+ All Categories
Home > Documents > A null model of the mouse whole-neocortex micro-connectome · SoM Vis Med Temp-3 -2.5 -2 -1.5 -1...

A null model of the mouse whole-neocortex micro-connectome · SoM Vis Med Temp-3 -2.5 -2 -1.5 -1...

Date post: 25-Jun-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
1
A null model of the mouse whole-neocortex micro-connectome Michael W. Reimann, Michael Gevaert, Ying Shi, Huanxiang Lu, Henry Markram & Eilif Muller Blue Brain Project Layer 23 Layer 4 Layer 5IT Layer 5PT Layer 6 PF AL SoM Vis Med Temp PF AL SoM Vis Med Temp -3 -1 -2 -2.5 -1.5 ipsi-lateral contra-lateral ipsi-lateral contra-lateral log 10 synapses / um 3 PF AL SoM Vis Med Temp PF AL SoM Vis Med Temp PF AL SoM Vis Med Temp PF AL SoM Vis Med Temp PF AL SoM Vis Med Temp PF AL SoM Vis Med Temp PF AL SoM Vis Med Temp PF AL SoM Vis Med Temp PF AL SoM Vis Med Temp PF AL SoM Vis Med Temp PF AL SoM Vis Med Temp PF AL SoM Vis Med Temp PF AL SoM Vis Med Temp source region target region VISa VISrl VISal VISli VISpl VISpor VISpm VISam VISl Source region Raw projection strengths Not every projection completely covers both source or target region. This is captured and quantified by the model. FRP MOs ACAd ACAv PL ILA ORBl ORBm ORBvl AId AIv AIp GU VISC SSs SSp-bfd SSp-tr SSp-ll SSp-ul SSp-un SSp-n SSp-m MOp VISal VISl VISp VISpl VISli VISpor VISrl VISa VISam VISpm RSPagl RSPd RSPv AUDd AUDp AUDpo AUDv TEa PERI ECT FRP MOs ACAd ACAv PL ILA ORBl ORBm ORBvl AId AIv AIp GU VISC SSs SSp-bfd SSp-tr SSp-ll SSp-ul SSp-un SSp-n SSp-m MOp VISal VISl VISp VISpl VISli VISpor VISrl VISa VISam VISpm RSPagl RSPd RSPv AUDd AUDp AUDpo AUDv TEa PERI ECT 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.00 0.25 0.50 0.75 Predicted innervation prob. 0.0 0.2 0.4 0.6 Observed innervation prob. MOs - L5 MOs - L2/3 MOs - L6a 2 4 6 8 10 12 14 IPSI IPSI CONTRA CONTRA n.s no data 10 20 30 40 50 Proj. density IPSI CONTRA Axon number FRP MOs ACAd ACAv PL ILA ORBl ORBm ORBvl AId AIv AIp GU VISC SSs SSp-bfd SSp-tr SSp-ll SSp-ul SSp-un SSp-n SSp-m MOp VISal VISl VISp VISpl VISli VISpor VISrl VISa VISam VISpm RSPagl RSPd RSPv AUDd AUDp AUDpo AUDv TEa PERI ECT FRP MOs ACAd ACAv PL ILA ORBl ORBm ORBvl AId AIv AIp GU VISC SSs SSp-bfd SSp-tr SSp-ll SSp-ul SSp-un SSp-n SSp-m MOp VISal VISl VISp VISpl VISli VISpor VISrl VISa VISam VISpm RSPagl RSPd RSPv AUDd AUDp AUDpo AUDv TEa PERI ECT First order innervation prob. predicted from projection density Pairs of regions tend to be innervated more often together A tree-based model creates statistical predictions of individual region innervation profiles Validation of the region innervation model 1 target 74% 2 targets 24% 3 targets 2% Model-based neurons (6 visual areas) Han et al., 2018 1 target 44% 2 targets 38% 3 targets 10% 4 targets 6% 5 targets 2% 1 target 53% 2 targets 28% 3 targets 14% 4 targets 5% 5 targets <1% 1 target 35% 2 targets 33% 3 targets 20% 4 targets 9% 5 targets+ 3% Fluorescence-based MAPseq-based 1 target 56% 2 targets 36% 3 targets 8% 4 targets <1% 5 targets 0% 1 target 50% 2 targets 38% 3 targets 4% 4 targets 8% 5 targets 0% L2/3 L4 L5 L6 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 VISli VISl VISal VISpm VISam VISrl VISli VISl VISal VISpm VISam VISrl Area A Area B P(B|A) Model P(B|A) VISli VISl VISal VISpm VISam VISrl Area A VISli VISl VISal VISpm VISam VISrl Area B Han et al., 2018 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 L2/3 L2/3 within-region modules VISa within-region modules VISam within-region modules VISa within-region modules VISam 0 100 200 300 400 500 0 2 4 6 8 10 Unidirectional con. prob. (%) 0.0 0.2 0.4 0.6 0.8 Bidirectional con. prob. (%) Sampling offset (um) 200 400 600 Region radius (um) 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 Reciprocal overexpression Model instances Mean 0 100 200 300 400 500 1 2 3 4 5 6 7 Reciprocal overexpression Model instances Mean Sampling offset (um) 200 400 600 Region radius (um) 2 4 6 8 10 12 14 16 Unidirectional con. prob. (%) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Bidirectional con. prob. (%) VISam->VISa VISa->VISam (VISa->VISam * VISam->VISa) VISa<->VISam 10 -6 10 -5 10 -4 10 -3 10 -1 10 -2 10 0 0 50 100 150 200 250 300 350 Count (model) log edge density 0 500 1000 1500 2000 2500 3000 3500 Count (control) 25 20 15 10 5 0 Edge density (%) source: prefrontal source: medial source: somatomotor source: temporal source: anterolateral source: visual intra-module inter-module log control half-width 1.2 1.0 0.8 0.6 0.4 log model half-width 1 2 3 4 5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 [...] [...] Model Expected Log-count MOs MOp FRP Neuron triplets FRP MOp MOs Sampling radius 150 um The model predicts over- expression of certain long- range motifs model data Relative frequency profile number Per projection class Per module: intra-module Per module: inter-module 1 2 3 4 5 6 5pt 1 2 3 4 5 6 5it 1 2 3 4 5 6 4 1 2 3 4 5 6 23 1 2 3 4 5 6 6 1 2 3 4 5 6 visual 1 2 3 4 5 6 somatomotor 1 2 3 4 5 6 anterolateral 1 2 3 4 5 6 temporal 1 2 3 4 5 6 medial 1 2 3 4 5 6 prefrontal 1 2 3 4 5 6 visual 1 2 3 4 5 6 somatomotor 1 2 3 4 5 6 anterolateral 1 2 3 4 5 6 prefrontal 1 2 3 4 5 6 temporal 1 2 3 4 5 6 medial S o u r c e T a r g e t s o u r c e t a r g e t Wang and Burkhalter (2007) VISpl VISpor VISl VISli VISal VISrl VISa VISam VISpm Yes 90 deg None 180 deg Yes None None None None 180 deg Yes None None 90 deg None 90 deg Yes None Yes 90 deg None 180 deg Yes None None None None 180 deg Yes None None 90 deg None 90 deg Yes None reflection? rotation? reflection? rotation? reflection? rotation? reflection? rotation? reflection? rotation? reflection? rotation? reflection? rotation? reflection? rotation? reflection? rotation? Yes - None - Yes - None - None - Yes - - - None - Yes - --- Juavinett et al. (2017) our mapping Contact: [email protected] // bluebrain.epfl.ch Strengths of individual projections Layer profiles of synapse densities Validation of layer profiles Validation of the mapping FRP MOs ACAd ACAv PL ILA ORBl ORBm ORBvl AId AIv AIp GU VISC SSs SSp-bfd SSp-tr SSp-ll SSp-ul SSp-un SSp-n SSp-m MOp VISal VISl VISp VISpl VISli VISpor VISrl VISa VISam VISpm RSPagl RSPd RSPv AUDd AUDp AUDpo AUDv TEa PERI ECT FRP MOs ACAd ACAv PL ILA ORBl ORBm ORBvl AId AIv AIp GU VISC SSs SSp-bfd SSp-tr SSp-ll SSp-ul SSp-un SSp-n SSp-m MOp VISal VISl VISp VISpl VISli VISpor VISrl VISa VISam VISpm RSPagl RSPd RSPv AUDd AUDp AUDpo AUDv TEa PERI ECT 1 5 10 15 Statistical interaction for innervations from MOs P(MOs->A|MOs->B) / P(MOs->A) Predicted innervation Which combination of regions is innervated by individual axons? Analyze innervation patterns of reconstructed axons from Janelia Mouselight Topographical mapping of projections Region innervation profiles of individual axons Incomplete region coverage We model a topographical mapping between brain regions by defining local coordinate systems in the source and target regions. Fit to projection data from the voxelized model of Knox et al., 2018 We first validate the model against the input data: How much is lost by modelling only linear mapping? Next, we validate against the literature. This is functional, not anatomical data! Predicted motifs and micro- connectivity We predict the full micro-connectivity for over 10 million neurons Reciprocal connectivity between regions Multi-region connectivity motif counts Long-range connectivity shaped by local clusters We predict a connectivity principle described by Taylor et al., 2017 ex- tends to single-neuron scale. Julie A Harris, Stefan Mihalas, et al. The organization of intracortical connections by layer and cell class in the mouse brain. April 2018. doi: 10.1101/292961. URL http://biorxiv.org/lookup/doi/10.1101/292961. Almut Schüz and Günther Palm. Density of neurons and synapses in the cerebral cortex of the mouse. Journal of Comparative Neurology, 286(4):442–455, August 1989. Joseph E. Knox, et al. High resolution data-driven model of the mouse connectome. April 2018. doi: 10.1101/293019. URL http://biorxiv.org/lookup/ doi/10.1101/293019. Charles R. Gerfen, Michael N. Economo, and Jayaram Chandrashekar. Long distance projections of cortical pyramidal neurons. Journal of Neuroscience Research, 96(9):1467–1475, September 2018. doi: 10.1002/jnr.23978. Ashley L Juavinett, Ian Nauhaus, Marina E Garrett, Jun Zhuang, and Edward M Callaway. Automated identification of mouse visual areas with intrinsic signal imaging. Nature Protocols, 12(1):32–43, Quanxin Wang and Andreas Burkhalter. Area map of mouse visual cortex. The Journal of Comparative Neurology, 502(3):339–357, May 2007. doi: 10.1002/ cne.21286. Yunyun Han, et al. The logic of single-cell projections from visual cortex. Nature, 556(7699):51–56, March 2018. doi: 10.1038/nature26159. Peter N. Taylor, Yujiang Wang, and Marcus Kaiser. Within brain area tractography suggests local modularity using high resolution connectomics. Scientific Reports, 7 (1):39859, December 2017. doi: 10.1038/srep39859. References Availability Both the code, parameterized connectome constraints (recipe) and connectome instances are available at: https://portal.bluebrain.epfl.ch/ resources/models/mouse-projections/ Motivation: Connectomics takes place in two separate worlds: Micro-connectomics, studying connections between individual neurons, but at comparatively small scales; and macro- connectomics, studying connections at large scales, but only between regions of hundreds of neurons. We take a first step towards consolidating the two approaches. We start by considering the micro-connectivity implied by the macro- connectivity models, that of unstructured region-to-region connections, then apply a number of additional biological constraints: We then find that these simple constraints lead to highly nonrandom micro-connectivity between regions. Projections have a certain layer profile of synapse density in the target region Projections implement a topographical mapping between regions Individual neurons innervate only a subset of the regions targeted by their source region. We start with macro- or meso-scale connectomics. Harris et al., 2018 report the strengths of projections between regions in the Allen Common Coordinate Framework. They provide strengths for five different projection classes. We convert the reported strengths to average synapse densities in terms of synapses um-3 using a predicted total number of synapses (88 billion, Schuz & Palm, 1989). We predict and apply layer profiles of synapse density in the target region based on data from Harris et al., 2018 We validate the prevalence of profiles and the resulting densities against raw data of the volumetric connectome model of Knox et al., 2018
Transcript
Page 1: A null model of the mouse whole-neocortex micro-connectome · SoM Vis Med Temp-3 -2.5 -2 -1.5 -1 ipsi-lateral contra-lateral ipsi-lateral contra-lateral log 10 synapses / um3 PF ALoM

A null model of the mouse whole-neocortexmicro-connectomeMichael W. Reimann, Michael Gevaert, Ying Shi, Huanxiang Lu, Henry Markram & Eilif Muller

Blue Brain Project

Laye

r 23

Laye

r 4

Laye

r 5I

T

Laye

r 5P

T

Laye

r 6

PF AL

SoM

Vis

Med

Tem

p

PF

AL

SoM

Vis

Med

Temp

-3 -1-2-2.5 -1.5

ipsi-lateral contra-lateral ipsi-lateral contra-lateral

log 10 synapses / um3

PF AL

SoM

Vis

Med

Tem

p

PF

AL

SoM

Vis

Med

Temp

PF AL

SoM

Vis

Med

Tem

pPF

AL

SoM

Vis

Med

Temp

PF AL

SoM

Vis

Med

Tem

p

PF

AL

SoM

Vis

Med

Temp

PF AL

SoM

Vis

Med

Tem

p

PF

AL

SoM

Vis

Med

Temp

PF AL

SoM

Vis

Med

Tem

p

PF AL

SoM

Vis

Med

Tem

p

PF AL

SoM

Vis

Med

Tem

p

PF AL

SoM

Vis

Med

Tem

p

PF AL

SoM

Vis

Med

Tem

p

sourc

e re

gio

n target region

VISa VISrl VISal

VISli

VISpl

VISpor

VISpm

VISam

VISl

Source region Raw projection strengths

Not everyprojectioncompletely coversboth source ortarget region.This is capturedand quantified bythe model.

FRP

MO

sACAd

ACAv PL ILA

ORBl

ORBm

ORBvl

AId

AIv

AIp GU

VIS

CSSs

SSp-b

fdSSp-t

rSSp-ll

SSp-u

lSSp-u

nSSp-n

SSp-m

MO

pVIS

al

VIS

lVIS

pVIS

pl

VIS

liVIS

por

VIS

rlVIS

aVIS

am

VIS

pm

RSPa

gl

RSPd

RSPv

AU

Dd

AU

Dp

AU

Dpo

AU

Dv

TEa

PERI

ECT

FRPMOs

ACAdACAv

PLILA

ORBlORBmORBvl

AIdAIvAIpGU

VISCSSs

SSp-bfdSSp-trSSp-ll

SSp-ulSSp-unSSp-nSSp-m

MOpVISalVISl

VISpVISplVISli

VISporVISrlVISa

VISamVISpmRSPagl

RSPdRSPvAUDdAUDp

AUDpoAUDv

TEaPERIECT 0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.00 0.25 0.50 0.75Predicted innervation prob.

0.0

0.2

0.4

0.6

Obse

rved in

nerv

ation p

rob.

MOs - L5MOs - L2/3MOs - L6a

2

4

6

8

10

12

14

IPSI

IPS

I

CONTRA

CO

NT

RA

n.s

no data

10

20

30

40

50

Proj. density

IPSI CONTRA

Axo

n nu

mbe

r

FRP

MO

sACAd

ACAv PL

ILA

ORBl

ORBm

ORBvl

AId

AIv

AIp GU

VIS

CSSs

SSp-b

fdSSp-t

rSSp-ll

SSp-u

lSSp-u

nSSp-n

SSp-m

MO

pVIS

al

VIS

lVIS

pVIS

pl

VIS

liVIS

por

VIS

rlVIS

aVIS

am

VIS

pm

RSPagl

RSPd

RSPv

AU

Dd

AU

Dp

AU

Dpo

AU

Dv

TEa

PERI

ECT

FRP

MO

sACAd

ACAv PL

ILA

ORBl

ORBm

ORBvl

AId

AIv

AIp GU

VIS

CSSs

SSp-b

fdSSp-t

rSSp-ll

SSp-u

lSSp-u

nSSp-n

SSp-m

MO

pVIS

al

VIS

lVIS

pVIS

pl

VIS

liVIS

por

VIS

rlVIS

aVIS

am

VIS

pm

RSPagl

RSPd

RSPv

AU

Dd

AU

Dp

AU

Dpo

AU

Dv

TEa

PERI

ECT

First order innervation prob.predicted from projectiondensity

Pairs of regionstend to be innervated moreoften together

A tree-based model createsstatistical predictions of individualregion innervation profiles

Validation of the region innervation model

1 target 74%

2 targets 24%

3 targets 2%

Model-based neurons(6 visual areas)

Han et al., 2018

1 target 44% 2 targets 38%

3 targets 10%4 targets 6%5 targets 2%

1 target 53% 2 targets 28%

3 targets 14%

4 targets 5%5 targets <1%

1 target 35%

2 targets 33%

3 targets 20%

4 targets 9%5 targets+ 3%

Fluorescence-based MAPseq-based

1 target 56% 2 targets 36%

3 targets 8%4 targets <1%5 targets 0%

1 target 50% 2 targets 38%

3 targets 4%4 targets 8%

5 targets 0%

L2/3 L4

L5 L60.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

VIS

li

VIS

l

VIS

al

VIS

pm

VIS

am

VIS

rl

VISli

VISl

VISal

VISpm

VISam

VISrl

Area A

Are

a B

P(B

|A)

Model

P(B

|A)

VIS

li

VIS

l

VIS

al

VIS

pm

VIS

am

VIS

rl

Area A

VISli

VISl

VISal

VISpm

VISam

VISrl

Are

a B

Han et al., 2018

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L2/3 L2/3

within

-reg

ion m

odule

sVIS

a

within-region modulesVISam

within-region modulesVISa

within

-reg

ion m

odule

sVIS

am

0 100 200 300 400 500

0

2

4

6

8

10

Unid

irec

tion

al c

on. pro

b. (%

)

0.0

0.2

0.4

0.6

0.8

Bid

irec

tion

al c

on. pro

b.

(%)

Sampling offset (um)200 400 600

Region radius (um)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Reci

pro

cal o

vere

xpre

ssio

n

Model instancesMean

0 100 200 300 400 5001

2

3

4

5

6

7

Reci

pro

cal o

vere

xpre

ssio

n

Model instancesMean

Sampling offset (um)200 400 600

Region radius (um)

2

4

6

8

10

12

14

16

Unid

irec

tion

al c

on. pro

b. (%

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Bid

irec

tion

al c

on. pro

b.

(%)

VISam->VISa

VISa->VISam

(VISa->VISam * VISam->VISa)

VISa<->VISam

10-6 10-5 10-4 10-3 10-110-2 100

0

50

100

150

200

250

300

350

Count

(model)

log edge density

0

500

1000

1500

2000

2500

3000

3500

Count

(contr

ol)

25

20

15

10

5

0

Edge

den

sity

(%

)

source: prefrontalsource: medialsource: somatomotorsource: temporalsource: anterolateralsource: visual

intra-moduleinter-module

log c

ontr

ol h

alf-

wid

th

1.2

1.0

0.8

0.6

0.4

log model half-width1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

[...] [...]

Model

Expected

Log-c

ount

MOs MOp

FRP

Neuron triplets

FRP

MOpMOs

Sampling radius 150 um

The modelpredicts over-expression ofcertain long-range motifs

modeldata

Rel

ativ

e fr

equen

cy

profile number

Per projection class

Per module: intra-module

Per module: inter-module

1 2 3 4 5 6

5pt

1 2 3 4 5 6

5it

1 2 3 4 5 6

4

1 2 3 4 5 6

23

1 2 3 4 5 6

6

1 2 3 4 5 6

visual

1 2 3 4 5 6

somatomotor

1 2 3 4 5 6

anterolateral

1 2 3 4 5 6

temporal

1 2 3 4 5 6

medial

1 2 3 4 5 6

prefrontal

1 2 3 4 5 6

visual

1 2 3 4 5 6

somatomotor

1 2 3 4 5 6

anterolateral

1 2 3 4 5 6

prefrontal

1 2 3 4 5 6

temporal

1 2 3 4 5 6

medial

Source

Target

source

target

Wang andBurkhalter (2007)

VISpl

VISpor

VISl

VISli

VISal

VISrl

VISa

VISam

VISpm

Yes

90 deg

None

180 deg

Yes

None

None

None

None

180 deg

Yes

None

None

90 deg

None

90 deg

Yes

None

Yes

90 deg

None

180 deg

Yes

None

None

None

None

180 deg

Yes

None

None

90 deg

None

90 deg

Yes

None

reflection?

rotation?

reflection?

rotation?

reflection?

rotation?

reflection?

rotation?

reflection?

rotation?

reflection?

rotation?

reflection?

rotation?

reflection?

rotation?

reflection?

rotation?

Yes

-

None

-

Yes

-

None

-

None

-

Yes

-

-

-

None

-

Yes

-

---

Juavinettet al. (2017)

ourmapping

Contact: [email protected] // bluebrain.epfl.ch

Strengths of individual projections Layer profiles of synapse densities

Validation of layer profiles

Validation of the mapping

FRP

MOs

ACAd

ACAv

PL

ILA

ORBl

ORBm

ORBvl

AIdAIv

AIpGU

VISC

SSsSSp-bfd

SSp-tr

SSp-ll

SSp-ul

SSp-unSSp-n

SSp-m

MOp

VISal

VISl

VISp

VISpl

VISliVISpor

VISrl

VISaVISamVISpm

RSPagl

RSPd

RSPv

AUDd

AUDp

AUDpoAUDv

TEa

PERI

ECT

FRP

MOs

ACAd

ACAv

PLILA

ORBl

ORBm

ORBvl

AIdAIv

AIp

GU

VISC

SSs

SSp-bfd

SSp-tr

SSp-ll

SSp-ul

SSp-unSSp-n

SSp-m

MOp

VISal

VISl

VISp

VISpl

VISli

VISporVISrl

VISa

VISamVISpm

RSPagl RSPd

RSPv

AUDd

AUDp

AUDpo

AUDv

TEa

PERI

ECT

1 5 10 15

Statistical interaction for innervations from MOs

P(MOs->A|MOs->B) / P(MOs->A)

Predicted innervation

Which combination of regions is innervated byindividual axons?Analyze innervation patterns of reconstructed axonsfrom Janelia Mouselight

Topographical mapping of projectionsRegion innervation profiles of individual axons

Incomplete region coverage

We model a topographical mappingbetween brain regions by defininglocal coordinate systems in thesource and target regions.Fit to projection data from the voxelized model of Knox et al., 2018

We first validate the model againstthe input data: How much is lost by

modelling only linear mapping?

Next, we validate against the literature.This is functional, not anatomical data!

Predictedmotifs

and micro-connectivity

We predict the fullmicro-connectivity

for over 10 million neurons

Reciprocal connectivity between regions

Multi-region connectivity motif counts

Long-range connectivity shaped by local clusters

We predict a connectivity principledescribed by Taylor et al., 2017 ex-

tends to single-neuron scale.

Julie A Harris, Stefan Mihalas, et al. The organization of intracortical connections by layer and cell class in the mouse brain. April 2018. doi: 10.1101/292961. URL http://biorxiv.org/lookup/doi/10.1101/292961.

Almut Schüz and Günther Palm. Density of neurons and synapses in the cerebral cortex of the mouse. Journal of Comparative Neurology, 286(4):442–455, August 1989. Joseph E. Knox, et al. High resolution data-driven model of the mouse connectome. April 2018. doi: 10.1101/293019. URL http://biorxiv.org/lookup/doi/10.1101/293019.

Charles R. Gerfen, Michael N. Economo, and Jayaram Chandrashekar. Long distance projections of cortical pyramidal neurons. Journal of Neuroscience Research, 96(9):1467–1475, September 2018. doi: 10.1002/jnr.23978.

Ashley L Juavinett, Ian Nauhaus, Marina E Garrett, Jun Zhuang, and Edward M Callaway. Automated identification of mouse visual areas with intrinsic signal imaging. Nature Protocols, 12(1):32–43,

Quanxin Wang and Andreas Burkhalter. Area map of mouse visual cortex. The Journal of Comparative Neurology, 502(3):339–357, May 2007. doi: 10.1002/cne.21286.

Yunyun Han, et al. The logic of single-cell projections from visual cortex. Nature, 556(7699):51–56, March 2018. doi: 10.1038/nature26159.

Peter N. Taylor, Yujiang Wang, and Marcus Kaiser. Within brain area tractography suggests local modularity using high resolution connectomics. Scientific Reports, 7(1):39859, December 2017. doi: 10.1038/srep39859.

References

Availability

Both the code, parameterizedconnectome constraints (recipe)and connectome instances areavailable at:

https://portal.bluebrain.epfl.ch/resources/models/mouse-projections/

Motivation: Connectomics takes place in two separate worlds: Micro-connectomics, studying connections between individual neurons, but at comparatively small scales; and macro-connectomics, studying connections at large scales, but only between regions of hundreds of neurons. We take a first step towards consolidating the two approaches. We start by considering the micro-connectivity implied by the macro-connectivity models, that of unstructured region-to-region connections, then apply a number of additional biological constraints:

We then find that these simple constraints lead to highly nonrandom micro-connectivity between regions.

Projections have a certain layer profile of synapse density in the target region

Projections implement a topographical mapping between regions

Individual neurons innervate only a subset of the regions targeted by their source region.

We start with macro- or meso-scale connectomics. Harris et al., 2018 report the strengths of projections between regions in the Allen Common Coordinate Framework. They provide strengths for five different projection classes. We convert the reported strengths to average synapse densities in terms of synapses um-3 using a predicted total number of synapses (88 billion, Schuz & Palm, 1989).

We predict and apply layer profiles of synapse density in the target region based on data from Harris et al., 2018

We validate the prevalence of profiles and theresulting densities against raw data of thevolumetric connectome model of Knox et al.,2018

Recommended