solutions for Timoshenkobeamsrdquo Applied Mathematics Letters vol 18 no 2 pp 127ndash1342005

[18] R H Gutierrez P A A Laura and R E Rossi ldquoNaturalfrequencies of a Timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the otherrdquoJournal of Sound and Vibration vol 141 no 1 pp 174ndash179 1990

[19] Y Yesilce ldquoDifferential transform method and numericalassembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number ofintermediate lumped masses and rotary inertiasrdquo StructuralEngineering and Mechanics vol 53 no 3 pp 537ndash573 2015

[20] X Wang and Y Wang ldquoFree vibration analysis of multiple-stepped beams by the differential quadrature element methodrdquoApplied Mathematics and Computation vol 219 no 11 pp5802ndash5810 2013

[21] F Ju H P Lee and K H Lee ldquoOn the free vibration of steppedbeamsrdquo International Journal of Solids and Structures vol 31 no22 pp 3125ndash3137 1994

[22] P A A Laura and R H Gutierrez ldquoAnalysis of vibrating Tim-oshenko beams using the method of differential quadraturerdquoShock and Vibration vol 1 no 1 pp 89ndash93 1993

[23] A Shahba R Attarnejad and S Hajilar ldquoFree vibration andstability of axially functionally graded tapered Euler-Bernoullibeamsrdquo Shock amp Vibration vol 18 no 5 pp 683ndash696 2011

[24] JW Jaworski and EHDowell ldquoFree vibration of a cantileveredbeam with multiple steps Comparison of several theoreticalmethods with experimentrdquo Journal of Sound and Vibration vol312 no 4-5 pp 713ndash725 2008

[25] Q Mao and S Pietrzko ldquoFree vibration analysis of steppedbeams by using Adomian decomposition methodrdquo AppliedMathematics and Computation vol 217 no 7 pp 3429ndash34412010

[26] Q Mao ldquoFree vibration analysis of multiple-stepped beamsby using Adomian decomposition methodrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 756ndash764 2011

[27] Z R Lu M Huang J K Liu W H Chen and W YLiao ldquoVibration analysis of multiple-stepped beams with thecomposite element modelrdquo Journal of Sound and Vibration vol322 no 4-5 pp 1070ndash1080 2009

[28] K Suddoung J Charoensuk andNWattanasakulpong ldquoAppli-cation of the differential transformation method to vibrationanalysis of stepped beams with elastically constrained endsrdquoJournal of Vibration and Control vol 19 no 16 pp 2387ndash24002013

[29] G Duan and X Wang ldquoFree vibration analysis of multiple-stepped beams by the discrete singular convolutionrdquo AppliedMathematics and Computation vol 219 no 24 pp 11096ndash111092013

[30] S Naguleswaran ldquoA Direct Solution for the Transverse Vibra-tion of Euler-Bernoulli Wedge and Cone Beamsrdquo Journal ofSound and Vibration vol 172 no 3 pp 289ndash304 1994

[31] B K Lee J K Lee T E Lee and S G Kim ldquoFree vibrations oftapered beams with general boundary conditionrdquoKSCE Journalof Civil Engineering vol 6 no 3 pp 283ndash288 2002

[32] R E Rossi P A A Laura and R H Gutierrez ldquoA note ontransverse vibrations of a Timoshenko beam of non-uniformthickness clamped at one end and carrying a concentratedmassat the otherrdquo Journal of Sound and Vibration vol 143 no 3 pp491ndash502 1990

[33] S H Farghaly ldquoVibration and stability analysis of Timoshenkobeams with discontinuities in cross-sectionrdquo Journal of Soundand Vibration vol 174 no 5 pp 591ndash605 1994

[34] S H Farghaly and T A El-Sayed ldquoExact free vibration analysisfor mechanical system composed of Timoshenko beams withintermediate eccentric rigid body on elastic supports Anexperimental and analytical investigationrdquo Mechanical Systemsand Signal Processing vol 82 pp 376ndash393 2017

[35] A Dıaz-De-Anda J Flores L Gutierrez R A Mendez-Sanchez G Monsivais and A Morales ldquoExperimental study oftheTimoshenko beam theory predictionsrdquo Journal of Sound andVibration vol 331 no 26 pp 5732ndash5744 2012

[36] J n Vaz and J de Lima ldquoVibration analysis of Euler-Bernoullibeams in multiple steps and different shapes of cross sectionrdquoJournal of Vibration andControl vol 22 no 1 pp 193ndash204 2016

[37] H H Mabie and C B Rogers ldquoTransverse Vibrations ofTapered Cantilever Beamswith End SupportrdquoThe Journal of theAcoustical Society of America vol 44 no 6 pp 1739ndash1741 1968

[38] S M Ibrahim S H Alsayed H Abbas E Carrera Y A Al-Salloum and T H Almusallam ldquoFree vibration of taperedbeams and plates based on unified beam theoryrdquo Journal ofVibration and Control vol 20 no 16 pp 2450ndash2463 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 24: A Normalized Transfer Matrix Method for the Free Vibration ...downloads.hindawi.com/journals/sv/2017/8186976.pdf · eccentricity on the free vibration of arbitrarily beam was investigated

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal of

Volume 201

Submit your manuscripts athttpswwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 201

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of


Recommended