+ All Categories
Home > Documents > A Rep'roduced Copy · The objective was to design. fabricate. and test a brushless dc .. motor with...

A Rep'roduced Copy · The objective was to design. fabricate. and test a brushless dc .. motor with...

Date post: 07-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
235
NASA-CR-171838 19850008985 A Rep'roduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility 1111111111111 11111111111111 I111I 1I11I 11111111 NF01599 FFNo 672 Aug 65 ! ' " !"j ". j J "1 l.ANGLEY RESEARCH CENTER L18rtARY, NASA HAMP-tOtl. YJRGlWA https://ntrs.nasa.gov/search.jsp?R=19850008985 2020-08-04T03:43:41+00:00Z
Transcript

NASA-CR-171838 19850008985

A Rep'roduced Copy OF

Reproduced for NASA

by the

NASA Scientific and Technical Information Facility

1111111111111 11111111111111 I111I 1I11I 11111111 NF01599

FFNo 672 Aug 65

! ' " 1~35 !"j ". j J "1 I~

l.ANGLEY RESEARCH CENTER L18rtARY, NASA

HAMP-tOtl. YJRGlWA

https://ntrs.nasa.gov/search.jsp?R=19850008985 2020-08-04T03:43:41+00:00Z

i l i I r·

t , , .

I I.

\ \

-c.~-n I ~~'3 c.. \ ANAL REPORT

(bASA-CR-171UJ8) DES1~h A~D lEST OF A fLUB N8S-17254 CliAUNiL MCT~h fCE EL1C!ECMIChAN1CAL FLIUill ~CNTbCL Ae1UA1ICb Fin~l Ee~oLt (Suust~~LJ Ener.qy Sys~ellls) .. ~45. j. he A 11/I1F AO 1 UncldS

eStL 09A GJ/33 140B1

A fOlLD~ C~=J,,~~J~EL [0dOTO~

fO~ ElECl:u~Or~JECu;cji~~xS~CAl

fl~G~il7 (cO~u~Ol ACTQjJAuuO~

Sundstrand Energy Systems trr\ Sl:t:OSlR~~D

ROCKFORO,ILLINOIS \-.) 17 . unll 01 Sund.trand Corporation ~ ®

...

..

~'. _.-;

a _J

'~

I ~ l I 1

U t-

1,

-1 - -'~

1 , "

'. "1 , ~ l J , 1 ,

-1 1 I

~ i " 1 ...

, ] -1 j ~ j ... a

0' j --,

j ~

J '! j :1 "" . ,~ ~

a , I

j ~

1 j

i • 1

R I

,1 H

[I "

I] ~ , '

\', "

1\ fi 1.1 ~ "

~ll n :1 li -~

).1 r-- • .. ~ I, ~

;,j

f' f.l

~ n r' d ...

&& ...

ANAL REPORT S330B-R1

DESIGN AND TEST OF A FOUR CHANNEL PERMANENT MAGNET BRUSHLESS D.C. MOTOR FOR

ELECTRm:.r:CHANICAL FLIGHT CONTROL ACTUATION

FOR

NASA CONTRACT: NAS 9-16535

DATA ITEM: MA-640T

TO

NASA-L VNDON 8. JOHNSON SPACE CENTER

HOUSTON, TEXAS 77058

By

SUNDSTRAND ENERGY SYSTEMS

Unit of Sundstrand Corporation 4747 Harrison Avenue, P.O. Box 7002

Rocldord, IL 61125

DECEMBER 1904

~ ---, ! ;

~ -,

1 TABLE OF CONTENTS ,

J 1.0 Introduction

... 2.0 Summary

1 3.0 Approach

I

~ t

'r 4.0 Motor D~sign Studies. , t

Motor FabricaHon :(

5.0 j

6.0 Design Verification Test

-I 7.0 Conclusion j

Appendix A Test Data

j Appendix B Control Strategy

............

I r

l 1 1 ~-~ " !J " a r---'t

n _ ...... fit

~-1-- '.n ·------------___ .. _·_ ....... ..-, ...... a: ___ "" .... ~_ .... tL_ .. _.="""'.a=_eJL"""'=''''''' __ ,..'''"*''2''''il':._c:::;:A~,hG~ ... ~'''"'''"''=""",au""" . • -=.==.JSJII"'"

1 - . < i j i I ,~..\o

j 1''''> ! ;

1.0 mTROOUCTIOiJ

' ..

. .. ~ .. .." - .. ~.' , . ~ - ... -,-- ... --: -' ---!

~ ~

, u

j j 1 " ,

D

, 1

1

~ .

,."-- l

1.0 INTRODUCTION

Advances in power electronics and electric motor design have made possible Electromechanical Actuation Systems (EMA). Figure 1-1. with performance and weight characteristics comparable to conventional hydraulic and hydro mechanical systems. Present trends in aircraft and spacecraft toward use of electric power for more accessories and services make EMA an attractive candidate for primary flight control actuators.

DC POWER SUPi>LY

POSITION COMMAN 0

SA

[;\l ELECTRIC MECI1ANICAL CONTROLLER -MOTOR ORIVE IlC

ROTOR

POSITION

POSITIOII FEEDBACK

Figure 1-1 Electromechanical ~rvoactu::tor Sy::tem Dlock Diagram (Slmp:lflcd)

FLIGHT CONTROL SURFACE

The reliability requirements for primary flight control actuators. however. dictate a level of ' redundancy. Conventional approaches have included multi-actuator. Figure 1-2. or multi-motor systems. Figure 1-3.

AILERON

~EDUNDANT HYDRAULIC ACTUATORS

~ REDUNDANT ELECT~OHYDRAULIC SPOILER ACTUATORS

~~.~ ~,. ~ .. ~,>::---.') ELECTRICAL SPOILER CONTROL WIRES

" ~ "~~~ / SPOILER ELECTRONIC CONTROL UNITS

TRIM CONTRO, ~. ./ / SYMMETRIC '" . :'-..:...~~ SPOILER CONTROL . .. .... ""'V">.......~ ~" <":....

~ Z' . r '. " ' • • V'~'-...... "'" ~ FLIGHT SPOILERS

" .• -..: ~ ... 67-....r~

~ , •••..• ~ •• ' . "'~...", '~-• ~ AILERON

CONTROL/r -.' .•.••• ''''~...", ~ WHEEL kd1r~ .... ~ ~" «l:

~ti~ TRIM CONTROL CABLES ~"~/?""

OVERRIDE '\.. ~LI ERON CONTROL CABLES

" TRIM AND LOAD fEEL SPOILER ROLL INPUT LVDTS

Figure 1·2 Typical Lateral Flight Control System

S8308·R1 l

r J

1

,1

J .. ~

1 j

J

I I

j '.I

' ..

>J .. j J , t :j

'I "

'f

'.~

"

J I ~ !}

a ~

',S

I~

fi

U

'9

B g "',-"

a r

0 Jl ill I:"~

REDUNDANT SPEEDBRAKE HYDRAULIC MOTORS

REDUNDANT RUDDER HYDRAULIC MOTORS

Figure 1·3 Space Shuttle Rudder/Speedbrako Schematic

To achieve the full potential of EMA technology, it is desirable to obtain the required redundancy' with a multi-channel motor which could electromagnetically sum the torque of the individual channels on a single rotor, Figure 1-4. Complex mechanical gearing arrangements could then be eliminated.

To reduce this concept to practical application requires knowledge of the failure modes and effects and innovative approaches to control and redundancy management.

As the first step in this effort. NASA-JSC and Sundstra"d Advanced Technology Group undertook a joint program to design, develop and test a highly reliable. lightweight. multi-channel motor. This program was conducted under contract NAS-9-16535.

This project concentrated on establishing a suitable electromagnetic torque summing approach to flight control system redundancy. The objective was to design. fabricate. and test a brushless dc .. motor with four-channel/two fault tolerant redundancy. This motor provided the means for' validation of the analytical models and permits future development of a compatible four-channel control technique.

S8308-R1 Page 1·2

.:.

\' ., <

. ~:

I '

'(. : ~ " ..

:." .

. ~ ..

.. ,'

k::~;

OUTPUT

OUTPUT SHAFT

SHAFT (THRU 4 ROTORS)

OUTPUT SHAFT (THRU 2 ROTORS)

SINm.E STATOR ASSEMBLY

-c:.4SEPARATE WINDINGS EACH A SINGLE PHASE ITVP N PHASES)

STATOR ASSEMBLY ITVP 4 PLACES)

1 STATOR WINDING ITVP N PHASES) 4 PLACES

STATOR ASSEMBLY ITYP 2 PLACESI

_ 2 STATOR WINDINGS '--- ITVP N PHASES)

2 PLACES

Figure 1-4 Typical Electromagnetic Torque Summing Concepts

Within this context, several specific objectives were defined:

1. Establish a Preferred Motor Concept - With emphasis on failure modes and effects, different mechanical arrangements were evaluated and a preferred concept selected .

2. Minimize Weight of Preferred Concept - The weight of the preferred concept was evaluated with respect to performance, reliability, and efficiency. Electromagnetic design parameters were traded to achieve a suitable balance of these characteristics.

3. Validate Electrical Performance Model - Single-channel tests of the motor characterized its performance and were used to validate the design models.

In achieving these objectives, the intent of this project was to demonstrate the feasibility of electromagnetic torque summing and establish the credibility of weight and performance

S8308-R1 Page 1-3

....

,~

I

I I

! I I

I I I

f j • j 1 'I

f I t 1

1 j ]

1 J

J j ... j '. ,j "

rl If ;j

I '0'

j ' 0,.

'~,

~

B

u

n !~

f n D "

g

9 r--......

D

D D j:.

~

B ~

D

~ (~

D I' I

ill "

predictions. In conjunction with this work, NASA-JSC separately funded the development of finite element electromagnetic performance models. The combination of these analytical techniques, the characterization data obtained from motor tests, and the availability of a four-channel motor provide the foundation for the future development of a compatible control strategy.

S8308-R1 Page 1-4

"'I ; i '! ) '.0 , .,

'1 f ~ "

"-

~.

-i --,~

-,

"

;.: " 0

, ,;

-.~~

~ , ,"''If:.,. ~; ..

,\

~} ~ ~~

i

>':' , , ,~

~',

, j .;;

.~:.

, . '; .

, '":-;t:

'1 , ;'~ /.J':

" "I

'0

: ,,' .t

. i .. ..

~n~, .~:-~ .

t~J.

,1

:j

'J ." LJ

~

'] ! ~ .. ~

'f}

, ~ ~ I "

. r :i U

~ :~r'\

"! ." !

,

• I

t , , <

"'~

J

'-I, " ;

:L L '

'~

J,

,4 'f.,· .... ;

i

l r.' J g' ., .'( J t: '

'~ ,

't,:\

~ ',~

,

I I , I i 1 1 l 1 > 1 .

1

r ~ ! j i j .. ,

,1 .1

J J

J '. ,

:1 i J .~

'I .. ia

] J .t ~

'j :J '~ .

1 :l ] , " ~'l - : .:~ ~z..:....:

~

g .'

n ..

n n B

~

~ g r---'" b

Q

B

8 n ~

~

n :(

r fa

.H

2.0 SUMMARY -A four-channel motor, capable of sustaining full performance after any two credible failures was successfully designed, fabricated, and tested. Configure~ as illustrated in Figure 2-1, the design consisted of a single samarium cobalt permanent magntJt rotor with four separate three phase windings arrayed in individual stator quadrants around the periphery.

MOTOR WINDING

4

SINGLE SAMCO ROTOR

-+---+----+

MOl OR WINDING

3

Figure 2·1 Electromagnetic Torque Summing Candidate

Trade studies' which culminated in this design established the sensitivities of weight and penormance to such parameters as design speed, winding pattern, number of poles, magnet. , . configuration and strength. With this information, individual design details were selected to . provide a reasonable balance between weight and performance. The resulting motor, at 33.31 pounds, achieved a project goal, bettering a 34 pound maximun. established by comparison to comparable hydraulic systems. With a demonstrated efficiency of 92.9% at a design point of 4333 rpm, 17.2 hp, the motor also achieved the goal of 90% minimum efficiency. The prototype motor is shown in Figure 2-2.

Manufacturing techniques refined in the cunstruction of this unit demonstrated that electromagnetic torque summing is a practical concept. Methods of coil winding and insertion pIUS rotor fabrication techniques provided a light, compact assembly without exotic and expensive processes.

Equally significant, testing demonstrated excellent 'llectromagnetic separation among !he individual channels. Performance was virtually unaffected as channels were added or subtracted from the circuit. Extensive static and dynamic data were developed. Included in the Appendix t6 this report, these data provide the essential information necessary to design a compatible four-channel controller and ultimately bring an &Iectromechanical flight control system to fruition.

SS30S-R1 Page 2-1

-;- '.:

·'H. g.,

".:'

. i

. ;

. , · ~! : j · .:~

J · ,

!,

."

~ .~ {3r----, :.

1 ,.l!l . c, ;j

0 , 'I '~ :.!

ORIGINAL PAGE BLAcl( AND WHITE PHOTOGRAPH

-fi'. c ..... -._ .... .'

". J ,

I ~ ,-

J ;,..:

• I .,:

n ~ 0

fA .-;;, n .'

Figure 2-2 Prototype 4 Channel Motor

J

I ;.

~ I ,

" I ., .)

'-'. J t~_

f ~ ~{ ' •• J r c'

' .. ~ 8 ~.

9 ' ..

SB30B-R1 Page 2-2

,.; a '-',-,

-, ~

~

:0 r

,.'; tlJ

.. ~., . .....- -" -:~ ... >'''''6'_'-.--:'''''~''- ::-"1-:':.,: .. '"':' .... ," .. ~ :~.-:~ .• ~~.:.- .... ; .... '.">:_ •••• : ... __ :"'G~~~.~~ ·-!"~~-·t.·'" ~~: .... ~ .. :: .1

. .'. 1

. . 1 ~

3.0 APPROACH

. ~

" .

,

" " '~

I'

I? I I t; ~ i

" , , i ~' i' ~ "

1 ~ . ' E'

f· " ~ ,~ ',:

,

!i "1:-' :1'~ : 1':-j,

..

'i..:; ~J '" y. ;'1;'

r ,j' ";-

,1 1, J; , ]:, ,j

". ,l,' ,', J -j ;,

1 " ,. 'l: r 1-J.

F : '\ '. J " i ;.,: ~ t:~;

1

I i ~

I I I U

I 3 g r l

B ,----~,--"-

3.0 APPROACH

The approach used in this project is summarized as follows:

i) ESTABLISH REQUIREMENTS - Sundstrand and NASA-JSC jointly reviewed the functional requirements of an EMA system, assessed their influence on motor desiyn and selected a working set of design criteria.

ii) ESTABLISH PREF!=RRED GEOMETRY - A variety of configurationz were conceived and compared, establishing a preferred mechanical arrangement.

iii) DEFINE POINT OF DEPARTURE DESIGN - A detailed design of the prci'~rred geometry was executed using historical information to select individual part configurC'dons. "

iv) ESTABLISH POINT OF DEPARTURE PERFORMANCE - In-depth analyses were conducted for the preferred geometry to fully define its predicted performance.

v) ITERATE ON POINT OF DEPARTURE - Individual deSign parameters were varied to develop sensitivity information enabling a rUined final design to b) established.

vi) FABRICATE FINAL DESIGN - One motor was built. Design changes necessary for manufacturing reasons were factored into the analyses.

vii) TEST FINAL DESIGN MOTOR - Motor and single channel motor/controller tests were conducted to confirm and correct the . analytical techniques and provide a data base for controller development by NASA.

viii) NASA-JSC TESTING - The motor was provided to N.ASA-.ISC for planned performance, . and failure mode evaluation testing.

SJ30B·R1 Page 3·1

/'

'i' \ '~

[:; n 1"1 B

,-, H -.f,".

'>,

4.0 fliOTOR DESiGN STUJ~UES

,1 .j

,j i 1 ~

i I

."

____________________ ..,_.,_. ____ :II __ ~ ______ ~"I "....r~ ... & ___ ~ ... _____ 11: __ o:.:. ______ ,_~ __ .. _ ..

/' i' t

. ;',

I i; <. : ,

f a .. 1 ~

"

f I' . i - t . ,

f I

·'1 : "> L .

I I

4.0 MOTOR DESIGN STUDIES

The objective of the design studies was to establish a design which offered a reasonable balance of the desired criteria. Trades were conducted to define ?, preferred geometry which was then optimized. 'Variables such' as magnet material, lamination material, number of poles, rotor construction, design speed and winding pattern were considered.

The method employed entailed establishing the preferred arrangement using reliability criteria. The details of this configuration were then selected, based on prior experience, to establish a point of departure design. This baseline was analyzed in depth to fully characterize its performance and physical properties.

Next, each parameter was varied individually by carrying out complete alternate motor designs, calculating the resulting performance and comparing to the baseline. After all the variables had been evaluated in this manner, a final motor design was performed using the optimum value for each parameter. This version was later fabricated to assess the accuracy of the predictions, to validate the models and to provide a tool for further system development.

A flow diagram of the trade studies is found in Figure 4-1.

4.1 REQUIREMENTS

The design for the motor is based on the Space Shuttle inboard elevon performance requirements, Figure 4-2. The Space Shuttle requirements were chosen because, at the time, interest in an electric Orbiter offered a likely opportunity for a near-term demonstration of this technology.

Fault Tolerance and Torque'vs.'Speed

The two-fault tolerant requirement dictates that the actuator's motor provide full performance even after two credible failures. A further stipulation for safe operation at reduced performance with any three credible failures was also imposed, in essence dictating a four-channel motor. Quadruple redundancy is compatible with the Shuttle flight control system of four general purpose computers with four reconfigurable data strings.

The resulting actuator, therefore, requires the torque vs. speed characterhitics illustrated in Figure 4-3. Note that to provide this full performance with only two healthy motor channels requires that each channel be capable of supplying one-half full actuator output power plus one-half of any losses engendered by the failed channels. Theoretically then a fully healthy motor would be capable of supplying, at least instantaneously, the torque shown in Figure 4-4.

The four channel concept thus carries the potential for overdriving the actuation system and perhaps damaging structure. Control of this situation must be considered in ensuing system definition activities.

Duty Cycle

The duty cycle defined in the contract statement of work is shown in Figure 4-5. Representing original Orbiter design criteria, this cycle comprises approximately 2000 watt-hours .

REQUIREMENTS DEFINITION

V

CONCEPT SELECTION

V BASELINE DESIGN

V SPEED TRADE STUDIOS OSPEED VS WEIGHT o SPEED VS DYNAMIC PERFORMANCE o SPEED VS THERMAL CAPABILITY

t ROTOR CONFIGURATION TRADE STUDY oTANGENTIAL VS RADIAL MAGNETS

., WINDING PATTERN TRADE STUDY oDELTA VS WYE

V NUMBER OF POLES TRADE STUDIES o NO POLES VS WEIGHT o NO POLES VS EFFICIENCY

~ MAGNET MATERIAL TRADE STUDIES oMAGNET STRENGTH VS WEIGHT OMAGNET STRENGTH VS EFFICIENCY

t WEIGHT VS EFFICIENCY TRADE STUDY o LAMINATION MATERIAL

V FINAL DESIGN

Figure 4·1 Trade Study Flow Diagram

S8308·R1

, -

~ '. 'i r :f. L' , ~. ;

.500 iii ..J I

Z

co (:) ... X

.-Z w :: 0 :: w Cl Z :I:

o

.. __ . _________________ ._~I ... W • .. ~

INPUT VOLTAGE STROKE NO LOAD VELOCITY STALL LOAD DYNAMIC PERFORMANCE RELIABILITY

270 VDC ± 12.50

± 300 /SEC 500,000 IN-LB -JOB @ 3.3 HZ + 2% COMMAND TWO FAULT TOLERANT

Figure 4-2 Space Shuttle Inboard Glavon Requirements

4, 3 OR 2 CHANNELS OPERATING

20

HINGE RATE (DEGRESS/SEC)

Figure 4-3 Motor Speed-Torque Requirements

30

I t i t i,

m ··,-G

o

iii ..I I

Z

to b .500 ... ~ I-Z w :: 0 :: w (!) Z :r;

iF .300 o ... X a:I ..I

Z .:. .200 I-Z w :: o :: ~ .100 z :r;

o

4 CHANNELS OPERATING

3 CHANt,lELS OPERATING

2 CHANNELS OPERATING

20

HINGE RATE (DEGREES/SEC)

Figure 4-4 Motor Speed-Torque Capcbilities

.204 .300

.156 .192

I .-.05 •

.025 +12;y/ISEC .25 HZ

+2o/SEC I .~#

-" . 5 10 15 20

TIME (MINUTES)

Figure 4-5 Duty Cycle

.-.

25

o

. 30

.120 I +250 /SEC •• 25 HZ

30

S8308-R1 Page 4-4

-I f' ~ ,

. "

~.

I~'~ ~.:~ ~ ~ :

~, Ll

At the time of this project, data from initial flights were revealing a large degree of conservatism in that value. Sufficient capability was anticipated to require no more than 500 watt-hours.

In order not to penalize this design study by using overly conservative criteria, NASA-JSC and Sundstrand jOintly redefined the duty cycle. The resulting cycle, summarized in Table 4-1 on a per channel basis, was predicated on the following:

1. Elevon hinge moment and rate using STS-1 data and three sigma winds.

2. Approximately 500 watt-hours total energy.

3. At least one maximum power point in each flight regime.

4. Output horsepower less than 1.5 horsepower 98% of the time.

5. Nine minutes of surface holding against inertia loads, assumed to be equal to 5% of the maximum load, during the initial phase of de-orbit prior to entering the atmosphere.

Table 4-1 Derived Single Channel Duty Cycle

Cycle Duration, Motor Power, Surface Rate, Motor Speed Number Minutes Horsepower Degrees/Sec. RPM Remarks

1 9 Holding 0 0 Holding 12,500 in·lb/GR··

2 17.5 0.3 5 1666

3 0.5 2.3 5 1666

4 7.5 0.3 13 4333

5 0.5 10.0 13 4333 Max. Hinge Moment

6 3.5 0.3 20 6666

7 0.5 10.0 20 6666

8 1.5 0.3 30 10.000

9 0.5 10.0 30 10,000 Max. Surface Rate

• • Based on 10,000 RPM Motor •• Gear Ratio (GR) = 2.000:1 for 10,000 RPM Motor

4.2 EVALUATION CRITERIA

A principal emphasis of this project was to ascertain the realistic weight savings which could be anticipated with electromechanical technology. For that reason, all design options were compared primarily on the basis of their effect on motor weight.

However, from an overall vehicle perspective, the lightest actuator may not yield the lightest system. If a heavy battery was the power source, for example, the motor would be only a small percentage of system weight. It would thus be advantageous to emphasize efficiency in the motor design to lower battery weight. For this reason, motor efficiency was the second criteria used for evaluating design options.

The theme which pervaded the trades then was to strive for the lightest design which would satisfy a minimum efficiency. Having selected candidates on this basis, a final evaluation of weight vs . efficiency was made to ascertain if efficiency gains would warrant some weight growth. The project goal was to produce a motor no heavier than "34 pounds with a 90% minimum efficiency at the design operating point.

S8308-R1

~'1

,"r'~ n,' '1 H J 1

'1' ,',

,,'

"~

j ":1

, .

o n

f\

~

ill

r u

U H

/ ','

,

4.3 CONTROL CONSIDERATIONS

Although the primary emphasis of this project was development of a four channel motor, the interrelationship of the motor and its controller required that some control method be assumed. The following paragraphs describe the control strategy that was envisioned. Note that these assumptions relate to providing compact and efficient control of the actuation functions and do not addres~ redundancy management. How faults are detected and controlled is the subject of futuer ' NASA-JSC activity.

Figure 4-6 is a block diagram of the actuation system. The controller converts the 270 volts dc to three-phase power suitable for driving the motor. It consists of an inverter and associated control electronics that process the commanded position, the rotor position, and the actuator position information to suitably switch the inverter.

POWER SUPPLY

N POSITIO COM MAN D

270VDC

A

CONTROLLER ¢B

MOTOR

¢c

ROTOR POSITION

LINEAR POSITION

Figure 4-6 Actuation System Block Diagram (Single Channal)

MECHANICAL DRIVE

LVDT ' EXITATION'

A voltage source, six-step inverter was selected because it is smaller and lighter than a current source inverter and is more suitable for pulse width modulation (PWM) control.

As shown in Figure 4-3, the motor must produce constant horsepower from the maximum speed down to 43% of the maximum speed. This can be accomplished by holding the commutation angle constant. However, the motor power factor and current will vary as the speed varies.

To minimize controller current, it is desirable to have the same motor current at the extreme speeds. This can be achieved by designing the motor such as to have a leading power factor at the maximum speed and a lagging power factor of the same magnitude at the lowest speed. The power factor depends on the ratio of the speeds, the higher the speed rar.ge, the lower the power factor. At the intermediate speeds, the power factor is always greater than the value at the extreme speeds as is the motor current. The motor design was based on this concept and optimized for operation at the extreme speeds.

For output powers less that full output power at speeds down to 43% of the maximum 'speed, reducing the commutation angle will reduce the output power since the output power is proportional to the sine of the commutation angle. Below 43% of the maximum speed, the outpiJt power can be controlled by simultaneously varying the commutation angle and the input voltage. PWM is used to control the input voltage.

More detail on the assumed control scheme is found in Appendix B. S8308-R1 Page 4·6

/ ' /

/ , ,/

j i, 1 I,

'. ! ! ) " :-, . ~

i 1" .

I" ~ ~. ~

?'-.. l , "

t

, ; '..;.

1

\

1

, t

~',

I i

4.4 DESIGN PROCEDURE

Two Sundstrand developed computer programs were used to design the brushless dc motor options and calculate performance.

The first program calculate~ the motor flux densities, back EMF, winding resistance, winding inductance, and other basic motor parameters from the motor dimensions, number of turns, wire size, permanent magn'et characteristics, etc.

The second program calculates the motor losses, torque, power factor, efficiency, current and the transistor currents. The inverter and motor are represented by an electrical network model and the motor performance is calculated by solving the networl< nonlinear differential equations.

4.5 SELECTION OF THE PREFERRED GEOMETRY

A variety of mechanical arrangements can be envisioned to provide a motor with four channel capability. For the purpose of this study, the six configurations shown in Figures 4-7 through 4-12 were selected as representative of the most likely approaches.

Single rotor concepts (Figure 4-7) are generally lighter and do not suffer from critical spr.ed problems. Multirotor designs (Figure 4-8) offer better fault isolation and greater torque to inertia ratio but have mora parts plus critical speed limitations. The concept in Figure 4-9 represents a combination of the single and multirotor approaches.

OUTPUT SHAn·

OUTPUT SHAFT (THRU 4 ROTORS)

SINGLE STATOR ASSEMBLY

L- 4 SEPARATE WINDINGS EACH A SINGLE PHASE (TVP N PHASES)

Figure 4-7 Four Channel Concept A

' ..

STATOR ASSEMBLY (TYP 4 PLACES)

ROTOR #3

1Cli---1 STATOR WINDING (TYP N PHASES) 4 PLACES

Figure 4-6 Four Channel Concept B sa30a·R1 Page 4-7

"

--i;

.' ;

I "

B o o

(\

~

B

m

B 9 11. 1]

_.-,--STATOR ASSEr.1BLY (TYP 2 PLACES)

'------2 STATOR WINDINGS (TYP fJ PHASES) 2 PLACES

Figure 4-9 Four Channel Concept C

Multishaft approaches, shown in Figures 4-10 through 4-12, have the drawback of needing clutch mechanisms, but afford more straightforward methods of redundancy mCillagement.

In choosing among these options, mechanical and reliability criteria were applied. Mechanical considerations included qualitative assessment of complexity, volume, weight, and performance capability. Reliability considerations addressed thA ability to provide two fault tolerant performance. This included an evaluation of the ability of each configuration to isolate faults and prevent subsequent propagation to secondary failures. The nature of likely failure modes and their implications to overall system architecture were also considered.

The above considerations indicated the single rotor configuration, Figure 4-7, offered the best design solution. As a further refinement, several stator options for this configuration were conceived. These included intertwining the windings of the individual channels, completely· separating them, or partially overlapping them. The four quadrant geometry shown in Figure 4-13 was selected as offering the best isolation without affecting performance. Thus, the preferred concept is a single rotor geometry with a four quadrant stator.

As noted, dual fault tolerance requires two healthy channels to carry half the output load plus half any losses accruing to faults. Having selected a preferred geometry, it was then necessary to assess the probable failure modes, estimate the resulting additional losses, and thus establish the sizing criteria for the indiv!dual channels.

Mechanical failure modes are straightforwardly controlled with multipe rotating surfaces, dual retaining devices, generous structural margins of safety, etc. All probable modes entail very small additional losses.

Electrical failures can be generaily grouped as open circuits or short circuits. As the scope of this· project was directed to permanent magnet brush less de motors, the presence uf permanent magnets enables the motor to also perform as a generator. This fact causes short circuit tailures, which present fault current paths, to produce considerable retarding torque. Compensating for two faults of this nature could result in an excessively large motor.

In evaluating this scenario, any failure or failure combination with a probability of 10-9/flight or greater was deemed credible and, therefore, a deSign consideration. Any failure modes with smaller probatilities were judged noncredible.

S8308-R1 Page 4-8

r

, I

ELECTRICALLY RELE/\SED, r~lECt-fA!~ICALL Y APPLIED (TVP 2)

Figure 4-10 Four Channel Concept 0

ROTOR #1

ROTOR #3

ROTOR #2

ROTOR #4

~_-STATOR ASSEMBLY (TVP 2 PLACES)

--STATOR ASSEMBLY (TYP 4 PLACES)

~t~C ~ 1 STATOR WINDING (TVP N PHASES) ELECTRICALLY

RELEASED, MECHANICALLY APPLIED (TYP 2)

. Figure 4-11 Four Channel Concept E

4 PLACES

S8308·R1 Page 4·9

I

J

: .....

:J ~ ·· .. i

:} 1 n ';., q .1

·1 rn

.,

'"

,.

~ ..

___ ,STATOR ASSEMBL' (TYP 4 PLACES)'

i~#:04::i I CLUTCH tl :::_-_-l-l~ _ / ~

~~~rf._!.~ALLY 1 1'- 1 STATOR WINDING ENERGIZED, ~(TYP N PHASES) MECHANICALLY 4 PLACES RELEASED . (TYP 4 PLACES)

Figure 4-12 Four Channel Corcept F

S8308-R1 Page 4-10

.7;

~ 1

1

:\

\ .' " I

~ , '

·:~r ~':: "...: , ,J;; .. ';,

MOTOR WINDING

4

SINGLE SAMCO ROTOR

-1---+----+

MOTOR WINDING

3

Figure 4-13 Selocted Four Channel Geometry

.. ..

Using MIL-HDBK-217D data plus historical information from similar Sundstrand products, a combination of one short circuit and one open circuit failure per flight was judged credible, but two short circuits were not. Allocating losses in fault down modes, therefore, sized the individual. channels' at approximately 10 hp apiece to insure 17.18 hp was always delivered. . ,

4.6 POINT OF DEPARTURE DESIGN CONCEPT

As noted, the design concept selected was a single stator-single rotor design with the 4 stator'· windings wound in quadrants around the stator. Evaluation of different winding schemes showed, that isolation of the 4 windings could be achieved with a consequent pole, full-pitch winding if the number of stator slots is an in~egral multiple of the number of poles times the number of phases. The total number of poles is 4 times the number of poles per quadrant. Therefore, the possibilities for the motor design are 8, 16, 24, etc. poles. Previous brushless dc motor design experience led to choosing 16 poles for the baseline motor. The minimum number of stator slots is 48 which was selected for the baseline motor. A wye connected winding was selected for the design. The winding design is shown in Figure 4-14.

Hiperco 50 was selected for the stator laminations because the high magnetic saturation results in minimum weight. The s'.ator iron areas were sized to obtain flux densities of 130,000 and 140,000 Iines/in2 for the stator core and stator tE?eth, respectively.

Thp, rotor configuration is shown in Figure 4-15. Samarium-cobalt with an energy product of 21 x' 106 gauss-oersteds Vias chosen for the permanent magnets. The rotor design is based ~:m' tangentially oriented permanent magnets as shown.

The stator slot area was sized for a winding current density of 8,000 amperes/in2.

S8308·R1 Page 4-11

0 fj

-:1 U '1

U ' I

I ,,-

A :'~1 .:' ~ , i

.. :1 " i

~ "'J

'1 ;

',;-< U

,1 ,:::] § t,

;j a

"

,-

B t:, "-

J

~ '~ I;,

'4 tl 'I <' ..... ;~

'. -j n "

~ , )l

~, J t~ ~

IA I L IA I I. I • J Ie I L

.1 Ic 1 N Ic

IA I L IA IN

I. I I .I I. I .I

[Lne l- I I Ie Figure 4-14 Quad Uotor Winding Insertion - Connection DI::gram

NONMAGNETIC CORE

NONMAGNETIC INCONEL SLEEVE

MAGNETIC POLE PIECES

TANGENTIALLY ORIENTEO PERMANENT MAGNET

- .

Figure 4-15 Baseline Motor Rotor Configuration S8!:108-R1 Pago 4-12

"'. ;"

~ ! '

'-

;,

,.

~..' ...

,. I I

, .

For the motor performance calculations, the stator copper was assumed to be at a temperature of 150°C and the rotor magnets at 160°C.

The calculated motor performance at the duty cycle load points is shown in Table 4-2. The total electromagnetic weight is 15.3 pounds, 10.2 pounds for the stator, and 5.1 pounds for the rotor.

Table 4-2 Baseline Motor Pcriormnnce (Per Channel)

Inverter Ir.ve . . Motor Motor' Dury Commutation PWM Inpo... Phase Power

Load Speed. Output. Period. Losses. Cycle. Ang!e. Frequency. Current. Current. Factor. Efficiency. Point RPM HP Minutes Wa:ts Per Unit Degrees Hertz DC Amps RMS Amps Per Unrt Percent

1 ° ° 9 15 ° --2 1666 0.3 17.5 106 0.3 9.3 : 5330 :l.8 4.1 0.22 64.1

3 1666 2.3 0.5 237 0.3 36.0 5330 10.2 21.6 0.45 88.6

4 4333 0.3 '.5 357 0.65 10.0 6930 5.2 6.7 0.33 46.3

5 4333 10.0 0.5 574 1.0 36.0 - 33.1 28.1 o.n 92.8

6 6666 0.3 3.5 627 1.0 3.9 - 5.9 6.4 0.35 26.:'

7 6566 10.0 0.5 nl 1.0 38.5 - 33.9 23.2 0.95 90.6

8 10000 0.3 1.5 1158 1.0 6.5 - 7.9 16.5 0.22 16.2

9 10000 10.0 0.5 1270 1.0 41.5 - 35.7 25.7 0.91 85.4

4.7 THERMAL ANALYSIS

A thermal analysis of the baseline motor design was performed for the duty cycle shown in Table 4-1. Two motors were assumed to be operating in a 200°F ambient and all of the dissipated energy was considered to be absorbed by the iron and copper. . ..

The results of the thermal analysis are shown in Table 4-3. The maximum safe operating temperatures are 2000C for the magnets and 250°C for the stator copper. Since both the copper and the magnet temperatures exceeded these limits at the end of the fourth cycle, the thermal' . analysis was not carried any further. . ..

Table 4-3 Baseline Motor Thermal .~nalysls

Maximum Temperature, °C

Load Duration, Copper Magnel

Point Minutes Initial Final Initial Final

1 9.0 93.3 100.2 93.3 96.1

2 17.5 100.2 173.8 96.1 154.2

3 0.5 173.8 179.5 154.2 155.8

4 7.5 179.5 262.3 155.8 218.9

The thermal analysis assumed that all of the losses were absorbed by the motor mass. In reality, there will be heat transfer due to convection, conducction, and radiation. Also, the duty cycle r.eeds validation. Since the primary objective of this study was to demonstrate a concept,

S8308-R1 Page 4-13

/ o· .. , . •

NASA-JSC and Sundstrand decided that thermal capability would not be a design cliterion. The objective would be to design the lightest motor satisfying the performanco requirements and to then define its thermal capability.

4.8 MOTOR SPEED TRACE STUDY

The speed trade study was performed for speeds of 6,000, 10,000, and 15,000 rpm. Six thousand and 15,000 rpm motors were designed and compared to the baseline 10,000 rpm motor. The 6,000 and 15,000 rpm motors were based on the same design constraints that were used for the baseline motor.

111e motor performance at the rated load is shown in Tables 4-4 and 4-5 for the 6,000 and 15,000 riJm designs, respectively. Table 4-6 is a tabulation of the motor characteristics for all three motors.

The system inertia at the motor shaft for the three speeds was calculated and compared to the motor inertia to determine the influence on tne dynamic response. The actuation system is shown in Figure 4-16. A ballscrew was chosen over a geared rotary actuator because it is more efficient and results in more efficient packaging fer a flight control surface. The following assumptions were made for the analysis:

1. Actuator stroke: =1.85 in. 2. Efficiencies

a. Ballscrew: 9~1o b. Thrust bearing: 97% c. Gear: 99% d. Gearbox: 99% (98% for 15,000 rpm motor)

The motor and system inertias are tabulated in Table 4-7. Since the system inertia is small compared to the motor inertia, it can be neglected in a dynamic analYSis.

The frequency response requirement for a command with an amplitude of =2% of full stroke is shown in Figure 4-17. The system model that was used for the ana:ysis is shown in Figure 4-18. The dynamic response for th~ three speeds is shown in Figure 4-19. The 6,000 and 10,000 rpm motors meet the frequency response requirements with a slower motor having the better frequency response. However, the system is a second order system and as such has a 40 db/decade fall-off whereas the specified response has a 20 db/decade fall-off. If the comer frequency were changed from 1.5 to 3 Hertz and the fall-off from 20 to 40 db/decade as shown in Figure 4-19, the 15,000 rpm motor would meet this requirement.

The trade study shows that the 15,000 rpm motor is the smallest and lightest. Being the smallest means it would have the highest temperature rise. The 6,(100 rpm motor has the best frequency response and, since it is the heaviest, would have the lowe5! temperature rise. The 10,000 rpm motor was selected as the best compromise between size, thermal capability, and frequency response.

S830S·R1

~" ....;.".. ~ ,- .. :., ..... c:-:· "; '" , :""'~y;:?"C's+=,:;:c;~~:.;,;~>,:;:.; ",; ;':cT,:·,·:·"i:.~~;~~l )

load Speed, Output, Period, Point RPM HP Minutes

1 0 0 9

2 1000 0.3 17.5

3 lOCO 2.3 0.5

4 2600 0.3 7.5

5 2600 10.0 0.5

6 4000 0.3 3.5

7 4000 10.0 0.5

8 6000 0.3 1.5

9 6000 10.0 0.5 I

Table 4-4 6,000 RPM Motor Performance (Per Channel)

Inverter Inverter

Motor Duty Commutation PWM Input lo·sses, Cycle, Angle, Frequency, Current, Walts Per Unit DegreEs Hertz DC Amps

15

91 0.33 8.0 3200 3.7

240 0.33 34.0 32CO 11.2

278 0.69 8.0 4160 4.64

578 1.0 35.3 - 33.3

482 1.0 3.4 - 5.3

676 1.0 38.0 - 33.4

906 1.0 5.6 - 7.0

1051 1.0 40.0 - 34.9 --~

Motor Phase Power

Current, Factor, RMSAmps Per Unit

6.3 0.23

20.3 0.52

4.95 0.33

27.e 0.77

6.1 0.30

22.8 0.95

16.6 0.18

25.4 0.£0

Efficiency, Porcont

0

71.8

89.9

47.4

9:'.9

31.6

91.7

20.1

e7.6

I

I l

~ -I

L

lU ['1

~ -!

\

B}'!JJ;"~~.:; .... ' .. ;.;.;,,,:.' ::. :'.~,;: ,,2 ':'":'5:"';. .;·,J2:~.LJLL::;L , ,:<.J,:-(~ ') Cll !:1~'Ul ~ t":.;;~j 0;...:1 ~ IZZ:l t:=.:l cr::J p::::J c:::l tr=J ~ tz::l c::::::J Cdl t:::] c:::::l ~

len I CD I Co> 10 .'7' .:II ,-

Load POint

1

2

3

4

5

6

7

8

9 ~ - -

Speed, RPM

0

::500

2500

6500

6500

10,000

10,000

15,COO

15,000 -~ --

Output, Period, HP Minuler.

0 9

0.3 17.5

2.3 0.5

0.3 7.5

10.0 0.5

0.3 3.5

10.0 0.5

0.3 1.5

10.0 0.5 ~ -- - - -

Table 4-5 15,000 RPM Motor Performanco (Per Chennel)

Inverter Inverter Motor

Mo!or Duty Commutation PWM Input Phase Power Losses, Cycle, Angle, Frequency, Current, Current, Factor, Efficiency, Watts Per Unit' Degrees Hertz DC Amps RMS Amps Pcr Unit Percent

15 0 I 94 0.3 9.4 8000 3.87 4.5 0.34 70.4

165 0.3 31.8 8000 9.8 17.8 0.51 91.2 I

359 0.65 8.9 10400 4.7 6.7 0.26 33.0 ,

557 1.0 34.5 - 33.6 28.7 0.76 93.2 I

,

657 1.0 3.75 - 5.9 6.6 0.35 24.3 I

774 1.0 36.1 - 33.7 23.0 0.95 90.6 i ,

1234 1.0 6.5 - 8.22 17.4 0.22 16.5 I

I ,

1333 1.0 39.0 - 37.0 26.7 0.90 85.3 ,

I

~~----

I -- ------

"

a '! ,,.. ~

f '. : 1.:

" " ; t .; ~.' .

, !

t .-. ~." ."

;­l.

! '-

..... i.

I I

i ;r~

,;' I ,

Tablo 4-6 Motor Speed Trnde Study Summary

6000 RPM 10,000 RPM 15,000 RPM Motor Motor Motor

Overall Diameter, Inches 5.83 5.42 5.26

Overall Length, Inches 5.08 4.44 4.21

Electromagnetic Weight, Pounds 23.3 15.3 13.4

Inductance, Microhenries 1176 694 441

Maximum Phase Current, RMS Amperes 27.8 28.1 28.7

Energy Loss Over Duty Cycle, Watt-Hours 135.5 167.1 167_3

TobIa 4-7 Actuation System Parameters

Motor System Inertia Motor Speed,

RPM

6,000

10,000

15,000

Gearbox Overall Ratio Ratio

2.11:1 1200:1

3.52:1 2000:1

5_28:1 3000:1

BALLSCREW ACTUATOR

.375 IN/REV

GEAR BOX

BRUSHLESS DC MOTOR

Inertia, at Motor, Lb. In. Sec.2 Lb. In. Sec.2

4 x 10-2 7.5 X 10-4

2.31 x 10-2 2.6 X 10-4

2.01 x 10-2 3.41 X 10-4

.". .... - -~,

CONTROLLER Figuro 4-16 Systom Schematic

a.aOUR

Percentage of Motor Inertia

1.9

1.1

1.7

r;:::;:::[=~~~~t:b,:::~~:zj;.:)t 4/;;'':;:·o;:,.~:;., 'j, >/.~'~" ,,};; ,.~:~.L"h~"'~~:::~~~~F~:=· __ <=:2Z:r:::-";",,, '+~~~~. i,,;,;;:~l ) )""")

O~~lt~~C'~~~~~~O:~~~~~~~~~

Den ~ Q:) )c.> ~ 0 .. cp :':D ~-

+5

+4

+3

+2

» ~ +1 "'D r -t a c o m -1 :0 » ::! -2 o '6 -3 ~

-4

..... 10-1

1/ l'" .AI V , I

/~ I"-- ' !

MAXIMUM AMPLITUDE RESPONSE ,

" /'" MINIMUM AMPLITUDE RESPONSE

" ,/

~, ~

" ~

"'D ::r: » en m

0 r » C)

0 m C)

. >-MAXIMUM' PAHSE LAG

"" V /

-20 :0 m m £!

-40

~ ~

~

100 2 3 4 5 6 7 10 60

FREQUENCY (HZ)

, Figure 4-17, Frequency Response Requlremonts , ,

"

t":", ::; ,,;:, ... ,,:,,;.;~~<>:>::,:t'Z2:> ;;:: ?;:::I:. }1':"'';'';:;: ,;,::::::,:,~:{};; ';;--:),:.:i :,;~,:,:.;;.,~.:.:.c.~:·:'.~i::~?'b::5-':~~~~S~~~~:~C.~I:".:u.

, '~ ~" ~

~ ~ ~ ~ ...... ........ '--~ ......... -----

-000 elCXI ow ClO ~CP .!oll (0 ....

XREF MOTOR TORQUE CURVES

! r------------------, 8M

, I • 'V ~. I J S - -XERR KX ~L VFB;V:- VM: KflVMI TMO+0- 3~I:TM _, WM ,

-270V I -TUM M S I +. I

'A 'I I r--..J-";";"'--. I I

#> I I NM

_ XBL

KN I I-- Ks(VM' I I I L ______ ~ ____________ ~

~M ~

XN (;M) 27T

.-

KX .. POSITIO~ FEEDBACK GAIN KN .. VELOCITY FEEDBACK GAIN

XBL - BACKLASH REFLECTED TO BALL SCREW TUM - ACTUATOR TORQUE LIMIT REFLECTED TO MOTOR

£iTM KSIVMI .. ~ FOR GIVEN VM

LJ M

JM = MOMENT OF INERTIA OF ROTOR AND GEARS REFLECTED TO MOTOR

K-rIVM' • TM1Nr.,=OI FOR GIVEN VM

(o:,~ ACTUATOR RADIUS/OVERALL GEAR RATIO

Figure 4-18 Model for Dynamic Analysis

\.

, "\",

"

~r!"'8 , : j ~ •

. ,,1' r ',,> U

o ,1

g . "l

0 j !

t· fl ~. .,! ~~+ . ;.J

m A ,.

.',

~ i t r t ~ [' i

[I [ > -.

I. ., {\

i , 9 r

r 1- .. :. , .

rn r· ..

; D

·D ..

U . '

5DB~----------------~------------------------~~~

o i= ~ a:: w

g -5SB~----------------~------~--------~--~~--~~ ... :; a.. :E ~

-10 DB~----------------+-------------~-----+--~~r-;

-20 DB~----------------~------------------~--~--~

\

6000 RPM

10,000 RPM

15,000 RPM

1 HZ Frequency, Hertz

10 HZ

Figure 4-19 Frequency Response

4.9 ROTOR CONFIGURATION TRADE STUDY

The baseline motor design had a rotor with tangentially oriented permanent magnets as shown in Figure 4-15. This design was compared to one employing a rotor with radially oriented permanents as shown in Figure 4-20. This alternate version was executed using the same design constraints that were employed for the baseline motor design. The stator iron densities were kept at the same values and the same wire size was used so as to achieve the same current density. The permanent magnet material (21 x 106 gauss-oersteds energy product) was the same as was used for the baseline motor design.

The comparative performance of the two designs is shown in Table 4·8.

Since the tangential design is smaller, lighter, and more efficient, it was chosen over the radial design.

S830B-R1 Page 4-20

. ,"-1

, .... ) ~ :~ • .1

.~ " .. , . ........ ,

~ ~>~ .. ~~ .. ::!

Table 4-8 Radial vs. Tangential Pcrforman:e

Motor Speed, RPM

Output HP (Per Channel)

Efficiency, %

Overall Diameter, Inches

Overall Length, Inches

Electromagnetic Weight, Pounds

Radial Design

10,000

10

83.9

5.70

6.70

20.8

Tangential Design

10,000

10

85.4

5.42

4.44

15.3

NONMAGNETIC MATERIAL

NONMAGNETIC INCONEL SLEEVE

RADIALLY ORIENTED PERMANENT MAGNET

Figure 4·20 Rotor Design With Radially Orlcntcd Permanent Magnets

S8308-R1 " ___ • rt. ..

f

"

/

.- . ~ :~~'.-.

.. ,".:.' . ~. :.'

.' ,

Ii·:l ~i! .J' .•.. :-~.;.: .... j:.~

.:] ;

J

.f'U

~

/

4.10 WYE VS. DELTA WINDING TRADE STUDY

A motor with a delta connected winding was designed using the same design constraints and assumptions that were used for the baseline motor design.

The motor performance and electromagnetic weights for the two windings are compared in Table 4-9. The motor performance at the duty cycle load pOints for the delta winding is tabulated in Table 4-10.

Table 4-9 \Nyo VS. Delta Winding

Wye Winding Delta Winding

Motor Speed, RPM 10,000 10,000

Output HP 10 10

Efficiency, % 85.4 85.0

Energy Loss During Duty Cycle, Watt-Hours 167.1 175.4

Electromagnetic Weight, Pounds 15.3 15.6

Table 4-10 Performanco of 10,000 APr.1 Delta Wound f,~otor (Per Channel)

Inverter Inverter Motor M'Jtor Duty Commutation PWM Ir.put Phase Power

Load Speed. Output. Period. Losses. Cycle. Angl\!. Frequency. Current. Current. Factor. Efficiency. Point RPM HP Minutes Watts Per Unit Degrees Hertz DC Amps RMSAmps Per UQ~ Percent

1 0 9 15 '0

2 1666 0.3 17.5 113 0.3 6.5 5330 7.8 4.3 0.3 53.6

3 1666 2.3 0.5 223 0.3 3.6 5330 10.9 12.0 0.51 89.7

4 4333 0.3 7.5 385 0.65 12.9 6930 5.9 7.54 0.17 34.4

5 4333 10.0 0.5 582 1.0 30.5 - 33.4 16.5 0.76 '92.8

6 6666 0.3 3.5 648 1.0 3.9 - 6.0 3.8 0.36 28.2

7 6666 10.0 0.5 802 1.0 37.1 - 34.1 14.1 0.90 89.9

8 10.000 0.3 1.5 1201 1.0 6.5 - 8.1 10.1 0.21 16.1

9 10.000 10.0 0.5 1306 1.0 39.5 - 35.9 15.1 0.90 85.0

Size and weight of the two motors are almost identical with the delta winding motor being slightly heavier and larger.

For the delta winding, there are circulating currents for the 3rd harmonic and mUltiples of the 3rd harmonic. The wye winding doesn't have these Circulating currents which add to the copper losses without producing torque.

With the delta winding, if one of the phases opens, the motor will continue to operate and provide approximately two-thirds torque. Will, the wye winding, an open circuit will result in the motor single-phasing with greatly reduced output. In either case, however, if a failure occurs the input power will most likely be disconnected.

58308-R1 Page 4-22

.\

.-

'\ , , ,

j" .' "

!,' , , .'

1" f.: f ' . >-t , <

[~."".' ;

}

~ :

~' , ~""

, ; >, , '.

,

,". ' ~ ~ , ~ i<" l""'

:

: I I 1

f

\

In the event of a short circuit fault in one of the windings, it is hard to say which winding pattern would have ,he greatest effect on the controller. Further study would be required to answer this question.

The wye winding was selected as the optimum winding because it is smaller, more effici;mt, and winding faults are more readily detectable.

4.11 NUMBER OF POLES TRADE STUDY

The total number of poles is four times the number of poles for each motor winding or quadrant and since each winding must have an even number of poles, the possibilities are 8, 16, 24, etc. poles. Eight, sixteen, and twenty-four poles were chosen for the trade study.

The baseline motor design is sixteen poles. Eight and twenty-four pole motor deSigns were completed for comparison to the baseline motor design. The same design criteria and assumptions were used for all the motor designs. Current density and the stator flux densities were maintained at the same levels. The number of stator slots was kept at one per pole per phase.

The motor performance at 4,333 and 10,000 rpm is shown in Table 4-11 along with the weights.

Table 4-11 Motor Performance vs. Number of Pol~s

8 Pole 16 Pole 24 Pole Motor Motor Motor

Efficiency at 10 HP , .

and 4333 RPM 93.6 92.8 91.5

Efficiency at 10 HP and 10,000 RPM 90.0 85.4 82.0

Total Electromagnetic Weight, Pounds 22.2 15.3 18.0

The 16-pole motor is the lightest. It is 7 pounds lighter than the 8-pole motor and 2.8 pounds lighter than the 24-pole motor. The 8-pole motor is the most efficient.

Since the 16-pole motor was the smallest and the lightest, it was selectcj as the best choice because it also had good efficiency.

4.12 PERMANENT MAGNET MATERIAL TRADE STUDY

Samarium-cobalt permanent magnets are available with energy products up to 30 x 106 gauss-oersteds. The desirable characteristics for the permanent magnet material are: high energy product, high coercive force, capable of 200°C operation, good temperature stability, ability to withstand physical shoc!<, and availability. Since these requirements are best met by samarium-cobalt permanent magnets, other materials were not considered.

S8308·R1 Page 4-~3

/ I I

lJ~, .'~l tJ ":1 g

~", ;.

1;<)

LJ:;

Table 4-12 lists the characteristics for samarium-cobalt premanent magnets with energy products ranging from 21 to 30 x 106 gauss-oersteds. The 21 and 24 x 106 gauss-oresteds permanent maanets have straight line demagnetization curves as illustrated in Figure 4-21. The 26 and, 30 x 10 gauss-oersteds materials do not have straight line demagnetization curves and can demagnetize due to armature reaction depending on the operating point.

Table 4-1~ :> .. marium-Cobalt Permanent Magnet Charocteristlcs

Energy Product. Gauss-Oersteds 21 x lOS 24 X 106 26 x 10e 30 x 106

Density •. PoundS/ln.] . .. 0.295 0.295 0.295 0.295

Sr, Residual Flux Density, Gauss 9300 9500 9500 11.200

Coercive Force, Oersteds 8860 9200 10.000 6300

Reversible Temperature Coefficient. %JOC 0.04 0.04 0.05 0.05

Relative Cost 1.0 1.5 2.0 -Maximum Useable Temperature,OC 220 220 200 150

~------~-------r------~------~r------'12

1 30 X 106 GAUSS-OERSTEDS 2 24 X 106 GAUSS-OERSTEDS -I----+--.,;~.,c--f 3 21 X 106 GAUSS-OERSTEDS NOTE: CURVES ARE AT 165°C

6

4

~-------+------~7~----4-~--------~-------i2

10 642 H KILOOERSTEDS

Figure 4-21 Samarium-Cobalt Dp.magnetlzatlon Curves

~ :l ~ Cl 0 -' :.: co

..

S8308·R1 Page 4·24

.. r-~ J

I

\

Because of the straight line demagnetization curve, operating temperature range, and availability, the 21 and 24 x 106 gauss-oresteds materials were chosen to be evaluated for the trade study.

The baseline motor design has 21 x 106 gauss-oresteds permanent magnets. A motor using 24 x 106 gauss-oresteds permanent magnets was designed using the same design criteria and assumptions. The 24 x 106 gauss-oresteds motor performance at the duty cycle load pOints is shown in Table 4-13. Table 4-14 compares the motor performance for two magnet materials. The 24 x 106 gauss-oresteds permanent magnet material was chosen for the final motor design because it results in a motor that is 0.8 pounds lighter and reduces the energy consumption over the duty cycle by 15.7 watt-hours.

Load Point

1

2

3

4

5

6

7

6

9

Table 4-13 Motor Performance 24 x 10' Gauss-Oersteds Permanent Magnets (Per Channel)

Inverter Inverter Motor Motor Duty CommutatiOn PWM Input Phase

Speed. Output. Period. Losses. Cycle. Ar.gle. Froquen::y, Current, Current. RPM HP Minutes Watts Per Unit Dogrees Hertz DC Amps RMSAmps

0 0 9 15

1666 0.3 17.5 99 0.3 9.7 5330 3.9 4.3

1666 2.3 0.5 191 0.3 33.0 5330 11.3 lB.O

4333 0.3 7.5 324 0.65 9.2 6930 4.7 6.4

4333 10.0 0.5 546 1.0 35.9 - 32.9 27.9

6666 0.3 3.5 559 1.0 3.7 - 5.6 6.2

6666 10.0 0.5 704 1.0 38.0 - 33.5 22.9

10,000 0.3 1.5 1027 1,0 5.9 - 7.4 16.5

10,000 10.0 0,5 1139 1.0 40.6 - 35.3 25.4

Table 4-14 Permanent Magnet Trade Study Performance Summary

Permanent Magnet Energy PiOduct, Gauss-Oersteds 21 x 106 24 X 105

Motor Speed, RPM 10,000 10,000

Output Horsepower Per Channel 10 10

Efficiency, % 85.4 86.8

EnGrgy Loss During Duty Cycle, Watt-Hours 167.1 151.4

Overall Diameter, Inches 5.42 5.335

Overall Length, Inches 4.4 4.555

Electromagnetic Weight, Pounds 15,3 14.5

Power Factor, Efficiency. Per Unrt Percent

0.36

0.51

0.27

0.76

0.33

0.95

0.20

0.91

0

69.7

89.9

40.3

93.2

28.7

91.9

17,9

66.6

S8308·R1 Page 4·25

A :U

4.13 MOTOR EFFICIENCY VS. WEIGHT

As a final evaluation, the effect of motor weight on efficiency was examined. This was essentiall} a comparison of the merits of alternate stator lamination materials.

Three materials were considered for the stator laminations:

1. Hiperco 50 2. Magnesil 3. Metallic glass

Typical mechanical and magnetic properties for these materials are tabulated in Table 4-15.

Table 4-15 Properties of lamination Materials

Thermal Conductivity • Electrical Saturation Core Loss Tensile Modules

caVcm3! Resistivity. Induction. at 400 Hertz. Strength. Density. of Elasticity. Material sec/°C ohm-em. Gausses watts/pound PSI poundS/in.3 PSI

Hipereo 50 0.131 45.7 x 10-& 24.000 7.5 43.300 0.296 34.7 x 105

Metallic Glass 130 x 10-' 17.500 3.1 250.000 0.27

Magnesil 0.043 20.000 3.5 51.900 0.~76 16.3 x 10S

Hiperco 50 is an iron-cobalt-vanadium alloy with 20o~ higher magnetic saturation than silicon~ir(Jn alloys. It is expensive and difficult to work, but the demand for minimum weight systems has resulted in its use for stators and rotors of high energy density machines.

Magnesil is a silicon-iron alloy designed for applications of 400 Hertz or higher. It is available in thicknesses of 0.005 and 0.007 inches. It has good permeability in all directions of the rolling plane and is designed for laminations with random flux direction. It has a thin, uniform inorganic coating that provides a high degree of electrical insulation and the ability to withstand stress-relief annealing temperatures.

Metallic glass is produced by very rapid quenching in which a molten metal alloy is rapidly cooled through temperatures at which crystallization usually occurs. The result is an alloy that is very hard but very soft magnetically, It has a high resistivity which results in a low eddy current loss. Because of its hardness, it is extremely difficult to punch. Thickness is 0.001 to 0.0025 inches and width is up to 4 inches. Greater widths are expected to be available in the future.

Metallic glass was discarded because of fabrication difficulties and lack of availability in the desired width. Since Hiperco 50 results in the lightest weight design, the baseline motor design used Hiperco 50. Hiperco 50 and Magnesil were compared by carrying out a motor des;gn with Magnesil stator laminations. The same design criteria and assumptions were used as ~or the Hiperco 50 motor except that permanent magnets with an energy product of 24 x 106 gauss-oersteds were used. Therefore, the Magnesil motor design was compared to the Hiperco 50 motor design with 24 x 106 gauss-oersteds magnets. The electromagnetic weights and effiCiencies at 4,333 and 10,000 rpm are compared for the two designs in Table 4-16.

Although Magnesil results in a more efficient motor due to the decreased core loss, the Hiperco 50 motor was selected because it is 5.7 pounds lighter.

S830B-R1 Page 4-26

r'········ ". ,.,--

t i> L-,,' ~. r-', ~ '~:- '

~: , , " , [,

!C f ~,

I

I

I i

Tablo 4-16 Stator lamination Trlldo Study Results

Efficiency at 10 HP and 4333 RPM

Efficiency at 1'0 HP and 10,000 RPM

Stator Electromagnetic Weight, Pounds

Rotor Electromagnetic Weight, Pounds

Total Electromagr.etic Weight, Pounds

4.14 FINAL MOTOR DESIGN CONCEPT

Hiperco 50 Stator

La:ninatio:ls

93.2

86.8

10.0

4.5

14.5

Magnesil Stator

Laminations

94.1

90.6

14.3

59

20.2

The trade study resulted in the following 1')10tor design configuration:

1. 10,000 rpm speed 2. 16 poles 3. Rotor with tangentially oriented r>ermanent magnets 4. Wye connected winding 5. 24 x 106 gauss-oresteds permanent magnets 6. Hiperco 50 stator I<l:minatio,ns

However, it was decided to reduce the flux density in the stator iron to allow for the increaso in flux· . density due to armature reaction. The motor was redesigned to reduce the flux dens;ty to 127,000 ' Iines/ln2 from 140,000 Iines/in2 in the teeth and 130,000 lines/in2 in the core.

The performance at the duty cycle load points is shown in Table 4-17. The dimensions and weights are shown in Table 4-18, Performance is essentially the same as the higher flux density motor except for a 1.7 pound weight increase.

The final step in th3 motor dr-sign was to select the electrical insulation materials. The insulating materials in the motor are:

1. Magnet wire insulation 2. Phase and ground insulation 3. Varnish

In all cases, the goal was to use materials with as high a temperature rating as possible.

S8308·R1 Page 4-27

(~.

, !.""::-"

m J 1 ,

I ~ ; ,j a

·1 1

~ .l ,) L.;

",~ '~J r "j u

··1 , . 9 ~ g

A ~ t1

.-~ ";- H

rn

'. 9 .. ..

B ,-

,,, ~ " ,

:t g -t 1

-j n "~ U

;:~~ fi U ~.:

n

Tablo 4-17 Final Motor Design Performance (Per Channel)

Inverter InveMI!t' Motor

Motor o-... ty Commutation PVt'M Input PIlase P~ Load Spe('d. Output. PeriOd. Losses. Cycle. Angle. Frequency. Current, Current. Fa~. Efficiency Point RPM HP Minutes Watts • Per Un~ Dogrees Hartt DC Amps RMSAmps P('fUM Par=!

1 0 0 9 15 0

2 1666 0.3 17.5 100 0.3 9.7 53.."0 3.9 4.3 0.:'-6 69.4

3 1556 2.3 0.5 204 0.3 33.5 5330 10.0 lB.4 CSI 89.5

4 4~3 0.3 7.5 328 0.65 9.3 ti9-.,\() 4.7 6.6 0-:1 40.2

5 4333 10.0 O.S 567 1.0 3S.7 - 33.0 27.9 0.71 9"L.9

6 6666 0.3 3.S 5€S 1.0 3.7 - 5.6 6.3 0.33 2B.3

7 CS66 10.0 0.5 723 1.0 37.9 - 33.6 23.0 OSS 91.2

8 10.000 0.3 1.5 1042 1.0 6.0 - 7.4 16.6 0.::0 17.6

9 10.000 10.0 0.5 1163 1.0 41).6 - 35.3 25.5 C.SO eG.S

Table 4-18 Dimensions and Weights - Fln~1 Motor Dnslgn

Overall Diameter. Inches 5.025

Overall Length. Inches 5.58

Stator Electromagr.etic Weight. Pounds 11.2

Rotor Electromagetic Weight. Pounds 5.0

Total Electromagnetic Weight. Pounds 16.2

Magnet wire with polyimide insulation was chosen because it yields 10,000 hours life at 260°C and it is used almost exclusively at Sundstrand for motors and generators.

A nomex-kapton laminate was chosen for the slot insulators and kaptan for the phase insulation. Both materinls are Class H as is the magnet wire insulation and are compatible with the varnish.

A polyimide varnish was chosen to impregnate the stator based on material compatibility and manufacturing experience at Sundstrand.

5.0 r.i1OTOR FABRtCt'.TtON

.~ .'

f".

~<] .. ,'~ g .' ·'~l··· , r m

g g g

H g" ,. f.

a

5,0 MOTOR FABRICATION

With the final conr.p.pt established as described in Section 4.0. a detailed design was executed. A cross section is shown in Figure 5-1. Modifications that were made as the result of manufacturing or testing information are described in this section.

Figure 5-1 Four Channel Motor

5.1 STATOR INSEPARABLE ASSEMBLY (EP 2758-94)

A consequent-pole winding pattern was chosen to provide total winding isolation bet\..,een adjacent channels. Figure 5-2 .. Implementation of this scheme caused modifications to the initial motor housing design and slot cell insulation system as described below.

LAP WINDING CONSEQUENT POLE

• ARRQW SHOWS REQUIRED PATH OF ADJACENT COIL

Figure 5-2 Winding Patterns

The initial design approach was to supply a stator core that could be wound. impregnated, and inserted into a one-piece housing. This technique results !n a lighter housing than one which utilizes end bells, Figure 5-3.

"

(',

::;;} ~1 i

,~

,.l"

,

~ ~

:f .',

~ ,

" '.

;.,. ... ,

;~0

I

1 I

I I \ I I I n

; I'

~ ~ .. ft 9 ~D

:. ;3 F=i Fi till d

b

SINGLE PIECE END BELL

Figure 5·3 Housing Configurations

Several factors, however, prevented implementation of this approach 'i/hen using .the consequent-pole winding. A feature of this pattern is that beginning and ending ccB sides do not share slots with adjacent windings. This yields bulky end turn extensions. These extensions must be long enough to allow all coils located within a span to be inserted into their respective slots and enter their return path slots in the outside of the span. In addition, room must be provided for nesting of cross·over coils from adjacent spans.

This end turn bulk is discernible in Figure 5·4. The consequent pole end turn bulk places 50% more copper area in the pha~e cross·over point than would be found in a lap style winding. As a result of this bulk, the windings flair out over the stator core 0.0. Though the bulk can be minimized by adjusting coil lengths, it can't be eliminated.

Figure 5-4 End .. ·urn Bulk

S8308·R1

o

·n

~~'. ,.' I"

,... I /

_ ORrGfNAt' PAGE . m:Acr< AND WHITE PHOTOGRAPH

Attempts were made to form the coils by hand as they were inserted into the slots. This provided clearance for the inner coils allowing them to be mora easily inserted. However. the pressure produced by this technique created cracks in the slot insulation. Some cracks propagated towards the nomex stator end lamination. This can be seen ill Figure 5-5 .

. NAS.A QUAD ~'OTOR

HOUND STATOR EP 2758- '14

TS 4.43-1-5.57 COIL FORM

Figure 5-5 Slot Insulation Cracks

"".. .1 ... ",.".

,- .. , .

An additional result of this coil forming and insertion process was the distortion of the stator core slots. As coils were inserted, stator teeth would deflect, closing down adjacent vacant slots. This made insertion of subsequent coils increasingly difficult.

After reviewing these problems, steps were taken to eliminate their cause or minimize their ·Eif,fect. First, the housing was redesigned to allow the stator core to be wound and impregnated while installerl in the housing. This constraint eliminated stator distortion during coil insertion thus allowing the stator slots to maintain their punched dimensions. .

Redesign of the housing &1:'0 entailed implementing an end bell configuration, allowing ample room for the end turns. This minimized the need to hand form the coils during insertion. In turn, minimum pressure was then transmitted to the bottom of the slot insulation.

In conjunction with this. the single layer slot insulation was replaced with two layers of thinner nomex-kapton sandwich. Though the resultant thickness was the same, a greater anti-tear quality was obtained.

Wire gauge was also reduced by paralleling two smaller wires of an area equivalent to the original design. This change facilitated winding insertion without damage to the wire insulation. '.,

The new housing design resulted in a 3.9 pound increase in unit weight over the original design.

Views of the final stator inseparable assembly and its housing are shown in Figures 5-6 and 5·7.

S8308·R1 Page 5·3

'" ,

"

" .li .:;;

-11 "

fi 1 ~

.J,

:1:

~ • l·~~" ~f"~ r::~1

, i I

~ f·

I t. i

" :; ,

( .::~

! \.

~ ., ~ I

f , t F ! ,

>

" f -," I.

'. ~.'

i ':' ~

:r-

' ..

"

~1 ~ . t" " ~w:..::

; I I I I I I J

I I

I.

J

a ,f}

\ . .:\ . ',' ..

,', '-~

I I

"

_ ..... - • ,.,u'-

Bt:ACK AND WHITE PHOTOGRliPH

Figure 5-6 Stator/Housing Assy.

, .,

Figure 5-7 Stator/Housing Assy.

S8306·Rl p"",,. ".4

/ .' ...

..'

m t1

5.2 ROTOR BALANCE ASSEMSLV (EP 2759-210)

" , I

,'.'

In the original design approach, a rotor construction containing tangential magnets and utilizing soft iron magnetic pole pieces, electron beam welded to a non-magnetic inner hub, was envisioned. Poles and magnets were contained by a non-magnetic sleeve shrunk over the outer rotor diameter, Figure 5-8.

Figure 5-8 Original Rotor Con:>tructlon

This core construction was patterned after similar Sundstrand products. Subsequent stress analysis, however, revealed that the necessary depth of weld penetration exceeded acceptable manufacturing limits. Not only was this depth difficult to reliably obtain, but it also resulted in an exceeding thick weld zone at the point of entry, Figure 5-9. Material in the weld zone constituted a metallurgical mixing of the magnetic and non-magnetic parent materials, yielding unacceptable mechanical and electromagnetic properties when present in such thickness.

THICI( WELD ZONE,

Figure 5-9 Required Weld Penetn::tion

To circumvent this problem, the design was altered to individual co .. e segments stacked together, Figure 5-10. Each segment is composed of an inner non-magnetic core over which an electromagnetic ring is shrunk. The joint between the two pieces is welded axially, forming a completed core segment. These core segments are illustrated in Figure 5-11.

S8308·R1 Page 5-5

~,

t-' r~ . • < I ~~'.

.' : r:, 1 0

L:~; I , " 1·· !-' i· V-

I ;' '" , (

I ~,J.

, I T . ~ .. . j 'C-r~' " ..

i-:-;

~ .-. r r L ~ ':.~

~-" i m r ... ~-. )-;-. ..,..;/.

'.

, '

_/

... _.- -"-,-- ------------

OJ2Jt;..''''II'L nA"' .. UKlbiNA PAGE

"BLAeI< AND WHITE PHOTOGRAPH

INDIVIDUAL CORE SEGMENTS

Figure 5-10 Stocked Rotor Construction

.. -' , ..

" ' . ',,:, ~":~?r'f3;~C; c·~\, -~' ~--".

, .~.

~.,:?~;,,::'~::: ~';

~ , -'. - .: '('.:>=-;:':

""~··~;,:~tIG1):/ '

P"'lfl'ln 01, out,ltI(O .,' w{·I.' t'\',h1 tn,,., .. bt 'elf'rf,",",ldfjnC'tlc str'o:ol

Figure 5-11 Rotor Element Construction

Each segment is machined so that its faces are flat, removing weld bulges, and exposing a minimum thickness weld zone. In this manner, the weld zone thickness is held to an acceptable value, which in turn facilitates ultrasonic inspection of the weld.

At the point of assembly, weight reduction holes are drilled in the inner core non-magnetic material of each segment. The segment; are then stacked and inserted on a shaft to form the rotor core and shaft inseparable assembly. Magnet slots are then machined at predetermined locations. This assembly can be seen in Figure 5-12.

Selection of tho non-magnetic material for the inner core was critical in yielding an acceptable weld joint. Weld samples utilizing 347 stainless steel inner cores were determined to contain cold cracks. These resulted from a combination of residual weld stress and a lack of weld ductility. The weld zone was martensitic, Rc 35.

S8308-R1 Page 5-6

I

I I

, I I

/!

:.

J

:(1 ·0

'9

'~

./

ORIGINAL PAGE . BLACI{ AND WHITE PHOTOGRAPH

Figure 5-12 Rotor Core Construction

To eliminate cracking problems, the inner core material was changed to Inconel 625, creating an austenite weld zone. Residual stresses were reduced by preheating the core segments and reducing the welding speed.

As noted, the original method envisioned for magnet retention was to utilize a non-magnetic (inconel) sleeve shrunk on the rotor 0.0. Concurrent Sundstrand projects, however, were indicating that improved efficiencies could be obtained if a carbon fiber wrap of the same thickness was sUbstituted. The improvement was generally attributed to the elimination of losses associated with eddy currents in the sleeve.

However, to use an equivalent thickness of carbon fiber required that some of the centrifugal forces imparted by the magnets be borne by the pole piece weld and not the fiber wrap. This was achieved by using wedged shaped magnets and dove-tailed slots, Figures 5-12 and 5-13.

WEDGE SHAPED MAGNETS

DOVE TAIL POLE PIECES

Figure 5-13 JJiagnet Retention Configuration

S8308-R1 Page 5-7

1/· / , . . ,

BLACK ORIGINAL PAGE AND WHITE PHOTOGRAPH

/ .'

As this scheme fully transfers the centrifugal loads to the pole piece welds. it is possible to essentially eliminate the wrapping altogether. Only a thin cosmetic layer needs to be retained to minimize windage losses. However. for this project. it was elected to maintain a wrap thickness equal to that of the originally designed inconel sleeve. providing a secondary ratention feature in the event of weld failure.

Two trial rotors of this technique were manufactured. The wrap on these first two pieces. however. did not adhere totally to the rotor pole and magnet surfaces~ In addition. the outer epoxy layer used to seal the strand ends was thin, exposing carbon fibers.

Though the wrap exhibited these discontinuities, it was securely bonded to itself. One rotor was tested at speeds up to 10.000 rpm with no failure or change in outer surface appearance.

The second rotor was stripped and rewrapped. Figure 5-14 shows the rotor prior to stripping. The silver colored area on the right side of the rotor is a resin lean region of the fiber system.

~ .' .

. _ r·

. )~:' .. ; --

':.-:'- .~., " ., .... :-

,', ,.'

-':~~~.....:..iM'.< t-o- - -:. - 00 Ef'ZlSR·1I0 I'

Il!JTOR A,SPIHLY • ,"-" -- ..... -.~:.- ; ~ -

.~ . :, "':' . ,"

Figure 5-14 Carbon Wrap Distress

After stripping. the rotor was degreased and bead blasted to roughen the 0.0. surface. This rougher surface allowed the epoxy to better adhere to the rotor pole and magnet surfaces. The rotor was rewrapped and cured.

Figures 5-15 and 5-16 are views showing a properly wrapped rotor. This rotor was used in the motor assembly tested for this report.

5.3 POSITION SENSOR VANE (EP 2758-41)

The rotor position sensing network was designed to contain 12 hall effect sensors. 1 per motor phase, and 8 sensor vanes, 1 per pole pair. The rotating vanes pass through all 12 sensors which are located on a single plate. Figure 5-17. The vanes are adjustable for either 1800 or 1200

conduction control schemes. This approach is similar to a Sundstrand design successfully tested for a U.S. Air Force remotely piloted vehicle.

SB30B·Rl Page 5·B

r .,

ORIGINAL PAGE BLACK AND WHITE ~HOTOGRA?H

r~- . I:: "

t . , ....

. . :

.,:

'.' :

" '-': .-;' :,' ...' t<Q r l' ,r. .

'£:} ..

Figure 5-15 Rotor Assy.

Figure 5-16 A'ltor ASsy.

S8308·Rl Page 5·9

.'

[I;:<~<~;'2~:,;,j",;;,,/;::,:,\;,,:,>,,;:"'h;;i~\};~F/:O:;{:,itl;',>);-,;::};:';'! ·;~;·:~f7?Tr~::"".,";' ':;;;~::'i' ,:.,i:.~~~.~~~~_~~:J F:~ '." <>')" :' .-~-. 'C-'·' ,---" ." .. ' '-'-'."'" ---"""'-, ",' ")"'" '''::; ~~:~?"'- ,.t::~::::'::"":":'~":-'c"':~, :"':"'" "·'~:":.:-~)'~~::·:.~?,~'~:h~~:.:,:,'-::::;)~~;q _._ ~ ~ ~ ......-, ....... ----- -.........:. ---- ........ ........-- -..-. :, '". ...::;

-OW Il>CP <0 c.> (pO ",<p ':':0 0'"

1800 CONDUCTION NORMAL BACK EMF

MOTOR A HE SET

~A ~B ¢C ROTATION

~ r" J _1200 CONDUCTION. REVERSED PHASE BACK EMF

1600 CONDUCTION, REVERSED PHASE BACK EMF

~' +,Ir*':-":-'~/-~ I' 'i . .!!c,... .,,' 11IT'C -t~~'.,~'C~=--T'·~-l-

; I I I'~' ' .,,' I J I

~::! .~: ~f~ {!JU' I ~;I __ 'lr:;j r'.:-___ -=-· .-_ ... ----:-" .• -'" , ..... _ .. _._ ... -.~Il~ r~ [~

"I t . : ~ r -... ..,

llri.... ' G'f' ~ kJ, .r--r,-,: ~ ,.lp,k, I

Figure 5·17 Rotor Position Sensing Configuration

\ \

, • <.

In testing, however, the motor exhibited an audible tone at intervals of approximately 900 rpm. Review of the rotor position sensing geometry d13termined that four vanes would simultaneously pass a sensor every 15 degrees of revolution, creating a 24/rev. excitation of the vane assembly. Multiples of this value were found to correspond to the resonant frequencies of the vane teeth as well as the vane hUb.

The immediatp. solution was to bond a damping material to the central vane hUb. The material used was a ployvinylchloride (PVC) filled energy absorbing solid. This configuration was tested to over 10,000 rpm with no bonding failure.

1 : ~

~: , ~ ;, , ,

f:i t' : f:?

,-'. ;

r-" c

,. -,.

~ j)

g ~

,~ ..

.. :'~?--:::~~~T '''-',',-,-: :.:~-."':~~ .~~"Y-r,-, -~~::.';:!r-:'~::": · .. s:~] .j

.'

G.O O!:SIGN VERIACATIOi'l TeST

" "

.j { .( ; 1

-.' ..

. :. >."

i"- r.

-1 '. -'J

, .. J ........ ~. i/: '.'

. ,

, J

, I '.

r ~

i I

('

F .- - .\"

, ._ A ,.\-!-

" . , '1 '.1' . , .i

r' (-,.' . ,: .~ ': ;;:. c-"1 ,~., .~ r-['3;, y .. ;, .. ~

H,;:l t'. \ ,.'1 h '!>:: f·r:"-"~:'i ....... " ..

,

;::~,

--' I •

;1 - -

:'.<1 :<J v--

"'If ,~~. ~:

r:~~.t' k;~ ··~: •• i ~i ~

~'''ii . :~./~ ~ ... ,. -,!,.:

I I I I )

I ~

U

~ g

D

g ~ a

U

B ~ >.

g

n H a

6.0 DESIGN VERIFICATION TEST

Extensive tests were conducted on the motor, as a component. to adequately characterize its electromagnetic properties. These tests comprised both a static series where dc voltages were applied and a dynamic series where the motor. performing as a generator, was driven by an external prime mover .

In addition. limited single channel demonstration runs were made using a modified controller from another project. As development of a four channel controller was the objective of subsequent NASA activity. no suitable controller existed at the time of this project to conduct multichannel controller/motur tests.

6.1 TEST PROCEDURE

The test prccedure used to determine the performance of the motor is found in Appendix A. Seven test series were conducted:

1) Winding Resistance 2) Winding Inductance 3) Dielectric Strength 4) Permanent Magnet Generator (PMG) Speed vs. Voltage Output 5) Permanent Magnet Generator (PMG) Loading 6) Static Torque vs. Rotor Position 7) Static Torque Summing

6.2 DAT~ SUMMARY

Complete test data are found in Appendix A. A brief summary of the results follows.

Motor Inductance

The predicted and measured phase inductance values are shown in Table 6-1. The difference is attributed to the consequent pole winding. and the end turn bulk resulting from it.

Test Number,

1

2

3

Table 6-1 Measured Inductance Valves

Rotor Number

3

2

2

Predicted Inductance

352.6 uh

352.6 uh

352.6 uh

PMG Speed vs. Voltage Output

Average Test

Inductance

447.4 uh

450 uh

448.3 uh

Test data matches predictions within 3% over the range of operating speeds.

, •• .o i

·'·.··1· ; .:, ~

7,· ,

'I:

j ./ 1

.JL".

J

I I

1

I j

1

I,

I I

/

PMG Loading

Data show that there is channel independency within the range of loading and speec:. tested, Table 6-2.

Table 6-2 Measured Output Voltage - Loaded PMG Operation

P.M.G. Voltage Output Motors B, C & D Unloaded Speed Predicted Test Motor A Loaded

1666 38 37 Unloaded Quadrant Motors

38 37-31.4 Loaded Quad @ 0 to 15.4 amperes

4333 98 96-107 Unloaded Quadrant Motors

98 96-56 Loaded Quad @ 0 to 27.3 amperes

10,000 225 222 Unloaded Quadrant Motors

225 218-157 loaded Quad @ 0 to 23.3 amperes

Static Torque vs. Rotor Position

The predicted torque output of 12.6 in-Ib compares to the average measured torque output of 13.14 in-Ib within 4.1%. '

Static Torque Summing

The current-torque curves show a linear relationship for the single channel configuration and a nonlinearity for multiple channel operation. This was traced to deflection of the test fixturing at the higher torque values achieved with multiple channels and not from interaction among the channels. linear summing of torque is expected.

Waveforms and Harmonic Analysis

Motor voltage waveforms were recorded and their harmonic content analyzed. Tests were performed for both loaded and unloaded situations for seveial combinations of speeds. loads" channels and phases. Because of the extens!ve nature of these data. the following index of representative data is provided.

• Voltage Waveforms at No load

a) A comparison of line to neutral and line-to-line voltag~ waveforms as a function of speed can be obtained by reviewing the photographs listed in Table 6-3. These data were obtained from Channel "A".

b) A comparison of the line to neutral voltage waveform for all four channels concurrently can be obtained as a function of speed by reviewing the photographs indicated in Table 6-4. A uniformity is noted among the individual channels.

~A~nA_R1

.'

1 . .)

.:.' ·.···1

..

'J

~-. ~.

..... ~ ..

J

....... ··1 ..

-... , .~.

I I I

't' ./

Table 6-3 Voltage Waveforms at No Load r.~otor Channel "A" Phases A, 8, C

L-N L-L LOAD PHOTO PHOTO (Amps) L-N NUMBER L-L NUMBER

. .

1) 1666 RPM DATA POINT

0 A S.4-A-l A-B S.4-D-l B -2 B-C -2 C -3 C-A -3

2) 4333 RPM DATA POINT

0 A S.4-B-l A-B S.4-E-l B -2 B-C -2 C -3 C-A ·3

3) 10,000 RPM DATA POINT

0 A S.4-C-l A-B S.4-F-l B· -2 B-C -2 C -3 C-A -3

Motor Connections: Line to Neutral (L-N) & Line to Line (L-L)

Table 6-4 Voltage Waveforms at No Load Motor Channels A. 8, C, 0

QUADRANTS (L-N)

LOAD MOTOR MOTOR A MOTOR B MOTOR C MOTOR'D' (Amps) CONNECTION PHOTO PHOTO PHOTO PHOTO

1) 1666 RPM DATA POINT·

° A-N S.4-A-l S.4-A-4 S.4-A-7 S.4-A-8 B-N -2 -S CoN -3 -6

2) 4333 RPM DATA POINT

° A-N S.4-B-l 5.4-B-4 5.4-B-7 5.4-B-8 B-N -2 -S CoN -3 -6

3) 10,000 RPM DATA POINT

a A-N 5.4-C-l 5.4-C-4 5.4-C-7 S.4-C-S B-N -2 -S CoN -3 -6

SB308·R1 P~no &;.'l.

'. .. ..... . , ' ":"

; .. .,. .") - ; ., ~,; !

>;("" .. '-;;' ." .,

'o'.j.

\,'

• Voltage Waveforms at Load

a) An indication of the effect of load on waveform can be obtained by examining the photos listed in Tables 6-5 and 6-6. Data in Table 6-5 are grouped as a function of speed. Data in Tab!.:: 6-6 are grouped as a function of load clJrrent. All data were obtained from a loaded channel "A" with the remaining channels open circuited (unloaded).

b) The effect on the waveform of a loaded channel on an unloaded channel can be obtained by reviewing the data listed in Table 6-7.

• Harmonic Analysis at No Load

a) The harmonic content of the line to neutral and line-to-line waveforms of an unloaded ch:'nnel can be obtained by reviewing the graphs listed in Table 6-8.

• Harmonic Analysis at Load

a) The harmonic content of line to neutral and line-to-line waveforms for loaded channels can be obtained by reviewing the graphs listed in Tables 6-9 and 6-10. Table 6-9 presents the data as a function of speed. Table 6-10 presents the data by motor connection.

Table 6-5 Voltage Waveforms at Load ... Motor Channel A

L-N L-L PHOTO PHOTO LOAD

L-N . NUMBER L-L NUMBER (Amps)

1) ·1666 RPM DATA POINT

A 5.5-A-20 A-B 5.5-A-21 6.1

2) 4333 RPM DATA POINT

A S.S-B-6 A-B 5.5-B-7 14.6 -2 -3 17.8

3) 10,000 RPM DATA POINT

A· 5.S-C-2 A-B 5.S-C-3 10.2 -4 -5 18.1

MOTOR CONNECTIONS: LINE TO NEUTRAL (L-N) & LINE TO LINE (L-L)

S8308·R1 " ___ n ..

! i

/ ! I .-

Table 6-6 Voltage Waveforms at Load Motor Channel A

LOAD SPEED MOTOR PHOTO (Amps) (R.P.M.) CONNECTIONS NUMBER

6.0 1666 A-N 5.5-A-7 5.7 10K A-N 5.5-C-1

10.1 1666 A-N 5.5-A-11 10.2 10K A-N 5.5-C-2 10.2 10K A-B -3

14.8 1666 A-N 5.5-A-18 14.6 4333 A-N 5.5-B-6 14.6 4333 A-B -7

17.8 4333 A-N 5.5-B-2 17.8 4333 A-B -3 18.1 10K A-N 5.5-C-4 18.1 10K A-B -5

Table 6-7 Voltage Waveforms Unloaded vs. Loaded Motor Channels A 8. B

1) 4333 RPM DATA POINT

QUADRANT LOAD PHOTO PHOTO MOTOR (Amps) L-N NUMBER L-L NUMBER

A 17.8 A 5.5-B-2 A-B 5.5-B-3

B 0 -4 -5 MOTOR CONNECTIONS: LINE TO NEUTRAL (L-N) & LINE TO LINE (L-L)

Table 6-8 Harmonic Analysis at No Load

A) 1666 RPM DATA POINT

LOAD HA GRAPH (Amps) CONSTANT VARIABLE NUMBER

0 A-N Y 5.4-A-1 N -9

0 N A-N 5.4-A-9 A-B -10

MOTOR CONNECTIONS: LINE TO NEUTRAL (A-N) & LINE TO LINE (A-B)

Y = HARMONIC ANALYZER GROUNDED

N = HARMONIC ANALYZER UNGROUNDED

S830B·R1 Page 6·5

,-'

... '.

0., '

.. .. -'ic .;" '. ""

. ~ - .

,.

····,0 •• ,!'

~ :. ~

. , '. j ."

! i ;-

I

i I

!I , ;

,I I / j, " / i I, I

i/. 1 I , -.'. /

Table 6-9 Harmonic Analysis at Load

LOAD H.A. GRAPH CONSTANT VARIA8LE (Amps) NUM8ER

.1 ) 1666 .RPM DATA POINT

A-N N 6.13 S.S-A-1 Y 9.3 -3 Y 14.1 -5

A-8 N 6.13 5.5-A-2 Y 9.3 -4 Y 14.1 -6

2) 4333 RPM DATA POINT

A-N N 14.6 5.5-8-1 Y 14.4 -3

A-8 N 14.6 5.5-8-2 Y 14.4 -4

N A-N 14.6 5.5-8-1 A-8 14.6 -2

Y A-N 14.4 5.5-8-3 A-8 14.4 -4

3) 10,000 RPM DATA POINT

N A-N 10.2 5.5-C-1 A-8 10.2 -2

MOTOR CONNECTIONS: LINE TO NEUTRAL (A-N) & LINE TO LINE (A-8)

Y = HARMONIC ANALYZER GROUNDED

N = HARMONIC ANALYZER UNGROUNDED

• S8308·R1 Page 6·6

, I

I.

/ I

:,'

Table 6-10 Harmonic Analysis at LOBr]

(R.P.M.) CONSTANT VARIA8LE

1) LINE TO NEUTRAL (A-N)

N 1666 4333 10K

2) LINE TO LINE (A-8)

N 1666 4333 10K

3) LINE TO NEUTRAL (A-N)

Y 1666 1666 4333

4) LINE TO LINE (A-8)

Y 1666 1666 4333

LOAD (Amps)

6.1 14.6 10.2

0.1 14.6 10.2

9.3 14.1 14.4

9.3 14.1 14.4

Y = HARMONIC ANALYZER GROUNDED

J

H.A. GRAPH NUM8ER

5.5-A-l 5.5-8-1 5.5-C-l

5.5-A-2 5.5-8-2 5.5-C-2

5.5-A-3 5.5-A-5 5.5-8-3

5.5-A-4 5.5-A-6 5.5-8-4

N = HARMONIC ANALYZER UNGROUNDED

6.3 MOTOR/CONTROLLER OPERATION

...

Modifications were made to a Sundstrand controller to allow it to drive a single channel. With the controller driving quadrant "A", no-load speeds up to 5,000 rpm were obtained with smooth acceleration and deceleration. Inability to drive the motor at speeds greater than 5,000 rpm was due to the controller. At this point testing was concluded.

S8308-R1 Page 6-7

pt(""} .. ,-i

I '1' .• ... , /

/

6.4 WEIGHT SUMMARY AND DISTRIBUTION

WEIGHT SUMMARY

MOTOR ASSEMBLY (EP2758-10)

a) Stator Inseparable Assembly (EP2758-94)

b) Rotor Balance Assembly (EP2758-210)

c) Other Motor Parts

ACTUAL WEIGHT

12.425 Lbs.

9.329 Lbs.

11.56 Lbs. d) Motor Assembly

(EP2758-10) TOTAL 33.31 Lbs.

WEIGHT DISTRIBUTION

Las LBS LBS NOTE PREDICTED ACTUAL DIFFERENTIAL

A) STATOR INSEPARABLE ASSEMBLY (EP2758-94)

1) Iron

2) Copper

3) Insulation, Tape Leadwire, Sleeving

NOTES:

TOTAL

(1)

(2) (2)

6.853

4.337

11.190

(1) Stator coil form size had to be enlarged to allow for nesting and overlap clearance of coil end turns.

(2) These parts were not weight predicted.

LBS NOTE . PREDICTED

B) ROTOR BALANCE ASSEMBLY (EP2758-211)

1) SEPARABLE WEIGHTS

a) Magnets 1.968 b) Containment feature (3) .182 c) End plates (4) .165

SUB-TOTAL 2.315

7.020

5.230

.175

12.425

LBS ACTUAL

2.301 .099 .335

2.735

+.167

+.893

+.175 .

+1.235

LBS DIFFERENTIAL

+.333 -.083

. +.170'

+.420

S830a·R1 Page 6·8

, .

i \

2) INSEPARABLE WEIGHTS

a) Poles (5) 1.855 b) Hub (5) .781

SUB-TOTAL 2.636

3) NON-ELECTROMAGNE=TIC WEIGHTS

a) 'Shaft (EP2758-213) (6) 1.406 b) Rotor & Shaft Inseparable (6) 5.188

Assembly (EP2758-211). minus shaft (EP2758-213)

TOTAL LBS. (7) 4.951 9.329

NOTES:

(3) The containment feature was changed from a metallic sleeve to a graphite fiber-epoxy wrap.

(4) End plate material was changed from aluminum to stainless steel to allow for material removal during balancing.

(5) Rotor construction does not allow for individual weighing of rotor poles or the hub of the electromagnetic circuit prior to rotor assembly. .

(6) These parts were not weight predicted.

(7) Weight difference due to notes (5) & (6).

/

' ..

S8308·R1 Page 6-9

,,'

.!

f ,

;0 Ij

.. il

.. ~

. .'. - . _. _, '. _,.! • _".. . - - ,., ~"o ~ .,

.... :,:~-:. ',.-_ • ... _;.,......:~~:..: ....... _1.. -:; .... -;':.:...-... ~~' :. __ .;~ -.;: .... ..:...>a.~.-"' . .., __ ..... ..J .. .:... • .: _.- ... _ • ...:. ~.~._-: ........... "_ ,..', ~~ ;;....: ... ~ .-",~ "~~_" ••• ;_.;~ • ..;,.:~-~.~. ,.~._~ ...... ~

7.0 CONCLUSION

B···· " "

I .. g .. e. ,-'< •.

'~'i ..

7.0 CONCLUSION

It has been noted throughout this report that motor development is only one step in implementin a successful, electromagnetic summing. flight actuation system. Indeed. some of the more difficu work. the development of a viable redundancy management scheme. remains. Nevertheless. th completion of this project is considered an essential step toward an operational system.

The work accomplished demonstrates that competitive weight and performance are achievabk without difficult manufacturing methods. In addition. a data base has been developed providin, validation of modeling techniques and the necessary background for preliminary controlle design.

The test simulation of failure effects and the development of the associated predictive models i~ viewed as the next logical step toward a functioning four channel controller and. ultimately. to i

fully redundant demonstration system. The test motor is the tool available for this effort.

S8308·R1 Page 7-1

, .. -'. "~

".,"

i>{ --1~--::"'-'-"""C;~ ~~~,':._ ~'--_"'_'~":'W.''':7"~~ -~:-~-:.-':'".,...<~ ·---~-·~'~:--.::::~::-~-7--·~ .~---... " .. "-.--

;..-< '-, ff

~ ~' :]

::1'

J\

, I .. ~

.... ~.:... •• _.:. ...... ' • _~ ,,~L~~~ .' _ ..... " •

APPENDIX A

TEST DATA

j ., . . ____ .... ..:..l

"~ ..

..... . ~ :~

' . .i

. ,

~ INDEX:

g n

. y.

\ '

Data Sheets

5.1

5.2

5.3

5.4

5.5

5.6

5.7

0""·

APPENDIX A - TEST DATA

Title

T~st Pt-ocedure

Electromechanical Timing Schematics

Winding Resistance Data

Winding Inductance Data

Dielectric Strength Data

P.M.G. Speed vs. Voltage Output. Data

P.M.G. Loading Data

Stdtic Torque vs. Rotor Position Data

Static Torque Sunrning Data

....

,. I, r' J

'j i· . ·1 : - '", 1 -

,

".:- '.

:. :;: ; " " :'. ~

1

I \

';"'-, ;~; ~: . j r

;:.~', l

. . .... , ..... j . ~ - . , . ".-'". \ ~.,"

, .:" .~'.,.: : ' .. ~.

. "

1 l' i I

l i t

\

I

i . \ ..

TEST PROCEDURE

' ..

----~

.::":'~~ ,\

~~l I

~']

-. ;

.... '-'-.,'

! I

,g

. I , ,j

-_-:---... -'----------- ..'

TEST PROCEDURE

QUAD REDUNDANT MOTOR EP 2758-10

CONTRACT NAS-9-16535

.. '.

S830B·Rl Page A-2

.. ~

·. II' "

-:.' ;l , ,

/ '

------------------------------------------,--------------.------------------I I I I 1

i l I I

1.0 r10TOR TESTS

Motor assembly part number EP 2758-10

1.1 WINDING RESISTANCE

1.2

1.3

Record room ambient temperature. After allowing the motor to reach room ambient temperature, measure and record the indiv­idual phase resistances of each quadrant motor.

WINDING INDUCTANCE

a) Measure the winding phase inductance of each quadrant motor. Rotate the shaft in incremental steps measuring associated induc~ance. Locate rotor position with the centerline of the "sensor end shaft key\'1ay" as the timing feature. Zero mechanical degrees rotor position occurs when the keY\,Jay centerline is aligned with the stator locking screw center-1 i ne.

b) Repeat readings for line to line winding connections.

DIELECTRIC STRENGTH

a} Motor Winding Test 1) Insulation Resistance Test

Apply sao! 50 VAC, 60 hertz for one minute bet\'Jeen the neutral 1 ead of quadrant moto,- "A" and ground. Record the insulation resistance valu~. Repeat the test for the remaining quadrant motors. Repeat the test bet\'1een the neutral 1 eads of quadrant motors "A" and "B". Record the insulatio'l resistance value. Repeat the test for the remaining quadrant motor combinations.

2) High Potential Test Apply 1275 ~ 25 VAC, 60 hertz for one minute or 1530 ~ 25 VAC 60 hertz for one second bet\'leen the netral lead of quadrant motor "A" and ground. 00 not exceed a I"ate of 500 volts per second \~hen applying this power. Record the leakage current value. Repeat the test for the remaining q~adrant motors. Repeat the test bebJeen the neutra 1 1 eads of quadl'ant motors "A" and "B". Record the leakage current value.

Repeat the test for the remaining quadrant motor combinations. 3) Insulation Resistance Retest

Repeat step.l.3-a-l

............. j t

··.·.·.·1:··::···~ . -

"

. ~.' " , ..

I I I ~

J

a

1.4

1.5

1.6

1.7

PERHANENT HAGNET GENERATOR (P.H.G.) SPEED VS. VOLTAGE OUTPUT Drive the motor as a P.M.G. at indicated speeds. Measure the phase voltage output of all quadrants, and if possible. the torque input at each speed point. Obtain an oscilloscope voltage trace of all phases of quadrant motors "A" and "B" and phase "A" of the remaining quadrants at each of the motor speeds 1666, 4333 and 10,000 R.P.H.

If time permits';' repeat above test on quadrant motor "A" measuring line to line voltage and obtaining waveforms. If instrumentation is available, perform harmonic analysis on each quadrant during above test.

P.M.G. LOADING Drive the motor as a P.M.G. at indicated speeds while loading quadrant motor "A" to desired values of phase current. Measure quadrant motor "A" watts, the phase voltage of all quadrants, and if poss~ble, the torque input at each speed point. Maintain as near constant motor temperatures as possible for each reading. Obtain oscilloscope voltage traces of the loaded and unloaded quadrant motors at speeds of 1665,4333 and 10,000 R.P.M.

If instrumentation is available, perform harmonic analysis on each quadrant during abo~e test.

STATIC TORQUE VS. ROTOR POSITION

Apply D.C. power between phases "A" and "B" of quadrant motor "A" at one value of D.C. current. Record shaft torque output as a function of incremental rotor position.

Increase cur'rent 'in incremental steps at one rotor position. Record shaft torque, inpl'c current and voltage. Maintain as near constant motor temperatures as possible for each reading. Repeat for quadrant motors B, C & D.

STATIC TORQUE SUt"MING

Apply D.C. power bet\oJee,1 phases "A" and "B" of quadrant motors "A" and "B" connected in series. Increase current in incremental steps at one rotor position. Record shaft torque, input current and voltage. Maintain as near constant mot0r temperatures as possible for each reading.

Repeat the test for phases "A" and "B" connected in ser';es for quadrant motors A, Band C •

Repeat the test for phases "A" and "B" connected in series for quadrant motors A, B, C and D.

S8308-R1 Pago A·4

- ----

":'!

/' :1 L~

".':

" •... , ,.,~

"

" :

t~ "." ~

f -: t--I r·, I

-,r---. I _

.. ~

"-'

I J

I I I

I

J I 1

I

I ~

I \ f

11

~-.' , J

A BLAC.K r­~,---=;-.-,--, Po !

~

~~ WHITE

~~t:..J

~~- ~c

L GREEN

~~ -----11<1> ~ rlOUTPUTl

L_--,

1<1> C J(OUTPUr}

L (POWER)

tGROUND)

GMEEN

GREE.N

RED

BLAC.K

A

c

D

E.

F'

eO>.l~~AAl'TA."l A

PHA5E LEAD END TURNS, THEl'\nOc.oU,.L.~

S'TATOR MIDPOINT I ... ERMOC.OUPLE

OUTPUT END 'TURNS. iHE.RWlOC.OUPL.E

RESIS.TIVE. '"THERMAL CUTOUT DEVIC.E

c:.c>cn>~R

C()o.I!>'T">.I'T">-I

COP!>!.'"

CO>J!>'TA.o.I'TA.N

C.O;:>!>t,R

B

C-

0

E

F

G

H

.J

I(

POWER CONNECTORS

male: female:

MS3470L14-4P MS3476L14-4S

SENSOR CONNECTORS

male: female:

MS3470L10-6P HS3476L10-6S

TEMPERATURE CONNECTORS

male: female:

MS3470L12-10P HS3476L12-l0S

male: female:

PINS A, C & E

DEUTSCH =105-371-01 DEUTSCH ~l05-372

HOTOR ELECTRICAL CONNECTOR LEGEND FIGURE 1 SB30B-R1

1 j

J

;

"

, '''',

~" ~j "'~

f;~ J ,~\j

~ll ; '\ .,

:,1 '1 i¥~, - < •• ~

~~ - .i ,

"

,.'

0 "

~"' .

' ..

1 ~.~ ., .. ;r

1 >l 'fL r0 " r '.~.

~~{.~r·. ~"'(l" '

~:·t-:~ ':,'.:,', ::- ,

,

B

I I I J

I ~

~

~

I ! ~ l

~

1 1 ,I

I J

1 ~

. , ; I I,

/

ZONING: 90 ~'echanical degrees contains input/output for one quadrant motor

STATOR LOCKING SCREW

MOTOR "0"

MOTOR "c"

TE~lPERATURE CONNECTOR ---_____ ...l (TYP 4)

POI~ER CONNECTOR (TYP 4)

POSITION SENSOR CONNECTOR (TYP 4)

MOTOR ELECTRICAL CONNECTOR LOCATION LEGEND FIGURE 2

MOTOR ,IIA"

r'1OTOR liS"

' ...

SB3DB·R1 Page A·6

'/

':}'.

, ',j \ '. · .. ··1

.-- . / " -.:

;.:1, '

I

f

j

I i I

J

I ,

" '

SPEED, .TORQUE

DYNAMOMETER

Ii .1

'\

HARHONIC ANALYZER

/ "1 . " . I J .~~ f

I (I /.,./,

P.M.G. SPEED VS. VOLTAGE OUTPUT

FIGURE 3

, I l

OSCILLOSCOPE

VOL TMETER'

58308-\ Page A

j .\il ii

/

P.M.G. LOADING FIGURE 4

a= 41 I-41 ::s I­-' o >

S8308-R1 Page A-8

r , .:

I

I " ,

f p. i.--------------1 :, ;, f

;i ' 'lE , ! ~1 ' " '

";;1 ' . ; .

,~" '

. " . ;

1

i i

': n ,,!~g

'it I

'"

" "

" ",

"

I l f

I I

n ~

POSITION

~~

SHAFT

TEMP AMMETER ._---{ I J.-r-~

STATIC TORQUE VS. ROTOR POSITION

FIGURE 5

+ D.C.

INPUT

~~------------------------------------------------------------

"

f -:).:~ ! f

58308·1 Page A·

'" " ,", "'~

;'). ":::"

1 '., r~

'".:' " ..

/-

rn r----------------------------------------g

9 OJ

rnl I

r:1 i

&1 i

a! . ,

POSITION

~~

POSITION

TORQUE SHAFT

POSITION ~~

TEMP

TEr·1P

v

2 QUANDRANT MOTORS

AMMETER

VOLTMETER V

3 QUADRANT MOTORS

4 QUADRANT MOTORS

STATIC TORQUE SUMMING FIGURE 6

V

+ D.C

INPU'

+ D.C. INPUT

~+ D.C.

INPUT

~\;~ ~ ~ f.. ..

..

!,.",

. ,

I J

I ~

I 1 t I ~

.' '1'

.c".~. I

J 1

}

l I I I J

n u

ELECTROMECHANICAL TIMING SCHEMATICS

rR; .. -. ; .. ",- .

. ', J ~t~·~ Ai l~' ,',h,',',

~~\ .. ~ ~~/i" ~ ~ t; \ ,,, ",'\ ,~

i..~. "~;l 1 . ~ ..

I

I •

j ]'

~}I

1 J '~ 1

';,1 'I' ~ M

, '

l ",~ ~ '··r j

STATOR TmING FEATURE DESCRIPTION

ST;r~0R LOCKING SCLEW SLOT

MOTOR D

25 ___

24--

23---

22~ /'

21 /

20 1( / I 18

MOTOR C

17

+

16 \ \ 15

MOTOR A

____ 7

--8

---9 ~10

'" 11 '" \ 12

MOTOR ,6

13

STATOR LOCKING SCREI4 SLOT TO QUADRANT MOTOR LOCATION

,1) 8 timing positions = 90 mechanical degrees.

2) Timing position sequence viewed from motor connector end.

FIGURE 1

S8308 Page I

~.: Jo

,; .

..... "

" I'· ~f

;F ,i\' .; it c:'F '-'. :--.~.

1;

0-

,""

::1 "

'. ~

I I I , M , 1 • J

I J

}

I I ! I

1

J

ROTOR TIMING FEATURE DESCRIPTION

------ MAGNET #1 CENTERLINE

ROTOR --.....

--------'1.--- SENSOR END SHAFT

KEYWAY CENTERLINE

.. ' .

ROTOR SHAFT KEYWAY TO t,1AGNET LOCATION

1) VieHed from motor connector end.

2} ZERO REFERENCE POINT: Zero mechanical degrees rotor position equals magnet centerline (shaft keyway centerline) aligned .with stato;' locking screl'l centerline.

FIGURE 2

5830B-R1 Page A-12

-'- -t;;Z;J-l II

'1 ··1 :i l _, 'f

.,.' ~""' •• ~ .. ~ "... -' JJ

\' .. j

il n -

.... -- .... - .... --.... . ' . I ,0--' \ .

: - ....... . '\ ..

WINDING RESISTAN~E DATA

" ....... "1'. ' .

"i ~~d ~:~1' : ~~

::"1 ""'1 : . ~

, "

:' :'1 ,;:·l

,~j ,

'<11

'.','," . . ,

. ".

~~.::~ ~~'i ";'::'5

~-i

: -

5.1> HHIDING RESISTMCE

...... ... \ ,

, , i

\<, '- - .:.:, "~-""'" .'"

ROOM AMBIENT TEr'1PERATURE: _7--.:;.~_o.-.,;F ________ _

REF: PHASE RESISTANCE = .0872 TO .0936 ohms @ 770F

PHASE A TO PHASE B TO PHASE C RESISTANCE NEUTRAL NEUTRAL TO NEUTRAL

UNITS OHMS OHMS OHMS

MOTOR A .oq! ,0'1 Z. ,oqz, ' .

~1OTOR B .Dq I ,0'10 .Osq

MOTOR C . '

.0'13 .09 Z. ,oqz.

MOTOR D ,0'1 I .Oqz. .0'8 '1

INC.Lu'06 ,002.~-

OF M p."\ ( N ~ Co to IJ E- c.T o~

-rlLl\

... : '", >-" ' . "

- ........ ~ ,

- ':"

-'- .. ' .

.. I •

1 •• (·.· :

. .' .~ .. :: ..... , . ... ,;,.. -. --.

WINDING INDUCTANCE DAT14

, \ , ,

\

I

J

I J

t J

t

J

I I

I }

, ,j'

i ,.J

., , , _._ .. -----. "

5.2) WINDING INDUCTANCE

TEST SUMMARY

1) ROTOR #3 (10-26-83)

Inductance values were obtained using the first available rotor. Rotor #3 had some containment epoxy-wrap deficiencies, however it allowed obtaining prelimlnary inductance mapping values.

2) ROTOR H2 (11-17-83)

Inductance values were obtained using the final configuration rotor balance assembly. Additional stator \·linding combination tests were established to providp further data comparisons. These are series connected line to neutral and line to line lead combinations for all quadrant motors.

3) ROTOR #2 (12-9-83 to 12-13-83)

A runout of approximately .003 inches was observed on the lead end of the stator core 1.0. The core was then ground to 3.180 inches concentric to the stator housing pilot diameter. Upon completion, the inductance test was rerun in portion for com­parison purposes.

5B30B·Rt

J

.;z.

~ .'

I

I j

I I I B

D

n jj

n

j

B

n

9

fi g

~

;' , /.

5.2) WINDING INDUCTANCE

TEST DATA SUMHARY

QUADRANT' . 'MOTOR HOTOR CONNECTION

A-N A B-N

C-N

A-N B u-N

C-N

A-N C B-N

C-N

A-N o B-ti

C-N

A-B A B-C

C-A

A-B B B-C

C

o

A,B,C & 0

A,B,C & 0

A,B,C & D

C-A

A-B B-C

"C-A

A-B B-C C-A

A-N SERIES

B-N SERIES

A-B SER!ES

i

TEST #1 ROTOR #3 (uh)

457 437 431

454 445 451

450 439 449

459 447 450

1119 1216 1227

1111 1228 1228

1113 1232 1240

1117 1240 1239

TEST #2 ROTOR #2

(uh)

465 447 438

1146 1261 1248

2018

2000

4611

i

TEST #3 ROTOR #2 (uh)

464 443 438

2012

2013

4613 .

S8308·Rl Page A·15

"'Ow !>lex> ;Ow (~ 0 ,.'P .:..:0 m ....

ROTOR UNITS POS ITION # DEGREES uh 0 0 .J.5;J. J:; lff3 1 11.25 .tJ5;t Is 4;;'0

2 22.5 ~5;J.

·Is ~P3 3 33 is t/~/ l.I H;Jd

4 45 Jj;J?

J..; L/~7

5 56.25 i.J56 Is ~-::>

6 67.5 454-Is 4;'?5

,7 78.75 ~5~.~ J..; t,L'~'I_

AVERAGE VALUE: MXIHUM VALUE: MINIMUM VALUE:

ROTOR UNITS POSITION # DEGREES uh 8 90 It c.~ I./.

Is 4",;

9 101.25 4""<1-Is lj2:::

10 112 5 ;., .... /

Is 51/ 11 123,75 I/~I

1£ </3;::J. 112 135 If"'/,5

Is .t:'"07·S

13 ~46,25 ~ib?

Is 1./3/ 14 157.5 J/6f. ~ r:;'() ::

15 168.75 469 Is t./3/,5

45fn,9f

S /1

¥/ '7"_

--- ........ ....-..

ROTOR ROTOR POSITION UNITS POSITION #

16 '!I

17 ~

18 Is

19 Is

20 Is

21 Js

22 ~

23 Js

DEGREES uh # !DEGREES

lao 4r.c 1.5 l24 270 I;· ;., Is

191 25 ,/'.-:> 25 281.25 . - .Is ~r ...

202,25 -,:'1 26 292,5 '. ,.'J .~

213 75 -I7t,! ?7 303 .. 75 4(;.:) Is

225 t,Lf/r.t.5 ~8 315 'ti :L~ Is

236,25 1,1-0 129 326,25 ~//7 Is

2147,,5 1//1' 130 337.S ./7/ l;j

258.75 t/ -. '1 1,- 31 348 75 ';/7 Is

/. K'IV TZ IB, i!::t..IA} $ K.I

/op~//i'3 Ko70l!. ~~

......':~~

.~~----~.j

Uf~ITS

uh

?II 7 ~ 7;J. 1/73 ¥I? #{/~

1"JS 4i'~

E'o ~~p

I/7? ~?;;l. 4:;J;:J. I

_'1~J) / ¢rf'~

41,?,:;;. ~d.3

2' -0

en ::x: [!]l> _ en en ('11 o ;ol>

~-I _0 t:1 :z

('11 c -I

£! r

\11

N C

:\ :.; :~ 1 ,~

~ " .. } ~ ~ OJ ., .~

~

! , 1 '.1 I'

~

I i

j ". 1

l' I (

:~ ~~ )

" f ~ .j > \1

"':-.... '.

''..

~ Al --'

[C~~:;~r;J:i;d!:~';" ~ .. ::,:.,:; ~.:',,,';~,~-".',, ,~~ .. -. t,,,,,;:,2 ~ 1"""'-.,;;1 m:;,z IiC~""" ~ . ~ ~ -::{i:::J II',""l;jt C;:::U1ll ~..,:t ~ .,.,- ~ -- - -

"'OCIl 1»0>

<0 t.J (1)0

l>C?' .:..:D .... -

ROTOR UNITS FOSITION # DEGREES uh 0 0 t/-t,1/-

~ 4~1

1 11.25 U!)b

l~ .!L.~ ':( 12 22.5 t/0 U

'Is 433 3 33 75 J/o'-: Is d~r ., ,

4 45 ~~~

Is LlOS

5 56.25 .£)2 Is tl1b 6 67.5 1,/''; 1;;>_.,

Is lJ.:;y

7 78.75 II-Q'L Is .~t/. _.

AVERAGE VALUE:

MAXIMUM VALUE:

MINIMUM VALUE:

ROTOR UNITS POSITION # DEGREES uh

8 90 .j{J,?

Is q'o?

9 101.25 ~/I

1.z P"'£ 10 112 5 //2)

Is '/", ',;'

11 1123 75 -4-"'" / ,

Is </f';' . , 112 135 -'1/ .'

!oj ~I "

13 [146.25 ,J{./l.

Is 4'~?··

14 157 5 ~.I;:...'

Is :.1./.;, ..

15 1168.75 ~.;..c..

Is (,: ,.;.~'

'/37.33

t,Lf?9

J/oa ..

ROTOR ROTOR POSITION UIlITS

POSITIor~ #

16 1j

17 ~

18 1.l

19 los

20 l.s

21 l.s

22 1,;

23 Ij

DEGREES uh # DEGREES

180 tfi3 ?4 270 d.IS 1.z

191 25 '/111 25 281.25 '159 -1j

202,25 ~7:::' 26 292.5 J',.'cn Is

213,75 </01/ 27 303.,75 'I'.!'? 1,

225 to # .. ;'~ ~8 315 ../CJfI ls

236,25 ,it,. f. 129 326.25 I/r/(J Is

247,5 11;"~,f. 30 337.5 .!.t" . ~r Jj

258 75 Ii ;;,~ 31 348 75 0/:'" '" ".s

L. KN\}T Z /8. r€(./AJ$K I

IO/~"/,f 3

/..?070,c til 3

UNITS

uh 1/5( tj:p Lt/J':::

1J,~'o

"'~c;.C;

~~7 4ior./ t.L~Y

tis 7 (/'17 I/o?-tj,:J? • .i~'; 1 </r; :: I

~o<~ 1 4t.~3 J

~

"" o ..... ::OfL):ZC

~~§ ;: ~;; G1 ;z Gl

-I ::0_ ~ i'3 ;; :t:» -I t:1 -I 0 C

o::o~ ;z :u::>

l>;Z

2-0 ::x:

en l> ~~ en o D:l ::0

-I [!!O S;z

rn C -I

~ r

~

.f

--,

-,

::.;' :·:>J.",~.~«;;i?i;~;~'\:{;~;/><{':'?/>·,.'.;' "'.'~". '" .. " ',. <' ".:.~.: :";l:',::~Jj;'~~}·:,~.~~:·· .. ' .. ; >.~ .. ~?_,.,,] [:(] : >:-" . ':::,;;:. :;;:"'""""':'d~..:" '.' .-"" . :.. '.' :," '. " '. "'{"') " '.. ""'. . . '._' .; .. , .. ~ .. __ ., "'~'-'."';i' ..... .' .. ,.... . '.. .:,.;".- -,\,1' .. ':t'·J ,r, ~ ..• ,<"'4'; I".'" ,t4""!'rHN" ',l,. .t'i~+ +.-..,.1;'.. !'ttl 1m ('broo .. t '+ r" .*~ h_..... d'+M'" .. _ ...... t" • n _-:~~._.,.".~' '... .

...... ....... -.- .........

-0 en ClCXl <ow CDO >'? .:oJ] CXl-

ROTOR UNITS POSITION 1# DEGREES uh 0 0 4,.,n ~ 1/-00 1 11.25 '/1/5 Is t/S7

.2 22.5 3'i? lo.! ~b

3 33.75 t/5? .Is 45.~

4 45 3.i? Is 1/;)9 5 56.25 "161 Is '157 6 67.5 ~o/ Is 4&;;'

7 78.75 t./~r:/

Is if,,::

AVERAGE VALUE: MAXIMUM VALUE: MINIMUM VALUE:

ROTOR UNITS POSITiON 1# DEGREES . uh

8 90 J/-o;' 's ijo5 9 101.25 1/57 ~ 47';

10 112 5 4/0 1j 1/13

In 123,75 I/""~ .' ,.... Is #22.

12 1135 ""/0

Is t/</¢ ·13 146 25 4,P3

~ Y"(/3 14 157.5 40?

Is I./¥O 15 168.75 r,L79

Is t,lt/3

431...!/2 1?~3

.,3CfS

. "''' '. , .

- -

ROTOR ROTOR POSITIDrI UNITS POSITION 1#

16 ~

17 ~

18 ~

19 ~

20 ~

21 Is

122 los

23 Is

DEGREES uh 1# IDEGREES

lRn ¥o7 I?Jt ?7n 4::l7 .1.1

191 25 J/Iof 25 281.25 43::l ~

202.25 Ybo ,26. .292 • .5 4~,;- Is

213.75 J/S5 27 303,,75 l/5.;2 ~

225 ; .. :9 ") 1.8 315 -;;:36 ~

236 ,25 _1£3t.. 129 326~25

1J..'i9 Is 247,5 39/P 130 337.5

395 Is 258.75 .¥3! 31 3~8,15_

I/r./S !o.i

L. KIAJ7Z /8. :r€'-'Nsr I

/ () /,;u. /A' :3

~o",,,,e -II- ~

UtI ITS

uh

395 .3'11n 419 tlt./L/. 392 ~,"'''' C"'C"'o

#:s~

~~~5 39g J./OJB I

J/S5 ¢r,L9

'3Q '/

'zLoo I/...~p

1/5£

-

.. ~

·N e.

:OD:C C!:!c ..... 6E;s -~-:!! :2: Gl __ Gl

-l. ::0

~~% :>-It:::l -l 0 C C;;o!:l z :n::::>

:>:

n l .... " (1):1:

m:> -(I) (l)1'T1 o ::on

§ ~. I'T1 C -l

~ ..-

- . 1 I ! I J d

! ,< :~

J ~ 1 , J

t i ;; ~ i

~ , t • 1 )

• ~ I

~ ;: ~~ ,~

'l <, .,

i it

-_.

-.

~~

Kt,~:}~2;;ff~b~tf~~~~~~ ~~~ .~i~~;r::~{,':;~'; .':., .. ",':.;:L>.,;" .... ' .•.. +" . ).):;.. ...:. !J;'S;:,~~j!7~~'f""~<" , .. : .. i1 H.'" .' /""'"'r"' ...... '· .. "., .. " ........ '.'oH .. ;, ..... ,',·,·· ,"-'_i_ ",' .. ·ri.'··" '.'" ";;,;'- .;,~1;,J' ;.i,.· .... ,·--,',. ;;;;..~;i;;;;..;~'<'~~~~Zi: .~.:,:L --), ~ . b

< ,~

~-----~~~~~-=-~ ...... ~-~~-

<len PleD caw 11)0

»'P ~JJ

ROTOR POS ITION

UNITS

#

0 J:

1 IJ 2 Is 3 Is 4 IJ 5 IJ 6 IJ 7 Is

DEGREES uh 0 .t/!Itj

~7:2

11.25 4IPr 415'

22.5 1/10 1/7t/.

33.75 ¥109 J//~

45 J.//7 '170

56.25 1/7.;1. 1//7

67.5 Ljcj9

.,t ,P" 78.75 I/r,t?

1/19

AVERAGE VALUE:

f'iAXIMUH VALUE:

mNH1UM VALUE:

ROTOR UNITS POSITIotf. # DEGREES uh 8 90 'It! 7 Is ti7.? 9 101.25 L/7:J.

Is til 7 10 112 5 'lifo

1; 'IR'0 11 123,75 1,/75

Is 41'1 12 135 'lSI

Is -IoP6 13 146 25 ¥t'O

Is fld)~

14 157 5 ¢_'?3

Is I,/?? 15 168.75 1./50

Is 1/':3

453,5, 507

tllll

ROTOR ROTOR POSITION UNITS P01\ITION UNITS

#

16 1.1

17 Jr,

18 1;

19 1;

120 1;

21 l.l

22 1s

23 Is

DEGREES uh # DEGREES uh

Hm tI?;J. Oil ?7n 1./-50 I/'J7 Is 4!"L

191. 25 7(:-0 25 281.25 d5~ 1/30 1s 2t,P

2Q2 25 1"6h 26 292.5 str/6 50') 1( ¥75'

213 75 J/ .. /I 1')7 30i.75 </(/t/ '130 Is 1/16

??5 ;/30 ,n 311) tJ;l1:-5'0/ Is '173

236,'15 ~'/3 79 3'16,'11) -5!/~ ~,;:J) Is 4/~

247.5 460 30 337.5 t,I{lO

4i-r"/ -~ 469 258.75 ~rl 31 348.75 l/t/o

7~p "Is ¥I¥-

L. k'NvTZ/L1, i!el.IN$KI

10/21(;3 ICoro-'£' -# 3

\11

t>J e.

;lOfO:IC

~~5 - ~-- z..,. Cl -i Cl

~ :;; ---i 0 % ):00 -i t:::I -i 0 c: C;;lOCI Z :;t;»

to:Z

QI " en:X:

!!l):oo _en enr11 o ;0):00

!!]-i _'" 0 t:::I:z

r11 c: -i

~ r

....... ....... -

'" "

· F=l:iJr·')~.L~L..~~::.L-~~· :~';--.:,) , , ,_ . =...i~Eo'",i!k::~",~ __ ,_~_L ),;]

\len roO) lOW (1)0

»Cf' ':0 ~-

ROTOR UNITS POSITION # DEGREES uh 0 0 t/..!"l/. ~ l/.3c.t

1 11.25 t.)oP ~ q5'::<' 2 22.5 t./("b ~. 1/3cJ.

3 33 75 1/0'1 .~. tI:; / 4 45 JIb'? ~ I/o-l 5 56.25 #10 1:1 1/55 6 67.5 r; ?D :Is l/..;:l

7 78.75 diD

Is l/<t'.~

AVERAGE VALUE: MAXIMUM VALUE: MlNIMU!1 VALUE:

ROTOR UNITS POSITION # DEGREES uh 8 90 1)73 J.s t/f/;:J. 9 101.25 1/-11 ~ £/</1

10 112 5 1/ 7::< l:i qt/o

11 123,75 '/1/ ~ {PIR

12 135 471 ~ LjI;Z

13 1146 25 41t! Is tJ.f?o

14 1,75 'i16 Is Lit/a

15 ~68.75 '11f;' 1£ "U{.(

11/5.39

50.1

4o?

ROTOR

_~ ___ .~J~_~

U1

N C ....

POSITION UNITS ROTOR I POSITION UNITS ;:oO::C

C!!c::-6 ~6 #

16 ~

17 !oj

18 ~

1q .. 1.2

:20 Is

21 1.1

22 lJ

23 Is

DEGREES uh # ;DEGREES

180 JI-l?_ 124 270 t/(/5 I.i

191.25 1//1/ 25 281.25 I/.~~ _.:> .!i

202 25 t/-I,::: 26 292.5 L,!(;,o ~

213,75 t/dJ3 27 303.,75 1/10;:1. Is

225 So/ 128 315 1/56 1j

236;25 ~/~-=? i29 326,25 4'l/ Is

2LJr; 5 1,/:/'::- 130 337 5 «<,.7 Is

258 75 /,11-.' 31 348.75 -"'~~ .. ,~ I:i

I. ' K (/'J 7:? /13. rr= (..INS t: (

/0(;:l?/P3

J!. 07.)L:. 'iI 3

uh -/93 45t/ ~/q

~r.;1

JI.F:2

(,/~5'

.t/IO

~s-:: ~&I 1,1/0

1/10 U.-:'b 1./~7'

,;",v.?

(/u ~

.{..," 7

-

C'­::I: ~2 COl _ Co.,

-I ;:0 o :.:r:­-t 0:2: l> -I t:1 -IOC C;:;o~ z :;!:):»

to z

2-u :I:

U) l> [!len - rn en o to :;0-1

~o I::' ::z

rn c:: -I

~ r-

":>

~ t

---

-

Q"""~''I- t:::.J r."":;] c;:::;.l 1;."7''''.:;] tr..:.: ~ t::;;::.i:i t=::.'I ~ ~'.!s ~ _

ilen 0>(1) lOW (1)0

>'f' ':D ~~

ROTOR UNITS ROTOR UNITS POSITION POSITION # DEGREES uh # DEGREES uh 0 0 410 8 90 IJ.l;

I;: l/-3J' los IJ (eo 1 11.25 'l'6P 9 101.25 /1.. • .:;;;'1

los 1/03 'los t. -:'0

2 22.5 7'13 10 112 5 /tIS

Is t/</o .. ".1 1./:; 3 33 75 1/7/ 11 123,75 1/61 I~ t/0C, .It 1£70 4 45 l//~ 12 135. L/./L. I.j tlf/I !oj till ")

5 56.25 1/ 7.:2 13 146 25 'If';; !oj '1bR "s Q'."? 6 67.5 1//3 14 157 5 tj/R "s 1/15 "s f/,). 0

7 78.75 t/b;:" 15 168.75 t!P2 lo.i </ ?V los tI~;J.

AVERAGE VALUE: 1//;0, 5~ MAXII'IU~\ VALUE: --"<,E-...l::::'o:..,;.3!.-__

MININUr1 VALUE: ~,LlII:....--__

ROTOR ROTOR POSITION UNITS POSITIOfI #

16 los

'17 Is

18 ~

19 .':2

l20 Is

21 "s

22 ."s

23 Is

DEGREES uh # )2EGREES

lRO t/IX' i/~ ?70 4~1 los

191. 25 t/-?? 25 281L 25 '1-/:..-- Is

202.25 ~~.~ 26 292 5 l/{.,o lo.i

213.75 ::-,-,:- 27 303,75 ~,;,,:: ~

?2S .if~'- 28 315 'IS.? ~

236.25 1/;;-1 29 326,,25 '/97 "s

2g7,5 t,i..:J{ 130 337 5 '1:J'I Is

258 75 1/'1'-; 31 348.75 'I '/tJ "s

L, KINTZ/Eo rEt./N'::;KI

/o/~7/R3 Ko7(')K'#3

--...

UNns

uh' t/.;t3 '1~~

~,?'S

i./Po '1/£ ~(/..o

1/73 ~70

tJl'3 if 3? ¢70 I

1/66 1 l/ / / l/ICJ. l/5;;J. I/(or:

\11

N o ...,

::00:::

~ ~~ ::: ~2 tn ;z (i')

-t ;0

~ 5% l> -t t:J -t 0 C C; ;0 ~ :.£! =t.I:::::t-

to z

2-0 :x:

U) l> [!JU) _ ITI

U) on

~d S:z

ITI C -t ~ r

-----

e"i::~2""i::L:"',:->"':':' '."'"", .\,,.;T~~" .. '" ~.", ;,-:,.~~ •• "",,", ,'<: " .. M.Cj# ;/' ' '« ',' r;';;;~';" " ii',,; ,:;,<' ',:" 0 ,IT',"V;', '. '. ;"., ,." )L. h' ,,'\\':;' ;";;;'.";::~::::;~.:;:;;';;·2~~c::;,,;,. ";~'; ... ~,:" ,:,,' .. ~':,1"

"tIen Cl('O <oW (1)0

>Cf' .. '. !1

.---.. ---

ROTOR UNITS POS IlION # DEGREES uh 0 0 1/~3 ~ tiP? 1 11.25 45/ Is 4113 2 22.5 J/ t/ I "! 1./77 3 33 75 i/"'o :~ Jilt/ 4 45 I.f 1././ Is if7</. 5 56.25 '170 ~ '113 6 67.5 LJ3tf lj t.;?.;J

7 78.75 lit/I

l.! lI-/;:J

AVERAGE VALUE: MAXIMUM VALUE: MINIMUM VALUE:

.:"..~-

ROTOR POSITION # DEGREES

8 90 1j

9 101.25 Is

10 112 5 Is

11 123,75 '£

12 135 1j

13 [46 25 1j

14 ~57.5 Is

15 1168.75 Is

150.33

50S

t/ II

UNITS

uh if 1/ J/bo 1/ b t./ :,,'/':::

41';;- J

.:L";. ~ .!)·il 1 413 'lIt! 1/7;':

tllID

1/1 :; ,IN l/7C: '16.l I/IU_

ROTOR ROTOR POSITION UNITS POSITION #

J6 ls

17 !oJ

18 IJ

1q ~

20 ~

21 ~

22 Is

23 /oj

DEGREES uh # DEGREES

J80 ¢!f3 24 270 1/-7b I.i

191. 25 1/-7<: 25 281 25 1/13 -lj

202 25_ tlllf 26 292,5 t/'--- Is

213,75 f.l -'7 127 303 75 "'uti ~

225 1f/7 ~8 315 'iP;:. Is

236.25 I!,~(;. ?9 326,25 tj;;.J 1j

2lt7,,5 J.f 5:J 30 337,5 4' Pb Is

258.75 l./ ., . ,b 31 3Q8.75 til) 1£

t. KnJTZ /"E. ?€l./tJC~1 IDIc;1.~/li's

I!.07'rJ~ # :3

UNITS

uh </£f' '195 tiR9 d;Jb

J// ~ I.? ""

50S ¥-b;).

t/~5 461 5'00

t!~1 I.j~.:l

1/55 I

¥7"f" 1

t./6o I ¥:J3 :

U1

!:?

:;a1O:C

S ~~ - ;0--

~ 5: ~ -I

;0 03--I 0 2! ~ -I ~ -I 0 c= C; :;a ~ ;: :u: J> .. n~ n I -

:c -0

(I) :t:: !:!l»o -V> (l)rn ~»o .,,-1 ::0 ~:z

rn c= -I

~ r

~ ...

--"1 ."~

'\

. ~1

,.

~ :,

"

\ ., -- ~~, ,.- •••• , • ",' ' ' ., ... " " ""i·,··"·~"cr.>e.,.".".,,., LA [(:::':'iT(" .. ;.., ...... ,"'" . ,'I.y''j·'·'· ....., ". c' d",';', .... '. ,:",<" ••.. <:,,}~.".,...;f'n.,~ .. ··(.;l' ... , ........ .

<·<:}·:''::·~~·~:~·;··5·:··,"<·:~~~~::~L~;··,w,'';'' 'i_"',,;, ~,~ )~~"~'..., "~~::;~~::::'~'~H':;"(~"·~' ~:':~ .

{' "~

......... ........... ~ ..- ..,- - p..a ~ ~ ~ ~ ~ ~ ........- ~ -- ~ ~ a'

-om 11>0:> cow (1)0 "pcp N?1

ROTOR UNITS ROTOR POS ITlON POSITION # DEGREES uh # DEGREES

0 0 4J"/ 8 90 J:: ..:.I/b ~ 1 11.25 /,LIS 9 101. 25 l:i L/6~ l:i 2 22.5 1/79 10 112 5 l:i 40Q ~

3 33.75 L/o 7 11 123,75 l:i l/t:,7 Is 4 45 tj./p'J 117 135 l:i 1/07 l:i 5 56.25 4-00 13 146 25 ~ l/.;.' <;' ! ~

6 67.5 til e Is 1/00 7 78.75 /,LaC?

Is 4'13

AVERAGE VALUE: I1AxmUM VALUE:

MINIMUM VALUE:

-"14 157 5 ~

15 168.75 ~

431.4/ ,lor.; 'r-I .....

1/-~3

UNITS

uh i/-G3 .1/31 ~o::>

4.:"'? 4~1j 405 .!.Lori tiC/v qfo":?

.L,L oc. doC;

~:'5 I/C;C?

'reh 4100 I./~p

ROTOR ROTOR POSITION UNITS POSITION UNITS

#

16 Is

17 ~

18 1,

19 Is

170 Is

21 I:i

22 1;

23 Is

DEGREES uh # ~EGREES uh 11m t././"r I?ll ?70 u7R

d00 1, tj.clo

191.25 V;) 7 25 281 25 Jill 4._";9 Is f/-SI

202,25 ~.~, '/ 26 292.5 d y '; ~.~!/. ls ~/J

21355- </u l 127 303.15 Lj 1,/ LI -' / .... '0 ~ 1/ '7r,

??I) I.,t ~I In 315 'I ~/- . iI.-:~ Is <! 1,.1-'

236 ?5 LloR 29 326,25 til 7 l,I t/ I Is '167

247,5 . lin 130 337.5 jI/.f <{'.::"; .. , 1;5 !lr{'f

258.75 ..,'11 31 348.75 <.i /t/ 1/1/14 -Ii 1./. 0

J. .KINTZI S. ?FtlN5KI

/O/;:;J..,/f3

~o 'roll -II '3

I

\11

~

;o1D:::C I!!C:-6E;S ;: ~2 Gl~G'l

-I

~ ~--102 ;p.-ICI -IOC: o::o~ ?= ~ ~

2." :I:

U) ;:!:'-!!len ._ fTI en ,",ttl ::0-1 fTlO

§:z fTI c: -I $! r

'\

.~.),.'~" '"':::, :.;:'<';",'" .:" ".: ,. )- ,," , ", ''''.:; ',"'; " ,,', .. ,"" '-"7-/ ~ ~ -i; ,F ," ":-1 I

"en !\)(P .ow roo >'fl 'JJ 1\).

ROTOR UNITS POS ITION #I DEGREES uh 0 0 t/.;U J.E 4(/'/ 1 11.25 t./,R:; J..i 1/.93 2 22.5 I//S' J..i i//~

3 33 75 S'-'-,.!;>

~ 1/73 4 45 1/-13

Is <//3

..5 56.25 ~5'? los . "17C<. 6 67.5 'I'll '~ '1"/1

7 78.75 45R

~ f."~R

AVERAGE VALUE:

~'AXIMUM VALUE: MINIMUM VALUE:

'-

ROTOR UNITS I POSITION #I DEGREES uh

8 90 ~37

Is .1/,/ /

9 101.25 u?'::'

Is ~;;'l

10 112.5 43 1

Is ~II

11 123.7S '/.5"0 J..i {,If/I

12 BE) 411

Is ¥.N 13 146 25 II.?

Is //71. 14 157 5 ¢/rZ

Is ¥/.;(

15 168./5 ;;l~ Is -/75

!jflt? ~_

5QI

-5L/L

-- _ .... ~ -~~~~~~

ROTOR ROTOR POSITION UNITS POSITION UNITS

1/ If; 'l

17 '",

18

'" 19 ~

I?o J.s

21 ~

~2 1-

23

'"

DEGREES uh # DEGREES uh IAn "1/3 .?Lt no 1/17

/fIt .!i i,5;l .

191.25 ¥75 . 25 281 25 £'13. ¥75 'Is' tf.tfp

202.25 4/,;2 26 292,5 -1';;'5 diU ~ ",(PI

2i3~~- --;;id ?J. 303 75 .5'0 I

-;;'77 Is "£971 ??S 1/-/5 In 315 L,i.;{r,L

1/.1,6 is 4S~ 2~fi. 25 d/11 79 326,,25 <'91

R 1/,9/ Is ¥7"~~ 21t7.S 'l-Iq 30 337,5 ~;r

L/I'l Is t/,;;,;}

258;75 L/t"l/ 31 348.75 '17"1 4,1 Is .:;qr,-

1.. /I uJTZ / S. P£{I/I.J.!;K I

lo/t??/8'3 ,e070K "4 3

~ r:t

~1O:l:C c: .-E;§

.... 2=' .... == e ::z Cl _ Cl

;0 -i; o 3!--t02 ):o-lt::! -i 0 c: o;.:7~ :;;.: » .. ~~

I fTI

Q." :I: (1):::-

t::l(/) _ fTI

(I) on ;.:7-l

!!1 0 a ::;:

fTI c: -i $! r

-:

~ 3 ) ) )

J .

')

ROTOR UNITS POS ITlON fI DEGREES uh 0 o ' 11t/-5 I,! 1:J.35 1 11.25 /'-110 ~ 1~c,tO

12 22.5 //75 il.i l;lb()

3 33 75 /(,/30

,~ /';)'1/0

4 45 /165 Is /390 5 56.25 1390 Is /;).0 0

6 67.5 Ill. 0

Is 1:05 7 78.75 /,-/10 ~ 1'='_'::0

AVERAGE VALUE: HAXmUl1 VALUE: rmHl1Ul1VALUE:

ROTOR POSITION # DEGREES

8 90 Is 9 101.25 ls

10 112.5 Is

11 123,75 J.;

I? 135 Is

13 146.25 ls

14 157.5 Is

15 168.75 Is

1~3J', ?S

Ii/3D

1100

UNITS

uh /150

I::'?- a 13-15" 1195" II I:' /~'J.?

1.30.5 1,:;(00 /I~O

/;<00

1~c;5

1155 lIDO /IYO /370

Ill?O

_,QIf' t.;'~"... _ -- ~ t;lCi;;;J

)

ROTOR UUITS ROTOR POSITIOa POSJTID:' # DEGREES uh fI [DEGREES

16 HlO 1105 I?ll ?7n 1.-~ II-JD 1.s

17 191.25 I.~·bo ?5 231.25 Ij II '/:J '=1

. 18 1.0225 //05 7.6 292.5 15 l;J.oo 1;

}O 213.75 /~o..JC 27 301,75 ~ /1 $(0 ",

1:10 nlJ 1/05- ?g ~fri 1s 119~ ~

21 ·236.25 /3'-1.) 29 3'6.,25 1.1 II R,C; ~

22 2~7,5 1/;..'.;) 30 ~~7.r;

I;) I ... ~ I::; I:l 23 258 75 It/DO 31 348.75 ~ //90 li'

I t.. K".rr z I (~.. rc. t. " . .1 S It'l

11/-; jf/3 t:. () .,. C) t:: :;:3

UNITS

uh 11.;{5

I~/:;

1390 119;;; I/,:;(S' 13foO /3~o

1130

1150 /370 1370 1195 //35 1;(30 /3·/ ('J

/;;(15

t::I

21 "l:J

(I) ::z:: m:Po _ U)

~fT1 :;:0 n [!J-4 eO

:Po

U1

N C' .....

~ f:'~~''''N ~

,us t' 5 .#.o.I. ...... CL---l._::::::::= //,··W·· .. -..: ... ~;:u ... 't...Z~~'·:4W-r.,..;.. '.' . : .... :.~ ... _~:.::)

') /

:

/"

, .. ~ /',;,}1: ","\" rti:;((~ ,r. ' .. '.~ Ye':: i:~

tr~t] !:"";;'1 ::~ ,,:~ j:

:"11 i;";)~

;:0)~ " ,J

" <'I"

!.~J;;

~t!:l, ". \ . .!

:;~.F;;{i~ \",'.r '-; ','.,.,

.. \

,,·{ti~ !.Z' l .. : ;.~'~

~{.)Ai~: 'U:·:::~ 'f'

r.;,·} .~!i'!~ ~; ,./:.

'.

n

I f:Zll I:".::J ~ ~;>::,~ azJ· 6,;;-,1 c::n ~

"0 en III CD <0(.) QO »'P '::0 ~-

)

ROTOR UNITS POS ITION # DEGREES uh 0 0 ¥-3tt ~ ':11 0

1 11.25 +,q~

1j ~3C)

2 22.5 dl/9

lis i,I~t:;

3 33.75 4<;.;1 I~ J/rJc. 4 45 ¥;)..7 Is 4£'::0

5 56.25 r.L f? I

Is /,L.:2b

6 67.5 d:;;.?

Is J"l'?-I

7 78.75 ~'p3

Is 430

AVERAGE VALUE:

~'Axmur1 VALUE: M1NI~lUM VALUE:

ROTOR POSITiOn 1# DEGREES

8 90 Is 9 101.25 Is

10 112 5 1£

:11 ]"~ 75 .1.."".

'i 1,) 11~1)-

Is 13 146.25

1j

14 157.5 Is

15 168.75 Is

f!etf.b7 s/o 4;)'fb

UNITS

uh ?'-30 <Ipg 1fF9 J,LB

4~5 "-IbO 495 ~57

4-P,I 4-6":3 ~97 //.:;¥ 43C, -¥~,

sol ¢~o

t.

t:bJ e::.:::J,' €.:1l J!.:;7.:l ~.:::l ~~~, C':2::1

-)

ROTOR ROTOR POS ITlOn UNITS POSITION #

Hi ".l

17 1j

18 k

lq Is

?O ~

21 "Is

22 1J

23 1.1

"

DEGREES uh fI

lAn 435 ?IJ

J/t.5 Is 191 25 So;J. 25

"/bd> lj'

202 25 1/31" 7.6 ¥6'5 ls-

213 75 504- 27 .-,131 I,

?11) 465 ?B s09 1.i

236.25 509 1.9 73q 1;-

247~5 7,,i/ ijO

5/0 Is 258.75 $/0 31

4¢o ~

,/.. /(' / A.J r 2

11~7 /S" 3

/20 r ",,.2 .#.;1.

[DEGHEES

?70

281 25

?Q2,5

'l03, 7S

';11)

3?fi.?'i

337.,5

3118 75

urnTs uh

¢ti:l 5/0

~70 .,ttlt) ~J!~, _~ol?

t!t:.t? '11/0 d(//

5Q2 50? .t/-3Q 4/;;¥ 50/ Sol ¢35L

QI "'0

en :I:

~l; en rn o ;a:Z:-

t!]-" _0 t;I :z

rn ~ sg r

\11

N o

£'!::a ~a &1

-'7 ,F ~. ".': jl~ 0'" ."" . '" \;r,~,~"~~~~r'l'~."~~_--"-l~~",-~ .. ~ .. ~~··~~'l'''-·S:~~.~:~.""':'.:l

)" , . ./

;~: ;r~

-';:.;;:':':1 '.' ':]' :' .. : ~ . " ..

::~"~ ;'>::1: ~<:~.':'.?':: '~:'.:':'/:'~ :'':;' .. j .: ... {

, .. >. ~. .,

[1 .... i. ' ,

: .. : ':, ~

"tlen DlCX>

<0 W (1)0

>'P '::0 ~ ....

')

ROTOR UNITS POSITION II DEGREES uh 0 0 tilt? ~ I/- tl.3 1 11.25 1//5 Is 1/36 2 22.5 1/70 Is 1/3? . 3 33.75 til;).

Is I,L.3ft

4 45 J/~rI

lJ I/h3 5 56.25 4'3/ Is J/II 6 67.5 115:J. Is t/5? 7 78.75 /j~

1£ .1/09

AVERAGE VALUE: f1AXIMUM VALUE: MlNlHUM VALUE:

.-:=--- - - - ~ ~ - ~ ~ ~ .~ I:::i:il:ml = 'J

ROTOR UNITS ROTOR Uti ITS POSITION POSITION # DEGREES uh /I DEGREES uh 8 90 1/t/7 Hi Uln tl77

~ 1/61 l.1 1/.7? 9 101.25 t/;1.1 17 191,25 1,(;9

ls "'I :J. ~ --;;;c, 10 112 5 ¢3f 18 20225 t./7?

Is ~6 ~ -4'?.?

11 123.75 433 lQ 21375 4/7 Is . ¢It./ Ie Llt;;j

112 11'~5 if 7;;' 20 225 I/?I Is If"},? ~ l/t/('

13 146.25 ¢.15 21 236.?5 1/.:21 l.i ~/b ~ I/.R~

14 157.5 1-75" 27 247,,5 .(.?GG

".i ~?¢ 1] I/~th

15 168.75 t/lb 23 253.75 /j;;l,;J,

Is i/ t./ () ~ ¥75

I/-tfZ~k ~. kuJrz. 1-&'b' /I /17/K3 .t/tJ9 ,carol!? --II .,..

ROTOR POSITIOff 1# iDEGREES

?fJ ?7n 1;

25 221. is If

'lEi ?Q2.'i ~

77 3(H .. 7s . Is

711 315 l~

79 326.25 Is

30 337.5 ~

31 348.75 -~

UNITS

uh 4K'i tit/7 1/;1.3 I/S¢ t/-R? 4¢7 t/;J. '). ¥5,;J. ;JPl ¢40 '/;).1 {50 t/cP<£ ¢¢? i

¢.;l.O i ¢t/6 I

Q':' ::t:

cn;p t!l(l) - rn U) o o:t ::0 .....

m o 8:z

rn c:: ..... ~ r

~ I\l eo

:;

)

fJ~'·. ';:: .". :~, L_.

r::fil t'1-.;ry]

"tun DIm

IC (,) ColO

>fiO '::0 t; ....

C;"':;JI ...

) (;/;;:.1 1"'~':;~i1 t;;-·~' !z;:J EC3 C=;:-l

ROTOR UNITS ri.QSITION II DEGREES uh 0 0 1133 l.:: 'fOe;

1 11.25 1/3 t/ l.s '-lIP?;

l2. 22.5· .!£::z? ".! 41-06

3 33 75 /./;).9

~ 1/61

4 45 t./;(S 1j 403 5 56.25 "'~b Ij tiS'S" 6 6/.5 'Io;:;J. Is ¥'o3 L 78.75 ¥';.f;;,

1£ //.56

AVERAGE VALUE: 11AXlHUH VALUE:

MHHNUM VALUE:

ROTOR UNITS POSITION #I DEGREES uh 8 90 t,t,;l.::l

l.i 1/05 9 101.25 t,L;;l9 Is £i6:J.

10 112 5 J/.).~

Is '107

III 123,75 'I3(/. I< dbR

12 1135 "-30 Ij ~o9

13 1146.25 1/01 Ij 1/7~

14 157 5 ~/70 Ij tJo9

15 168.75 1/39. 1£ f!7¢

13R, [to

.t,Ll? .;J..

J)tJ;l.

F'C';) ~ ~, l!.!:l o:::a r:.:::::l t~' ~ '£:::}

)

ROTOR UIHTS POSITlml . (:I DEGREES uh 16 lRn J/..3/ ~ till

17 191.25 </39 lr( ¢7f£

18 202,25 ~33 l,) 4-/0

lq 213,75 4¥o ~ iJ.7G

;20 225 413 l! 415

21 236.25 ¥/?.:; J;, #/

22 247.5 .'f3R ~ ¥Ib

23 258 75 ~t/6 l.! uRI

L, KIN, Z

Ilf7/~3

ROTOR POSITIO~ # ~[GREES

2lt 270 .~. 25 281,25 ~

26 292,,5 lj

27 303,75 1j

~3 315 1;!

~9 326.25 Is

30. 337 5 1j

31 31t3.75 IJi

£oroR ~ ~

ur~ITS

uh L/39 .til 7 l.ft/t,I I/P:J

.-F/0 41G. I/P.2 ¥i'O t/-Ir,t 1/39

l/,?O

.47'1 .¢It/ , ¥It/ . ¥(,11. ' ¢?fc!

Q' -0

CI)::t:

t!l~ _ .• en en fT1 o ;on l!J-I 8° :z

", c:: -I

~

~ N e.

o

r~~.~~~"l'" -.,. ... ~.,...-::~- ....... -:.-........ '''1'''':'' ~:" ..... " ,.-.: .. -:""\ ~·':I·~-~··~,·r.~~."~~~""~.·"~;:"""·:;'.~"'~~·~~"~:~-':""'"-·"~-!"-:~"~"7'''~'~ 7'''' : ...... -~ ... ;:. .. -.\.~.~ ........... -.... , o'J .... ;O-' "~'~~'- '-""~.-'.':~~':"."'''''':.'''' ~"',' ~.~ '.~'~:~~"'~ :~.;,~~~~ ',- '.

)

~ .. ~~ .. '~

;".,;

;~~:! ':1

~,:

~ .. \~i

':'~'.

r1 W

mJ t:::m e::;:,a ~ tr:m r.;;:.:a ~ c::.:D ~ ~ ~ ~ _ .,..--

"1J(J) Il>CXI

COt.) (1)0

>'P ':Xl 1:;-

-)

ROTOR UNITS POS ITlO1. # DEGREES uh 0 0 //35 "1 /.;>45 1 11.25 1/30 IJ /o:/-o

'2 22.5 11;2{) .10; /.;l30

3 33 75 /110

Is /t)30

4 45 //,;1.0

1.s /,;I;;}.o

5 56.25 /100 11 /O,;J.O

6 67.5 /Ol.o5 ls ;;:(,/5

7 78.75 IIt)S

1.s I t).;J. 5

AVERAGE VALUE: ~IAXlHU:1 VALUE: MINInUM VALUE:

\

ROTOR POSITION fI DEGREES B 90 ~ 9 101.25 ~

10 112.5 Is

11 123.75 1£

12 J.35 Is

13 146 25 1.s

14 157 5 Is

15 168.75 Is

/ / tit;" .tf-?

/OlKO IOA,O

UNITS

uh 1110 /.;GS 1110 /C).35 //.;2.0

1;2.</0 /.;2</5 /Ot/-D /135 /~5

/.::l t/--O /0 t/- 0

/095 /::Z/?o 1d:?35 /050

)

ROTOR UUITS ROTOR UlIITS POSIT ImJ POSITION II DEGREES uh 1/ fllEGREES uh

16 Inn 1t)?5 Inl ?in /01. roo ~ /;;J70 _I,t 1.;1.55

17 191 25 1/50 25 281.25 /070 I, /0':;:':; ~ /t) 7CJ

18 202,25 //60 Q6 29?5 /;2.(co

I:! /,;J &'0 ~ /,;l5CJ 19 213,75 //55 1.7 303,75 /070

Is /tJ60 J.: /o7tJ '.1.0 ns //t/5 ?8 315 /150

" /;;1 '}O ~ 1~5'O

21 236,25 115CJ 29 3~6,,25 /0(05

!o.t /()70 ~ liDO

22 2Y].5_ //60 30 337,5 /150. k /.:?5D 1..1 /;2.f/,5"

23 258.75 /0?5 31 3QS.75 //~O I Is /eJRO .Is . /055 1

). .kINTZ

/I/7/R3 ,(!o7oR -# ~

--

2-0 :I:

(.f) :P f.!len _ rrI

en o :P ;0 -. ~o t::I ttl

U1

N CT

,~., .o:.~ _ .. ")

-,.

: .. T!.

J.}

.' ;'~.:

f~'

:)~ ;~. ':.

~\I ',;

~.;-, , '.or ,.

:,~,

'1 ~.:

J."

(.

:!

., ~ ~.

'i' t

, ~'i:

'?,

",t

t· ···'

'~.~

r

~

~~~~~~~~~~~~~~~~~~

"OCJ) "'to co c.> (1)0

~cp ':0 t-"

-J /

ROTOR UNITS POSITION # DEGREES uh 0 0 1365 J.: IltJD 1 11.25 II tt-C;

1:i 1370 2 22.5 1350 ~ lid-I;; 3 33.75 //;;J.t; !.s- /365 4 45 1350 Is 1115 5 56.25 1110 Is 13?0 6 67.5 13,/0 Is //00

7 78.75 /;;1.1 ()

~ /3b5

AVERAGE VALUE: MAXIMUM V~LUE: MIHIHUH VALUE:

ROTOR UNITS POSITION # DEGREES uh 8 90 13 c/o 1£ IllS 9 101.25 lidO lj- /35':;

10 112.5 1360 Is 11.3C;

11 123.75 11'/0 Is /375

12 135 l.:2rL_5 Is //fLo

13 145 ~2S /11,£ 0 Is /370

14 157.5 13-/S Is /,;}.r,tS

15 168.75 I/I/-S

1:i /:;:Z6~

1:( r:, O. 7

/¢¥s

//00

-')

ROTOR ROTOR POSITlOlI milTS - POSITIOU #

Hi ";

17 10

18 1.:

19 J,:

!In 1,

:2:1 1.1

22 ~

23 Is

DEGREES uh #

lRn I t,t"i/ 0 ?LI 1;2. c;.o !j

191.25 IItf:,o 25 1,:;:J90 Ij

1.02:2S /t,Lr,i'5 i?Ji 1;)-<1-5 Is

?13. i5 IIS'D -n /.3~ 1-

?,t; /;2.7C; ?rl I I~C;-- 1;-

?3~, 21) /::<s~ ?g /391:;- Is

247.5 13R{) >.0. /170 1.s

258.75 //70 31 It/DS ~

L... kIN; Z.

1J/17!~3

DEGREES

270.

281.25

l.2.9?,.5

303.75

~Pi

3?6,,25

33l.5.

348.75

leo 7 01<:'" $I ;a.

maTS -uh

13f'D 117D 1170 I¢tJO 1;;2.(00 /17.t:; /170 1395" 1370 1170 1;).')0 ' If/oO 1~~5 115S 1155 1375

Q -0

(I) ::c l!l~ ~. (I) en I'T1 o ::u t1:1

g}d CI

n

V1

N 0" --

EG":::- :~:",:,"",,:-.~._-~~. ~'~~:~- .... .,.-.~--.- 'y--' .~"~. :: --~.~:- ,_."., "::" ":--7"''7:::-:-:':~:-~"' '-7"'~~-'-':;"::~c~~:~~:'~-'::: ,~:~~:!:,,: . .:;.::--,:~-_,. .., '. _Co.,. .' :~, ,~~ ;,_. :t' .. ,' '" '.}",;.,l

)

lz::::l ll';::~l r.:;.-:::.J U'.'t!5 ~ ~ ~ - -

\lCJ) !)JCX) <DUl (1)0

>Cf1 'J) ~ ...

)

ROTOR POS ITION

UNITS

# DEGREES uh 0 0 1135 l:! 1;;.3D 1 11.25 !3(PO

Is /~'J..O

2 22.5 1.I~5 y. 1;).10 3 33 75 /3~0

.lj l;J.oC; q q5 /105 lj 1;2.ID

5 56.25 1310 Is II rrs 6 67.5 IOQ5 Is /;)./D

7 78.75 /355 Is / .. 100

AVERAGE VALUE: tlAXlf\uH VALUE: NWIHUM VALUE:

ROTOR POSITION #I DEGREES

8 90 . Is 9 101.25 Is

10 112.5 Is

11 123.75 . y.

112 i135 Is

13 lQ6,25 Is

lQ 15i 5 Is

15 168.75 1;

/~t{g;J,

IL/-i(o

1095

UNITS

uh 1115" J~30

1375 /;;;J..O /I~O

/;).35 13?u /~o

1135' /;;735 /3Ro I;J r,t5 JJ50 JI50 /1/05 / ::260

- --')

ROTOR ROTOR POSITION UlHTS POSITION II DEGREES uh # IDEGREES

16 ISln IIt,LO 1?1I ?7n l.; /155 'j

17 191.25 /(,I:;J.D 25 231.25 ~ 1_':31?5 Is

18 202.25 1/t,LD 1.6 292.5 f:l 1150 -It

19 213.-7r; /(j15 ?7 -fn~.75 10: /;(60 1;

?O ?i~ /1100 ?A 31ii Is /;;l. 70 ~

21 ?"fIi~?lio /3.15 29 ~?Ii .. 'Ii Ij /';;;50 0"

'.

122 ~iii.5 116tJ 130 337.5 1; /.;2..65 ~

23 258.75 1390 31 348.75 J.; J~~oJ~

L. k'NT z.. /I;'7/~3 /2070/'2 #- ~

UNITS .

uh 1/70

1:l?tJ /'1-00

1;:2k,O

1170 IOJ.?O 13g0 I;;J. tlo //00 /;;(50 13J'O 1~t./5 /15£i 1;),50 !

1."g'LO 1~30

V1

N 8:

::01O:;r c::! c: .... 6 E; a :: ~ :; G'l:jG'l ~ ::<: .... -I (5 == l» --I d '-t 0 c: C;;;o!:l ~ =It: ~

J:.

0 1

-~ (I) ::c !!lJ:. ~_ en

~rrI ;;0

[!1n ~_ -I dO

J:.

)

. ~ c.::J £::J E:J G2J rz:J t::J . c.::J c:.:J £::J t::.::J c";) c::;;:;] t:;:l ~ con ~ Ei.:l ·1

"'0(1) P>CX>

<C Col 11)0

~<:> '.D g,06

')

ROTOR UNITS POSITION II DEGREES uh 0 0 Ilftfo lj !J.IRO 1 11.25 ;;J..IOO ~ 1&'70 2 22.5 1f190 L~ ;),/65 3 33.75 '1955 .~ I?f?o 4 45 J950 ~ ~/~5

5 56.25 /'} 75 ~ Itf6'5

6 67.5 /1?~5

~ ':</75 7 78.75 1tJ.5"O ~ 1tf'75

AVERAGE VALUE: MAXlftUH VALUE: rmm~u~, VALUE:

(lOTOR UUITS POSITlO!. # DEGREES uh 8 90 1~~55 !oj ?'/R'O 9 101.25 ::;'/75 1J 1)175

10 112 5 ICJ.~O

Is -';;'/70 11 123,75 0<./70

Is /PcPO 12 Be; Ill.?'§"

Is ;;{/75 13 1146.25 r2165 ~ /?75

14 ll57.5 1,?-90

~ 1950 15 168.75 ~~7S

Js 1~l?G

aO/I.5

~;)..30

Ig70

')

ROTOR UNITS POSlTlm~ iJ DEGREES uh 16 H!n 1[190

".l ~;).po 17 191 25 ;;(150 ~ 1:?1?D

18 202 25 ;J..050 k .:;1;).55

19 213.75 1955 ~ 1[1'90

20 ??Ii ~D~~ 1; a,;;'9D

21 236,?1) d.0 7S ~ Jl?RO

22 '?~7.5 19&';:;; 1) ~II?O

23 258 75 .91R.C; 1; I&'cfo

L. Kn.J7 Z

II jli /i3

Jf!oro.lZ ~2.

ROTOR POSITION (I [DEGREES

?lJ ?7n l.s

25 281. 25 ~

';15 2;}?,5 Is

?] 301J5, ~

?~ 3f~ 1-

79 3?Fi,25 Is

30 337.5 Is

31 348.75 -~

UNITS

uh Ifl~S ~/8'o

198'0 !.f~O 1960 rRl!?O L9.5;) /R!i0J 1'/65 I

:<IRo l

J 9t1JO J~l?tJ ICJ¥5 ,;)./75 Oil 75 18'';>0

ttl .. n IlO

t:='

"0 ::c ~ fT1

• ~ :: -:z t:=' -~ (I)

V1

N

)

r.c::~~-.:-:-:::"-"'-~-:,·~'~: " --"~:'-~"C'--"""" ''''''''~'' ,.,., ..... '--,.-.,..-.~ c -:::"':~~..,.' ,:"" •• ,....~:" .- '''''''''''C'.--'''---' ., ";' .. ~:-\,,;,t .. :~~::~,_ :?"~-,::::-:-;:~-~ , ... ~.~.:,::;'':'::"::;: .-.' ~";.':·-.i··'-";':·' d ;'~~'-4

~ tF;:J t::71'3 =:J ~ ~ ~ -- _ - ..,..,... c.-

"'Om D>CJ) 10 W <110 »'P ':0 ~ ....

-)

ROTOR UNITS POSITION II DEGREES ull 0 0 ~/fo J; /qqo 1 11.25 /g7t; Is ICj(P5 2 22.5 :lt75

lis IQ7S 3 33 75 19&>0

Is lac,s 4 45 ;;'/75

Is /950 5 56.25 /R~()

Is ICJ7(}

6 67.5 d-.iJ'() is 195:;-

7 78.75 If/?O I~ 19105

AVERAGE VALUE: MAXUiUl1 VALUE: MIIHMUM VALUE:

ROTOR POS IT lor. II DEGREES 8 90 Is 9 101.2~ l.l

10 112.5 . Is

U 123J5 IJ

12 135 l.i

13 146.25 1£

14 1157.5 1.i

15 168.75 1.s

/91CJ.77

.;2:;1.55

IR?O

UfilTS

uh ;;>'/70

Jtl50 );'7(1 /9(PO ;;1.165 1C/¥5" 19/?O fC15~. ;J./75'

/960 /gflo 1950 ;J.CJ.30 /97D IflRO 1f'9D

.~)

ROTOR POSlTIOii fI DEGREES

16 HlO Is

17 191 25 1,

18 '02.25 J.;

19 213.75 .. 1£

120 225 1-

21 236.25 1j

122 2£J7.5 ~

23 258.75 ~ -------

J... KII.J7 Z

II/IS' /K3 12.0-roe r;f:: ~

UfllTS

ull .7\;),,50

.).ot/-s 18'75 IINlo ;J.:l.5t;;'

::2035 1!?70 ;;2.050

OJ..17D ~o</-D 1f?~O

/97S" ;J...175

1950 /~'J5

.L9l?{L

ROTOR POSITION # lJEGREES

?lJ ?7n Is

25 281~25 t-

26 292,,5 !.2 ~7 303,75 _.1£

28 3J.i .!i 79 326,,25

1£ ";jO 337,.5 ~

31 348.75 ~

UNITS

uh .:;1..17D 19fil2.. 1880 1'1f?{) ,:;l./70 /9.55 /6'&'0 1'll?O

.R1?S I Cl..r,,(,J 1.¥75 19RO .,;J.17S' 19t:.o IRgOI 1950 I

-

t:I:I .. n \lO

'='

" :1: ~ en m • t:I:I 'I

:::: -::;:: t:;I -2: Gl (I)

V1

N

)

p::>,::: ,.:: .:;: . : .. :;.;....;..;...~;..;~~: :,.< ~.i':"":;~_~~ __ -'-''':'''''''''''-':'~_I~:''''''~:' •• _'." • ..... ""~.;:::.~,,;;iL~i:..........· . ~-~~",l:~ " l. ".1

- -1

\ \

f~ ~ ,-,.i t~ ,~

l;~

U ~ ~ r" H (:

~1 L: ;'j t1 ~, 1·~ i~ '·'1

r~ rJ i;l 11

~ ~~

~ ':;'

~ ~

i i

-I

I Ii

J Ii 1il

~ f.~;"~:,J

)

-ucn NCO

10 (.) (1)0

»I:p 'JJ ~~

f::".':,-:~" • ' .•. ,,-, ",~-

". ..... ' .

t:;:r.::J ~ lCr'Jj C1!3 r;.:r;l f:"'l;:l r',''';1''} =" ,",-,,'1':"\ ft--. ~-!C ~ ~ \J~ ~ tr::-:l t;;:;;J c:::,.1l ~ "'.".­~ ~

ROTOR UNITS POSITION # DEGREES uh a 0 451/0 Ij l/9~()

1 11.25 'fS~5 I.j 1/;;265 2 22.5 '/53D Is t/9~o

3 33 75 L/5::J.o

Is q:;J,50

4 45 1/9/D Is 49d)5 5 5ti.25 1/;;260 Is 1/;05 6 67.5 'f5;£S Is ~93S

7 78.75 ¥5,:;J0 ~ ___ _ _ _ '-R.5C'

AVERAGE VALUE: MAXItlUM VALUE; IUNH1UM VALUE:

ROTOR POSITION # DEGREES

8 90 1£ 9 101.25

--Is

10 112.5 Is

11 123.75 Is

12 135 Is

13 146 25 Is

14 157.5 Is

15 168.75 Is

;1~II. 33

5450 4-;),50

-)

UNITS ROTOR POSITlm~

uh /I DEGREES -l(.s::;o 16 lp.n ¥-9..:20 IS

4395" 17 191.25 41::lSC; 1<.

l/-S5o 18 20?.25 -4C130 ~

~530 19 213.75 i/';}'bO 1·

-;;550 '0 ??t;

//970 ~

4'...c-r;o ?l 236,25 #.;?00 Is 1/5;/5" 22 247,1) JlC?30 Is t,L6~5 23 258 75 ~!?5 ~

L. KIAJT~ 1/ /t;? /R3

£o"rolZ. -/I- z.

UnITS

uh 1./-7;).0 ~'l-50

¢(O95 4f-,;)Po 1/7,;1..0 5;),60 d:;;c, 0

~;:;J9u ~b()

53i£ JI:Jlls I./.;:J..CDO -;l9';?'S 1/9t,LO 4~(PO t,L.:l1i> 0

ROTOR POSITION # DEGREES

?LJ ?70

Is 25 231 25

Is 26 292,5 ~

27 303,75 Is

13 315 Is

i29 32&,25 1;

r30 337 5 ~

31 3Qa,75 Is

UNITS

uh tlC;:;2 0

491/0 1/;).55 LL.3S'5

~9~~ J/-S£10 J/~/O 4I=5;tc ~935 ¥970' 1/;1.75 : ¢,;J?5 I

49~O I

i/9$SI 45'351 .¢;'.701

~ N

Cl'JO:= me:: -::!E;6 m~­en:z 2

n-tG'l o 2~""" - 0-' fTl-tt:; noe: -t:O!:1 ~(I)~ • :t:» ~ .. n

t:1;J .. n I/O

t:::J

"'0

~ en m • > •

I/O

• t:1;J

• :::;: -Z t:::J

a:; en

)

:. :'~_, .. ,:' ..... _..:: ,:,:, __ ,!~ _". _:- .. ___ :::: L'::.~~7~ .. 7:·-:::~~:·~I:,::~ >;,.::..,~". !\.{]

l:

I: l~ ~ ~ ~j l. t

t f.

~ f ~ ,,,

~j t

~ t i \ , 7, !

I ~ ! i J I

t ~

! § .~~'

t t;

~

~ ~ j

:~~ 1\1 jl

.... ,..,._-'t ~ c::;:::2

'1Jcn P>()) \0(,) CDO »'P ':0 to ...

')

Q.;:.;1 ~ ~ ~

ROTOR UNITS POS ITIOH /I DEGREES uh 0 0 "/5~ l;! ¢9¢. 1 11.25 457 l:i 4.3;1-2 22.5 453 I~ tl-f?rf 3 33 75 tJ-S5

.1,{ #30 4 45 ¢,/jtj. 1£ 4,1.3 5 56.25 1/50 Ij -f.:<? 6 67.5 45;;l.. l.s 4,(7.3 7 78.75 _450_ 1£ 1/::<9

AVERAGE VALUE: MAXI11Un VALUE: MINmur1 VALUE:

~.~ ~

ROTOR UNITS POSITION 1/ DEGREES uh 8 SO ,/-sL/ Is 'l-Rt' 9 101.25 47P ls 43~

10 112 5 4..36-J.l ¥Rt-:,

11 123.75 1/94 1£ 7'35

12 135 l/-36 1; if9h

13 1/~6 25 ¥9{' 1£ 460

14 157 5 4-3tJ ~ '149

15 168.75 ¥b7 1; ¥3h

¥~¥.J(5

507

Jf;?R

.- ~ ~ -. - -- ""-

)

ROTOR UfHTS ROTOR UNITS POSITlotl POSITION tI DEGREES uh /I DEGREES uh 16 IRn 4-~i/- 24 270 So~

!.i 50(2 Ij ~9'? 17 191.25 J/.0~ 25 281 25 4710

1; 437 lj 44l HI 202.25 ¢lor;, 2_6 _ _ 292.5 ~,f9 ~ 501 ~ 50-*

lq 213,75 %3 27 303,7~ .</39 Is 4<10 ~ 4-.39 I

120 225 50_7 128 315 471 ~ 5t'JS 1.: 503

2J. 236.25 Ji-39 '29 326.25 4¥-O l.! ~L?,O Is 43.£

22 247 5 $ot, 30 337,,5 467 .1; $ttJ6 l:t ¥-99

23 258.75 "'.l/t) 31 3qg 75 ¥6o Is 4t/-O 1j ~3t/-

1. KINTz.. /8. -cG l.INSI<' 1

1:J/9/J' .3

teoTO'€' #:L

V1

N o

=-00:::::

~~§ -2"­~C!2 COl ~ en ;:J

~2i% ;P-'~ -.oc= o:o~ :;: ~ ~ ~ ... -n

£1 -0

(I) ::z:: m .~ ~fTl ;ul>

m 0-' a ~ c= -i ~ r

-

NO;€'.' ST.4To,e. dtM':€ D (0 3.1 ~o --------'

- ....,

.)

1-~~ >. t/

p

~ ~ :.

J ~ ~ ~

~ t ~

~ ~ (

i i • f ~ ! t ~ f

I I I ! i

! t ~ ~ ~

3 ! $, I. II

rr·.··"" ~

\. )

(:';'iJ r::;l i.7.:J E;;:l ~ rr·~ll C'7J t:::J

ROTOR UNITS POSITION # DEGREES uh 0 0 4-77 ~ L/-I.7 1 11.~5 1/-/7 ,~ ~70 2 225 471 Is ~/tf

3 33 7S t.J/:;L

~ - 451 4 45 Woro Is /130 5 56.25 410 los 4;;;.9 6 67.5 t/t.,.;J.

Is t/3/ 7 78.75 '/-09 Is '1-31

AVERAGE VALUE: ~lAXmUM VALUE: tHNIMUI1 VALUE:

)

. ROTOR UNITS POSITION (I DEGREES uh 8 90 ~(l is 437 9 101.25 i.J I / 1j 1/-33

10 112.5 ¥Io? Is tJ37

11 123,75 ~3 -~ ~3b. 12 135 1.J-7:J. .J.s !l3&

13 146 .. 25 .'/-.1 l/-lj t./-39

14 157 5 1./-7tJ-. Is l/-fo t!-

15 1168.75 JIlt. Is JI-39

44-331/-

4?'f 409

e;::;:i C-::;:J C;:;-:;;J t=l ~ ~ f:::"O i::l:::.:l

ROTOR UNITS ROTOR POSITION POSITION # DEGREES uh # llEGREES 16 180 '1-75 i?lI 27~ ~ '1-50 .I;i

17 191. 25 '1-/& 25 281 25 !( 44,,0 .l.l

18 202,25 477 7.6 292 5 1- 4tJo 1-

19 213]5 .¥/7 ?7 303.75 Ii ¥-59 Is 20 225 479 128 315

!.: I/-IP .1£. 21 216.25 4/.19 129 326.25

1.1 dh5 Is 22 247,5 ~j'~ 13O. 337,,5

Is 4;;'0 ".i 23 251h 75 tf.;;. 0 31 348 75

I;i <I~4 Is

LKINTr!13, rELIAJ'S,/<.(

1~/13/K3 R.oToiZ 4;2

UNITS

uh

!l-.70 tI-~o tf-~ I #4

U1

N c ......

::C1O~ I:;!!C:::-6 ~5 - ~-:z ...,. cn ..... Cii

-t ~

i! ~I§ -t 0 c::: o:o~

¥-7fo . ;;;: :;l; ~ .):>:2: n

''-1-19 #3 4J73 46C; !f13 ~/ .1/69 4-Rf) '1:<0 ;,LI? /j¢7

n' :2Z:::g (1)5> m(l) C;;rn o Dl ::c ~d S:z rn

c:: -t

~ r

NO 7'G ;. Srl9TOI2.. Bo~ D 70 .3. / R 0

"en Oleo 10(.) <1>0

>'P ':0 ~ ....

~

)

~ i,' t! r {~

I ~ ~ I: {

, 1;

k

~ t t ~

~

i i ~ f. \ 1

! l

f • i i i I ~ • i ~

{ J j, I ~ ~

f

Ii

;

I

~~~~~IIIm:2III~ __ - - ~

')

"0 en 1lJ(»

<D U) (1)0

>'P ':II ~..A

ROTOR UNITS POSITION # DEGREES uh 0 0 '-/-fYl J: 4.11 1 11.25 467 Is '13(2 2 22.5 -iki~f

II.; L/-;;J.? 3 33.75 t.,L(pf

1£ Lffoo 4 45 iJ-oir; Is 4;;;;;1. 5 56.25 '-1-57 l.i '1-57 6 67.5 '/-;;13 . !oj lJo-fj: 7 78.75 t/-~F! l.i '1-56'

AVERAGE VALUE: NAXIMUl1 VALUE: MINUiur1 VALUE:

ROTOR POSITIuN # DEGREES

8 30 Is 9 101.25

'Is 10 112.5

Is 11 123.75

!£ :12 135

1J 13 ~46 25

!oj

14 157 5 ".i

15 168.75 Is

43 e;;l. d-.

Lj'7_~

'i-Q'/:

UNITS

uh t.j.;J,5 '105 43/ t.J.(;,t.f -i,l;ii 407 43tf -'7-Iag iJ-3t. '/-09 '1.33-%1

-I/:?R '1-01 t/..?7 t/.7;}'

)

ROTOR UNITS ROTOR . POSITION POSITIOU

iJ DEGREES uh # iDEGREES

lEi IRn J./..:jtj. I?LJ 270 ~ !.IOC? ~

17 191 25 437 25 281.25 lj :(7;? 1)

18 202.25 4/0 26 292:5 Is 4/1 Is

19 213.75 I/it/ 27 303n75 1, 435 ~

?n 771) 41;;;:. 128 315 k at,{t/ It

21 236,-'1)- "'79 I?g 326,25 1£ 43ft:, IJ

22 247,5 413 30 33Z~5 is #;;. 1.s

23 258.75 ¢79 31 348.75 J..s l/-fll

.~.

L, KIIJTi! /23, :'}G LINSK I

/a/13/~3 /Co TOtC. -#,;;.

UNITS

uh L/13 dt/S t/7J' t,Lf/o tf./t/ t.J{{3 l/.7Q I./t,LO tj.13 t/-.3b , 'I7b I t/-tI-O L/-/3 '-1-3(.;, 473 t/bS

U1 t-.) o --

;oO::C

~ ~~ z $! :; m~m :::0

~ ~2 »> -I t::I -I 0 c: C; ;0 ~ :;.: :r.: ~

;p%

0' -" (I)::t: m;P _(I) (l)1'T1 o ;on

£;!d ~

Ri c: -I

£! r

NoTe. " Sr,4TO/.2. :Bo~:c [) TO 3, / ~O

')

!" ! . ' " .

-~''''',,--.• ~.""',-,-.~."', ""-. -"~""_.'-"-'-'~''''''-''''~ ........ , .. ,..-;,-•. ,,: ...... -','~''''-'--'-':"-.-'-'-. -.-.--:',_ .. ""' .•. ..,.4. ,'- :.' '\ . " ~:4:+,r~~""~~~.~.~rL::<' .. ::,' <·.ftT.,· . ,I.>,,i .. ~,~i " ~ ...... ~:...J..t~~~~~~~(~ ...... ~<:P...~V- .. ~ ~...i: ..... "t..:......:..;<.·~':.~.v'r~~..,;.j(~~·:~'"--....... ~i_~~ .. ~~~-.:.::.~.'-:\.;··~·",.'V '~J~~'~~

...... ~. • '" .~' " ....... ',\,,1';.:<' ,.:~:.'.:'.t.~>~Jld

E:S c::::;J ) c::;J C:J t.z:::l c:;::.'l r;;::::) c::::J t::::::) ~ -) c::J t':~:J c::.:J (""..:.:.:rJ e;;~ t::::wJ CUl ta ./ )

"cn "'CD 10 Co) <DO

»'P ':IJ ~-

ROTOR UNITS POS ITlor~ # DE~REES uh 0 0 1905 k ~/90

1 11.25 /950 !oj /f;O 2 22.5 19bO Is ;)/f?O

3 33 75 /9bO Is I&' gO 4 45 /905 '£ d./75 5 56.25 ;;<090 !oj If8'5 6 67.5 /£95 J..s ;;{/~{)

7 78.75 ~/fotJ 's 1950

AVERAGE VALUE: tiAXniUi1 VALUE: 11lfHMUI'1 VALUE:

ROTOR UNITS POSIT (ON # DEGREES uh 8 90 If?RO ':I /970 9 101.25 ;;</70 ~ 19t:.O

10 112 5 IPF.5 -"l .:?OYO 11 123.75 C:<I.RO Ij I?RD

12 1135 IPPO !oj ?'/~O

13 rr46.25 2/lc ':s 1 J?95

III 157 5 /?9D Is ~/15

15 168.75 ;;URD ~ 1[/9D

3.fli :(. ;;J. 7 :(;)..00

IPRO

ROTOR UrUTS ROTOR POSITIOU POSITION # DEGREES uh # !DEGREES 16 Uln 1975 ?LI ?7n

'5 ;);JOO Ij

17 191. 25 ;}'OCfO 25 281 25 ~ I?R5 ~

18 202 25 /g'.?D 16 292.5 Is ;;;/75 Is

19 213 75 199£; n 303 75 ~ jP9() 1;

20 225 letX'O ',)3 315 Is al90 Is

21 236,25 1970 2:J. 326,,25 Is Ig'CJD l.!

22 2l17,,5 1960 30 337,,5 Is ~/,f5 Ij

23 25!J.75 /960 31 348.75 Is~ jgKO Is

L. k!11Jre /B. 2£LIN~!<'/ /;<'/13/g3 l2oro/2 #;1..

ur~ITS

uh ;}'I J'O ;J.IRO LFr?(j LR90 ~O75 ;;< I J'Ci. /97D /.&'90 /9RO 0I1?5 /960 IPf?() LCZ7a ;<'LtfO 1C?7D IgJ'O

NO%: .s'T/lTol2 8012£1) to 3.lcfO

U1

N

en CO! .... I'll c: -~ E; 6· 1'11~­en Z ~. n-i

cn 9_ ~~ 8 ..,...

E ~iC; . ~eni!' • ):» Z .. ~ . .. n flO

o

"l:J = ~ I'll

• ~ ::c ..... e ..... ~ en

~ ••.• ~~~ .. , •. , __ ."". "."' ........ _ ,~4 .. ;~ •.. , .• ,.-~~~:,:-::w:~:~",:-:'7~::"'''~~.. . ~~."';:'''.''''~-''~:',':'''--- <:;::::]

g _z ~. zC !a~ '!: t a.l -" "'-ot .... ",I "" ... c 0' :1:' ~I :D' ... 1 z: o· ~! .

i

~ ~

t" ..

~ c.;:;;::J ~ 1j;!,'.'::.;;JI ~ ~ plaSM _ -- -.eo ~

HI) ,(X) IW ,0 .CP ~Jl )~

)

ROTOR Uri ITS POSITION # DEGREES uh 0 0 ;;{1g'D Jj j'CZg'(1 1 11.25 /RPO ~ !9t.1-:~

2 22,S ;;ug5 .Ij ;;,o_90 3 33.75 IPPO ~ IDS" 4 45 ';;·']YO 1.i ~/F5 5 56.25 1 .~/ 0 . ',,>

1.i /~ fl() 6 67.5 1900 Is ;)'/~:-

7 78.75 ;;206'7. l.j IP?C

AVERAGE VALUE: r~xlllun VALUE: MHlIrlUM VALUE:

ROTOR POSITIOI. iJ DEGREES 8 90 1j

9 101.25 J.;

10 112.5 '1

11 123.75 '1

12 135 1s

13 146.25 l.i

14 157.5

" 15 168.75 l.s

~ol;;J..f/

;:':;J.oo

/ ::170

ur.ITS

uh I??:J PI70 ;::;/f'O 18'?O 1?90 ;J./7D ;:)..105 !p?~

IRt'O ~/OO (;)1f'O 1[(70 1f'~O_ ~/~O ;;';0.1. I??O_

-)

ROTOR ROTOR POSIT lor. UlIITS POSITiOn UiIITS

#

16 Ij

17 1j

18 ~

19 l.!

120 1<

21 ~

!22 l<

23 .~

DEGREES uh t.J DEGREES uh IRO 1960 ?1. '70 ;;(/70

~/'?D Is /.&'~O 191.25 1970 7.5 281 25 lilO

1?90 1j ;;J../Sj2

202.lS ;<170 -7.6_ 292.,5 ~?O'.DO ;:< I u:>O Is 19..£.0

213,75 IR70 7.7 303, 75 /!?95 /91~O ~ ~

225 ;J.../,f~ 28 31S aa..'L I-J~D 11 195Q

236.25 12t'iJ ?9 326.25 /?J?O L9fl_Q !; /960.

2117,5 ;;"CJu 30 337,,5 ,;J../70 i

19!?O ~i 1'lt?S ' 25B 75 IP?~ 3~ 343.75 1?70 1

/(:MO !j ;q?D I

I.. /(INIZ/ 8. 'ZG't.IN~/~ I l~f3lf3 teoro~ .:t-';;'

3,11'0 /f}orrr : s r,4 70.c e 04 €:-D rc.)

t:I:J .. n 110

~

"0 :c in rn • t:I:J I:

== .... s .... m

\11

N

.. :: ;: ,': ;i: .• ,; ·,=....,;: ......... ==:'!iI:::::;·~ .. )Ii \+ .... ,~.) •••• +,. ''; ~ ................ ::::::J

c::l

)

~ t . "t : .-, ~

· [) c:=.l GZJ c::J c;::;l) c::::l t:::l c::l3 c:::J r::rJ E,:.:rJ C.s:J t:::J t::::'J 1:7""') fi..f::l ~ ~ \

<!(J) 0> CD

10 W (1)0

,.'i" ';0

~-

--) )

~ N

P~~W~ON UNITS UNITS UNITS UtIlTS ~ g 1_ # DEGP.EES ;; e; a o 0 ~~~ ~~~~~:~~+~~--~~~~~~--~~~~~~--~~~n~

~ g~-:;::02

1 ~dg ~ a~~ 2 • ~:z [~ 3 I 33.75 I L/555 1111 1123.75 I #70 11191213.75 I1-Sf51127 1 303.75 I lj.;J,fo

lIs-I I ¢~ 75-'1 Ij L___-' ¥bOO IL~I L~.JR5" Is I __ I L/~ 90 4 I 45 I ¢575111ZU35 __ L4d2QJllOl225_LM50JI28 L3li_L!Mrc.o ~ I 1 £990 Ills 1 1 L/-5-t/-S II lJl_._ I t/-'lfoO IL~ 1~ __ L49'65 5 I 56.25 14157011131146.25 I 509011211236125-'~'tQJI19l3~51 #00 ~ I I 4;<.f'5I1lj I I '-I-5~611 lJl ____ ['l~9QIL~T I ¥:JR5

~ I 67.5 1~Ps"lfi~ ~5j.5 1~~II=~12g7.5 I $~~-' 337.5 It$t~ 71 78. 75 1.-1%6 Ui5Ju:~,.!.!. .• ~75:-t-~~~~~~~~f¥-:L+-£!~~~~ ~ __#.-IsIITC

AVERAGE VALUE: MAXI}1UM VALUE: HINmUM VALUE:

4ft; I~. PC; 509Q 4:l7Q

L. klII/IE/B, r.€LINSKI

I~/ 13/83

!2oTO,e tf~

NOT€ : ~~7t/tC 8ot::c D 70 .3.IRO

t:%J ... n ~

t::I

." ::c l; IT!

It :>

" 110

It t:%J

" :c -s ~ ~

--~---------. ~-.--,--,-~.-"".-~' .. ..r-,-::"-'~:~:~~:r:--:-:1"':"1.'7 ." _.~"-::::-",,"'~~'."'''':'''::''~'''''1- ... --...... ~ •.. -' .... -'~:~.':'~~~ .'. '.: /::~,J

) ~

, I 1

Fill

i}

J

j

H

V

~

I B gO.

o

n g

9 B

ill

n

.' I~~-·'

DIELECTRIC STRENGTH DATA

".··t;..:~-.e.~~::::::sa: __ ~~~~""2ltn,*,""",!C2i;I!.:n"",,-_' _, - .. -. -.. ,-,.-, ,-•. -,-. ----.. .... --------~~ ,~ ...... ,i,.~, ... ~ •. ". ~~ ... ~ .......... , .......... _' .. ..,. .. -..... •

('\

~',

0 g g

D

0 ~

ill '.

g0 n ~

~ "

" ~ ,m , . ~

9 l~· .. ,

tJ

D ('

B g

5.3) DIELECTRIC STRENGTH

a) Motor Winding Test

Quadrant motors A,B,C & D neutral leads are designated below as A,B,C & D.

TEST M!X> I POINl'S o~s

A-GND :301<

B-GND ~3.~1<

C-GND ~tf K

D-GND 75~

n::sr romrs ma

A-GND I,as

B-GND I.a C-GND

J. d.5

D-GND 1,~5

TEST MEG PC~":'S aMS

A-GND 10K

B-GND ~5K

-C-GND ;5~

D-GND IDOK I

1) INSULATION RESISTANCE TEST

TEST rID:; l~ tl$ FOINI'S (US • roTh"rs OHl~S

A - B b~ 1< 11

B - C 30K

A - C 351( I B - 0 taSK

A - 0 3SK. r --- ------ --- I --- ---

2) HIGH POTENTIAL TEST 'l'ES'I' ma I 'reST ma POnns FOnns

A - B O.IV B - c D./~

A - C C.1CZ B - 0 D./S

A ~ 0 0,11 --- ------ --- --- ---

3) INSULATION ~ESISTANCE RETEST

n:sT tID; TEST K::G FOINIS Ol!-S FOINl'S at'S

A - B 1~5K. 1 B - C 351'

A - C 100(<- B - 0 I'1K

A - 0 '10\<- --- ------ --- --- ---

TEST PODn'S

F I ---

------

'l!'Sl' POINTS

C - 0

---------

TEST POnns

C - 0

---------

~ C!~

33K

---

------

ma

0.1/

---------

t~

OI-MS

aOK

---------

SB30B·A1 Page A·55

i , I: ~. " "

(\

" "I

, , I j , 1

r

j 1 (-~

I I I I , 9

o 0("

o

P.M.G. SPEED VS. VOLTAG OUTPUT DATA

..... !" .. :

"

',I i j

1

t',' -, "

D

B ~

ill

0 B B

~

0 ~

u ~

~

9 ,.

n ~

n ~':

~

(~

(~

0.

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT

TEST SUMMARY

1) ROTOR #3 (11-14-83) P.M.G. voltage vQ1ues were ~btained using the first available rotor. Rotor #3 had snme containment epoxy-wrap deficiencies, however it allowed obtai '1ing preliminary speed vs. voltage values.

2) ROTOR #2 (12-7-83)

A runout of approximately .003 inches was observed on the lead end of tile stator core 1. D. The core was then ground to 3.180 inches concentric to the stator housing pilot diameter. Upon completion, the generated voltage test was run using the final configuration rotor' balance assembly.

All photographs and harmonic analysis data oertain to this rotor configuration only.

·'

SB30B·R1 Page A·56

/

.I.

:iz. ;

........... '~ .. ~

" ... j

' .. ~ ,

~.

i' , ,

! !. , i t 1 t , f.

t , , t , I

"-

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT

! PHOTOGRAPH VS. HAR~\oNIC ANALYSIS CROSS REFERENCE TABLE ,~

PHOTO SPEW LOAD QUADRANT MOTOR HARMONIC ANALYSIS '1

NU~1BER (R.P.t1. ) (AHPS) r~OTOR CONNECTION GRAPH NUMBER

5.4-A-l 1667 0 A A-N 5.4-A-l, -9 -2 1640 1 B-N -2 -3 1661 C-N -3 -4 1667 B A-N -4 -5 1655 t B-N -5 -6 1645 C-N -6

! -7 1668 C A-N -7 -8 1671 0 A-N -8

1 5.4-B-l 4333 0 A A-N 5.4-B-l -2 4337 ! B-N ! -3 433G C-N -j

5.4-B-4 4336 B A-N 5.4-8-2

I L

-5 4347 ! B-N I' -6 4329 C-N ... 1 -7 4346 C A-N 5.4-8-3 ,I

I -8 4338 0 A-N 5.4-B-4 -~ ,

--1 5.4-C-l 10008 0 A A-N 5.4-C-l ,~:

I -2 10001 ~ / B-N

1 -3 9998 C-N

5.4-C-4 9930 B A-N 5.4-C-2 ~ -5 9938 '~ B-N

0 -6 9960 C-N -7 10080 C A-N 5.4-C-3 -8 10024 ,0 A-N 5.4-C-4 -'I

H 5.4-0-1 1665 0 A . A-B 5.4-A-10

1 -2 1664 ! t B-C

0 -3 1674 C-A

5.4-E-1 4342 0 A A-B J -2 4352 ~ t B-C 1

9 -3 4365 C-A i I

5.4-F-1 9210 0 A A-B 1 B -2 9178 ! t B-C

j -3 9170 C-A

g SB308-R1

rn Page A-57

g

rn

o B B f} 1J

m m,

~

~

rn L

~

a ,.

g g

U 0

('\

5.4} P.M.G. SPEED VS. VOLTAGE OUTPUT

HAR~10NIC ANALYSIS ~1AGNITUDE SUMMARY

N = ungrounded harmonic analyzer Y = grounded harmonic analyzer

GRAPH NUMBER

SPEED (R.P.M.)

LOAD QUADRANT MOTOR (HARHONIC)

A) 1666 RPM DATA POINT

5.4-A-l 1645 -2 1650 -3 1660 -4 1660 -5 1650 -6 1650 -7 1665 -8 1660 -9 1663

-10 1674

B) 4333 RPM DATA POINT

C.)

5.4-B-1 -2 -3 -4

4335 4333 4325 4372

10,000 RPM DATA POINT

S.4-C-1 10020 -2 9930 -3 10087 -4 10024

(ANPS) MOTOR CONNECTION GND 3rd 5th 7th

0

o

t

0

t

A

~ B

J, C D A A

A B C o

A B C D

A-N B-N C-N A-N B-N C-N A-N

~ A-B

A-N

1

A-N

L

Y 8.4 10.5 .8 8.210 .78 8.0 .78 8.2 .76 8.2 .73 8.4 .74 8.2 .70 8.2 .76,

N 8.2 .72 N .076 .78

Y

Y

!

8.6 10 .90 8.8 10 .88 8.2 9.8 .73 8.410 .78

7.8 10 8.8 9.8 8.8 9.9 8.0 10

.89

.97

.85

.85

S830B-R Page A-E

........ ..;':

. . ~."J

.'-':

~ -' . '. L ;.:'

, '

~ , .~ I , ; '. , r· . ~:, " t.· f·

l ; • ; .

~~ ,. L

r ,. !-

t r '. ,. l-I

L

J

I /"

I I J

I I ~

B

H r~,

n m \\:

[" :_1_-,-_1- ::. <:1' ,I : I ::::.. " , :,;', , .: ,

,. , r-- 1 ,:' "

! :.',:: I .' i . " ... ;. -_'_";-"1---7-+ r-'-+-~-+---'----!- _i __ J

; ~OAi : I;! I ,. I , ~·,v : I : -I : I . : i ,: rV: ! : i

· _... '-:-I--,.-t---7--,- . '--:-,' -. : .-If--:-··t-:-·j f-~'- .: " , : :. ': : I ://i : :

...... i ... '. .~ --l-i--i ... i-- -~ .!-._~ .-:- l/~j_~._L. __ ._; '-----'i~ . i ' i: : i : . ;y:'/-,!!

: 200 '-t.' ! . i : "EST ~r-- : ~;K' . i ! ! .. -i .... ·:--1--,",-- '-"--'1"-:-+'-; - --'~-f-~--I;>-:.- -.1 -:-t -' t·_·; ~i .1 .J:. ·:I~ :': .

\ .. , .. ~ --... ·-·;'·-·l·-~-'··-+·+_~ __ L __ . -+- ,~I·-~h-L·-LJ.-I~·-l· ,.5: t~ .: '. I .' , : W:-; !,.\ ,

, ~: ":-"l"~-I~-"l'-~-+-'~-!-+- -M- -'~OO~'-:"~-~-+"'-"'l , ,~, .. : ... i .. : -!·,,,;·-·1· .. +-·1~·~·-'1-·-)f/ ·l·=i~~~~~El .. -.. ·i· , .. , .. i '_. ~--t20---!- I I /' ./7, !. I!::

:J 'I I ~. J/ . ' I', i wur.; i, I : V)" ,....j ..... j ... -.1. .. . ···1 ,··'!---,.(WEAAlWG j--.. :... - ' t- I: . i ~ I ! ; m~ERATURE : :

• _ .- . ..-J. '.---- .. _-- . I ;- • !

~ :~. I : ~ -l':'-I"~-+~"l"-' II ... \ .. i ' ~ '-, .... ',--eo-.-~----. ,/7 I :': -'----, ..... _ .. -.... -~- ;,-~ .-,.,: :. - 1" _'.'jl! -! .. .:..1'-'"--·'-" '.1-; ':-'-'-__

.' I \' .. -\-···:· .. ·i··:··-!:····!I······i ····i·· .. .. '" "'40I-"-"'j'-" i ' I . f . '--..:--...;-~

·i ! . . : .. _j .. ; .. + .. ~.-... ~--~. :·_·f ·:--l : -.-.-: .. -_.- ..... ~.. '" i :- :1',: ";. 0 -~---: : ' ; :1 , ~ r" .-. ·1 . ':'~""li .. :.- .... :. .! .~ ~.- 1\' . .,..

!.. __ .. ..: .. ..:.. '1... I' ~ q i:' i T -~----:

O. i": f-.:.! .: ... r. .; I· - ··r .:._.j ... ;. ~ .'j ... , ,lr. .. ; ... \i. :.,: ........ ;.- .. -l ___ .!-_·_'.~' -SPEEO-KRm .. , : I '!: 1_.-.:..-r--1 ! ' . . li . l : ... ,1 .......... :. -I-- : .. + . .1 .. .! .. ·~····I· _. : : ··j···:··1 '- ··1· -~ ,1

: I 'J : I , ' I : I . !

:~.~_.~i.~~'~~[J~'·· I ·11·· ; ·-+··1···:· I'-'~ .. , .. : ·~I~

SB30B·R1 Page A·59

. J

'~-~ ..... J i

. i 1

J :J

.' .. ~ ·l

j 'j

l ." t

j

'-1

I

~ ~ ~ r.

~

! i

I I

t?:::J C""""i;' re'""d ~ e;:rJl ~ E:::!ll C""',J f.t!::j ~ c.:::::J r=:;:J ~ ~ r.::::::3 c.::::::J c::;:J c:::::J

) .) ) . .

""Ow III 0) lOW ClIO

:>'P ':0 ~ ...

GPEED TEltP [ronotl'1 MOTOR A (r. p. D. )

DESIRE AC'rtU'\L OF Itt-IDS VAn Vbn Vcn

1665 I~(P" - S.'1,)5 3&' 3'6 '3S'

2000 ;<k. - 5.7 ~ 4e:. .y~

4000 1/--" 7.~ ell CJ;l,. '1;;' -4333 J/.333 - 7.I/-S 98' "19 C;q

6000 (PK 119. $'.,;;'5 137 13R 1.'3?

8000 RI<- IRS 10,3 I b' tf. li5 18'5

10,000 10k 151 /1. tf .;1.3.9- ~33 ~33

/k /K. - 'f. 7 "<3 .;l3 ~3

31< 31( - ~.55 1&9 (",9 &.9

5K. .5'1< - 7.f5 liS liS lib

7K 71< 1/3 ct.!? I~O 161 161

... 'I" '-11< 1'137 1().675 ;J~ 7 ;:J.oP :=.v:i

1€1\1 p.""E>,-( u)IIJD, ~~ I.e.

. .. --"/".-

Vavo

3t' .

~

9;.

qq

138'

IR~ .

~33

"-3

d.9

115

I&. I

( ~DP -~

SPEED row ~OROU; V.oroR B r.p.D

r.cr-u.'\L OF IU-TDS Van Vbn Vcn Vave

VI /(P(P6 77 ¥"~5 31 38 3? 3? · or.

;)../~ 78' S. % 46:> ~{;, J.,l.::, lit .., - · 'tI :s: ::r C1

'II< ~{p (..2 C/I 91 9/ '11 JiO · II 13 CIS

1/333 90 ? (jC( 9S' 99 '19 ~ 'tI til ... 13

rt'

(Pi:!. 107 ?IS 13b 136 13") 13fo

D \11 := Ci

~ CIS ·

.5'1:: I~ 9,5 1';3 /BI/- 13t! 1ft!

10k:. 153 /0·7 :?31 ~31 t:l.3;). ;),31

i ;j rt' ~

~. C1 t" .

II<: 7'1 1-. ;l3 ;;2.3 .;t3 ~3 ~ ::l

..3K <;1 S'.9S &,g &>f? ~1 /pf! .....

5A.: 99 7.35 1/'1 lit/- 11,/ /ltf

7K 1/3 J'.f /5,9 /,.. , 159 159 - I

i}~(\ ~~~ ~~ .. ~ .... 1\ (}J ~ I)J •

'f'{ 13~ 10.1 ~O7 ;J.oR Clof ';(ofi' -

~ ~ ~ , ~ ()

\:

,~r .. 'm., ~ ., ...... '~.':,. 'n"" = 44 ,., ..... ~~"'-... ,.~ ~.7:~::..-"''C~,~·:~; .:,~:::::-::.~~:: .......... ,:: ~ .. :?- .~.:~ . :;:,::-:-.:, .. ;:= . .- .. ~:.::,,=,::.~~-:::.:,~::;;::,.: .. ::. . ··:r.;<~ '. "~-'''''' ., r ···~~.·:i'<J .~ ":~ .:-~; ' .. :;

./

E:O oc:m :.t.o c:zJ ~ ~ IT'-":'.':I cc::a -)

SPEED ttMP troRQU MOTOR C (r. p.m.)

DES I r.rr r.cruAL 01' Ii1-mS Van Vbn Ven Vovo

16GG /&,~~ 9.3 4475 3? 32 _::11' 311

2000 ~k '13 'f,?5 .t./5 ut: 1/:; 45

4000 4K. 11 ~.55 91 '11 efl .:?/

4333 1/333 /01 ~.75 ef9 99 '99 99

6000 (pK. II/ .5', 13& 13b 137 13fo

BOOO gK.. /;JCo 9.35 /;3 iP3 IJ'3 1';3

10,000 10K 11/7 1~.5'7..) ~30 ~30 .;1.,30 ;)30

. /1< I~ q;J. :l.g ~3 ;l.3 .;13 ~3

3K 3K 9~ 5.7 &>f &>f? t,~ ~f

SK .5,,< 105 7.~75 /1'1 Ilrt /It/- II st

7K 7K /17 f.75 IS&' /59 159 /59

CJK ~';A- /37 9.5'5 ~O~ ~D7 ;J..07 ~a7 I ,

-0 en III CD

10 (,.) <DO ;pCP

Te IWP' '"B ~ W I I-J D I t--l e:. T. c.

'J) g-' :l>

-

- ~ c- ';:")

"~) ")

-SPEED TErti' ~OnQU l1oron 0 r.p.m.

l\cru~ OF Iti-tes Van Vbn "ven Vl1va -

VI • .. -16«0 7: if,:JS 38 38 38 3P

D ~ -- · ~ :'l: · tJ' c:l

b · t1 Q t2

~ "CI [11 ... g

If'

;lK. 96 .1/;5 ~s -$LS 1-5 l.f5 I

Jt'~ '.;1. 9/ '11 91 I

/0/ 1/ I

'1333 /07 /'. if5 95' 9~ 91' 9? I " ~ \Q IJ

t2

~ · i <!

0 If' ~

I t,/~ II? 755 /35 1-~6 /3~ 13(;, i

1 ?K. 13k 8.9 18'~ 15'3 IP3 183

~ l'J 10k. IS5 10.;;' ~30 .130 .;80 .;1.30 g !3 ~

II< 'I;;;. 3.0 ;;.;;) ~~ ;;l.~ ~~

.3k <flo 5.'35 fD8 ~8 68 4,8

!'-

~ ,~ -~

~~ ltI~ 4~~ lu .

~ ~ .... ' ~ ()

oSk //1 ~.f 113 II cj. lIt/- Ilf

7K I~? $'.;). IS/I 159 15'1 /5'1

'91< 1'1-7 </.'15 ;(0'- ;).07 .;1.07 .J.a7

~

90

g

~;~

~

m~:.~~·T~~~~~~::~~~~~:~~~:;t~~~T~~;~i~~;~ ;;m;: t~; ;;;~r;~:; :;:~:' m~gi ::~:l':~~

! · r t ~N·t'-;'~i!i::,., 1··-:·-t·--i-··fuimf-"BqREIi tq 3~1!:l UiUlt.S ~ '" ...... : : .. . .. ....... ., .

. • I . ·1 ':. I :: .1 •. ' .•... f f ... . -J .

:-T-': 1:'j !:

.!

. - -I: -. -0-: ~.

: '-- ~:---ifO .... z:

I .... ·z -.--::;

I I

'1'

I VI ' !:: .. ·· .. ·80 .. __ .. _--'--o >: ': i .. _ ..... ; ..... ~ .. ____ -L~

i

I I

---f--+--'-'- '+-1 ~-+--... -~-

S8308·R1 Page A-51

•• _......... ..-~.., .... ~ ••••• ..-..:.. • ..-;. ... ~ '>' -",,-'-~-'-"'-- .- •• - ".- •• :

.;,

. ~ ..

-le -~.

.'.1-

, ~. ;

~ ~ ~ .......... ~ CIWiII. os=- ~ - ~ ~ ~ .-. to.-- .~ ~ ~ ~, iClrii

\J(/) 1l>0l lOW (1)0

,>'tl '::0 ~-"

)

SPEED T~ TORQtl'l tloroR A (r.p.m. )

DESIr.E AcrtlAL OF XU-IDS Van Vbn Ven Vavo

16G6

2000

4000

4333

6000

0000

10,000

1/<

3K

SK

'7/\

CfK

1&,60 e9./ SolS 37 37 37

.x..OOf &'9.~ 5.~ ¥-5 45 1/5

1-K 9t/.3 7.15 g'7 g~ FR

1-335 97.3 7.5 9S 95 95

!t;OO5 I~G.;;' g,~5 13~ 13.;; /3;;'

'l9tfg 119.7 /0.~5 17' 17& 17'/

lOX /35.5 /I. ipS ;;?;J../ oZ.;:);; ~~

MOt} fR.3 1/.35 ~;;l ~;;l. ~;1

300,!- 914- 6.35 (p~ ?0 ~b

Sf( /()~.'i ";.95 /09 //0 110

~995 11~·5 'f,{, 15t/- 151/ /5t/

Cj/. ~.:?7.~ 10·7 19~1 199 19q

7i:mp 8 Y IPltJDIN 4 T. C. STAToR. 'BoCE..i:) To 3.I'BO

37

45

gop

95

13;;1.

/7~

J.0l.;;t.

~~

66

110

/51/

191

--)

~ SPEED !TORQu.: r.p.m

' ACTUAL IU-IDS )..

1(P7C1 qo./ tf,~

.;;005 91. 5.35

1/1< 96./ 1-

4333 19.3 7.35

~K I06.tt ';/~5

~l990 //9./ 10.

10/( /3t.R /1.1

/010 f(8.9 4.13

:;}.995 ?~.~ d,.;{

5010 IO.3.? 7.'1

09R'/ II;?'./ 9-35

;990 1:1,f.S 10.6

KOTOR R

Van Vbn Ven

37 37 37

'15 45 ~5

%1 R&' 8~

9'5 95 95

13(;1. 13~ 13';}'

175 /7' 17b

.:{.- .: .-. ~ I .;?~I

b,"! ;2. ~;). ~d-

!t;~ (j,6 d,6

110 110 /1''''

153 /54 Is1

jIlf /9(1' Iry

-I

Vava

37

¥5

gfi

'IS'

13~

1'71;. I

.;?;ill

~;;11 6~1

I I/O 1

,

15'1

/91'

UI . .. • "3 .... . td :: ::r C) If • Q I) !II

-= '" o ~

~ (;1 III < o • ~ ~'l

if ~ rt ~

)I

fJ o

~ ~t-..

~ ~

" h,,111 1> () ......

'" C' ~ .... ~ f1l ~i~ "' OJ ~ ~

~ VI

'"

., )

-~-.. ~.-----~

(J) 0> W o 0>

:D -

E:a E::l ~ .J

SPBED (r.p.A,'

OZSIRZ ACTUAL

16GG l~b5

2000 ~;:

4000 3995

4333 1/-336

6000 /oK

0000 iK 10,000 101<

/K It:.

3K 30o~

SK 5K.

'lK 6915

91< 900$

ti;:;::::J t::;.-:::> ~ t;.::J CI~r:l

TZ1iP TORQUl Marolt C

OF Ill-IDS Ven "1::n Ven Va'/o

81.~ ¥.t,~ 3'C 3g' 3? 3R

90S 5.05 ~5 45 45 15 q5.~ ~.f5 Pt> F? Rf 98

100. 7,1 95 95 95 "IS

110,; 8.3 13;;. 133 133 133

1),/. / 1.~3 177 171 17~ I?~

/3J.l If, ();;~ ;J~:; ;;l.;).;;J c;l0l~

f9.;). 3.gS ;;(c;. ~;) Ol~ Q2~

9J.7 t,. 6~ ",G iP~ 6ro

/03,5 7.(;5 /10 /10 //0 110

/17. / 1.0£ lSI /5'~ 1~5 IC'C -'-'

/~9.? ItJ~5 ICfCJ ;(00 ':"'cx) C:Zco --

tEmp 8y- tJlA/l)IN~ T.C. 5TAiD12. Co~ D To 3. leo

~ t:7l --po ~

SPEED r.p.m. TEHP rrORQt:"

ACTUAL 01" m-InS Vlln - -IGGO 89.? 5.3 37

;;<k '10.7 5."5 ¥-S

1/-1< -19.3 ~5 8'7

t/336 I03.f IJ,; 95

C,K 11-;'.1 9- 131

;K. I~C/.i 1035 /7~

999{' 153 II,~ ~;;..;<

IK gR,'i 4.5 ~;;2

;;.995 93,:' d..'S 65

1r;75 10'/.'1 1'.15 /09

'lK JI"I.S 9."7 I$'3

CIt( 13C,.f l/.tJ5 /91

_~-,,·r--~-;·T';-"·V--:""""--:.. j , " , . i

-.---'-~- -

~~ c:.o.;';'i ~

I KOTOR D

V1m "Ven VQVO I

UI · .. .OJ

37 I

37 37 :

e. I'd · ::: I'd ·

J,LS ¥S ?fs tI C'I

" · II

~ 0"

~.

l1 ... 11".

f~ £'F E'P

95 CfS 95

/3;1. /3;). 13::t " . < IQ • 9 tI1

· ~ ~ :.-

17'7 /71 17~, I

;:;?~~ ~Ola ~~1 ~

§ '" ~

c;l;:;t c:t.:? ~

" -~5 iPb ~5

~ " (\) < 1) ~ ~ ~~ftl ~t\,){t. ,. .. t.;; .. ~

'" I,

~ ~

I/O //0 /10

I~'I- /51 15t/

:;'00 ~oo ;J.oO

.....

.--...... '-... ~

~ c;:;:D ) '§

I I !l

I ~ i.l

t fj

~ t. ~ ~ f.

I ! I !

I ~

f!"i·~

I

~ '.

." .'

,.~ -:

• I

ORIGlNAt PAGE SlACI( AND WHITE PHOTO,

s.~) P.M.r.. SPEED VS. VOLTAr,E OUTPUT

A) 1666 RPM DATA POINT

VERTICAL SCALE: 2 VOLTS/DIVISION TRANSFORMER RATIO: 8.0511

HORIZONTAL SCALE: 500 USEC/DIVISION

1> MOTOR A, PHASE A VRl1S _3~4 .... , 1 __ _

PERIOD If.s rnsec FREQ 222 Hz

SPEED 1655 RM

• XF""~ ~A"O Po.os:1 ., . .;'~~:..,,:

.. ~ .

':" .'

:. ~ ;~'- ••. i'\r~'::' /c: !~>/::~ .. ' :. ._ I" "-'

"'~.T,-,y. ~ ¢:'!", I __ ~. 7 ~r#1"yV~. /'Ii} (.0""

2) MOTOR A, PHASE B

VRMS 33.9

PERIOD 4.6 rosec FREQ 217 Hz

SPEED 1627 RPM

3) "OTOR A I PHASE C VRl1S 34.1

PERIOD 4.5 rosec FREQ 2:12 I-:z

SPEED )665 RPM

XFm.e R4nc P.05: I

},l"",,\, , /.~. .,.. ~; "';. '.' " .' ..

. /! . ':, '\\> ", ,

/.1 ,.,:~;>~\:,", .. . ,

.. , . •. ,.' ~ t . ,... •

\~~ '" ~, . ·· .. ·'w' - :."

(--

I'~': C3

~

0 ,"

g

0 rn

ill U ,-

~,

L.

a a g

a g

a g (' b

rn CI

5.4) P,MIr" SPEED VS , VOLTAGE OUTPUT

A) ]666 R?M DATA POUlT

VERTICAL SCALE: 2 VOLTS/DIVISION TRANSFORMER RATIO: 8.05/1 HORIZONTAL SCALE: 500 PSEC/DIVISI0N

4) MOTOR Sf PHASE A

VMS 34 I

PERIOD 4.5 c:sec

FREQ 222 Hz

SPEED '655 RPM

5 ) r.oTOR Bf P:IASUL VRr1S .... 3a4"w1 ,'---__

PERIOD -'1.5 msec FREQ 222 Hz

SPEED 1655 RPM

6) tlQIQR B~ PHASE C VR."lS 2~, I PERIOD ~.S3 msec FREQ 221 Ilz SPEED HiSS B~

. "! .... "

'-" .

-'.~.~:~.~~~-::~';., - .'

.. ",-

,',

,f~-;,'0~::." /.:

)FIl/C M770 R. oS.' 1

...

,. ,

~ - .... -','

. ~.. :." ".:-

.:.' .-,"' .

. ;. ""

II ,-...... • ' ••••• 'C,!

1.:2·;1,1-13

SC)30B-Rl

~

I' I I I I ! ~

H (~ ,

~

D .','

~:;:.

5.4) P,M,r" SPEED VS. VOLTA~UTPUT

A) 1666 RPM DATA POl[!

VERTICAL SCALE: 2 VOLTS/DIVISION

TRANSFO~~ER RATIO: 8.05/1

HORIZONTAL SCALE: 500 ~SEC/DIVISION

7) MOTOR C, PHASE A _._----

XF!I1£ blT/o ? d5.'/

VR11S 3g,!

PERIOD 4,5 rnec FREQ 222 Hz

SPEED 1665 Rf>l1

8 ) tlOTOR ~t PHASE a 'VRMS 34.1

PERIIlD 4,48 mse~

FREQ 223 H;?;

SPEED 1673 RPM

~ ,; ~ ",'.:' ',--

. ,', ..

. '~:~~~:~,;~"

, .~. . " . , . '.

l~x 'u

.. - . "

\-~J ,". . ".'''': . --' ~,.:: "

..

A1or<M!~ ~~ / .. ;; :;';;'~_G

RAPH

.' .-~ .. -..

'j -{ .. ~

:J

.J ~~} .~

.j ~

: ... ~ ":1

I -j

] j :}

l :1

1 J J I

J

EZl c:.::zJ

"tIen ClCD tOW eo >'P 'J] ~ ..

.~t: t:.w c::1 c:::J tz:z1 E::l ~ ~ c::::J ~ -~ ~ c::.:J t::Gl ~ ~ t:::::J ~ ./

10(') ! ii~r !I . , . i \ ~. ~ FUNDA~HTAl

,. I '1 1 1

• I 1 'i I, ;i .!

, 1 ,

. i 1 i·· .. i . . 3rd hamonic

;.. I \1 ;. I·· ,·!l8.n

·1 .; I J. I . I, . . , • .., I • ~ •

... . ,.,. ~

I I I

··1 i·

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT

A) 1666 RPM MTA POINT 1) HARI10NIC ANALYSIS

Percent Fundamental vs. Frequency 1645 RPH, Hotor A. Phase A

12-21-83

COOROlrlATE \11TH PHOTO 5.4-A-l .... ,I .. \ .-.;- ~ .. ·1. I· . '/ ! !

I .... ·• '!.,. . .\. l --.' ; .• . 1 ';-- . . .. .,. ;. ... . _ . .., .. -- .. I ... .. -- --.. . ... I . . . . . I·· . . . . ...

'1!:---l·-jt-·~=-'I··:;~~~ ... :': .- :·~~F~': :::: ~~~ .... _-+----. ·'~I···· '·'--[---L~_J::·L··t :·l··-{:·· .lll-lf--j:-:- r-- - - ---: . ... H~r: H:i ... H:: -"""0"-;';;"";-";;:;;;'--- -~~~ · :=1 ~~ --, -- .. - ~ 7 -: -.. :~~. . . ~~- ~~:- .. -T' ~- .. :~ I--:~ ~~ :~1~~; ~ ::~ ~ ~r r:T:7. ~ .. - ~-. ---I·

I Ii .. I..., I .•...

~ ':1~F =£::~ ~n~<D -_:: m;~~J~Ttr;~~Tf~I~~~ m[TINE~~ ~ 1- E . . . . r-:-:-. . . . . .. . .. .... .... .;.. '.'; . ,. .,.. ..:: r.;,. 7T/. "'!

: ,! :: I~: >: ::~ :~~ I =~ ~~: =:: :: ::: ::: ~ :-:::. ::~- ~~\S T:i LT ~: 2:': p u 1 . \1 i ..... _;.; .. " .. ; .... " ... " ... -............ : .. , ... ,:. ~ .1. .: -:-:- ...... - .~- .~. --·.I·~· .. : ~:~ :~._ .. .; .. _: .. ~:~ _.~ r~:~·.~::-:7; ~ ..• ~. ~.~ .•• _ m; · - - ~:r. .. ~- ._/1= __ .. _- .......... ···1··-· ..... _ ........ --.- ............ · •• t· .. · .. -.

: =F- ~~i:t-== :;, :=.- ~ ~t~- ~:~ ~~: ~ ~~ S~ -~ ~:: ;~: ~ ~~: 7 :~ ~:; ~~ ( ~:~ J ~---!.:-... :-- fI- . ·-··-11 ... -_. ---·1-··· ....... -.. ---·1· .- _.- ... _ .. -~ .. -.- .. -_. ..-.. ~ .. ... ·1· ... .. l· '.' !\t· r\j . . . .. . . ... ! .. ..•• .•. . .• ..•• •• . . ·r--t"-- - t~· --l'f r' .. -.. ' .. j'.- ... --'_. --- . r ------ ..... _. --- _."-' .. ;:.-fI'.--~-~.'-

Ol~-----dh': ... .... ~- -JL_~:~ ~~~-~~ 11:~::: ~~~~~c, _: = . : ~=j~~~ .~:~1~~.~ ::---~ ;,:~ ~.~~ .: ~f'· .. ;.~.~~:.-:~ ~;( I~ ; ~:;: ~~i.~ ~':' ~~~~ ~~- ~ ~_:~ ~:~~ ~~~ .: ~~ ~~~

· ---f- -- r--J..--- --,-- - -- ,. I ~ . .._. ,. __ ..1_ • ___ i ___ ---' - -. ---.. ..' . - . - ., .. _. I ........ - 17 Y .. :-. _. . ..

~ .... ~. -_. ~-- -;."j--- ... ~ i ~ ·.1 . - ....... , ~.. - . I N • '" .1·_ ! .. L ! ... ..1_._. 2.4 _ ..... - ... 1 .'J.I) . -.-- ... j~

'1 •.

rR~EtJim (I( liz) . 1.8

.6

-.~

c:::::l

...... ___ ... --:-... ~:'~ ... ~~ ..... " •• ...-._..., ..... ;-• .,_~.- ...... _ ............ ",~,: .... __ ""_~' '''''Of' r''''~''''' "'"'!'.~~f'.- .... -~--:-....,........ •• ~--.~ .... _ .... ~~~ .. " .... ,~.- ·~.- .... ~~~t~ ~ .. -... "'.", "-'.,' " • ... •• ... '"'_·-:~"Y'_._ ... ·,.~"';~~::;~-?F~:·~:-:7: .. :;:;~-t:;:· .. -~:.~~~~.JII;?:".:-",.,j_, ..... ~'''1'' ,,,·.,.n~~,.~ ........ _,,,+' ~~~3

)

!. ~" t \" C·· t-: ~. , r·,.

~ ~~ . . r 1,

!~

l~;.'-'

t;J c.:::::;a

"OW 1l>(X) COW (1)0

>C;O ':0 m--

'"

11''-'" c::::t.::I ~ - - ........ --~).~ -=~--~---------------- -1 ,~------------------------------~

100 I~I ,----,--

\

: fUNtWlENTAl': -r :-: -. ~ .. r . -. ! --. . 1 • ':-:-r' . -. !. . :.! i':' I I· ; I I' .. " ,I .•. • •. ;

, I ' I' ;' I ; , 3n!. hl'Tllln1c . •. , ! .. ! 'll. ....... ;, ___ . ~ 8.2~ (not,;;~l1ztd) " '

\! ... i' .. -" ., ...... . -- J

10 1,__ " 'I : : i, :'

:Rfl~~j-t' '"j+:' '~t,:_~~~.:

I · .' I ':,,':: . :

, : :::1': - .. ~ ... I ! .. I ; 'I : i.

__ j __ ~. __ J._~ __ ~..l .... _ ............. 1 5.4) P.M,G. SPEED ys. YOlTAGE OUTPUT

A) 1666 RPM DATA POINT 2) HARI~NIC ANALYSIS

Percent funda",€nta 1 vs. frequency 1650 RPM. Motor A. Phase B

12·21·83

COORDINATE WITH PUOTO 5.4-A-2

\ . \. \' I \,. '\' .. \ ' , .. :.' ~ ~ ~ ~. -++~ ~ ~... ~:.: .. : ~ ;.:.

. __ .. 1 ___ . - .... t4 "

I ,

.;t : !i! --- .. - ' ~ c::j=," _ .. ' ,,' ,":: ,,'!'" ,;-;;;1", I :~, """,.DED ..... It "'ALYl" "t· ; f~ :~ F c :~ t: ~. '=:: ,," ~~:l= ~ "I.. "'" ~, ~-.:: ~: ::::, ,To tr.tt~ " r- - t: " '" -- ," "', ,', .... ''', '.----~,,!'~ f :-:-: r:-: :-:-: C:"'''' ,-, :::' :,.:.: :::::- --: t~: ' , , , ,

::::.1t.

= :::.~ ~" _. " ", ":' ,'" '" ,':; ,:;, "ii ::i,

.. ~ ... __ ::T :i~:::::_: :~ , ...

-~- -_. ~ .. ---.. -.-... 1~t"""'· .,-+.~.J

4 ____ ... • l t ': ! ~ ~ i •. ~ 1- :":-r ---. -'"""-

.m _ ..

i ~E~: ::..c ( ~:~,~: ' ~: :... "

'<~~± :±F,::I': :. N , .. ·1 .... :3.1. 1~ ~ .. I 1 I \Q! C'I '" .. '_. _ !._ 1 _ I ! ill ., ·1 ... I • ____ J ..

.') 1).6 • 1.,2 rR[Qt,'["CY (K1.i) 1.8 2.4 3.:1 3.6

d ......... ...,

;.,)

.L.~'M,~~.w.~~~~~~i~~':i.1'''''''~~~~~~~~~~i;' __ ~'~~'~'''r<''~=~·4·~.;~"".),,,_~-.~~'_Ii .. ;.w.:~·=~:.:=:.?&~~.;;J~~~~~·~~~..-~~,-_ ... i.~~~._;., .... :':~.

)

'. "

~

Lt· ~~: ,\.

r'.:

t:::.:l

.~

." A .:,1

t::.~ ... ) C:3 c:::J CD £::J c::3 lCJ t::J 01 c:J c:J) c:J ~"1t ~

l~ ~ r:J C:J c::::l

~cn !»co co (..) (1)0

=!>~

100

I'~ ~O •• "'" ' 0 ,0

: I I ,

; i: r- ~rd. h.noont~ . i I·· i (I 8Y; (no~'hed) .

'I! i . l 10 ;'-'1"'1'-'-"'- I!'" .... · .. ··1 5th. hannon.t._.:., ... ,: .. _.L·_··

1, .;: :: : .... r .' '".--J . I ~ 10'% (norlr.a~tled/:: . : '1 : : :. :

I:::: :' i:~~~~:) : ¥' 0 :: • 0 00 oj:::\::::: l' ': .

. :

ll ___ ·._

i !

L, I 1 I

i 5.4) P.H.G. SPEED VS. VOlTAGE OUTPUT

A) 1666 RPM OATA POINT 3) IlARl1(mC ANALYSIS .

Percent Fundamental vs. Frequency 1660 RPM. Motor A, Phase C

12-21-83

COORDINATE Willi PHOTO 5.4·A.3 .--t-.. -1. -r-····· .. : ..... I ....... -j- ... -"8~+:- -' .1·. -...... ...:- '~:~1'~-1"-' --.. -: .. :' ;::: ::; ' .. ;,.: _ ...• 1

1, ... -- .. 1 ... • .. • ••. ,. .• .. ..•. • .. .••• ...• ..... . .. ·1· ... ·1· .... ~- .. -·1· .. ·1· .. ·1·· ·1· . ... . ........ . . . " ., ... , ...... .

1; •. I~ "'1---1-': • :::'. :- .. __ : .:-:-:-:-t::-:-:- ._.+.. __ ._~ .... '.. .... .... ...... . ;l • '- 1---' .-- -- .. -.~ ................ -_... 7th .. armnlt .. · _ ... - GROUNDED IlARtOIlC ANALYZER' lz: --'.'- --.- . _. . --- • --- '"'' ......... _... . . '4'" . (nck.11t~I" I : :::1=' ~~~.~ ~~~=.~~. ~~~I~~'~ .-~;~.~;. ~#_o~>= :~*-, .. I":J.-lsst±:;;I:~~;r:. ~ : ~- =r~ = = - f-- ~~. i-=- ':> I=~~ .~.~ . ::-~ ~::: .:=:-: ~.:: ~~~~ .~~ ~:~ ~:-: TF~ ~ __ ._ :;:I.L.~~. L.'_,'- ... ~ ..... ~ ........... : ...... ::: .:.:. ;;: .. i: ... :~ iL:J:~~

· \+ti:::t:EJ \ E Ii i-==i~ i .~. _i-"

... .....;.

.01 ,I . I ~.&--.

.... '1#= .......... -~: 1:-~'--1·"'·!If .. Of • ::f' o~,o =~f :~t . .. /....'" : I.... .. .. I ~ .:" I ~

I ' 1- I '" I .. L : I ~.'-T ...

· .-... ~ . __ .. '---· 0 0.6 1.1 FREqUENCY (KHZ) 1.8 2.4 3.0

,

1

i

1: .. . .. , ·1

. ·1

3.6

\ "='" .1 . .. ..... :; ,;; ~~_ .... :::: :::: ::: . ',; I: :: .: .> .. :';. ~. ::J ------..... -~--.--.-- .. -~-.~~-.- ... ~ .. - ..... - .... -,-•. -' .• " .. -, .. " .. ~"'; .. - .... " .• ,~:-:1

)

P i"j

~ n, ~i ~, (~

rl. ~1 F1 ~. i~ :':1 I •. ~ t,

f; ~ ; ,., t.; r·~

~: I~

/1 I;

. t; 1.1 !<,.

!; ~:

r; 1\ ~ ~~ w ,. i: ~ f !,.' f~ ~ ~ ~ i,

~ " ~ ~ • ~ ~

I I

I

I I

JlS?~~:~~'~.~~r:~~"~;:~·~~·~~:·~.?·;··~'~~~~'~~;'~ ,;':', . : ... " ,-\ . .::y~:; .';, :.,,:,<'.

'k

,'~ ;: ~ ~\ ... : , ~ .. ~ ",'" .' • _.~,' . ~' .. 1!',. ,,: ~

E:Zl

"tIen C>Q)

10 W 1110 ;;.Cf 'J:) ~ ....

'\"

~ -'E -~ ~ '--~ ,- --c::sa - -=:» --'

1'1'1. I . .

I\,-: ru"~~A' I I i .;. I

, , 1

I ! , . i

! '1 I: .1 . .. .- I· _ . __ j _ . ,._ . I I .. .:

10 il\l::+';~~~:

I :'1 ; I·'· i 1 ... _ .l ___ __ .J_._ .. I" ..... J 1 .. ·1

5.4) P.H.G. SPEED YS. VOLTAGE OUTPUT ,

t~~-I'2t:j .::~~: .. T:: 1 ' ___ L " -- .-.I ....

1 1 . -*=::::1r:=~~.=:-:

~ .. ~ !5 , ... ....

A) 1666 RPM DATA POINT 4) HARf·:c:m A.~ALYSIS

Percent Fundamental YS. frequency 1660 RPH. Hotor B, Phase A

12-21-83

COORDINATE WITH PHOTO S.4-A-4

::: : I: : ..... 1

'" 1· ._ .... \ .. ..

a . u __

ct. •. " .

... Go

. I ,

11-- ---:

I

I' "i", ,~

'N '1

... I .. : 1.. .()

N

'" .., , __ I

0.6

... :~ .. ~ ...

· .. ·m .. ··· ""'Iei"" -"-]""-'~""-E-"-....... - .- ._. --...... .. .. .-- ........... -_. . .. . .' , . ........ --- ---.. . .-.. ---- ._- - .

-- -;. <'~-;0~ ~~- ~~~ .~: ~ .' ;.' ~ ~~~ ~p ·.C ___ "f •. ~_~I____ . --- -.. -- ~~- "_._. -... --+_ ... _-.. " . "

.... \ t" ~'r' "--'~~D"m:-: ....... r::: ~~;,: ..... ,. ;:.~;:r:..'.'- j ~ TT .rr..

,~\::~ J·· .. :·i<~ 'f:~~:lv"~: :~~:'I~~~::' ~.~~ .~~ :.~~~ ~~~.~ :.~:~~~~: I .. ,',: . • . v· .. : ,i~-:"':' . :-~: ... . : :: .. '''--1 I!) .-........ . ,J.' . . _.'",--",.!JIl .. J I ~ ..................... ..", .. ,

~. t :.. . ... 1.. . . .. ·1 ... : ... f ... '. . .. : ~ .:... ." J' ." .. "11 ... ~ ..1 I 1.. .~.. I . I.... . :. :'. . .. ~ ... ~:. -.~--

1.i . .' 1.8' Z.4 3.0 3.6 fRCQU£HCY (KHZ)

.' ~ - .... " . ,;~ .... , r{.i.,

!:~.

')

p:~:" ~'.<. .: ,j ':::::~~i...::: .::,:, :::. ;:::~ ': ..... ::.._,...;:...~;.;~.:...._~_" . .;..~._~~ .. _"~-"'-.;. __ . ; ". .~~~~'.=:' .' , :: '. ~J

./

~

.. '. ~ :.;~

,; .'. ,;~,.

i,'i '~ :~

; a

I

I

:1

J

tE:J G::IJ

)

"tIen "'0> IC (,J CIa :>IP ';:0 ~-'

~ c:;'::3 ~ czzrJ ~ tlZZJ c:r.:rJ

H ., .'-,

e~~~~~~~~~~ ) , .

100· rr; '~- :'ru~~r~N~Al- ~ .. :-:--. T ,- ... ~: r .... -- -- i' --: I,";' ~ :' i ' l' . . : : !

1 i ~ '. .' : . . j " -- : . 'I I.. .. r- !rd. hll'1lllnl : . .: .. . I 1, i. __ . i i .. : ..... ___ -' __ ;38.2~.(r.o~1fze~J •.. ---i-- .... ! ._._L ___ .1

! -- " .. I I. J . ~ ! ~' 5.4) P.H.G. SPEED VS. VOlTAGE OOTPUT I • I :

1()!._--_.- L __ .:_._.I._ •.. -- .. --; -- 5th •. ~ar:oonc._-i._~. '--.. :-:~~ A) 1666 RPHDATAPOINT :-:-:-:1:--" I . --. -- I --.: -- .1 ~ .:-:-: :.:! A' I (ll~ (n'lnM',1ze~). --... f"" 5) HARrn~IC ANALYSIS _"

·r-'·:·: . I": ;:-... ,-- .... --.,' .. ! ::- .:.:1:::. ":~I:" __ :: Percent Fundan:ental vs. Frequency • t ----I· "'- t -'--' . .. I • - --. ---.. I ,-' .. -. i 1650 RPIt, Motor B, Phase B 'f--' --- -.... ---. . L --.. _-.j --. --- --... - -- -- .. - ... --- .•. - - 12-21-83 : ~~= :.:':. i:.~;=:-~ J.:.:. '.~-] -- .~ .. ~~~ .:~.:~ ':~~- ::=:~: ~::: ::~.': COORDINATE WITH PHOTO 5.4·A·5

. ":~·:-:.:..I .. I -- f- '~:.:- ~_--'J ... -" ~:---~ . .:.~:-.~~ ~:~~ ~::.I:;[:I:;~:!:i:;I:~L:r;';.:r::.T:.:. 1 i" .. - . . _.. - .... ..;; : d~ ~' _,.:~' GROONDE~ ~~IOJ~Yl~~ -- ~ ~~~ ._. ~

! I' I. ,

;;J, 0-Il: ..., ~ § ... ... l'5 u

""

ll[C ~ =.. .._- ... " ...... ~ .. ,.. !".. ."4 c!,!+ ..•..•• :+:; .. " ........ t ~~.:'f=2 ~,=2: ~~.~~~~ ~~2 .~ •. :~~;~~::: §~: ': ~~;::5:et.=::

, ,IT - r- r-- -- -. ~~t;~1, -: :.; -: .. I. . ... ::-:-:-r'. ~ I ' .,' .! ., ..

... CL

.1

lY.:i:·i~~j:I~" v~~~ ~=:.~ -. ~,~CjE :~;";~~;~ [~h~ .~£~ .01. • - -lx -- .. : . .:::-:-: ~-'- .-.'-!- .'~ '1 r.·r.-: .... t~ :t'Et~:: :~~.:-:~~~:.==~~~:~. L~~. ~~~. ~'~~1~: ::.=~=: ~::': :: .. ~-,: E~~ :J-:~ ~\'~~~~~ ~~': ~X :.:~: :~: :.~: ~.::: I 1--- --- -- 1-.- .~~ ~4 '. . _... . _. .,._. , .. ' ... ,~"J_:: ~:~~ -~:~ '--_'I~ __ : ~":~,ji.'~,~~~ ::~~.I~) .... jl '. :.: .. it: iJ;'~~\';~:l.~JI:\.J:~ ,·--- .. -·--·--·-I~~ I . I 'J1#~V WlU . . . .. __ :'1- 4

..... 1-'.:1.:: .. :--:i~ ~~-:.~~- ~ ... ~~: :--.1 ~.--.... : '" " '" I ~ I u> ,! N " .. I. -- ,:g . . '

I ! I ! ,~. __ .-'-_ 1.. . ___ ~ _ J _ __. 1. I. ... , ... 1.

3.6 1 2" 1 8 • FREQUENCY (KHZ) •

2.4 3.0 o 0.6

----- .. -----_.---", -> ,;,'.,;.'-' ---...,---"..,..,...,

4' :' :c:::= ........ ; ::.:: .: ....... t; ;. ==. .,":',..........-: .... ' IS: ~~~:::::J r""'" . .,. ...... ,.,.. ... - ............. ~ .... ':.: .,..:-... ~.".""; ....... , . ..,.. ..... ~ ..... - ... ...,. :--.... _..,...·,...-"':'_-, .. "~.~.~'r": ... ~-.7..:.~:.~~~~.~ .. ~'. '.~.: .",:" '1" :- • 't""' .'." ,~ •• ~ ~~:::~'~~",.:":.'. ~"':-::::J

-....,

-.

t:p,-o

"Ow PlCD

1.0(..) (1)0

;>'P ':D ~ ...

1::::'1':1:1 ~ ~ - - - - - - --)

lao

; J

! l'

FlRlDAI1ENTAl

10 i . __ .. :

-' 1: < t-Z ... ~ ~ t-o: .... u 0< .... ...

• 1 ,

I· ....... ,. 1._ ..

. i· -.. --: .....

-.. ~ ..

:' ..... ~ .. -. • __ ·U·_· f~~:~l·::l~·~~' ~~

-:-:-1 ... ~~l---.. .1 ....

+l-H-H---i-·!-1 • , ~.

,01 I :.l-f-

o

-::==.:.=::- ~:~.::.r::.~:-: , . --- . _. --"1---','---"-' . . .. ······1· -.-- --.... -_._--_ ... -_ .. !._.

.... ~ .::": .. ~: ~; .. ::I.~':'. L ... , , --- ,

'" N N

'" OQ

.. _ ..... 1.L.! a.6

-.......... -----

I ....... · .. 1· "-'''''--l''-'- .--- , . . .. t· . , .. , .. .. ..: I

i

brd~ ha~nt~ ;

! .: I , (I 8.4% (namal !zed) . . ... j.

"'T ., .. ---t

I --. -- '':

----: ,

1 -"-1 "'j

:

N -.l.

I. ..I 'd I 1 sth •. b tc:._i __ ... --1--"· i . @ H!% (rod .:a1fZ~)· . .::: I :.: .: , .. ·1 .. ·:': .:: I . : : :~~.::: : , : T : :. ::. t: :: :: :':l'~.~~

~ . . . 1 . .

... _, -- .. _--,-_ .. -~- _ ...

.: ~ . ,~., -.J-~..--t ... " . -... . ........ _ .. .

.. _.. .. -­

..... 1 .• -

~-,.

:::T::: -··· .. 1·· ....

--·~l~ -: ',-: .. .. -~. : ~-- .. -•.

~1"-

}:~i/r .. -I' . I

! ... -_ ... i I 1.

,." . .... I.

1.2 . FREQUE~CY. (KHZ)

..~ ~.

.:.!:'~:

1.8

I .

,

.j _ ,_J~ __ j .. _. I . •• __ .J. ____ J ___ 1 •. __ •

5.4) P.M.G. SPEED VS. VOlTAGE OUTPUT

A) 1666 RPM DATA POINT 6) HARMONIC Ao'lALYSIS

Percent Fundamental vs. Frequency 1650 RPM, Hatar B. Phase C

12·21·83

COORDINATE WITH fHOTO 5.4·A·6

1 .. 'I" . t· .. '1 ' .. '1' . 'I "1 : ~~.~: ~;~~ 7~~~' :~~; ~i;: :':.; :.:~:

GROUNDED HARffiIi IC AIIALY ZER

l' '~~-=l . .:.. +·1·1.~I~~;-:r' .. '

j.

I I i ! .

r:"': i· :.: : i:' I ... I r: · .. 1· t - •

.. ~- ....

. -:" ~.

. ~ .

_~'~.~_ .•. I .. .0._-:1Ti I: .. I Jl ........ . ......;,~-

; ' •.• 1 .•. ~::11-:1+·1 : II! I! '

2.4 3:0 3.6

:';r~7' • s )

\' .. :, ~ ';,

~1 ~~~ c ,­::. '~

\1 '~ ~ i;i ;~

1

I ~

I I ~

I

t::::G2 €'Z':"il tf;;;·;;J '4-"7;1 ["-:0 c::J n~Zl GZJ 1:"":"1?1 ............ ~ ............, {k;S t::z1 ['Z:] t.:::l ~ c::l c:::3 )r' ----------------

-ocn 1lI0l co C,.) IDO

>9 ':D ..... ~

100

i , 1

I ~;.: ... ,;AL --. 'r" 'I" T

I 1 ,I

, . r--3n1. harronic 1 ,. 'I i . _ . : ~ 8.~ (nor:nal1zed) I ' ,

! . 1, . I' • t ·1

I" 1.

I ., i i

I

I i

. I .. . 1._ .. L .. [._--.1 .. _.L .. _J. .....

5.4) P.M.G. SPEED 'S. VOLTAGE OUTPUT

! .

i

i 'I " ,. I 1 I: b :

10 ' , , . . : i 1· .. - '. - I·· ... -'-"-""1·'- ,.-.. 1 ... ~ 5th. harRlO 1""-'-"-"1· .·-4· .- .. -.: .. :::::. r. '.:1':1\.1 (110% (no .ltilld):-- ':j::"

A) 1666 RPH DATA POItH 7) HARf1ClIIC ANALYSIS

~~:-I-:':::

Percent Fundamental vs. Frec:uency 1665 RPM, liotor C. Phase A

12-21-83

COORDINATE WITH PHOTO 5.4-A-7

.... ·1· ,

J~~: 1: .. ;:=: :! -:::: 1 "'j:': ·-:1, :~, ~ ~ ;--, , , Ilk ' .. - .. --i--·- .. r--- -'-1'---'--"'---"- .------': ":: !:::::=':T ::: ,: :,r:~--""-'" ,., ... -. . , , ... . , ........ ,' .. . ...... , ... ·1, ... 1·-· .'-_. ·1···· '. ··· .. ·1· , .. ·1· .. · .- .. I .. I , • • ••• t. , .. .. . t. . .. ..... .. . • I ... .

II I : : ;, : ,

-,1; ~.::-f1:._~. ~:--!.~ --~. ~::. :.:::- :::: 7:::-_:- -_.: -:-::-: ::.-:-:::-=: GROUNDED HARlllHlC AlIALYZER 1I~:.r:-:; 0( _ •• I!._ , .. _. _ .. _ ......... --...... - ... ~ ·F71b.h.an;ofc .... -.. .. ~" ...... , ........ ~ ..... ~ .- j •• _. , •. - -- - . - ,1::-' --.. ... .. .. , .. _- ... ' {I •• ~ (nom1l1h!~)- ..... - ,:.!.- -:-'-'- ._.1:.. ,..:-~ ~~~ ~ .~- ,~.;. .- •. r ='j-'~~~,~~:;~ ,;~7jfff0F~1jf~:!~~*~;fu . ;- v.:~~ -·:-c· - ~ -~- ...... _.h "''--'-1 __ ''';+ ~ +-·~i· _'+.1+--:-'-+ ":.1:

! ~l= ~~ ~.§~'-=: ~:=I~~~ :.:~ .. =~~:~-n~5~r~ =~§ ~~ ~.~~f;;E4~l ?-: "--+"'l' .,.- ....... ;, . , .. t+= ... ·1·; .. ·.. . .... :'" ft:., ,:i! :"" .:T.T ,'" ".'~' "7j:: _.::--:; \~A: =:' r\f~ "+c." ~ : :'":;iF ., ~+t m' ~+'Tff: it?

.01,' I . , . ... .' ... , :: . , h-~ i..:'T'" ;. " .::, .. '; ..:.,...... • _ .• ~- .. -. --.·I~ .-~ !-- ...... _-- '- ...... tf· ..... _. ~-.- -- .- .... -- -. 0'~- -, ~ 'j' I,.· Itt, Fn '!TIT ' IT ..... . , ".-1:.---' .. -- ~-.-... -- --- .,~ ....... ,--...... ~' ' .......... -..... ...-... ., -. • ...... . .... "1' ........ ,

: =1= ==t.:,~:':~ ~ ~~ ::~: b W ~,~:~ ~J ~ !~:~ .::~ ~: \ ~::~ ~: ~' ~~ ::: ~ ~:: I.':':'-:-!:~:~ :.:-:-:r=·:~~~· :~:~::-~: ~:~: .-: ":':ll~J]'IJ~ .~-. (J'\/:jL . :::, ~JJ..~;;.,I :~- ~~: :~J .. U):~ -1'''_' - --r-- -.. -- - .. -· .. ·1·_··- -_ ........ ·····1--· .. - ... -... -- ._- -~31-'-- .-- ---............ -... -. ". : ... !, is· ·:'·1:": .!§ '.. i ~ I,· ~. i .. , ....... , .. : ... :: ~ .... :: ':!: ........ ::::.: .. ,-, ___ .1_'-_'''''_ . -1-.. ______ LI : I.t ... .___ __ _ . __ . ..J.,_ \ .. _1 • __ 1 ___ • .L... __

1.8 2.4 3.0 3,(; 0.6 1.2 rftrty.ru,.." '''11'7\ o

'~. ~

~i.t

t::z..l )

. ..~ ,.. .i *;;:;1.::, :¢, • ...--....~~..t-.A-...:...-.~--L...,.._.:~~'"' ... ~: ,~~~ ... .-:.....:.....: . ..:...J.. ... ,~ ..... ,: '_L_~~"'~""~' ~'.. .~'L. ". "r •

:-~-"-r:·~·,"'.'·"'r',,!::Nr.r-.• -' ·.~::~~·~~:r-·.,:~"tl:'''''''''':'~:-·:··,·~'''':'''t-'~'.'-·~'''~ ': ."'!- .... ; '-:-';,"'-:-"~" ~~.:,~.,. ... , .... - ..... ~ •. b;.;.: ...... ~~. .,~'';'l

I I

~

I

r,~'J

"Uw CUCD

10 (..) (1)0 ;r.'P ':xl ~-"

~ ~. - - - f'--:"~ •. s - --- -~

.)

. 100 ' I .. FUN~NlENTAl I • • .• ~ •.• : T .. :. . I I

It:·; . I. I I' !. I ...: .. Ii r ~rd. harmont~ • l I I : : :'. (a 8.2% ' . :, '. 1"'-' t· ......... ,._-.. .... ':', I····: ...... I .... J. .. I .... ,J ........... . : . . I .. . .. . ',! 5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT

" . . ' I : 10 1--'''; 1._ . - ._. -._. j .__ .. __ ,j d 5th. bl~ c: .; I: :' :'7':'"; :.::.: A) 16.66 RPM DATA POINT

. ... ~.' .. :! .:' ... ~ ;", .; @ lOS .. ... .- I. 8) HARmNIC ANALYSIS ........ , .. - I ; ... - .. - ... : .:.:i,':':_ .: :::.~ ::.:: .~._ Percent Fundamenul vs. Frequency

'1'--" _. .. •. !.... . ... -. - .. -- t , 1660 RPH, Hotor 0, Phase A

:r-:~: ~~f .~r: =~T :.:~~j:~: ::-~: j::: C"D"'AT:2;:~'~OT".'.A_8 , ..... -.. ~~ r-"-' ." ---:-~~~.,~~--... ~:""--~~- T'il :T':l"1 '''1 : 1 .

.. --;--.. '-;-I-"~;': .... 1···: ........ ~ ....... ': ... ':.: -:.'-: ::-:: ":' .:: ........ :~ I;, . : : . __ .... _._ .. _. ~. ...,". _< .. :::!.:T .,.~. __ f GROUNCW HARfollNIC ANALYZER i! :HE?~~"T ;' --.t: ~--: ~~ ~ =-' ::~-: ::~~ ~~~::~: .~ ~li:ll~~ C~::~·.. .. ... : :._ ... ~_ ... __ .... r~ _ -:. :::~::.::

;J, • = -- .--~.- -- .. -......... --- ._ .... -_. _ .... --- -- .. --- .. -- .~..,.. .. -- -:- .. -- ._.- --:T-+~-'-~~-:-1-:;~ t- . '.- - - r-r-'-~ "'-"h~ - .. ,- ~-. 1--'- .~.;. .. -_.,.. ~'lTI,tl!~1 r--L. _:~·~i:~· ': -~ ~ :-~ ~: :~~ -~ ;~ ~: :~:~nm ir-' cm?,';;l~I Q, • • ~1-r-'-- -~ .... ; . __ . ::::: ... :. '--~ ~'- ... :: ':::j-::!.i.-:tt::.y~~ i:j::!: .:~~':j:::tHt .... :.t.tt:L.

: r:'t..--.:::=. :'4:":J::·-~ _ .:.=~ :-::. . :-:-~.:- =: :: : :::.::=.::.' -:..:::.: ::~: ~:::: ':'::::'::::=' .:~-':: .:.-:.-:':~;: ~~~~ ~::1 ::.::-: 'r-r- -rf:=- r--' - -- ----p--- -. -._. ---f\ .... - ---- --TOo -""' ~- _.L.. ---- .. ~:. -~.!.I-o--r··~ , .. " l·~ .. · ':. ~ .. ---"-, ~i:. :: : -: :~ =~ -: ~: = ~-~ ~.:.: r \:~~ ~~:~~:; ~~ ~~~ ~ : '~~1+: =-- :~:~~~~

-+- ; l~t :.= ~:.: !~,:,:, ~~ ~1:':':- :.: c".::':':':' .. c·;.::.:...::.:. -c-I-'-s '.., - , ..:....;,'C; .-:'-c'-

.": ~Ej::~~ .~~~. 0 ~ L~~f:B ±~: ~ •. -i:m~ 1\1">8'{· :;'~~I. :~t~' '~-~c~".-F -c:- --:- --,f-:-J w- :c:-: c.,:.1- :-~ f{ . T,-I;l \ ·'-:1,11 t~l'::'1 I ·-·t-~·: ~~~·1=·~:-:-:'''~ ....... ~:~ .: .. ::~-: ::~'\:!..o"rJ-: .... \ I·\"'II:~:.: :~~ ~~~~ :~.:~J~-~fN;. ·~~~u •• ~ 't::----....... .... --~-.. _-j ....... -. '--- ---- --- .... ---. ... . ' .... I'~ .. l' .... ~ ,'" . i:; .... ·a... ..... . ......... ,

I ... .-.... --1_L .... - - .. 1..1... ...1.1 . ! .. -- 1 ... -,-_.. . 3 .

1.11 2.4 3.0 .0

. , !

i .. t·:-":"

o 0.6 I. 2 FREQU~CY (kHZ)

2~ \}l;.

J~ ~.~ $1 }.~ .. ~( '.

,;j ij ~ M ~. . , ~ ~ ~ ~ \1 ~ '7

i f. ~ ,~

I ~

t i ~

I

~ ~

).'

~'?) r:;;;,,-,"; ~ ~ ~ ~ ~ fZ:::] ~) C:::::J c:.::J

100 •

~. :. I' :" .• '1'" "': ""'--r:-:-:r": -'!": .. ~ :""l'-~'

: . ' , I· I . .

i ' tUNOMnn AL ' • , ,... .. . [I ~ i : I.. : ' . j I ... ;. . .. ,. . . i

I .. ',! ...j . . . I 3n!. harkn!!: : . I ! 1 . rr II 8.2%

i .... 'r' \ ·r-'· ........ j .... -. /. , .. :;! .:. I :

10t---4--!· .--.r'-·l~--- · .. ··~rnSllt .. rl'!llOfl~:-:.~ :[1: L;:~ft..·~i _ ~_:'fl::.~ .:c:

j

i .. -I' -... ~ .....

"j

~

r"

c::J c:::2J c:::J rr::.:J

5.4) P.M.G. SPEED VS. VOLTAGE

A) 1666 RPM OA TA PO [NT 9) HARMONIC ANALYSIS

Percent Fund~,"ental ys. Frequency. 1663 RPM, Motor A, Phase A

12·21·83

COORDliIATt: WITH PHOTO S.4·A·l I . !

<:·T.:.:J_···-....-~i:-~· .. ~L~.~.....,..J_-~_-.r-I~._-r~L-:~.Jr-"::. I

... ao.~ •

c:J

-_.:,/... _ .. , --I -!-.:-: " ---1"-' ... I:·'" , ',I - UNGROUNDED HARI1lNIC ANALYlER .. l' . !, j, '; I

" .':'C~ 3~ ~ +~: _: '-_:: _~:. ~~: .~~':: : ):;: .:: ~::>~;: ,;~; \: :;j: J ,,-, I

"'Ow tIl(D

co t.) (1)0

:>'?l ':::0 -..J "

i : . -+==.:: -.....= -::. - :::: -~=-3r~1' :~~" ..... .' I -- .. : •. _.-. -.-- -_ ......... .,....r-~- .l.. ........... -~---- .. _- - ~ ." ... '-'f~'7~-" -._ ... --....... -... -~.- ..... _., ; : ~~= -:t::~;<l: "It:: ::~: ,~~:= ~~ p.=" .. , Q,

'':1 :1 \ 1:;lli1' il~.~.I-.-t--tr

.Ol:f::::J 1" I ':J=:.j fI-' 'i+

a

1 .. ··\ .. -,.;; • . - ----- --- ---

d> o N

.• S

L .. 1;2 . ~~ __ ........ • .... 1.R 7 A 1 'I 1',;

:;',:)1

~ r.;~~

Fh~~~;:~~-.~;~~'~~:,:~~:·::;;~:'~:::~:~~·= ·~:.-=~~;:~i·,:":,·".-' ..... -., _ .... ~.:';.~, ,=.:~~~~~~:.~;~~.:~ ;:::-:,~,~, . -.~. " .. ,,:·7';::;:', .. ~;:c" ; .. : ~:.,:~;':;::: ~':::::'~'.:;~:'::;. 7;"::-::-:-:::: ~;.:,~,-.L: :-, ~

.,. f! .. , " ~ ti l! U

i i I I i

~":';;"'';' ·.I··· ... -~· ,.1,

~ II:~

')

I , . I

ij

I ~ !

I I I " ~ ~ i ~ ~ " .~ :. r. ~

"tim OIl)) IOU) QO »Cf' I "T1

,':, t :!

~...,...~-- ........ - - - - - -- -.)~------------------ )

10D • I'

li~ rtJrlOAHENTAl . ;. ..: . 5.4) P.H.G. SPEED VS. VOLTAGE

.1 ; . ' : A) 1666 RPH DATA POINT Ii! , . I. lU) HARflONIC ~NALYSIS . . ; I ! . ,rd. hanronl I ' .! Percent Fundamental vs. Frequency

, : i I .'~ .076S : 1 ' 1674 RPH~ ~otor A, Line A·S I,

I !:: i '~' : 12-21-83

10.. /' ,'I . : .: " /..... I':' ttlt. It monic" : .:.. . : :: COORDINATE WITH PHOTO 5.4-0-1 : I ·1 . ' " l '. I 9 lOt;· 1

j:.".: f;·'-:::::=·{:~':;~· :,' ,:,:,'\ :.:.;.: .' .;.: : .. : r:---I-'-'l--'r-:'T'--j"-l:---" i '1"-'" . '\1'''''''-' -·--·i-· ..... j./ . --·i·.. ···1.... .. .. I . I .. "'1" ·1 t , I . l ' . , It .. - ... .. ---- --- ". ; . : .. .. -. .•• • .. • . . I ... UNGROUNDED HARMOO IC ANALYZER _..... I

;. t.. ..... .! I ; I j ....! i . .. "'-"i--il--~- ---t--· ..... j -\ .- --..... ,._.. "'" .. : .• --;---- -- "-"T--r--T'"'~-''' ....

... !... . ..... 4"" ""1 ._. .... . ..... .. . .......... .... .. . .. . .. . I : ,I . :::-.:::tl . I . :- .: .. : -... 1- - - .__. ..- .... ....,. -T ~"--I-·-· ct. I ••• ---+--- -- .... -- ... --- _ ..... " .......... - .. _ .. _ ..... -.~.. .. . ............. , ..

.... I·' .-. ''''1-- .---, -- .... l.. .... ... ,1t;'ha. Ie ....... - ....................... , .•.

~ I ,+'-' --.- - .. - --.~ ... · .... 1 .. -·· l'J""[) .18: .... --.- ..... -- ._~.- ..... - .lI ........ _.

~ : ·!72·.~J~· .. ~~! ::~ ~~:t=J ::~l=.~~: ~f\~ ~';:.: =~ ~:.~:~~~~: .::~.; ~~:~.~~~ 3 ~~~~ ~:~~ -........ ~ .. -. f5 ---- - ...... ! ............. J''' . t ..

j. \ ....... : ............ , ......... : ... "'+:::~' ~.

~ , ~7'=~1=- ~::i~: :: ;i~ ~ .. :' ; f.. :H. :=: ~.; .: .. ::~ . ~: . "~0:~: ... ' H-~"":":- --~~~!ffij-'" f0.~~:.:.~ A::l~i~ J~~~:l~~:': ~'::)l~=~ ~~~ ;:.~~ ~~~ ~~:~ :~.:.-I":' .... } ........ f '~1 ~ .. ll.... . ..................... .

~},~ -I . .I\- L _____ .' - ---- .-. - --.... -.. -

. -- ',' ...... i '1' 'j .. I!1- W} .. · ... ;'" I . :.. . .... : .. : .. ~:: ... :. ... + .... ; .. 01 I ' . I. t .. , J ~ V' . . t- - l-.. - - - ... ~.~- - -- --.- ..... -'" ..... ~ ... '~H .... '''=rH~ H" ... H'

I \" H .. ~ ..... HH ...... H ..... ,.

J ---: .: •• ':' '_:"j:_'" .... ~.- . .:..:~ :: ........ : ..... :.: "-' . ~ :-. " .,.. ..:}G! .. . ............ . .... I . ... I r:-1r' ~~~, ~J1r~"-,TI'J fl:' .-:.\ .••..... :::

.6 1.2 FREqUENCY (KHZ I 1.8 2.4 3.0 o 3.6

........ ~

'I ..

r-" I'~~~~'d ~ _____ == __ "'N"'''lS3!SS''' ______________ • ____________ ------

~: .J

j 1

'·1

........ j ..... .. :

': ~

~\

.j '.,

H (\

~;t t4

~

B

n .. il

ORIGINAL PAGE ,RAPH

5.4) P.M.Go SPEED ¥So '/OLTAGE OUTPUT

B) ~33 RPM pATA POINT

. VERTICAL SCALE: 5 \~LTS/DIVISION TRANSFO~'ER RATIO: 8.05/1

HORIZONTAL SCALE: ,00 USEC/DIVISION

1) MOTOR A, PH.\SE A VRMS 93.9

"ERIOD 1. 69 r:sec

FREQ 592 Hz

SPEED 4438 R~

2) ~lQTOR A, PHASE B

VRMS _9~3:..:.;.9~ __

PERIOD 1.69 osee

FREQ 5Q2 Hz

SPEED 4lj3B RPM

3) MOTOR A, PHASE C

VMS 9), 8

PERIOD 1.7 msec FREQ 583 Hz

SPEED 4lj12 RP!j

~"'~C' ,.'<,:;:1 /:l.-::'I-IS , <, ~~'4;_'!"~" t __ .'"'"

'<':'"r«'-- -.> .. ~.:

'. ',: , . ~.

.. '

- .... _-_. ¥F/J1i' 0;';0 .r: ('s : I

:j~~~~.~.:" . ~'jj< .... '.".

t., ....... \";i)i:~i4.: ... . : ."!CTl'Y. .<;! tI_~.!-. .... i!i..!:..~",.~~::.. . . ...v o...&A p

• J

-.. ~

"

r~

I

I

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

5.4) P,M.G. SPEED V$. VOLTAGE OUTPUt

B) ~33 rtPM pATA POINT

VERTICAL SCALE: 5 VOLTS/DIVISION TRANSFO~~ER RATIO: 8.05/1 HORIZONTAL SCALE: 200 USEC/DIVISION

4) roTOR B, PHASE A

Vr..'1S 91 ,8

PERIOD 1.7 ClScC

FREQ _5""8""S ..... H""'Z __

SPEED 4412 R?j1

5 ) roTOR B, PHASE B

VMS -i/.I9 loLl' 8ol...-__

PERIOD 1.7 rosec

FREQ --:5!.!i.8!l...8 ..!.!.Hz,,--_

SPEED ... 4:I:l4cu1Zo-.R"""PJ.J..M_

6) MOTOR B, PHASE C

VFJ\S 91. 8 PERIOD 1,7 msec FREQ 588 Hz

SPEED -.!i!ilLReIL-

.. ' ~:

:-': ~ "

.. I

"-~~~~:~~£,.~.~. "'"rwi! "! qJ ~, 4J.3iJ'Ili<,Pm p,'lVti ,I." 6.cWi>

L-______ ~ _________________________________________________________ ~ sa~OR.Rt

[

....... C.l . '., .~ ___ "' __ "'_~oIIWIS'S_ ... r-. __ -""" ___ ""_"'_.I_ .. ft!-'-'_::~ ___ •• _.II_. _________ r. _______ CltlI!!!;:ijiO:!i~

(r~ ~ '." .~'

:1 ~> r .• i",

'I I,t

"

f?

I J .,]

J ;

0'1 '1 ~l .~

I ·1

J t '. 1 ]

l ,

(',

0

0 g

0 0 0 ~ .~ ~.

~

'" l'J

Q

rn

g "

9 g

0 0 (\

.', lJ

g

5.11) P.M.G,SPEr;D VS. VOLTAGE OUTPUT

B) 4333 RPM DATA POINT

VERTICAL SCALE: 5 VOLTS/DIVISION TRANSFORMER RATIO: 8.05/1 HORIZONTAL SCALE: 200 USEC/DIVISION

7) ~10TOR C, PHASE A

VRMS 92,5

PERIOD ;.7 !!!Sec

FREQ 588 Hz

SPEED 41112 RPM

8) MOTOR D.. PHASE A

VRI1S _9;;u1..Ll' 8~ __

PERIOD 1,7 msec

FREQ ~8S Hz

SPEED 9412 RPM

eLA ORIGINAL PAGE , CK AND WH

ITE PHOTOGRAPH

L-__ . __________________________ ...I S8308-R1

f

f:J,.}), . .:;)· .... ;.:·:.:": t .... · :~ ... '".: :.,:.-. --~'-'.:.:.-~'-- ·~.;;~! .. ~.·'~·: .. 'IJ···,:J1.·:\:·.~;·· ... !j" .... r .. r .. ,I .... ,j ...... :. ,:,;.,,, .... :;. • .,,',.,: •. ,, :.:' ~~'l~·''''''''''''''''''''''''··"~~··'·'-'''''~''':··,",··:.<;'r''''~:'-'''''':' ': .. ~~ ·!,~~~n.'''':~"·l.J'''''~''''''''''·V'' -2t l • t . ...-..

;..'--."~ -- --.~),-----------------------------,---- ,,- /

"OC/) ~CD co Co) ClO ~cp ':xl ~ ...

100 .

Ni~' -.,-"! -!··-r

~ i' ,

i· i FUNDAIIEIITAl . i . i .\ . ,I

!!, , ; .'.: ..

'1 , I .

! - - .. ·,1 i . JLli·· 3rd. harmhlc ! :" I .,. , 1 ~ 8.61 L' .

Ii; t __ _.. 5thr rJlX)n!lc. ___ •. -:-:-:. -:. ~. :':i.:

.1

. ;

5.4) P.H.G. SPEED VS. VOLTAGE OUTPUT

B) 4333 RPM DATA POINT 1) HARI-rJ1lC AUAl YSIS . t

.;! I,

10, . : ::'1~ T. ::.:.::-: - F II 10.031 .• _ : .. : ::. I ~ .. : .! .

: ~.:~:II :'i -: .. i ... ;_.: .. flL::i<~.: ::::1"::- ~:::~~: ::.~~L : :'=:If ~ ~:.::~ ---~~-= F-':' =:c j :- c:-: :-l':c J: -: : =:1:::: _ _I """"lOT'" norDS .... -T

:t~,~i-': ~~ :-J: ~c ,J.-::::> :: .. r:kT:~r:;' , ',;

Percent Fundamental vs. Frequency 4335 RPH, tlator A, Phase A

12-21-83

~=:~-.-:: :':":':l~ : :=::..:: ~:.-::j.:-:: n~;~ --·1-·· .... -- ·-··,---r.·-r· ... --::l~ ... -~r:~_~I. ___ L __ I.~.cL '" .. _- . .. _.-. r .. --- .. -.... , - _.- --+- - -- .-;;i, _ __ t _. __ _ ... ..

i 1 =,:-: -4.'. J: 1 -- -

~ 1 -:., j. -- -··"tULJJJu-: LJl~k~···I·~.·j:~~~;·k·~:tt .1_. __ '_. __

~': -=: :.::::: ::.~:~ltl:::=t:J IL~~r=:lh·:,:-:.::I::I~ :::: :::~ :::: =-:: _._ .-J • ;. .. _~_ .. _

.. _J . ·.1

.. --. '-·--1·-----1· -- -' . . . ___ . ~.:~r:.::.: ::: I ~~.- .. .;..

: l.-:ri +- • .,._-,:. : .... --J. I 111 -j- , ... -: ---i - .. -- _.-- -r ---- . . .. :. .... .. . .,,; ~... .:; ~ , .. __

'jil'·'·· ~I J·I·· ~ ~l· ~~. . -I····j· . ·1-- .. .JI~ j~~ ~~. -~. ~~~II \::- ~;: ::jl'l:-r; i 1 : :.~ 1 ~ ;~l :-;171~ .. ,_ .. ';

• 01.-: ~l::::-:I .. :::-: 'j,' l :: . : I: :.::: ..... :. .:::.::. :.::: ... I I 1\'" · I . fO - . I'· - .- .- '---j ................ .. r ... ~ ... ~ ..... . :: l=-:,~(. :.~:: ~I~\l ,~: :t· I:, ' .. :.: .. : ::~:.. ::~ ::: I .X:::::

t '" . Ia -j-- -- t 1- I I 1 I ' . __ ~~_. " ;1 .. _l-. .. J 41.-! .-.---~- ,---1.--- - I -1 .. 1. . --,

I) '. fREQUEliCY (KHZ) .

" '.

! .:",_ _-_ ........... ,_ .. c ... _ .• ,~:---------:--,~-. -~

)

...

/ /

L';' '·1 iJ41~"l

~

~ ~-"~~~-';;-\""~"'''''''''''''''''';fI~.:..a.J.~b4 rl" t:!" ", "it" ..... -1· .. · e!:! ........ ~ •• ____ ......... ____ ......... _~.& .... _ .......... t ... ~~jO.......... .. b .. !~~~ ......

r"

C f"";;:::"

"Om 010) 10 (.) (1)0

}>C? ';"Jl

\.

\ \

\.

'):J t:~ r'~'''' t=:1l lZ:J t::::J E:J L:l':J )~J c:::J

100 , l\. ' .. I' '1:'-: .,-- T' 'l

~ "-- FUNOA'1[NT/.L . .

,I .

: Ii : ... I' . I! .., :.. ,. I : "!.. l' 0.81 (nomalfted) 1 ••

. I I. Iii

1 ! ,

I ' . £' 3rdi halT'On1e· ,

Ii;. 5th. harinn1c : _ . _ .. lQ I .. :· j ··~1:··::::-: .. ::~i:~· I Plo.oni(non:'.al1z!lI . ,.. .. ,

! : . ~ . ill: .::.: . I.':': :. 1-::::. :.. I . .. ," -. .. 1 : I L··- .. ,. t. I .. : ..... .. . ... \ .... J.. f ....... _.. . .

:i :=.. . T -, .. _.+._- I .... :· :-- -~.! ..... '~l"'''' ..... j ..... I . . ........ _ ...•.

r:::::::l ~ c::.::::.J c.:J

I

I' I

I

I 5.4) P.H.G. SPEED VS VOLTAGE OUTPUT

8) 4333 RPM DATA POINT 2) HARm'UC ANALYSIS

Percent Fundamenta 1 vs, Frequency 4J33 RPH, Motor 8. Phase A

12-21-83

COORDINATE WITH PHOTO 5.4-8-4

E:!J

If --' . ... .. " "--r'" r' ....... ~-- !..... I. ,

I ' • . ; -I. _..., . _ ... '. .. I I' I-I I I I I l'-- .. -~':i: ..... j . "-:-:;.~~~ ~ .. I.. . J' .. ... i "hl~ .~:: :; ... ::.;.; .::. ~

1 . I j -_.,-- _1 ... ' 1_ - ,--~. • _.......:.....~ :-:_:-:=-:- ~k ~!""''''''.'_'' .:-~: :::. ::.: . :~ ., •... ~ , :::: .. c: ,,::j: : --moe : ::::::.: :: . r:.~ I ~m,'1!'~ :.:.::!:::: :::: .:;- " .. ,,' ..... " '''' n~

: : ::c: .. ~~~ • if ]J:-~L=: ':f-~':::~ :t~jt ~:\: :~:1::~~ ~·~~~~:~;w-·t: .·~I~;l ~~.: .., t· r I -t I .... ...... " .. ' ... -.... .. .. I'" .... .~.:. .:: - :-~:~ :':: .: : .. : n. : . : ~ "-I! II' .... j. .. ........ ,.:. .. .. '. : '.: .. :: ::: .. : :.' ....... i ~: I ~ ~ __ ~

.1; _ r-:ij. ----t- ---:1";" l--- .... .. "1\' -- f; ",./-.. _- ~~ I" .. -~. --I '\ '''1"--- "'"1: ~ ': ::~"'t: ~ ... : ;:-:':.: .. :':-:-:'.::::':: :. 'I'" :: I ::: . I : ~:: I ~:::.. ~ : ~ .::.;. :"!-!.: :!7! .~~-:. : '1' !" l:~ . ~::.::; .::':~.:.:. '::.j.--" :: .:.::.: .j:':-:: ~::: :::.: ':.:::1 :: :::: ::.:: ::.::: :::~ ::::. :::: :.:';: :.::-: · ! 1---· ,,--, . ~ .. - ... - . ---, ................. --I .... -_ ... -- .. -. j ". --... -- -_. --- '-~i _ .. .I- --~ ... ,.

, I' :r' I'~-:--i - ,--:-:. -:-. . . -- :-'. . .. - ~~.: . . p: ::- :--:-:- ':: :--:. : -:- :.::- -:-: :'"T;': m: :-:-h z:-:-;; .. :~.: I, - - '-t·; --- '---(--1 - r --.. '1" ---- .:- '-.. --. -:-". . .. --- .. - .-"':--:-:1 _......l. __ : • • r": .....

. .. !, .. " . I . " . • .• • I:···· .... .... .. .. . . .: ....... ::: ":' .. : ..

... : .... ~~-.-: ~~.:~, . ~- -.-::~ .. - ~~~ ~~ :::' ~~~: ::~ :-~~. -.. - --.. . -.-- --' -J~' -' J ... ' :. ... -~~ >~ ~~ : - --,.. ,00,_ - . ,~. I . . -. \~I 1!. till' ... l' t:. . . ,-- . t • ,'.. _.. ". -:1... .. • _. II-n . .'.... TTI1 .. !1 •• -. ,-}. :t':::::: I,i~ ::::" ::.'~ . . .::' t·:.:::: ::::~ ::.: :. ::':.: . :::: :::.:.:,.::. ::.:::

, . . --.. II' I ---. ~I. ._ .. I I' . I' . l . .... ' . ... ... ~:J. .. ... ....... . ...... . --......... . · . -, _.. .-. : ,-" -". ~ ......... il~ .. -.... . .---" ... --.. ;, ....... , ..... --_. · i---- .-.- t '._ ... , ,II --. ,... ~ . It.... .... . .. -- --. ~--- ... ........ . .. ..

, - I , . 'T . I I ! . t--- .. I '1 .. : .. 1 ._l .I ... ! _I.·f. ,:., .• ~ .... '- ....... -1'''12 o ~"4 . 6 R

FREQUE~ICY (kHZ)

\

"" J "

~ El)

• .4$ • ,.. .. XCCL';'." .... ::w:.Q .. _ .... ~ _, .. 1.- •. ,I},...£ ...... .:.,,'.~ ..... i ,.,., .... , . .j ..... _ e:::::_ .. ,,,.<..... __ ........ ' .............. --. ..... - .... "... . .- .. --.....; .,I., ... ___ ., ... .:~_ ........ ::::a

~'

'. I

-'--

.\ t •

r:r;:,:.C-::;~~, , '.' - ' ~... ' .....

".;' • ,~. : \ . 1 :. \", ' :;; ,,;') ~.", ":: ~. >, ':, 'j ,.,..~ -~' :" .' ~"i' ~ 'I'; ~:-~~~ •• ,,'> " ":' .. ':,. ... ," ... r-.. ..., ........ ""', .. ~,~., .~,"" ... - -1 ','",' ,::-.' ~". -.. :~'~ ~:,_,<~7LJ

~' .

~cn "'0:> CO (,) (1)0

~cp '::0 O?-

.... ~ Z

~ <3 z ::> ... ... z ... ~ ... 0..

'r - - ............. ~ - - ~ y

100 •

~~~. ' .• - i-:-:~'1 .. , ..,.

I . .

'I 3N!. hamlnle . .:. tt 8.2,,- (nonr.altzdd) ...

, 'I' ,. I I i ! '. . 10 ! I ' .. - .-.~ .. r 5th. har'rncnlc: .......... : ...... - .. .. t··_·, : . . .. : : "9.n% (noTT.IJ1tzed) . , ~ ... .

.;. ,~':: .~.~::: i . :.:' i .. :.~: .. ',\:< .... ,

&:::ll:::I - ~ ~ c:.::;:,

5.4) P.H.G. SPEED VS. VOlTAGE OUTPUT

B) 4333 RPM DATA POINT 3) HARtXliHC ANALYSIS

Percent Fundal:1enUl vs. Frequency 432) RPII, Motor C, Pha se A

12·21·83

~

1'-' J" II . · .. 1 .. · "~'----'"'''i''' T~": . : ~. : ~ '.: I: : ~~~~~: I: ~~ ~ .. : .. ·1.... 1" ~ . i" _. _._. _ ..... I l: I -+-- ~ ··-·t,··· ----I· .. · ,··· .. 1·,··· ... , .... -" ---nl--r r I' r 1 '!'~- '1 ~r~T' . ....... . l . __ J ... _ .~; ___ .~..l.,.~ ~~ ~_" .: .. ::::, .... ]::' .. :. ..~~.~~ .

COORDINATE WITH PHOTO 5.4·8·1

. ---r- __ =:-- .... I.... ..." T. ... .. .j... .. ,... . --: :.::_ GROUNDED HARtOOIC ANALYZER _ ...

• ! _ .! ~ ~!r : ~~:~ ~~: ~ ~~L:: ~. ~~7~~ r:~j~T!.Z~d ... :~~J:: j~ ~~ ~ ~j :~~ =~= .. ::= :~:.: :::: :::: : l-J-'~:i~::: I ~ I ' +- --t--r----- --- -or - , """", :: ~ ~l ~F -=r: J:: __ ~,::~--r- QC~~- ~~ .. ~\ ~;?~: ~. .1 ~I--~T::-\B ---- u - --j- --- :-:-1=: :-co :::: J' :~:. :::: :::: ~: ... : .. : ..... IL .. ::t:· .:.:.:~ : :"::8':::

·jlf'I!~. ,<.< ,~=~. ~~~g:~~': ::1::::. ~-:::: :::. ::~~~~~ :~~ ~~~.~-:~ ~.~~:=~ ~~f::::~'~~ ~~~~ I ~I ' II '. ~--r...- . .. --_... . ...... '-~'" .! ........ :7: r:-:- ... " .. :~ ~~ .1=~ . ~~i '.' ~ .. .: ,'.:~:. ...:: . :. :.::.::: :~:: ::: ::: .. . .. :: !:": :.::: : :.:: -- ... 'I':L .:.- j.~J.. !:~' ... - .. -- t· --- - •••. -- ..... _ .••• ~ •.• - ••.• _ ....... _ .... . ~ I I· .... , .... ,.; ... .. I! I.k IdJ Ji .... L .. ~ " ,,::: :~=H"nl:n:mm=:

... '" :::' i

.H·'r·::::n bpl_' r" '11~ ···-l..·--~·_J~'~"--:-~~:I·-"~··~l"··"·I~~ ~".II··~·· .j ........ ---: ··-1~-··1···1··· '1"':1 :'. '"1! I 8 I"'''' ....... .... . . . .. :: "!' . ,; I. I !. . . _.

I .. -: -- I. I II . '. ' ..... . .... , '1 12

2 ~ . FREQUENCY (Kill; 6

-'o/.T' ".-" '8 .. . '"

:I

.. '" \

~ cd)

\ \ .~ '.;: . .' "

t I

I

"

" "

'. \

\

',,-.........

t~;.· . -.... --...---~- ,j, ... ~

~ EZ ') E:::') 1"':"":""\. ~ C:J c::DJ fZll E:J ~.,. ....

~. C) tZ:l' ~ z:J /""Y'''''"' ~ f;::::.J ~ r:;=:\ (-31 )

~(J) 0>0>

10 (,) (1)0

l>CP ,!,..,:D

~l' 'j" 1····'··:··1 -:"',"! ,. , .. • I I

. RlNMHENTAL 1 5.4) P.H.G. SPEED VS. VOLTAGE , .' i , , :'. i ' 4) HARHJUIC ANALY~IS

I ; :', :. I Percent Fundamental YS. Fre~lIency , 1 3rt!. hrtronlc I 4372 RPM, Motor t'. Ph,.:.e A Ii· .G 8.n (lIQm&lfzad) .. 1 12-21-83

'I i··· I!; I COORDINATE WITH PHOTO 5.4·8-8 . ! j 5th. hart-onlc : . ! .

10 ' ... ..... t· ~ 10 03" ( .;.&1l'ed '--1--" -'·-1 ..... . r""-. I: :. :. ..:::'. . .. . ., IIQ • l :::. . . . .. ,:- ... -.~ .:.: I· : :: '.:' 1 .: . >:T::: ::::' ::: .. 1. I : ... 'I' ...... 1 .. ! ...... , " .... 1 1 ... ~l_ ... LJ ... 1. ... 1 I

, ..• j ' ...... 1.' ... ;--: ....... . . .... : ...... i"j" ,j .... , • 'j'" -. . . .. ··f --I' ···l·· ... I. ... ; ..•• - .•.• j .. -- .. __ • i . GROUllrED HARJollNIC ANAlYZER -. '1' .. ,: .... . .,...... ..:...:.......: .. I. .. :" .... !. ......... l' . - -- -. .: , ..

L.- \., .. _; ..... _.L-...... : .... : .... j ........ !.: ...... ! ... ::"1"" .. : .. : ... :~~.- .~: .. 1. ... t·~-- ..... . 1 ._. _ ._"j ..... 1 ..

1 .1_'_' " .. !~ _.j~_ .~~ ~_~_ .. ~~ _ .. ~_~: . ~ .. ~ ... ~. ~. ' .. ~ .::. ::.~ . . L .. i r-----r "--1-" __ .. L._ .. "'l'tIi"h "11 ....................... '-" '-' ., .•.•••. j ....... ~_.-n.

'4 ____ .,. _ ._._. __ •••• _._.. ... r:r;.n~ .•.... - .•...••..••.•.•••• -_ •.••..• _ ..• _~ ._., _._ •..•.• _ ..

ci . :-: :..-:.:~ : .=~:: :~:.:;.::: .. : .. ~1.a~ (nonr~~~zed :::: :.~~: ::~.: :::: :~:: ::.:..: ~::: :::.: ::: :~:::~::: :::~ ! :Ct

_:: =~i • :~T. ~~i·::~-_/: :'~et ft~~~ E:t: f~ ::i :I: S C _~:: y: .;-u .... j' ... -.. X· .... ·· · .. 1···· t····· ····1·· .......... I' .j ............................ .. '" I;: ~ I .'. ' .. ;:.: .;. LLI , • • . , •.••••

.... 1: -' k .. _~" _______ -1 ~==- -_ -:::~~~~-:i'::-:_ :~1::-:·. -:-:-: ~ " :L._:-:T:" -:-1::- ~. ___ •• ' .~. :.:.:. '._

1M

.... - ...... ~ .

... -.. ~ .. -- -.. 't-2:--j .. -t-"f:~ :.: :~: ~ - .. _-- .......... _ ..... _.- ....... - _._._- .-.. . • • - --- --- ~1-"" ~ _.-. .. .-~ .. 4"---

• • •. .. ••• I ••• j ••• :: •. !,: ....

I· '.1 .. 1\.... ". .... i· .. ······ ..... ~ ::--:- :.~:~~: .. ~ :.~--: .~:: :.~:: ~~.:

. ~ .. ~\ ... lt:J-·II--II~r. i·lj!--·j--\ .. L. '~i'l.·-.. '--1--" ··_·-1·11· .. '-. ···-l-~·:-·, t-:~· "-r.- ... -. .j. : .11 JJ Ib I . d\~ ~ \1 ~ . ~!' 11 . ; ~. . ~ I··· 1111· . : . :: 1" . ~. ,,,' .... ... ..... . . .... ... .. ... ~~ ~~O\-j~··~--P::-.. .0'... ..... _~......... . .-. .. .. _ ....... :... .. - ...... .... .. .. .... .-. '" . . ... ......... . .-, . · .'.... ... . ..... . .. -.. . .... .. .. '... ~ ......... - .... .. ....... -... . .. - ...... .. .. ...... -... -_.. ._..... ..... -.- -.- .

· .,.. .. -.~ .--',:.:~'~' TI: .... ,;. ~ .. -4i:"· ... -1-,;;'1' ... ..1_ .. J-_.; . .. . .. 1-'" . ---I' .... . .. ! ... 'j' "-I,, ... _ .. I!" ........ ·1 .. ·· . . ... , .... --.. : 'Ii ... . .... ;"''' "j"S ... , .. ~ .! . ~ ! . :':,' .. ,! .... .. : ... : ... .

• I" • • I I I ~ ,L_:1 ._... ._.1 ..... _.! __ 1\-. I., ••• I •. L .• 1 •••• - •• ,., , •• L._ ...•.. --" .... ..•. . .. "'12 . 6 8 10

FREQUENCY (KHZ)

• • 1_._ .......... ~ .... I • ; .... , • __ .... _to. 4 _____

o z • 4

.' ....

......

\.:

\

~-.--

-;:-:- ... ' ..

"

,

'.'

I I I

I

/

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT C) 10/000 RPM DATA POrtlT

VERTICAL SCALE: 20 VOLTS/DIVISlorf

TRANSFORMER R~TIO: 8.0511

HORIZONTAL SCALE: 100 PSEC/DIVISION

1) MOTOR AI" PHASE A

VR/'IS 216

PERIOD 720 usee FREQ 1389 Hz

" . , ,

;~ .... -~ .. ~,... ... : SPEED IOIl!7 RPM

:.; .

," ,.' . . > ....

2) roOTOR AI PHASE B

VRI'-IS --"2'"'-'16"--__

PERIOD 720 usee

FREQ --J1 ..... 3""'89wH ..... z __

SPEED 10417 RPM

"

A'1'r~~ ¢~ loo~~~~';,"7:N~ :~ : . :.,;.

:;f<;::.:~~::;" , ~~ .

. ~ .~; .

,. .-,'~

. ~ _,' .; _.~.~; ._ ... r.~~:~,.~;.J~\-: .. ~ . ~ " -:. ,",

t:~,;,;;:::. ';"r:< "J"" ," '>:;~;" 'it

l.'t. ..: -./i ..

"\~ii.~~/

__________________________ -l S8308.R1

Page A·83

" n

_-":",

:,

·f . . ....... -.' ~:---

"

/'

/

r,~~'~;i r· .. ,

.U

'~

u

n u 0 g

0 r· 1-._

0 "

"

S g

0 "

n D' 0

i I

ORIGINAL PAGE

5.~) p.M.G. SPEED VS. VOLTAGE OUTPUT C) 10,000 RPM DATA POINT

VERTICAL SCALE: 20 VOLTS/DIVISION TRANSFORMER R~TIO: 8.05/1 HORIZONTAL SCALE: 100 ~SEC/DIVISION

~) fl0TOR B, PHASE A VRI1S ' 216

PERIOD 725 usee

FREe 1379 Hz

SPEED 10343 R?a

5) ADTOR B, PHASE B VRMS 216

PERIOD ---110 r~PC FREe 1389 Hz

SPEED I09I? RPM ,;....

, '.-

... -'-.\. : ~.~~ -,-'> -.,

-..... ~ " .. -

,,;o~~ ~>~··<I.,;~U;I1~;:J '.- ;;:iti~

6) MOTOR H, PHASE C

VMS 216

PERIOD 720 IIsec FREe Bsq Hz

SPEED Ie!!l? RPM

-. ~. • <.:

. - ' . ~ ..

~"" ::' , ".~:'

.... ,/;:~~~\ -'.i/ . .'., "'-">~:\' .. ;' ,

"" .' . '~ . ····~L~~:. \r~~;~~·:;· .:J~'.

""Dr"'L:~ fPCJ ",',-,,,, ~"P" • ..: ,</(1 UAo

S8308·R Page A·a

I· D L:..:., __ ' ___________________ ...... _____ .~~_._ .. __ . ___ .... __ ........ _________ ..... -_ .. • t __ ,~ .... -_

/

.' !

/

; / (

f } .

-f 1

l t f I

"!'I i'

"

~S

i

"

,>

"

'. -!

:·~-'3. <..::"-:; i~'c'~

ri ~ r,

I J

t ~

l

J

I (\

I

l

,---.. ,

5.4) P,M,G, SPEED VS, VOLTAGE OUTPUT C) ~RPM,PATA POINT

VERTICAL SCALE: 20 VOLTS/DIVISION TRANSFOP~ER RATIO: 8.05/1 HORIZONTAL SCALE: 100 PSEC/DIVISIO~

7) MOTOR C I PHASE A

VMS 216

f

OGRAPH

". '-",

PERIOD 715 usee ", .'"

.:: ~., .. ~. "" : \" _ -.' r " ~ ~ ,.,".

FREQ' 1399 Hz

SPEED IO/.iQO RPM

8) MOTOR P, PHASE A VRMS .... 2!&J1.!./.6 __ _

PERIOD 715 usee FREQ ' ...J 399 Hz'

SPEED 10490 RPM

.,- .... '

, "(t<.1'~;

. ;,-.',

. ':,

, . .:.~.

\fl":<> /-,

,i, ,i' ' .. :

' ..

S830B-R' Page A-a

.,'

. :

WF·:'.. '·."(!.f~

un . ') t::~~J C:;:J c:a cz.m c::::l t::::J G:J ,) EZJ r::::J C3J ~ C:l C:""~J c::.:J ~)D

~----------------------------------~-------------, .

(

I !

\JCJ) 1»0) 10 W CDO .... IP

~I .., ., ..... - .. 'l"-~-"""l"--" : : 1 ;. ' ~.. •

i .. ' . ' '1 FUNOA.'1ENTA~· . I' .

.\ .... ,!. 'I . I .. '1' I 3rd. harm~IC

100 ., ., ..

I . I I I

i ,.

I ..... L. .. , ..... J-. l' !'. ... 'j! II 0 7.S: In nn.l1t~ed) . ; . . . . 'J'

iii ' 10 I •.. , ; .. I - .. , ...... r ··-1 5th'lharm lc._:.~_ .... _-\'._- .. -. C) lCJ

I· ," , ' .. '. . I ~ 10. (no .. allze<J) . ' .. ,. .... ..:: .000 RPM DATA POINT

5.4) P.H.G. SPEED yS. yOl TAGE OUTPUT

'\ : .. : : : ".. ". ;' .. ; ... , .. : '.: :: .. :: 1) HARl{)lIlC AlIALYSIS 'i' .... . ..,.. .. .... .. .;. ..!.. . . .. I...' Percent Fundamental vs Frequency . I ..•• : .-.. ~ . - .! . - .! ... . .. · .... 1..· .. I .. .. .. 1"'·' . ..... to.020 RPM. Motor A. Phase A

.. -... : , .... '·;":-1 -_.j._. ; '-"1'" "':1-'" ........ :. -:-:-- 12-21-83

.... : ..... ' : .... -_.-t-..... ..:. .... . ...... j"-" ... '1' .-.... ,.. COORDINATE WITH PHOTO 5.4-C-l

~·jj~~~-:·I~~· cj~~~ - .~!-:. ····t·t..-~·~~~t-·.~ ~~f~ ~~:: ~~: ':'I::::I:::;I;;~'I':"I:~:'I::':I:~i7 ;;c! ,_._ I ._ --==4-~~. '- ... ~. __ . ~:: ..... _)~ ~ ... _, ..... :.. ... ::;: .. :: : ...... :: .:. ~ ; :~ 1~. -:-: :::r=---: :-~ =~ ::: I: .::: :~:: :: : ::: :~l: :~?~ ~~. '. f.~;~ ::~: .... . GROUNDED HARMONIC ANALYZER ~ • -1 __ -:t= -- - t ... - .. -........... - _ .... ' _ ...... - - .... . r .:.1~1,:~- ...". ~ll ; ...... ~~ iF ~? .::: ~.: :~:~.::: .~.. y~;. ~:= ~~ ~ . .,.........,~ :-i-T-~,-l i -;;; I

.1: ! _ ~' .. _:_ .. I...: .: ~: .. =1-:-: _.' _ ~ _.,~_ ~ :: ~ ~ .. ' ....: ; ~: :::: ::. : . :: : i :: ,E 't- ... -.~-.- .. -. -- _.. -'.- ..•.•.• -- -_ .• - .. _.,-- .,. t ---;---\ - -- .- .. _.- ..... '-' .+.- •... --;_. ---

.-~-- ~- ••• .&. ..... -- "'!' ........ - .... ~- ........

__ I·.:.-.L~·I __ · ~-t~

!" ! ':1=1 ':1 . '- - ._--h.~:LJ: .:~ :~ _: ;~~.: .---\-7-.-,

''0: -I; ;i;"" ·~:--1·-. ,- -:-

... -.................... -- .

~V :;-. :~! ~:~.~:.F<l:· • ·Iil: III: :~~ ~~.L:: : ~~: I' .. ~. .

1 . . : - I :..;:r ~.. .. . ... I . ~ ... I·· j I I . I. .il:. '1·' ; .1·' .. I. ; , .. " .......

o 4 8 12 16 tncl\I,c .. rv '''~7'

~-:--: r.-~-:-I :-~-:-~

. '1'''': .. :. . I .... 1.. ......... 2 . -_1.. ....

20

l7'" ..... ~ .. }_.a,!·-V'i\;~'_i=~~.,,;... ... __ ,;,~,.w4l~:.~~"'.!4.~~ •• --..:~~~~ . .;." .'~:, N/-:'J(' . :",:'4. ~i~~~.~· ,.. j', ," .'~: t.. '~-~' .... ~~~.~~~~.,..;~~",,~,~.~~~~.~~~~:;:.':::~~~~~~.,l ___ .l~_''''~'-+-'~4 __ ~~:~~~.=:l .k .• ,,'" I ....

[t[;:~ :~~:~~'~L~:.·~·. ;.'.' ..

~ ~ )

"'OCIl 1l><D

10 W Q)O »'1> oJ)

~-

~".,. -----:--

, . ( ..... \.. '. \~. ".

:}~ .:'... .. ;~ ..... :~~' ~~,:.r. ':" ~:~'~.:'"'''.~:''~''' -;.~ .... :. :~'~"--.' . ":'''""'I::-:~' ,:::-' :~' -," ,7.~ ':"i":;- 7,"," ':", 7·."~·"'~·;'.~·~ .:~ ~'~-:~-, "',' r :"::,.". • '. :\-:~'~<i :;.: ""~:~ ..; ; ':. ,~, l'~'~ ; .' :.~:~~~;.:,.,~, J~.;:J'~~~'I

~ ~ ~ ~ ~ ~ ~ ~Ol r:.::::J t=.=J I;;;i::;;a c::.o::;a ~ c:.;;;:u t:s;:;'JI

~--------------------~

100

i"-~,w.o,,~ 1 1

.1 I 3rd. h~n:nnfc : _ ..... i

5.4) P.H.G. SPEED VS. VOLTAGE OUTPUT ... I '" ; (3 8.a:: (nomallzed) j' . .

: . . ~ . I . ~ . -i. . . . , ' .. 10: .:: I' j. .:. . . .: I . [5th. hamonic .; .' : .. .., i' . I (!l.~.B% (norma .Ized);. . ,.

!:_-J\i::+-·;_:I:j'-f --1-: C) 10,000 RPH DATA POlllT

2) HARIi)o"HC ANALYSIS Percent Fundamental YS. Frequency

9930 RPM, Motor B, Phase A 12-21·83

I .0

"1

COORIl1t1ATE WlTH PHOTO 5.4·t·4

...... -:~j~ I :~~--:-lj~~ ~:l- --::i::: - 1- 1·',·k'l'I,;.I:I-.. :::-: :: - -J. - . ~ ... :ok;' ..... - 7tiI.i'h1 !=":tf:::=:-:-- GROUNDWHARIllN1CAtlALYZER " •• L~.

I : ~-=-I:r T~ ~ 3~i; :il~~ -=-fJ': ';n~ }~I~f ±Ji-;:=:;t J~ m~ 11,-[; "ii' ~ .1 . .~J J -- =, 1.- -- J L. . _. . .:-::-::::=- "" :e:: ::::: :::: :::: c;: . £::::: :::;~ ;;': 1:'~: ; j "

[ . :1-~I~~1 ~ =~ . ~ ~F. ~ [!:=~=~I: Ii :;~ ~~:: : :~~: :~;~ ~;~ ~::~~:;: .~~ ~ l~' :~~~ .~~~ f~; ~~j ~~;. '- I --•.• -. 1\ . -- . 'j' .-.. 0·.· . -... _.... ..- '_,0 .. ~-~ .-.. . .. ; :. .: ,: .;.;. :. i :. ..:; ,,;

. UI!':' i .~~I~: I'~': .;' : .:..:..:.:. > --:..:. ··:~~I·~· :~~~ ~~: ~~.: .:.:.; .. -:-~ ~-:- ~ --.:..~ ~~;.:..~:.. '111'lr,~ ., _. ' .:. I ·1' . . i ., . • • • ~II :;.. . . . ... : :: ::.. .,:: ;,:.: . : :: :!... ., > ;: ~; .:'

'I. ., , II l:··....~: .:..;.. '._ .. ll' I { 1 . __ ... ..- -______ - •. , _ .. - ... ~.-........ - .. 'i .. ' .... t ..

j ...... I.-....... 1. _____ I._. ···~l·-·J-··~--·- ,-,1,·-, ···t···· ._ .. _.- ....... - .. -.. _-

:~-~:l~~- :d~~ ~r=::t:: ::~F:--~I:t ~l-h::- It: <:f:::~! ~:-_:~ "~'o" ..... ~-.... --;---..... :;1 .... "-','~' "I! . I ..... 1.:.

1· .::i f . I .. ~""l' i:;: . I' I· .. ·· J '._ ~ L .. _ ... ! .. ~.!_ E __ . II .... !.!. ...... 1.._ . __ ... _.L_ ..• _.

24 4 16 20 8 . fREQUENCY (KHZ I

12 o

~ )~'

\.~:.:~:"~-:::;:~-';""";;'~":"";;";"~"'.';:~ •• '''''i'' ';.,... '-.~ ....... I' '"""," __ ","--.,,,:,",-,,~.,..,....:.,.;.:_ .............. ...-,,---.............. .,~, .. """,,", ....... , ",'" '. ''''':-,~,,::'':.~~~

I r r I . r'

;j ~~ !:.tt

~

1 t I

I f. fi ~ ~ ~

~

1 !

i

~\"".'. ~,~:" t.',n·". C';';;,:) fr""I"'1 t"7:"'l ,...,.,....., r"·~ ./"""'-:'I .".",...., ~)~ ..".. .......... ~ ................ ~ ~')~ ~ li:::'J £:'~I E'7'"TI r:;::.1 c.::::J 'c::::a

I

-ocn "'0) <0 (,) . CDO ~cp .n~

Ir.;) •

~-' :LtIOAMENTA~ .- !' --:. -'I" .. I ...

I. _ ... I

i I

i I ... 1:'-

.. 1 .... : .... 1.._ •. i .'._ t I

rd. hamnnli:' 8.8~ (nom~l1zed'

: .... ! •• - I

': : I 5.4) P.H.G. SPEED VS. VOLTAGE OUTP~T

r ~l~:9~at:~li~~:)!::' . : '·l· :: J;::"A~~~ii ANALYS'is'" ..... , _.. :.! . : . .. . .... ::.. _~ i Frcent Fundamental vs. Frequency

1'" ---; .. ... ; .. ",' • t- .... - . .. . .. ; .. I ...... ;".. . -;. 0,087 RP~2.~~~~~ C, Phase A

... --:-: .--'-::-:---"-'. -:-r-'- :-.:.: ........ ···~:T·~· -··-·t:~·:- COORDlNATEWlTHPHOT05.4-C-7 J I ~-::' ... ':'j~" ~:-:r _.- -.' ~ _ ...... _. -:-:-~(": '.'

I • J fi --. -- --1"-' ._.+- -, .. i"--- --_.-. - - .'-' ..... 1 . 1 .. 1""1:'::/'::' I·:::I:·:-+---·· .. -~· '" .1 .......... " , ............. ,...... . ...... " •. _ ....... - ....... " ..... ~ .; .. ;,; ,;;- .;; .. : ;.; .. ;~. I . ;. i • . ..•..••...• . .••..

1 ' •. _1_ ~ :.____ ___ ::: .. __ .. ::'.~ ~-::-:: ~:: ~:-. - -·rt'hi.:f;i·. nlc: _-::-::7:-:: GROUNDED HARIIlIHC ANALYZER : : ••• -i:F ,.:.::j :. :.-= = ::: :.-::. :.: I:::: ::C:,:: . :;1:.,,'.1 ~""L ::.: ...... - ..... , .. ~ . ~ :C~fC":~:' :.:;:

.. __ .1_- -. - ····1 .. ·· .. ·~r .. ~ ......... -. -' .-.... -.. -..... ,'- .. ' .. -' ... '-'" t>lJ :' ~:~:: <~ :'?~~ ~:~ :~.I=-:::: -~~: ~~; .~~ ~ -m [ 1t ~ f~ W

,-, . :::=.=I:'::i F=":::: c: (=: =c:: ,~ .. --... _ .... -. ..... .. .-f- -·1 I -- -- -J,

it' tl~.ltr,··· '~'I"~I M' 'It'l~ l~ "',, .. j·I'J :~:~E; ~:.:. ~'I~-~:':'~~ : :.:~: 1:7~ ~~~ ~: .:.t ~: ~~ ~ ':j:': ~S'E-7~~ ~t-~· !U~~t·~- I ..•. ~ : - .~ ,-1 ~-I~·~~·l·· -~~. ~·~;-·llt· ~= ~~~ ~~ ~~:-:-:: 1·~~~J;·:~· ~~~. ~7:"~': ill, I I I· . . .... .... . .. . .

.01 : 'Ii'>.~=~.~ ~-,; =~. :M ~=1\A~\::1 ::: ~~ :I.~<~ ::: :t :i:' c::A ;~ ~'';.' "~ • ___ ... 1.._ .• -, "'-' - --=!=- ... _ .. ! ........ ····t-·-· .... ··1-· ........ -- ._ .. -_. _.- ...... : .. -"·'1'-· .,._. '1-'··' . -t-- --L-- -.:.t---- · .. ··r·_·· -1--·-' ---1-·'· -_ .. j .... _- 1 __ -~ •••• _- ._- ~""'- -, •• ·,·-1·.-- -_ ..

J ~~r~~~·~~~l~~ ~~~t~~~ ~:'J~:~ :~:~ ~:~ ~~~_~~: .. ::: .~~ .~~~ :~:~ ~~~ :~~ ~~! :~~ .:~ :.:i:., . k Ia .\. .. . ... " .. ; _ . :;: I m 'D

I I . _ .. _-' ._ 1 .. : • I: ... _ '.'!. r ....

11) ..... _

o 4' 8 Fr.FOllfllr.V I kH7 \ 12 16 20 24

..

.~

r: ~~._::_:;'.L .~ .~_: .... ~ __ --.:..._:...': .•. : ... ~."" ... ,:",~'..;.!.::. ........ ~L ... :'~~· _' ~~~~ __ ~. ,: .. ;": "::'w: ~'~~~~ ... ~~ .. _~_. __ ~,~~,~._. ~~"';"';'~H .' .• , , .. ;;. ;~; .. .;;,~~2::,. _~..;..;.........: .,; . :_:.;~:~~~;..==:.l

tl '1 ~) t~ , tl,

. ~, , ~J

~ 11

~ i i t U ~

I i

"

I f

! I i !

f i , f·

~

j

I i

tIEi ~?L :~ ':,;' ~,·t~. . \ . .~~:; ~; ~ ;~' :::::~., "'Y',: :'.::" :"':.': t:'~?Z;~:':~~:~~~' ~~::7"T"('t'''?\~:;r; :i~~: "'. c;": " .• ~ ~'~~"""~:' "':':'::~,'" '-:-';(:';;-.~;:: .... :':' .;~ ;, ,.;" ::-;, ~ •• :~~ '~.~ .'.:.~:::::-:: ·:;~:=t~~~;;:;~:;; :137 ~~:::l

-- j-

"OC/) 1l>CX> Ul Co> (1)0 ... cp

.---100

10: •.. -f .. .. t ... :

- ""- ')-- -

f(-. l. "'j

'rIJNDA."I£NTAL i I·· ! I :- .. :. .: ....

• !. I' 3rd. hamonft ; Ii ; I'· I ' ' !I" I . . , .•. 'll 8% {norma1tzedl' ... , . .. ,

I I . I' I , •

I I' . I I.. : I . I t I ::

. . . . .... , .. _. u" OOql'1OO •••••• •••

: ::'.; . I'.' !:.. .,.. .. 10: (nonr.a Izedl'. ' : . . - j :

,.

'" I

--. , I

. !

I , . I , i . . I ' l ' _ i ___ ... L .. _. ____ ...... _

5.4) P.H.G. SPf.£Q VS. VOLTAGE OUTPUT

C) 10.COO HH MTA POINT 4) HARHO~IC ANALYSIS

Percent Fundamental vs. Frequency 10.024 RPM. Motor D. Phase A

! "I! '--"'-'1:--' ·-I .. ·-·r--J· .. · .... ~ -hi _ .... ti ........ ; ... .

, t=.~: 'j' :"1-. :::i::::! :~::::: f:::~ 1. J:: ::_ I -:: ,,~-~ . .; "'i:'_:" ::~L.: : n·;..···' .. -~:. .... :·:._:·1:_:- COORDlNATEWlTHPHOT05.4·C·6 ! .'" .j.. Ii' . .. . ....

12·21·83

-

i ., ··1 ,

_.

---;. .' -t---- .. _ ...... ~ ........ ., _ .. _.- ... _,- -_. - '1' '1:; I: :! I : : : '1 : : : I ! ::'1 I •

: I' . ·-·1 ..... I ..... :.:. ~.:' .... .. ~: : :.,-; , :.;.: :::: :::: .: ~: .. :: 1 . 1· . .. ..

-' . ::::::r;, If--::t:--- --- -._- .-.- --- -_ .. :-:-::r..oo --i GROUNDED HARKlNIC ANALYZER -:;:T.1Tr.T-p:::.:: ~ I : :.::1 : :.::::t::...:: : . :: ::: -::- . '. -~ h 1~ f:: -.. ::-~ T I ... :: : :-:: :::.1 ~ .. __ ., --1--- u .. _ .. 't u

• "ii.~m'ja"".alfzeil)' ._.- -;-L'''-:- --.~ ~.:... -.: ':"!.~ ~_~.L •• -- .:-~.

~ :. ~~~ . 3~.::.J ... , =~;;. ~~~~ ~i~- ~i~.~~~~~ ~-:: ;=~ ~~ ~'ii. :ii ~= i~ii~ ~,; ~'~.~ ._; lZ ".. I -l· .. J... . .. ... .., t ... 1~ . .. .. ... . .. .... . .. ,... ., t· -:.: .. ;: .. . .! •. · t ~ c '-.' I .. -'11 ... . ... \" .. ·1 ... : .. ~. . .. '1' -:-:.. ..: .: ,: .:.: ;::. :::. .:!. :; . : . : g I . _ +- _ ._. _:. -~ __ -_ --- .-- -- -'-' ' ... ~~-+ r+-7+~~ -~ : ' ~~:

. •• .•• I ••• I •. I III I . I ...... ..... ' ..... .

". .. 'llJi~~ ~t~~ ~~? IT;: ~H 1:' f':~ ;~Vb~! ;;::; . jl'l"ll:i''''~~ ----+-~" "'111:

1' :.~. .. .. 11~-:-- ~--:'r~" I ~.:-:~ .. ~:.. . -- ~.-:- :----: ~~-:-1. :.;- -:-;-r: I r; -:o~ ,['7':-: ]' .;. ~-:-;. '~~ j .1 11 .. -.• r -.-.- - : ......... : ......... _ ........ _ .... -~.- -," :'. -.;. -~:; -'-1--' .... ---: --:~- .... .

'jl~11 'J:·I·.:....!·~ ~U~~ :1.~\',,!, ~'~J' . +~ .. ~:~j. :!I ~.~ .~.~~ 1,(- ~::: ~:., ~:- .::;~ ;~~ ~;;: J~; ;:: ~~~: ~~'~: J':~; Iii .! .,. I , I' .,.... ... .. _~ W.I:, I q, ~.!. M i. .l~.. -,~I)JL. --i>iJl ". .-: ~l: b:' ~~ '- 'i . . 1I~; .'~ lh

l=:P-: =~l~:::- #.~ :~~h -J.:..?1-<--t: :=: .- ... _... ... .. ., ,.,k1"'!. g-:-~'- --" --~.- .. I;. :9-

.. ; ,.., ... ! .... _.. . ~ en : \D. I !- i rt '\0 : (n. ,

: I.. : ., ,I. . I .' 1. I . .1

.~~

: ~ • I

I ! ,n u

n a ,? ...

) ~

m:;«~----~· _,.., ........ "" .... , ... " ..... -.------... """'.~RD ":1;1

(\ .• -.6 ~

:'; ":-.-

n,' Ll

rn

~

ORIGINAl. PAGE BLAC/{ AND WHITE PHOTOGM,;.:~~-------,

5.4) P.M.G. SPeED \'$. VOLTAGE QUTPI!T

D) 1666 RPM DATA PQl~T

VERTICAL SCALE: 5 \'QLTS/DIVISI01f

P~OBE RATIO: X lQ

HORIZC~TAL SCALE: 500 ~SEClDlVISIO!f

1> !'lOTOR f\, II'~ A IQ B

VRMS 70.7

PERIOD Q.4 !"Sec

FREe 227 H!

SPEED 1703 RF"t

"0 , _ ~~: ":7t:. ..;:~~.~" ,····-:8 ~: ,,~ ... ~ .. ~=~~;~~~¢.~~;;, ~.~ -.;.::~';

.bt':r.~!!...~11-8 -l..M~"" __ "E~~D

2) MOTOR A. L1tS Ii TV c: VRMS -t..J7D ...... ..:.' __ _

PERIOD LUI csrc FREQ -22L,,,,H,,,,,--_ SPEED 1703 BP:1

3) MOTOR A, L1'S c: TO A

VRMS 70,j

PERIOD 4.4 "'se;: FREQ 227 H:

SPEED I 7Q~ 1\E'1

1-10-/4'

-:,~:: :. ~ ~ ~ ",

I-IO-U

Fi~~'~ , .. ",

.'." ....

.~~ . "J

~t .: '-.. ~\.; .. ",- ..

~ • .1

J

I

r-. i , II f,,.-'· ~, . , \

t . ,

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

s.~) P.M.G. SPEED VS. VQLTAr,E OUTPUT

E) ~333 RPM DATA PQINT

VERTICAL SCALE: 2 VOLTS/DIVISION

PROBE RATIO: X 100

HORIZONTAL SCALE: 200 PSEC/DIVISIO~

1> MOTOR A, LIf~ A m B VMS 184

PERIOD 1,68 rnsec ; . ~ ... '.~

FREQ 5Q5 Hz

SPEED 1I1.J62 RPM

~. ",

.- ~ ":. - ~~.

~, .~ .. ;~" ;L~~, :,' .; • "-r-,,"' .~ .

. ~-..:~.:.~ nm'.t'.,q <I ~~ 't~ <#l. P'/1 , .. __ .1 _ ..... _____ • __

2) MOTOR A, LU:E B m c VP.MS _1.,,80.4 __ _

PERIOD 1. 68 !:!Sec

FREQ 595 liz

SPEED 4462 RE11

3) MOTOR At LINE C m A

VRMS 189

PEPlOD 1.68 m~ec

FREO 595 Hz

SPEED 4462 RPM

L!~' ;~J • ____ ..... ______ -.. __________________ _ .•.• ~.14i e •

~ U

.

.... j... n - u

ltJ ~l' .' ,

.1 " ..

t

'M t~} W

a .. ' II

D g

(a "

~.' B

ORIGINAL PA\lt. BLACK AND WHITE PHOTOGRAPH

5.4) p,M,'i, SPEED V$, VOLTAGE OUTPUT

F) :0,000 RPf1 DATA POWI

VERTICAL SCALE: 2 VOLTS/DIVISION

PROBE RATIO: X 100

HtRI~ONTAL SCALE: 100 PSECIDIVISIO~

II ~OTOR A I urf A 10 B VRI'\S 332

PERIOD ,8 rosec

FRED 1250 Hz

SPEED 9375 BP!'l

2) MOTOR A, W~ B 10 C

VMS -=3.::::82=--__

PERIOD ,8 msec

FRED 1250 Hz

SPEED 9375 RPM

3) MOTOR (1" LINE C 10 A VPJlS .....;.,.;38;.;;;.2 __ _

PERIOD ,8 rosec

FRED 1250 Hz

SPEED 9375 RPtI

"

a

L-___________________________________________________ -M~~:~~~~

rn ~

.~,

.1 I J

~

I I ~

0

. , ,

/

P.M.G. LOADING DATA

--

/

,­I

-. ..-..;.. ..... ----------

r I· v· r f-

r i..

t ,.

L !­r· r I· , , ~" r, j r-. .­.-,

g

B 11 U

5.5) P.M.G. LOADING

HARr10NIC ANALYSIS ~'AGNITUDE SUf.l:1ARY

N = ungrounded harmonic analyzer Y = grounded harmonic analyzer

GRAPH NUMBER

SPEED LOAD (R. P. ~1. ) (AI"PS)

A) 1666 RPI~ DATA POINT

5.5-A-1 1660 -2 1647 -3 1671 -4 1684 -5 1639 -6 1647

B) 4333 RPI~ DATA POINT

5.5-B-l 4325 -2 4333 -3 4316 -4 4310

C) 10,000 RPM DATA POINT

5.5-C-l 10K -2 10K

6.1 6.1 9.3 9.3

14.1 14.1

14.6 14.6 14.4 14.4

10.2 10.2

QUADRANT II.OTOR

A

1 A

1

~1OTOR CONNECTION

A-N A-B A-N A-B A-N A-B

A-N A-S A-N A-B

A-N A-B

(HARHONIC)

GND 3rd 5th 7th

N N Y Y Y Y

N N Y Y

N N

7.9 7.3 .72 .6 7.t· ·.74

6.9 5.6 .53 8.3 5.6 .53 6.5 3.9 .45 7.8 3.9 .43

6.3 3.4 .44 1.0 3.4 .42 6.2 3.5 .46 7.6 3.5 .48

5.9 3.0 .46 1.1 3.0 .39

S8308·R Page A·!

f:;:~:Z:>::Z ~.;;:'.:. :;"'):'" ,;~;::",;:Z' i.': ;;;.:::" . ';;I.>,,~;.:~:::,:, ~';: ;!,J,;;,~ • ...:...:~,~~~:_~~::.".,~."::::,~.;LL.::''2':'''';. ,:;;,::=:;,n, ;;:~,;~::. .;~' . ';;;~i.~~l

~~~~~r~~~~~~~~~~~~~~)

"'0 en \UQ)

10 W ClIO

>~ 'JJ ~-

LOAD

f\CTUAL

350

700

It/OO

:?IO(J

:?t/SO

;7,~OO

3150

.3500

3950

'/;{OO

.1/550

'I9()0

SPEED 1666

!'.D.m.

ACTUAL

I~(,~

16~~

1(P5.z,

1('1/-7

/(Ph~

16r,t/-

1('70

1(P7(P

/f.,10

1670

/6b9

16Gb'

TEMP ~RQUE

OF IN-LB~

95 I!.¥

9~ 15.9

9? ;'5. 7

'IS' 31/-.5

99 39.3

/00 #.5

/05 1/B'.9

93 '::'.1

95 (,0

98' (,3.:<

ItJ7 1P(,.7

1/3 70.3

MCYI'OR A

Ia Ib Ie lave Van

.9~ .9.3 /1f!- .93 37./

/.67 /.2;? 1.7.3 i.7" 3~.;l

3"" .3.5$ 3.55 3.5~ :'5."

5.01 5:;'9 5.15 SolS I:JfI .. 9

5.97 ~.;'I fJ,.0t/ ~.otl 35

t:..f?l 7.07 7.0(, 7.0 .3st.5

7.~l( ?,tIS 7.91 7.fS 3'1.'1

9.01 9.1/4 q. "a" 1.~9 33.7

q,f~ la'-5 10.11 10.1 .334

IO.¥ II. 10,7 10.7 33./

/1. I I/. P /1.5 II.S 3:/.1'

/;?, /::/.5 1:1.3 I~.~ ,3'':;.3 -

MOTOR A

Vbn Vcn Vave Wa

:36.C/ ~7.1 31 3¢.9

345 3{;"s .3~4 ~o.s

3('.~ 36 35.9 1;1.3

35'.7 35.¥ 35.5 171:>

35.9 3S.¢ .35. t/ :l,O(,

35.7 35./ 35,1 .ri39

3S,t. .35. .35. :?b5

35.1 .3t/.1/ .:;~¥ 310

3'1.9 31./ 3tJ.! .3~9

3'/.7 33.J' 33.'1 3'17

.3'/.1' .33,s 33.6 3~t/

31/.1 :> :3. 33,/ 3RS

~1OTOR A

\'Ob We

35.~ 35.7

~b.S 4;.:2.

1~9 /:l, f?

/90 /~3

..1~~ ;us

;?53 ~st9

:l,J'ofL ,;7.77

336 3:l.t.

3/;,0 3t1"J

31(, 3~6

4()8 .98''1'

Jj30 I/o~

ltot

106

./.5'9

,3KO

i

Silt)

6t/-S

74-0

/J;{~

97~

1036

1099

115b

1~;l,1

\11

\11 ..... 3>

'-0 - ~:;: 0'1 0'1 0'1

;:c

" r :::: g ~ ::x>-i! 1m ~ -=i

~ fU

~ "-

,~ ~ 1\ ~, ~"

~ ~ " ~

'. \ \ .

\ \. '\ . \

'. \ ,~ ,

. . i

::-........:.:

~~~\:, '~::::~lT;'~~7:7~~O"i":::~'''~~~~;'~:7':'~''~::;2:7"::'~:i'7, c.s~F·:r~,~~07;'i~~~,~'"·-· ;,.l~Z::·;~i;' ~';'';'l \~ -'"-""v.~"b,j IO':J a:;;:a ~' ~ _ _ _ _

"tim I!>(l)

<0 Ul CDO >'P ':D :g ...

I LO.a.D

I\CTUAL

5~SD

5600

5950

t.30D

~C$D

SPEED 1666

r.p.m.

1\CTUAL

It. 70

IGe:,;J.

1(P~"

16CS

/b~;l.

TEMP Ironcmll

of IN-:.B~

I.--

117 73,10

I~~ 75.6

1;1.(;, 7S'.b

/~3 $'/.Io

13~ PI}.

',~-~

MOTOR A

Ia Ib Ic lave

I~,(p 13,3 13. 13,

13. 13.9 13·tL 13.'1-

13.t, 1'1.' 1'1.1 1'1./

1tf.3 15.3 It/.. 9 Iif. b'

I¥-.9 15.9 I$,5 /5.t/-

"

) ... -

~IOTOR A

Van Vbn Vcn Vavo

.3/.'1 33,81 .3:1.7 J~.r

31.S .33.5 .3:/.3 .3'·f

31 • .;l .33~ 3~. 3:?.I

30,f 3:l.9 31. (;, 31,$'

30.tJ. E«./P 31,;J. 3/.11-

-- .... _-

'. ....... '" , '.

MOTOR A

U4

¥o~

~9

4.:lS

4t/1

~S

Ub

'lSI

-s/6S

J,L,f'~

50S

5;l,S

\ '\

Uc

~S

y(3~

¢So

¥7..<

4.?~

;:tot I

1.;l7R1

I$o~

lot!.!

II/Ill

Itf&,~

I

I

V1 . V1 --::: ......

-mE m C)

~ -

""" ~~ ~ 2: l> C)

~ -=i

~ (tJ

~ ~~ ,--" ~ ... 1:.~ . ~ ~ ;;J

)

._---.-

\ ,

\ >

"

"" .... .. '" .

., '"

-. --... __ ..

~-

'~

r(.l.'~:;"q:~ ... , .,'0 .~ "~ '~"'i,C':~'>'-;-::--.~--i-:ri:~:--;>'::'~~~~';;~'~";~"~4~ '.' I,' C," 'p' ""i~i:.,;,~~':"':.~>, 'i:""~:~"'~~~:1

' L":iJ -) c::i..1 c:::1 CD cz:.J c.:::J ~ r:.:::J ') r:.:J] c::J c:::J r.::zJ 127J c::l c::::rJ c::\)

~,

,un CU(l)

<0 W <1>0 >cp ':II ~ ...

LOAD

ACTUAL

350

700

11/-00

,;(100

~45D

;l,iCJO

3150

3500

3850

t/).CO

'IS-t:;o

#00

SPEED 1666

H.P.M,

ACTUAL Van

1{;'87 3'.b

/(;,~q ~(;"J

/~S~ 13(,·0

/~51 3t..1

/(;,7b .%.7

1("(;'9 37,/

/1.,70 37.3

/",~5 37. cj.

If, 7t/- 37.3

/~&'I 37.5

1~7S 87.¥

/6(.,9 31,4-

MOTOR B

Vbn Vcn

3(;,,{, 3~.7

3t:..O 3{..I

35.9. 3(P.O

35.9 35.9

.% . .3 3".3

3('.7 ';(;'.9

3~.i 37./

3(.,.9 37.~

3(;,.8 37.1

31.,.9 37.~

3t.? /.~

3(.,7 37./

Vave

3'.b

~b./

36.0

35/1'

3'.'/-

3(..9

37./

37,;{

37.1

37·;J.

37.1

37./

\ \

Van

S6.€,

3'.0

35.~

35. 7

3'.3

3~.!

3(,. t;

37.1

:;".9

37.0

37.0

3~.9 -.--

\

MOTOR C

Vbn Vcn Vavc

31.,./:. 3{;,.7 .3&:.. t.

36,0 3to.l 36.D

.35. 7 .3:;''7 35.6'

35.7 357 .35. 7

3'.3 ~'.3 3~.3

3t..e 3r.,.J' 3t.,~

3'.9 37.0 .x.9

37,(;' 37.1 37.1

36.e 3C,.9 3(.,.9

37,D 37.1 37.0

.%.9 37.0 37.0

3(,,5' 3~.9 ,3{,.9 .-

MOTOR D

Van Vbn Vcn

3(,.5 36.5 31..5

3(..0 .3t...1 3("';

35.7 35.5 35. to

.35.5 35..:? 35.5

3(,.1 35.S 3{'./

3~.7 ..%.~ 3'.(.

.%.i 3(,.:< 36.8

37.0 3{..1/ 37.0

3(;..[1 3(",1 3".7

37.0 36,3 37.0

36.9 36'/ 3{,.9

3(,.'1 3~.o i3&,S'

-•• - .1

tv'avc

..3b.5

36. /

35.6

35.'1

3(,,0

3t..5

3('.~

31...8

3'.5

3'.8

~"

3'.~

V1

V1 '-J

:> -0 .

- I:;: 01 • en Gl 01

::0 -0

3~ I=' t::I

~ 2 > Gl

-0 0 -:;;:; -f

~

~ " ,,~

:: '" ......... 1\: Oil .... ~~

~ ~

~

:oaa::::zc:a::o ~ft";d: --"t(-···b·"·d·~";;""" ,';;. .'h'" .... " .... ;_ •. ~< ""-','ti"il.,· ·fl' •. ('"'" .. ·t' '" 'b' ...... ·"'·~_4I'x' ' ... i .... ..;.;...,;..~

1~~::-?·7;::;:'''·~·;:7··:~ ''':'77'' ,:·~~",":'·~,,"":""""c·~:--":,,-~"":::-.~r;·~ ",:.:r,-;-:r~ ", ,-""",,~.~~, " .... ~~ .. '':~ •. -'~.~~. -;. ;;"""'''''--:-?:-'"''"" ., .,~., ~.~ ~·~"':'."'-~":7::·:"~7"""~:7'-:~·"':·" ':"·":-·-:-'?:r'~:~.J;:~:~~:·~::::7::~z.:.f'J::4

~ [:Z.') fr::l c::::::J c:::l r:::;:::;.:n t::::J ~ c.::::J r::::::!'") c::::::J c::::J C':::I ~ c ... "":;J c:::;::a ~ t:::.::::3 ).

\l(J) !II CD cow (1)0

~cp '::D ~ ...

LOAD

ACTUAL

5:<50

5f.pOO

5950

6300

~t,5C;

SPEED 1666

R.P.H.

ACTUAL Van

/{Pr.,q 37, Y.

1~t;,O 37.3

I(;'r,tj. 37.t/-

If., 70 37.'

It, 7 I 37.7

MOTOR B

Vbn Vcn Vave Van

3(".7 37, / 37.1 31...9

3(.,.6 37.0 37.0 3(;..7

3(;'.7 57.1 ~7.1 3G.9

:k.7 37,;1,. 37.~ 37./

3t,.9 37.;1. 37,;1.. 37.0

._-

MOTOR C MOTOR D

Vbn Vcn Vave Van Vbn Vcn

3('.9 3('.9 34:..9 3~.9 ~.O 3~.&'

3~,7 3b.i ~~.7 l3t..7 35.7 3~.6

37.8 ~.9 37,:;'" 3~.~ 35'.8 ..%.7

3{,.9 37.0 37.0 37.1 35.9 3'.9

X.CJ 37./ 37.0 37./ 35,9 3'.9

--

!

'lave

·.3~.b

36.3

3C,.¥

3~.~

3t,.b

~ V1 ....

:I> .... r - 3: m • ~ Gl

::0

" :;: t::f 0 ~ ~ :2 :I> Gl

~ -=i

~ t\l ~ -s..." ... ~

... til ~~ ~ .... ~ .

?\: ... ~ 'I

""

\ . ,

"-.

-.......

~ ~

5.S) P,M.G, LQ~PING

A) 1666 ern PAIl. ron!T QUADrANT mrpq Ai uSISTIYE lQ~p;n

VERTICAL SCALE: .2 \'OLTSIDIVISIOO Ft:OE£ PATIO: X 100

JIORlzo:rrAl SCAlE: 500 PSECIDIVISIOH

J) ~~_ rt!\SE A

vms 35"

PERIOD 4.3 msec

FREQ 233 Hz

SPEED 1743 RPM

UWl ,93 0:;0$

mP (F) _9-L.5 __

2) rnroa A I l}'lSE B

\If.'IiS -t3u;5:....:./:1...1 __ _

PERIOD 4,4 osee FRED 227 Hz

SPEED J.ZQl.1lflL-IJW) .93 pm!;

lEW (f) ....ii9~5 __ _

3) !jOIOR A, Me:; C

VMS 35.4

PERIOD 4.4 n~pe FRED 227 Hz

SPEED 1703 RPt! UW) ,93 cm;)S

IDP (f) -'!.95~ __

Vr-S~' _1'1;;.;err;;,,;-... -.;;.Sffi;.;..;.; • ...i;;;:t>--..._ .. ....,.,."'".,~..,.,.~....".;./..;.:-If!.;! 4 .. . - ", "~'

DS Tb5T' S'm •. m I-.'o-f'l .--. ' ... ,,~;:"',"" --...... -.-.:.....,. .....

:p .,,'. .... ~ ..... ~' ... '."" .. -,il,

";~'l~j~~~WJ~-W,. ' ,':;.\:'{¥!¥!4~J~fl~:~~'W-~8~';~~ ' .. '

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

S8308-R1 Page A·99

A I

f1 U

5.5) P.M,G. lOA?JSG

A) l.22.S RPR lIATA POW!

QUADRANT mTDI! Ai nESIsTlVE ~

VERTICAL SCALE: .2 \'OLTSIDIVISID:I PROBE RAllO: X 100

HORIZOilTAL SCALE: 500 PSECIDIVISIOIl

4) FlOTOR A, r,;,\Si A

VRMS ..33,g

PERIOD

Fr.EQ 227 Hz

SPEED 17Q3 RPM IUD 1.79 mlllS

'ID? (F) _81.l,.;3,-_

5) noTOR A, Pd;'~.A

1-/O-!tI

/-I..?-fc!-·-·.~~fl"'""".;:_-. ....,. .. .., .. ....,.~,... . .,." "?'~

VRI1S 33.2

PERIOD 4.4 rnsee FREQ 227 Hz

SPEED 1703 RPM I.!W) 3.5 Q!Il!)S

TE1fl (f) 83

6) MOR A I ffi\';E A VRl1S 33,2

PERIOD 11.5 msec

FREQ 222 Hz

SPEED 1665 RPM

I..O.'J) 5.2 crms mr (F) .,.::S",-S __ _

.'

M 7esr sni,.jo ----i::'7o'-ftf

~"-,' i;T~~:;:)~ >''-;~~.;)~_::- ,- .

'. :5\~~iVW~lh~7~~]I?~1~gE" 11d~/J, ~A /~#U'/l1 «/O(Ja)

LACK AND '-0,. '''L.. rrtuc:.

WHITE PHOTOGRAPH

S8308-R Page A·

1;ai~~------ ___ .... · .... ' .. I ......... ~;,..bo::"ft-· ... _ •• ~_ .. ·_ ........... -_n ... ___ .. ..,.7_ .... ___ ._ .... _. _, _._. _. ___ •• 4 __ .. ________ ..... ""! .... _.~ ............ _ ... "''''' ........ __

I

I -E

:':'j . \; "-'.

,~·l

.> ...... 1 ,: -.J

·.

m

R r '

:":'",:: ill .":;

ORIGINAL PAGE BLAcr< AND WHITE Dl"',oyo,,_

5.5) P,M,G, LQADING

A) 1666 RPM DATA PQINT

gUAD!l,l\!iT ".OI03 Ai rESISTIVE !.o~nm

VERTICAL SCALE: .2 \'OLTSIDIVISlOi~

PR03E MTIO: X 100

HORIZOllTAL SCALE: 500 US£C/DIVlS10~

n r..oIOR At ru\5E A

VRMS 33,2

PERIOD 4.4 rr.sec , FREQ 227 Ilz

SPEED 1703 RPM ur.D 12 1lZill:i

mP (F) s!!

8) f.QIOR !\, EdI'~ Q

VlViS ~Z'2 PERIOD g,!! mser: FREQ 22Z Hz SPEED lZQ~ !let! UWl Z tm:1S IDP (F) 102

9) MOIQR!\, (¥;g A

VAAS 32.5

PERIOD 4, q msec

FREQ 227 liz

SPEED J 703 BPfl

LCrlD 7.9 OITIPS

1lJ'P (F) -c:1 O~3 __

" I

-.~ .... -- --~ .. --1>5' -resT Sf7\I'JO

/~7/ A:;'l;1

1-1/- £'4

l-_____________________________ 58308.Rl

Page A·l01

":"1··£1 .~ ~::: ~ .. ! ',1 :._'-•. -- ~ ... ~ 'g:'", >;;Kt1_",....----"""" ...... -----....... ----... --..... -... --------..... -.............. ~ ... -... -..... "-.. 7 ... _ .... """ ... _ ... -.. " ... =-_Q2t"~ , ·:L-=::;::.:.....:....~-----------·---·"·-"-·-­~ ",

J

I 1

1

j

I

ORIGINAL PAGE BCACK AND WHITE PHOTOGRAPH

5.5) r.M.G. LO~OING

A) 1665 RP!3 DATA POItlT

QUADRANT "PTOt{ A: R~SIST[VE lOA,l)ED

VERTICAL SCALE: .2 VOlTSIDIVISIOO

PROBE RATIO: X 100

HORIZONTAL SCALE: 500 PSECIDIVISIOH

10J I1QTOR A, ffi\<;E A . ----·-----'--11-''1 VP.MS 31! 8

PERIOD 4.3 msec FRED 233 Hz

SPEED 1748 REM

UWl 9. 3 OIT?S

IDP (F) -'!J9Ji..-_

11 ) I'iOTOR A, fP'\~ A

VR"lS -ll...l._ PERIOD 4.4 msec FREQ _ .... 22r.L7....JHwZ~_

~PEED ...I1.LZOlol.3I....Jl1B?!1;..u..._

J1W) )0.1 rnms 'IDP (F) -i/.O!!9l.-__

12) fjOTOR A I ru;.C;; A

VRKS 31. J

PERIOD /j.4 msec

FREQ 227 Hz

SPEED 1703 R~

UWl 10.7 enos __ ._

mP (F) -L>/l Q::J..4 __

I-II-S''I ......... '

~----------------------------- S8300·F Page A-

"':< ~.' ..

f: ~~

.J' 1 'I

,0'1

: ".): -~ .,.'

.,

.,j

':l~ <

.~t~£.. .. ~~~~ .... __ ",_ ..... ___ ...... __ ._. __ ...., ____ w .... ,...1 ________ _

n B

B IJ {j

....

ORIGINAL PAGE BLACI< AND WHITE PHOTOGRAPH

5.5) P,M,G, LOADING

A) 1655 RM DATA POUlT

QUADRANT WOI! Ai f£SISTIYE LOfID!ll

VERTICAL SCALE: .2 \'OLTSIDIVISION

Pn03E RATIO: X 100

KORIZCNlAL SCALE: SOO 11SEClDIVISIO!t

13) rlQTOR A. R~SE A

vms 31.1

PERIOD 4,4 msec FREQ 227 Hz

SPEED 1703 RPM

Ll)'lD 11.5 m:cs ltlF (F) 111

14) F.OTQR III ~~.A

VR'1S ~Q,g

PERIOD 4,4 ~~c:

FREQ. ~27 Hz SPEED 170~ i:P'1

ILWl 12.3 Q!lQ::

TaP (F) 116

15 ) riOTOR A. f'ID..<t A

vms 30.4

PEIiIOD g,g msec

FRED 227 Hz SPEED 17m R~

ur.D 13 aws IDP (F~ 120

-.

------------------------ 58308·1

\ \ ,

I I 1

i II ;--., y

1 I

~ " , L

I ~

\

ORIGINAC PAGE Bt:ACK AND WHITE PHOTOGRAPH

5.S) P,M,G, LOAP[NG

A) 1666 R~ DATA FQINT

QUADRANT "QTO~ Al PlS1STtyE lQAP;;o

V£RTlCAl SCAI.E: .2 VOlTSlDlVlSlON

PR03E RATIO: X 100

HORIZOlITAl SCALE: SQIJ IlSEUDIVlSIC!1

16) WOR A, w.~ A rs ~ ~" ... H\ I-I!-H VRI'IS 29 I 7

PERIOD 4,4 msec FREQ 227 Hz

SPEED 1703 RPM

UWl J3,9 oms

mr (F) 124

J7) r.aTQR a. ~ a VR~ ,9,Z PERIOD ~,9 ~et: FRED 2ZZ Hz: SPEED IZQ~ se:l lOOl 14,1 c~s IDP (F) ---1za

18) !5QTQ~ A. em A

VRI'\S _.&.29"",,-,-7 __ _

PERIOD 9,4 rescc

FRED _4<22"",7~Hz,,--_

SPEED .-LJ Z ..... O ... 3 ... R ..... N ........ _

UWl 14 ,8 cmps

IDP (F) ..... 13"""0'---__

~;;o:-;-~~ ,_ .. 4 _.~'.:.~ ... .;l ",< ... - :pc ~."

-. ~~!i:~~," .. ;: .......

.4 ._rnn J ... au

\ , '-

B ORlGlNAC PAGE

LACK AND W

5.5) P,M,G, LOADISG

A) 1666 RP1'1 MIA fPIrJI

gUADRANT mTnl! Ai P.ESISTJYE LOAP;D

19) "QTOR A~

VPJ1S

PERIOD FREQ SPEED

~

1U'P (F)

VERTICAL SCALE: .2 \'OLTSIDIVISION

PROBE RAIlO: X 100

HORIzo:rrAL SCALE: SOO PSEClDIVISIOil

A~ a 2!!,Z g,!! cset: 2ZZ liz lZ0~ BEt! IS.!! ems

13S . " --. '.

,;-.. _ ••.. ".. ,. ,c". .-.

~J~"-'.~": -.. \, •. ~~ '.:- :... •.•

~~ ....

"!r.rt< ~,'11_ lM.IIif',!,, __ . ~'S'D'4!

II

'----------------~------------ S830S-R1 Page A-10S

[j -';;:

~ .. 't, ,

(',

.':':,'.~~

:1 ,';;

"\~ -s } z ."

.. ~~~ -i'·

,/ '-, ,

1 .... ~ .:..,

I 1

: "

.. " 1 ' .. ~-

! "' ~ ;': . ,. (:.> I c

L ~ '.~' ~c ;".

B' ~ n t. , r.· a { r . f r ~ t-~ (

( R ~

" i. r , !,

U t s

L i: " n ! \'

t l il r

H ~

!.A

g t.'. f 1 r\ f ,

: ,

B t - t J: :. \"

~,

M t L " • .i

./ "

5.5) p.M.G. IOApWG

A) 1666 ~Pa PATA POINT

CQll.?ARlSO~ OF 'PHASE' fJID 'l.JliE TO LItlE' VOl.TAGE

\o!AVEFOPJISFOI\ RESlSTP..'ICE l.O.'WED CUADRANT F'.OTCR 'A'

.2 VOl.TIDIVISION: VERTICAl. XIOO: PRQ3E

500 HSECIDIVISIrn~: HORIZONTAl.

20) WOP A, FH~5! A

VIinS 31.1

PERIOD 4,5 osee

FREQ 222 Hz

SPEED 1665 BEt'

UWl 6,1 reps

ID'P (F) _~.-.Q,,-_

SCALE:

RATIO:

SCALE:

21)

.5 VOLTIDIVlS10N XlOO 500 IlSECIDIVISIO!I

mTO~ A« UNE ~ TO II

mtS 61.9

PERIOD 4.5 r.1Sec

FREQ 222 Hz

SPE£II 1665 R?11

Ul~ 6.1 ems

'TE}'iI tF) 90

ORIGINA£.: PAG~ 8lACI< AND WHITE PHOTOGRAPH

'-______________________________ S8308-A1

Dana. A_'n1

1_'

amv ....... a= .. m\·~~~.,~"''';'--:''- ..

. ,./'

. f"\'

CI

'" / /.? .'

B o g.

o a

~:, " ..

'n tJ

... z Q <5 oJ

... ~ .... on on

,.. u f &c .... .... .....

.c .... .. ,.. . c

~~~~~ -.,.,C'o. ~~1£:L~ c~~~.!. t-<:::;JQ". <5 ......... ~~f~ "C2u-\D:S~ "'- ... ~= C-

-

0 "t ~ on on

0 ... 0

~ 1= ;; ... ... g c

'" 8 ...

"... i'A$

. .. , '

I I --. ... , . : ... .... • ~

-:-; ~ ! ~

R ~ ~ . , c : I ....

c

Pi ~ a "" '" 5

H

,-­~-

,,,, '''; 1

,-

S8308·R1 Page A·1(

.....-

r

tmei

(\

[.~ ~ I·.t U I" !-:.' I·:. r';

IT 1'-

f L

fi , t,

t.-I c,

B , , i . g I y t, ,. ! ,

·3 i t I-. ''

t· • t·

n f-,-, ~ " j 0 , rg f i

i r , \

, I r I t i I

;

D,

9 :

t1

M

n

--

'" :: c ~ .... .; :E ..: :n .n

... u lim &.c t .. ... .s ..... .. .. c

... ",.,1-z_ ... o-r _vtc ... :g

~!j ~~.~ ..,"" -~:l-g,:.:. i!u~~ x:' ....... ~~~:

a:. u-:2;! ~ ~_a.

N

:c

-N , -f '" .n 0

--0 :z: ... i: =-... --~ Q e<: 8 ...

".

o ,.;

• ...

, .... ' .... ,'. ;.!!:' i::~:.I.:l :.-~·.j .. :.8tlf .-l:-;:·~I·':···· .i!;: !.) .... ··~··-·r,·l- .... "R' . t:'i- .... "'l'" .. --.-----' .-----'-:--:-. -' ,-:'-:"-"t":-;':!l'i'l;,--;;,':-t' :-' -r-:'-'--'Po'-:'''7'-r-' t'-:' j' -:-'-T-:'-:-;;~' ;='::;:'~' ::.----. '~~!. ..!", . . 1 ' 1 t . i . I' , .. .. 1·0: ~ t' l '" .-! .... H····I· '-1'- ·! .... t;··· ~.

l' .:@ .... :-,~1:. :· ... ,!l: :!"::'f-!!:::l~~ cr: , U .:a.;. , .. ' . -. ". I 1 ~" • " , • " ~--'---"-, - t, l . 0 ... ' '1' I .. : - -;: : • I',':! :- i : .: ~; : : :·.E: ;

.:.'F. __ .' ''': ;:'i~:: .;';:. , ," _I· I, "" "~ , .... ---.-----.-.--- J$ t • !:t,,'" , 1 I'!' .," ;.1; ! !- •. i" ~'I ~~-,--- ~ - i·!' t . . t!. t fl' • o· 1 •. •• ~.; t , •. ; . ;.-: ......... ' r." ~ ~ --------.... :----'E~ ~ i :... !4 I' ., ...;.. • ..;.-...:.-:-. ~ ~! : . . • :, l ~~.; .. !'. r'~~1 ,...

t ,i-=-.:.! ;iilit'j' ":'il'i~l'; ':;,."II:I~:: ! . = .. _.:... .. ~~. t., I I .... , ... i. ... -iii' :',:; ::." 1:.:....;..2. W

~ ~ :',;"': . ;: : ! ; t: ; .... ~.: : I , : '. t: ; . :. ~'~I '...,.. : f! 0: 0"" ',I,', , '. I," ". "t· .. ft 11 • 1 •.•.. , ... I' , .... ___ --@=." .. rttt, t" f .. • • ..:

..... I' ::!! ! t-!~ •. r"';' ; . ..::; . L-'~' ..:._' __ ~~-;_:_:_~-t-t"'4 ,- . i :1' 1 : I·;: I' .: : • i : : '1' I' . te: .. _~.~: ~-":':" .:, ., .. , 'I ,.; - •. ,'I' 0 , • -.JfQJ.7-"', ' '. :: , : 0 I ! ; .: ' ., , I", . I .::. 1; l' I' ;

L j:.,! ; ! : j: 1 .. ~ : : : I I· ~ :".':. 1 :

~-·f-iL..- t·11·.:.·:R.I.lli :'l:I::'::'~II',1 :-.i:1·~'~~1·: i .. ~.-~~::: I • t1 t :1; ';"·~~ISO:J.~~'~;;;; ;.;: ~. ~____ _ !;; ~ i ! !: !. J iJil I

.. ~ : I I : I . I ::.' 1-: ! : I i: I : ! m - ~

lJ:: ~ :~:! 1:1 1 1111' I~-Iljl lL~*WJ:I:! .. .. .:" : -. :' :J; :1-: JIJ: il~: li-~~U' J ~l ~: 1~~I;:'~~~~11 l~t'+' +l' ~~IW~1: I'~;W I'I'~I~: tlW~i ...:,'J .: . : . :: I :' ,I: I : 'It I ::!:! I I I' i

.. - - ------ - ------.-• ...:..--+-. •

.. ::_ .=--;.::1:: ·JiUJ 1· i:E' I: :'!ii 11:1~.,.z_-:-; I • !:: : i i 1 i! rI!o 11.' I" . : 1 : i;: '1-11 1 1::: 1" 1

1 "-!-l~ fl . 'i JI j . 1 '·------n "0.-.-' _ -. __ .~. _ \\ e

S8308·R1 Pc:q'l A-1C

,

-~-~-.~.~--.. -.--------.--------.---! . I

(\­;1'.":,

""i~-<'~ ~ . : .:" .. ' ,"

"". " . . ~ - . , ... '

::J' ,'.' ~

I[;J

• I

f I

/ ;

; / ,.'

rn

o g I. I· :.:.: I :.::. h~ 'I ~II'-E :j_.:_. :.:::':. -r! I'; - ':1!'':::'':':::' -::-: -:-!~S· : :

• ' •• I' , -..... 11",. 1 i3 _. -.1 ........ - - I"" - 11 ' . J 'I .•• _._. __ . ____ '__ It •. ; ... _ ",1\1 .... 0" .... ,... .. •••• , ••• -, ., t ••

·f"m U

~

~

~

~

B·'-.­, f1 u

o o

I:;· J .. ! .. :::i~ .. 111!a:·j:· ::..r: .. ~;'Jl:·~-:: -t~'1': ~!l;'I'~'" : ... :: !:::.. .. ]::.tJ~:I: .... :·:·:r::;, .. 1 :--:: .:: ~~,:. :}.: '"

,,' " .' ',' .' . : :: " -:'" ..;:;', 'r; f -~' ~ ..: . . : . L1: 1 ; l' I: J ': j - .: :: r:-: ' . , ~. . : - . -1'1' , ~,:r, ............ f.h.: ..... -~:~i!';t'l ., ' ; ~-.' ~I." .. ~ .. ··-r·., t·-.·i····· ···f· .

'1V1W3INONrtJ lN3:ll13d

o

S8308-R1 Page A-11

I ,

I I

t-0; " I

,

\

I

I I

I :1

i

; . I

I'

::.: :

, ....

/1- ' .•

. .

, .:: : : I i·: .;:.' -: i.:':ft··=.t~· :::t:.::. R-;:~ . ..: 1-:· ::.:;::~: :!11;;.J '"_.+ .t·:-l I I· , •. , ..••• - ::1+" •.. -4 -' ... -_ .... f-; •. "·'-'1'··· .. - ... .J...; of·- l' . i

to"~ f, t- i' .•.•. it .... ',' -+ -- .-J .• _ •• ~ .. -... •..• :': __ ' ~ ··f ... ··

; :.1 +~-: ?H:lF-::-~~:: .:::;:.=:: ~ q:::--: i:l··::::: ~~~r.-~ .. ; ~ ; .. :~. ;.:.:: .~ .-:,. ~~~:~=_ ~f_t·· ...•. ~;·: ••• :.'~~ .~:: t :: ., ;

- j \:'-' ~:-'·'-l-f:t-~-..... __ ±!r. +- .. l,., __ . ..I: .• --.::.: ; • I" •. · .... - 1"""1 .•. -' .-.... -.~~ ··f.· ... 'l .... - .... , t·· I H .... . i .. - .......... _-,...-, 1-"'" ~ ...... ,.. . , . j' ~ L::- d~! 1.1 J:'-i.:::: -.~:: iBttl r.: 1~ , .: ... t!~:~ : ':' . · ~ I"··!-!'· H· r ~.... . ............. "1 I 'I" ··1 ... ~.,.. r. r. "

~ ;;i~ d·l i ;ir?i·~· ·~i~;: ii=i:r$~ ! :~'-l~~:::~'~ i :,i -f4:'~I. - .... Hj.!-i:.:t __ ._, ... '.1+··· •. ·, ... ···.· .. ~;,." ,.- .. ~ ~ -., J'l"j !·r" ' · ............ ,... ,.1-; ...... , r., .. , ,., 1 'j CJ:'" '11 'T-·········:r!'"j·-r1-::·, - ...•.... t:! •••. r.~: . ~ :::::~T, ··: • ..::.:·:::r~::-li::t ~l:T=···l:::~.!:l ,:\·r·

M ~ J~T:.~=+ : .. ::..;:::. £.! !'I F'l' ~ .. ::::::~ ~:: : 1 I: 1 . ' · lit ~ .. 1:1..:" :.::::: .. '!~~.! . I:: ::. :.::::: ~; : : . :~

....

o ...

I.

o· , 0.., - !'.ij :::.: ,-.... ·:·;::·:-::ll~.! .. t':i··:·J'·:;:--;:ri;":'-' ji·~·;: i'···' ···1·.· f-.'-::' .... :"±" '1 - .j-. _ ....•.. , ...• I 1 ~~_._._.+-_._._.~_ .. _ .. _. ~'_.~._._.~t_··~'_._'~·_·-_·~._-_·_·_·~I~~ _______ ."'. t .. • •• , •.• , I • ··t-·· ~ .... 'f • • ...... - 1 •• • ...... ~ !. oS

'; :::·1!1·.~ :t:1 : .. ::.: .... :::1 i t:-t::.",:::·:: :::;! I~ ____ • __ -..,~ • ....;. ....... ~ •. 1· . h.'· •. t-~ •....... ; .... ""1'" , t to. --t···~· 44 .. I, t 1.

L: ; . : I·; I· .j.::: b:! ~I..t:.! ·::::1 :::!:::-: p; !.!.:. : 1 ::: I·'·:· :. ;!: i 11 ~1 , •.•• : t • t .::~:: H"! ;; 13:!.:', . -; ::: :: t :; -: 'r ::' :':- . t1~ .. : :_.f.

! ,. I

!. ,.: ....... :: .. !'i l·:;·::rl;;.:::;; 1:··1·:::· ·;r~~.,: .. :: :;::; j.;.' I- . I ': .. t! : ; 1 ~ t! ~ 1 :,' . : .' :::!' r:!,'· .,-.: -- ~ : ~ "!--~... : ..-.- ···-··-·-·--;--·-r--+--+-~_fM~,.__t_-_t_...-_l_t_--Y---+_-..,=""'t:::,__·--

::::: •. : • .1. ~;:jrl~:; :-:1.: .. ~::1'I!i:i:':. ;~:; i:;t-, • .., . I ., •• 'l" :. !. • .,. 1 • • • • , .•. •••••. j-:S

~------------~--~--. -'~.~.----~.-.-.~.~"~~.~. ~!--·-·_+r~·-·~·-·~I--·-·~-·-·--·-·-·--·~'~t~-----~ :. :.:" :...1.,. I j;::ii":::: i· :.1::::; I';: \.: ··r::::;:s 1 : ' " ... ~ . , . ,. • . : ; ... j. I ,.. .. •... +., I I I .. • ~;. ·1 ..... · . ..

/

t-- .. ~-.-...... • .. ~.. ~·.;·lifi:~~:::.:~~I:l·: t.;. I .• ! -" t . I':··:·' . j. :'::i·;:·I··:· ., ·,····'!··I··,····~·· 1 r I'· •.. ,::::i I:: '0651'- ~ · .. t· "uJ:' -, .. ,., ••• I ........ _.jJ,t .. , t· t' 'Of' w-

I' :. . , : .-:; g--- : . • • . . . •. ,. .. , ; • . . ; : -.,.. i" .. • ~

•. . I .. ~- , l:ji 1.:. 1 : .. ::: .. - .• :j:: '·"r: t .. '.;N,.:, : ~ r···· '_!. '~.:!=: .. ·~I .. :t :'~.: ... : .... :::;, 'j:1 :::~:,-te!' ~ r~ -... .: ----. .:..: ... -r. -. -=. ::,. "'~----+---<~..,....;....,f-·--+--+1·~: -.':". -+.-.T-I·-It-~,--. -T-

I· ---,:-::::-. ~.~-. --. --.--'- tI , .. ,. ·s .. · Ii;; .... .11 i ..:;:.... ...

~1·-·-------~~~!~-:·-·-·.-·7r.--.:-· I·_-+I ___ ~·:_:~l~r~··~··r:~i~:~ __ ~~~!~!_i~;~--~-_:_._~~i~._~_-~-+I.~:~_:~:_~~;_._: ______ '" I 0 oc:: • .' -rITiI • I· : I·· ..... I" I I :: , : , : :. !:!; .• :: iOtU - -i .=. :.:.: .-.; : :.: ;. n: .. 1 ~:.: ·:i.:.: :;.: I ,. I· . .: .• I., ..

:. ......... _ : ... _~.~--l...-!.. . 1 --;--. i : . .; ... t • t r. I' • •• 'I . t

. ~~ : :-·7---~f'rl'I·~:~!I~:~·I~;·+: ~.:j~::~.:~rl~:ihl~I~'~·~l~:+!·~-·--I-;-:;-:~'I~I--·-·'-1'-'

. "E... . ! 1 . ..:...... .. ,-:: • . I:! . ~ :_ .- ; : : i . ,.: . -----.. -------:--..-;..--H-.......,.-i-f-,--+-~_+._+..;....,.-l-~_;....;;:.;.:..;..._:_.....;_.-'-;..----

;i L:' i',··1 ·n· ::l:·::li I 1·:j:~~'·!·-;;"'i'I:8±'t·:·: ; · .- .. ~ :.~ " :.::. "fr· .. ~t I. ~~ :'. ·n t •. .. . I

;::.~ ;.; ... :.: 11::b. -~·-,·l~,'-~ .j.:: Ul·:. 1:: .. j::. r11 !/1 :1 : .. 1.-; 'l1:; ',I:, ::. zig~ • ~ • • •• fo.. • I .. , .•.• ~., • ,1 ••. 1.1 It ••• , ,'"1 '''' ~

~ .

... ,: ' ... i;i::H+:; i \:'1··;" Ii· .. :j ·:1'· q 11··;J-:-J·~ Jiiil .t:J. .0 ~ : . :. :: t I ! : ,.: :': L. •• ,.. • . .1 J ,. ~ ., . , . r, : .~ .... ,'t': [J 4 ~t-7 =;~_,.:: ~ : : '

i~:::lr~·-i-:· ~~~:i :r~ ·:T·:f!n·:~±::·!:~ttt It·rr-I; H!;! .~l ! - ~ . I': ~ : ~':.~. j : '. ~ ! .It! ........ -: .. _' , t,,···,·· ; I I .. ;. ·i:::::::::1 H .: I;·· l..: j; iii : I' ; ~, • • . :. ; : .;.' I:: I ! i !' \ 1 ., ....... -+ l.l I . i . . I; it I .... -

... : : i ··t:-l ~. '-n: :7if',':-r'r .:t+t. . .. : ·r. +- ' .. :.:.1 ... , .. : .... : 1'1 ~.1!." . .', .... :.:. Ji.,·j I : I : ! : .. i , . ! I : • .: I; : . : 1 ,: . .::.: 11J ';1"1 :4 1 . , .,.,~ 0 .- .----___ ---, ·-.-+.-. .l--~~-t-...;..--40 ......... ~_+-+---4.:..:..:..l.:..:....:~~-t-+-+--t-...;.".-++-+-;r-;.....H-+-~r'l .- .----- •. - ,.;--'- •. - E---_·· - (~ .... 'lV.1113IolJOI".J .1NlJl!3d

sa30a-Rl Page A·11

-::---

\1 . :.1 'j

j ~

I '.~ .j

i I i

. :. j .- ~J .

. ~

< "1 :J ~ -:; ~ -lj •

'+ ] 1

.,

tl

B

:0

.0 0,

.J

g .§

. ' ~

9 -n i

9

o .J

. : ( ..

, .. ,. - •. i : .. , .;.:: rj·;·r' l' ~ i..::;:: 1l:::"1 :-1,: l::'::::_;~~ ~ .. I ;: .. . ... "' .. , ,·-··· ...... ~ttt· "' .. -·_····· .. ···r, .... l·,··I.· .~~~.l'l.:t r-~'I t..- •. --.--------r.;.~-. _. ':...-,' _. _ .. _. +'_ ... _._ .. +';.....,;.,+..;..' .,..O~·~;;-I· _. -+' ._ ... ..;..~._ .. -+ .• ..;...l..;...++I-I-·_-1~~::::"""1~f.,..~-_'_'''''''I=::·±-'·-''_~ __ j' ! ..... i· . .:. !:; I' I rm.:.; :1':::':' H~: I. :'f',,!': ~I. ::.::: =t~:;1 11- : ,. . i. : .•• : :. t.· ,.! .... , p. • •. I c- 1 ..... -..... ~ _~" i .. .. . .......', ~ • ., .-

• •• '0'" f ! ~ . ~ ." " .... I I " •• , ~ •••• I _ c:="

~'---------~!t--:;-;~i~I-~-·~I;-:·:-':'~'~~·-"~l~~~.~i-.:~~l'·'~-·~-:::~'~·-:~'i~'-I~:!~::~I-.:-::~:d~;~J~!j~!~4r-!---l:.·: :.i 1;""""1: I .. "Jli~r-'-""'''-' !lll··'···I- ... -~ .... !I-d., l- I .:; I 0°' ~. .... • ,"- • ·f .. ·•• ". t .. ·~· t .... ~I" ,.~ ..

(:~::~ i::: : j !::: I· :.:-: r.:~ 1111: 1 ;--t·T:;~W~ .LL.::..·::r·:·~·~~rT~tr i . , I I':'" l ;:~;:: l .. ~ . ::::'I:I:I~':":': ·1,.:! ;:'1:;"::-:~ t.::; _-:·:&£SI-·

I ".,. I :~.:. ,:::~:! 1..:1:': -.!:,':~~; '. I i ·1- -F::':;·~ .. ~.: : . . , _ :: : :.: : : 5 ~ I; -. ~ j I t::.: ~ ::: .. : .;: J: I ,: i .. :. , ::!:: :.: 4: :;:E I .'

~t:-'-:-:--:_;--:~i~~~-~!-::-!-:_i~ir~_:_:~:_:j·_:-~:HT~:~~j~l~·_ .. t~:~j_j·_·:r::_:j_::-_:rj_!.i_j~· ri=I~::r' =~ ~I-::-!::-~f~~'~-:-+~'~~~!-'-;_:----_N ... ~ ! I . , .... HI! Ii' T-I=~::-:-:-mt. -:1 <!. .. : .. :j' "i .:' !: g! II::: 1! "::._~I-:: .~~ \-· .. 1 .... J_ -I. j ........ II, .1. !S601"':

i--.. ~ ...... __ .! ... _____ . -.:~. ~_ .'. .... ... .... ·-i . t··· ...... ~ ,Ii ..

! ~~ l:.:::!. ! !,':'ll1i l' ',": -~::"1:::: ~lrl" :-i-;...:· ... .:..;.:,.,,-:t: !! !: : :: 'i: 1::;;::':" ·:"·f1i: ; : .. ~.:::t:.': I I: ':1.:' :::-;:; ::j i ''': .

r';!: :." L': !;;:;I"I:IJ" .j:::: '~:'l: ~'j:":::::'I:::' .,' .:;j.!··i:;"~'tll:'I: i t' ..... I ,. ". I • • • .••• • ..•. .. •••• • •..••• ·1 ~ '1' I ... ' I

:: .- i' '-. '''','-'' . . '1 i U' . I -.. - --:-:- :-','" ::-r.: . : .: ... j • - II ..: . 1 U (: ;:,: i;lm'~-J;;" : .... --: .:~:::j::. -:!.': .. 11 ~59 .... \D

'I~ ; ; ,. ;: Ii II: I: . r:·: : .... ;. :L :::I~ m.J-L ~_. ti::. -:~-": jil_~' I W·.l·:. '.' ;" ci .. 'I I! !l!.·:,: ,::: ...•. ,_ .... _ ~:.:.c-: __ .. -- ,_,I, II':: '. iT-I' :T';" :;iii'_L1;,I:.· .. j··: t ~ ... ,... r--:-..;:~ fll' j f-.. '-. . :: i', : :: ::: i I . : .' .. ! .' : .. :~: .... ~.'. I 1 :: . i

:-~~ :~ :~ ; i i ! ! T ~ ":~ J<~~>~:i 1.::.::1-::: ~ I : ! ~ I tCZ_:-_~ 1,:':.', ",-;,- :,-.':," -.~ '~:'~.,", ~,:._L, ~,J .... .J-;-I ...... , ___ :.:..._ . ,J .• ",.. ••• •••• .• l' ; .. 11', t - j • , .

• . I ., 11'1 i, i , I,., :"11 I .... ··tti· .:TT.·:-.. r::~! - ·::!jl:·::T\::. j': 1;- t . ~ _~.4~.-':._J. ~_ !! . 1·! . ~~i~+-j4.::L+~.--~i'ftI-l--+-~-+-·~I-+-.l.--++I-I-t4-~~·~';r-"-c- c 0- ....... - '. c·· ....... _... --.. -...... - - -.. ----.. ci···· ....... " c '1Y 1ll3lMlllnJ 11l3:l1l3d

SB30B·R1 Page A·11

, ! II . ,.

/,'

j

/

..

'., i·

r ~

,. , , ., I' . , .

r ,

,. ,.

t: i...:-, / . / .. " . r

[. , .,!B·:'j' .·i:l:i.;:·:····::· .. :~;·I:!··li':·l-.~ ····;····ti;~i.j ~ : . . r .. :! ~~. I .r,:~J.l : .. .:: .... ::!.:.': T:1 .J :·t~·:··· .:~:"l4:~; ~ r'- '--.. _n .. _!::~ 1 1.~: . If: , ii it 11' t':'11 :.':"::1'.::: H~l . ~':'kl .:::~ 1-:1:' :, ~ I u" .. I I: . • I '1 .• ....• .... ! 1 .J....-+ .. :~.~ ., ~ '0 ,. t • ~

~ : .. : ; I L..:.--t-~ t7'~Tj C'"El,'-:: .:+::; ;i!·I·;l.~. "~.:::' t:i;: lln't: ; : : 9til':'" -~ '"'' i r'-·T·~" "'-:-li 1 . :.·:i:::; :!;, :~l:::::·r:' , :1· i . .... 2 ~ .. --,,:.~.;.-~-:,'-' +:' t~~ ;~-+--<-=~--:':"';':'-l=f:;~+......,.r"..+--+-+r-+~~ • ..: I, . : ; ; :.: I 'j i j , II : I: . I' . f.i: Ilj I :.:::jl-:-~:: : ! ! 1:; : !. : 'E I'" , ,.. 1 ... t" . j ; ......... I . •..... ~: : I If:

_______ M .... •.. ,.;. .,., ... ,., ..•... , •• _ ..•. , ,.10-' ,.

I:::: : j i :;::: +j 'j' .. ·::·1'::1:::: 1111" ;. : .?-~: IttTI' .:.: i· j i .. ~ .............. : ~ :J.I.:: .:.:: 1 _.: : ...... it .~r---:~-. ".;. : . ...:-..:_:

~ .:: 1 . ".T I' ;- -! .: ~ r+t' "i, -r+ .. ~. ~: . . r: :11,11 .::;. : .~ : ; !: : 11 . : '1 9':-' . , 1!'i'" , ,I.. i·.:, (.. w..J 11 .4 .. ...," 11 ,. - l' .. , . • / ~ ; ,...: ... -

~ ... ~~: ;: l~:·::: j:j;" 1 . ;·I,~·,:i:. ;hT~~:' .. : ;;,;: ,;;:; ·ci

~ .... j""',' ,.j 1 .... :\. ,-;, ..;~.;:' l;::;tn-.:::" I r: .. : -:-.: : .. r: :'~I ~ l' '1-:.1., : h'i i ~ l ;. ':, .. Ij~! ....;..pr.. I' 1 • , ;' • 1 • • •• -~ ,. . . / . I" I ., ·1 . l' '; 1"'"'-:-'':''' .. , .. : .. I,. t •• t , . : :: !:: ; iii: i :. ':1 .1 ~ .. ~ 11 ~: .. -:. a 1 ! ; t ';.:' I

~t: ~~f~'m;H+~':~: , ~,~ ~'~:~.) ... ' ~: 'i, ;l:TIT~(l. 2 ...... - "": 0

1VIN3IMlNflJ IN1JV3d

S8308·R1 Page A·11

I

!

rc~~.,,·.:;·~<C:i<i" \i < 't'J..":;'=;:~~~ ,.. .... ;., . I" 'e > <'J,., ,: .. ~~~~~;+-,,,.,:.~.;,~~~~".~.-.;~;::;;:,~ :~~~ ;,: : :::.: ' 'f .. , ,:::: ;.~~~~.*": t.:· '--. ' ). " .. . ,'" -') _ . . . , . ,,':" .~}:'!o .~ ~ ~ ";':;~rlt ~ e;;1/1 ~ ~ c::::::J tz:D ... ...;;ia ~ c::;:::l ~ ~ c:::::t c:;:J ~ ~ " ~j ~ .. fJ ~l ,~j

. l~

.~ ~ l'l l' ~ ~ ~~ .~ ~~

~

" i ~

, ~ fl

"

~ b

I ~ ~ .

'.:

"'OUl elCXl

<0 W ClIO

>'? .:.:0 ~~

(,)

LClAD

AC'J'UAI

3!50

7c?O

11/-00

:?/tJo

~tf50

~fOO

3 ISO

3esO

'/5.'50

5;{50

5'1.tf'o

~(,50

SPEED 4333 TEMP r.Q.m

l.CTUAL of

433 r Iltf

1/3 19 140

t,L.3~~ I'/-7

¥-3'iO I~I

43;;;'fo /¥3

4-33'/- 1~3

43/3 IS:J.

1/-331 IJ'O

¥3,.<" 170

43:1,9 ~05

1/310 ;1.39

135'1 '<5:J.

IroROUE MOTOR A

m-LB~ Ia Ib Ie lave

;U.9 ;?33 :?3F! ~.38' ~.3t:.

33.3 -¥ • .3 4.7 1.'/- 1/-.5

'/5,1' tt,;s 7.0 ~.~ t./7

'7¢.b /:l.~ /3.~ /:(.~ 1~,7

9~.J. 13./ 15. / 1tJ.. 'I- 144

89.~ Is:K 1~.9 /~.¥ /~. If..

9iL.7 17./ /;.'/ 17.8 17.b'

/~~ :J.o. {, :/:1.1- ~/·tf OJ./.5

/0';;;1. ;l,::?4 ;l.t/-.5 ~3.~ ;'3.'/-

//)5.3 :13.9 .:?".~ .;;st: S' DlS-o

/tJ.J.S ~s: «. :rJ.¥- :<'.1 :?('.;l.

1(J0.9 .:?",;1. ;U./P :t7.1 ~7.~

MOTOR A

Van Vbn Ven Vavo

9'/;9 95:9 95.7 95.5

93. '1 'IS: t,L 94.' 'It/-. (;,

9;J,. 91-. ? 7'3.3 93.3

t~. 90.7 8'f eR.~

13.;), ;?,3 ?5.~ 35.~

?().~ J'~.1j. ~c'{.6 33,/

'77,5 5'3.7 ~9. i 8'0.3

10.6 77 7~ ~.J...<

(;(.,.3 71.9 &7.J' 6b7.}

61.f 67.~ ~3.3 6~~

57.0 (.,;j. ~ SR.¥- 59.1-

53.9 SfI,l S5-/).. st.. I -

~~OTOR A

'fa lfb We

:l~~ .:?~~ C1~9

~3 Jj~{9 1'IS

597 ~(PG ~:lO

1053 /~O~ 11/7

I IS/ 133(, 1:1.~5

1;((;8 /~~ 1351-

133D /$fi9 /~~

Il/SI /7.;J.9 1557'-

I~$ I~~ /55'7

1'179 /777 15.5'0

/135 17~.G 1.5;1.7

11/;1.0 /7();J. /505

lltot

&U'°l

1c1~~ I

IRJ73'

337' ,

37/~

i0.!'f1

'1-30,

¢7.3j

"ff/:'i

1f.?.38

¥&ow

t'~'i

\J1

\J1 ......

; ~~ u.t Cl u.t

~~ §il -I ::: » Cl

;g ..... =i

Sll ~ It\

" .... .... ~~ J) 1\ .............. ~";::--

~ " ~ .... flj

Ei~~-::;;~~~::··:··-~:·~:;·;·~:''.··c;"cj~,'~'~'~;':~-:;;:'~7':'7':~-~'~~~:;";';';;:'~~:.:';~;;::;~~ ;:-:=~~;?~f~ --.,....;--.-- . ....-----~~-- ~

"lI<fI DI(X) cg.~ ,.Cf> .!.,:D ........ ~

'\ .

LOAD

ACTUAL

350

700

/100

:1,100

;;;.cJ.50

Jroo

3150

3250

455()

5 .. 150 ~.

5150

IPb50

:3PEED 1666 'l.P.M.

1\CTUAL

1/351

J/~:11

1/3).0

1/-350

4331

433~

'/3;)'1/

J/-~ '11

'f3J.2.

4379

#97

¥(Pb;J.

MOTOR B MOTOR C MOTOR 0

Van Vbn Vcn Vave Van Vbn Vcn 'lave Van Vbn Vcn 'lave

9~.9 96 . .:? 9,.y. 96.5 9~.3 9~.3 tff. t, 95.7 CJ~.9 95.(" 9t..1 96.;1.

9(".7 9t..o qc,.S' 9'.1- 9~.3 9~.;? 9'.~ 9(".3 q,.o 95.J. 95.9 95.'7

97.~ f~.1 ;,.7 '1(;/1 9(;.5 9~.3 9(;,,5 9~.'f 9,·;l 9i9 9(,..1 95.7

97,lD 95.9 97 9('.fl 9('.¥ 9t,.3 q,." 9t-.f 96,5 9'/.1 9~.;2. 95."

97.(, 95,; q'J 9(;. ~ 9{,.I! 9~.;? 9(,.5 9'-" 9",5 t;3.~ q~.;I.. 95.5

93.~ qft:J.( 97.5 9'7. B 9~.9 9~.' CJ? 9('.i 9'1 93. ( 9('.7 'IS,

9?f:, ?s.C:. 9~.'J 9~·7 9~.3 etc, 9(,.¥ 9r,.~ 9t,.s 93.;( '1~./ 95.3

9K 95.7 97.1- 9'7 9fo 95.3 9S. t/- 95.(' 95.(P 91.9 95:;;. 9'~;(

~7 95."l 9'}.3 9~/1 94..3 "(,.1 9,·5 9~.3 9('.7 9~.9 9(P.5 95.1/

q?f 9'7./ 91. 8 9i.~ 98 9'1 9f.3 9"1.R 9J'. {, 9t.7 94'.' '17.3

99.J. 9; 99.9 99 99.8 I~o.f /~/.6 IO~.'7 IO~.1 9R.4 lo~.7 /a!.1

/03.tt /03./ lOSS; /OY:I /0S.9 IPS.? /!)6.'110~.~ ItJ7.9 Nt/.5 /09."1 IOt.1-.. -_.-- -- --- -

./

V1

V1 ...,

; ~; Vol ~ Vol

]~ t::J IE:; J:o ..... -4 :z :x> Ci'l

~

~

~ t\J fl,

~t U ~ ~(t "f..Z

.... . ~ "-? 'f (\I

,n

n .j)

.R

BLACK AND WHITl:. tJHU I VUI'U'\rn

5.5) p.M.G. LOADING

B) 4333 RPM DATA poINT

1>

VERTICAL SCALE: .5 VOLTSIDIVISIO~

PROBE RATIO: X 100

HORIZONTAL SCALE: 200 ~SECIDIVISIO~

MOIOB A, PHaSE A VRMS 21,9 PERIOD 1,2B [D!:el: FREQ ~22 Hz SPEED gg22 REM LOAD Z,g giliO~

TEMP (F) IZg .~ "

".'

, .. -:; .. ~ />':~~~; . ."".'~.'~";<:::~::~."~:-~ -.- .. ~~ <.;.:~~

asc'"

L-_____________________________________________________________ S830

Page

::~?}{ [8 , ~ '-'-:'~, :({j :a 0

.,-;\ a

'":~) fl· -, '-') . "-:1

.. -:':'-.-

a D

B

,. n 'rl

I

fl U

UKIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

5.~) p,M,G, LOADING

B) 4333 RPM DATA POINT

COri?ARISON OF 'PHASE' Al~D 'LItlE TO LIt:E' VOLTAGE

~AVEFORMS FOR RESISTIJICE LOADED QUAD 'A' &

UNLOADED QUAD 'B' mTORS AT O:IE lD.rtD POINT.

.5 VOLTIDIVISIOtl: VERTICAL SCALE:

XlOO: PRasE RATIO: 1 VOLTIDIvlSION

XIOO 200 ~SECIDIVISIO:t: HORIZONTAL SCALE: 200 ~SECIDIVISIOtl

2) roTOR A« fW.,$E, A 3> r;QTOR A, Ur;E A TO B VRl1S 81 ,3 SPEED 4462 sp::t

PERIOD 1,63 msec t.rA!l 17,8 ems FREQ 595 Hz IDP (F) 152

1..01l.DE.O

4) l1QTQB B~ ffi':l.<:;E B VRMS 91.9 SPEED MIIQ PERIOD 1,7 rnsec t.mD 0 FREQ ~ea Hz __ ~(F) 152

UN LC~"DE=D 1-1/-81f.

VPJ1S Ji4, 3 SFEED 4462 EM PERIOD 1,69 msoc FRED -595 Hz

LeADOD

~ i7,8 fl"1PS

lUi' (F) I-II-a.,

'j, . " ~, :. '", . ;

. ~ -~~~:f.:}~ ..

-?:on;.e ~¢~:-o _ II:-!~ '!:":.~~ I<J

5) MQTOR B, LINE A ":'0 }j

VR~ J 84 SPEED 4462 RPM

o PERIOD 1.68 msec FRED 595 Hz

:h5cJtJ ",) ".o~,t II . IDP (F) .:;I5~2,--_

I-II-!J.,

56308·1 Page AI

~~~~i'U-_~~lf'o.>IIIII"'~~."'M""'_""_·_""""""""'--~""-"'_~~ ___ • ____ ~ooli_ '"_ ..... _"*_ ... ____ , _______ _ l

I

-I j

:'j '. Ii -.

'. '.

'~1 ·'1

-:.'t ;""1

,'.;' -....•.. :, , .~': .............. ; .. -.-

'., '.1

,'\ \

I I I I

"" . '- -. ---,.....;. .... ' ... ~.---

:'~j /' '. I'>'-·J~ ...

... • --- _ ...,.. --, f ' ........ _. I

5.5) f..'tG, lOrJUNG

B) 4333 RPM PATA POmI

cor.?ARISC.~ OF 'PfJ.AS£' l.sm 'Lu!£ TO Lllt!' VOLTAGE

t'.AVEFOms FOR r.!SlSTA."t.£ ~ ru'.!i:V~!(T I'.!lTOR 'A'

.5 VOLTIDIVJSION: VERTICAL stAlE: 1 VOlTIDIVlSlON XIOO: P~asE roATlO: XIOO

20G PSECIDIVISlc:t: 1l0:U~iTAL SCAl.E: 200 HSECJDIVISION

6) mTOIl A, R+\% A

VRMS 81,3

PERIOD ),63 osee FREQ 50 5 Hi!

SPEED 4l! 63 RPM

l!Wl 14,5 mps

'IDP (F) IZD

7) lilTQR a ~ Uti~ A TO B

vms IIlA.S

nRIOD I.SS \'!:Sec

FP.£e 595 Hz

SP££D 4!:63 RPM

ta.D 11l.6 cr.os

IDP (F) 174

\ ~-

r::::;:J

en CD (,J o cp ::D ...

" "':'''f''",~:"" ""1· .. • " ........ -, ...... -! ",~ ....

~ ~ ~ c:;:;z:;.1 ~ ~ ~ ~ ~ t:::1 ~ c;;;;::::.J c:zJ ~ c:::m

100 rs;_. --"'1 ....... ·1······ .... , ..... ,.-o I. • • ••

. ... ". , : . .; .... , F\r.ibA/1£HTAL I I', . .•.. --j-_ .... i . I .

~:·~1i:·:j": :.""1".-' : :. I I I'

___ H .. I ... : .j .... ! .... J. ..... , ..... ! ... ' I :. 'j' . i ;. , ..

10 I. -'" -: . - :--fnJr. I -ant. "_~IC" .... -1'-' . 1:L .~~ 2~>~~~~':~:l.o_~.:(~~~~I:~ d):. ~:'. ; .:. ~-:-1" ... :--i-- '-r-" j. 00 ....... j ... .

. I" . .-.. - - •. l .... - _I ... 15th' h& "Ie ... . I .. ~ . Ii· .. :. . l' IJ.45~tnomiIlZ~d

-1.~ ___ . __ .j ._. ..J .. __ ' . . j ': . ; .

..•• • •• _ I. I .. =l .... 1 .. , -, ..... .

i 1;§"'~'1~'--~ '--""- 1 __ _ "-; _ ... c;;. . __ .. . ~ , ... :: .:.: .... . ... '. ...

I

: t-:.!±! 1-::: ::.::-I~:

8 :; I

-:-;;r.:~

I· .. ! I .,

6 o 2 4 r .... ,.w..,.., , .... ."

. "-"-l--~"'-I'-'~"l'-'" '1' ._. r"-'l""'l""Tl'" "'1-. .. " .. .. . . '" ... 0.... .... :: .: .'.:'. . .. I ' •• : .,. .: ':~". •. : ~. ::

I· "j

t

I

001 5.5) P.H.G. LOADING

B) 4333 RI'!1 CIA TA PO INT 1) HARm:"c ,,/tAlYSIS

Percent runcUmental ,s. Frequency 4325 RPM, Motor A, Phue A

1·13-84

~::'I:::~ ~:':~ COORDIliATE WITH PHOTO 5.5-6-6 IF:,: :' .. '1" . .... , :.::' ::··T-I .. ·I .. ·I .... I .. ·l .. -[- .. :l:·::J:·!·~· . ........ _.- --..... .. -- .-- ._ .. -........ "'-

~.

t·; •

, to>

U'lGROIJl(DED HARmf Ie MALI ZER

. ... • .L, _

-r­,I, . ......... . ~ . ;

-

~:I~

I •• ,

'. i' : ; : : I-r: ; .

: :J:

.' i; M-1

, ',.:. J .... ""'_

••• j I.J.

• •• • 0"

/ ... "1---" 8

. ". -,.! ..... . "'f-' . .. f'. ~-- ~"ll"'J .. .. u; ·'.Wo-' ~~[~

._j"- .. j_ ..... -: ... ~L":" . ~ .. . . . .. - .... - . -.- -- -.-. --

10 12.

t::::::i ~

I

I)

/

//

\.

). \

-I

j.

-"

,. / " ,

\1 ).

j

! ; ,

' .......

/-

-=-~,~'?3 ~~.~:. - "~.!

LiJ'J

I I I ...

u Ii ... 6-' ",< .... ... ,:: .... '" ,. .:

~:;;~~:s ~!:ft:2.!t c;!!.a • ';"

'" .--ccX'" ~ ~u~~ 0

~5~::: C3 ... a:~Q.I~ u: u.

'" ~;! ~ .. ::i .., a.. --..: _N ...

'" .,;

. . ~- ... -.-.-.... -

..

":' ~ on .,; 0 .... ~ % .... ;; ... .... ~ 0 cc 8 ...

.t ..

i: : • . !

.. ,

. :. .. ~.. ... .

: .. ~·!!.t =-;:.:.' '-:::::~:;~ i;:!:·~ .. :::.·jill·-=:I'·-::: :.::: fi1~1 ; '::r::- '.-::::::-~.:: ;-1 i: 1-~ r:: .:- i! ! I .:' ~

lVIN3WYONOJ lN3lH3d

I I I j'

S8308·R1

'. \

/~

"" ",', .",., "'Y'" ""L-::.--~ ., "" ."-~""",':C'~,--:--"-,~",,...,.,-...:; . -; ~::~r'c' .:::~:,:~;;,"~;:::=:~~;:;;~ i ''f' ,; .~~ ~ I I --

" D ,)

:l ~ [1 .

:! g ~ ~ ... .. z: .... ~ .., ...

- - - -- -=- ICUIi':l2 ~ ~ ~ c:::.:I1J ~ c=::ar ~ ~ r;;::;;t;;:lI

IO'J •.. ~ ...• -'J ..... • 1 . . J I. . FUN A/1EIIT",L I. • I • ;

..·-J· .. ·I· .. ·'· . -I . ··T" I . I ., '1 ~ .. ·1 I • I I

: •• - ~ 1 , . 1 1 _. 1 . •• • • • . • •• , . ,i . 1

j" :. I' : ... ; " ; I . I .. ; ...... ; ...... !... i.'

I 1 I I ' . I' .' " !lrel. '.rmlnfc I 10 . ~-"I" .. ~ .... t£ .-! ___ Lu.b ., i ._ ...... , .....

.,._ •. , •. ···1 .•. , .•.. l •... } , .... 1. I . T~·~~~~···:·(·:~t;: ~p:Li ~~:: . : I:: 1 .. ::·:i:::· .. : ~ "-. r;-':-I:-~- -~. -- .• ~: ·''Sit'h. ·jjiC·I·'-·"~-7. ,1.-... --- - --' .---L~ .. J.. I .. " ... -.. · I· .. ' i - . / ... ',' . .. ·1 .. ' ., 3.51 . . . . . t-i .. ___ 1. .• - .--- -.--

I.

. !

, , '::i":'"

I ...

... £.

5.5) P.H.G. LOADING I II) 4333 RPM DATA POINT I

3) HARl()r/I C ",/AU SIS • Percent Fundamental vs. Frequency

4316 RPH, Motor A, Phase A 1-13-84

: : ~ ~ • CooRDIHATE WITH PHOTO 5.5-B-6 r .:;: ~ ., ·,--l---r--r--r-···l· "1 ,. 1";-' .•.. .. -:-; .... ;- ---1..-__ ... 1. ____ 1 ... _ .. -- '~'~"7;

"- GROUNDED HARlOW; AIfAl Y ZER . ..... .• ! . _-'_l-+--

'~"I'"'' '·i·d ... l-C

.. . ; .... ;. ;;'!' .• :. ;~l+ :·qH~ 1 Iii: ;;1! r!:: :;fr ;i~' .. ;. ..... .. ..', .' .. ' II .. 'Ill Ll : ,... " I,. lrr:

,,',] ", .." ".::: .;.;. .... r.ri; I ,: ;:,; ~;! ,;;: ,;;;; I;tt~ ~}l! t~!t " ti: 11;1 Wi!! ':i: ~ ~ ... - ..... ~ .. ·1. .... ... ':; ..... ,.- •• +.~~, ii~I:... ___ ...... T,. ~:.. -- :=.!; :::-: ::.:: ...... :-. :::: ~:.:... .::: ::~ .. :. .. 3r;.L -4>7 ·;r· --~l ;.r. Ttt ~~ • .. __ ..... _..tI_

'-- - :.t ---- "-' .. l+.~ "LH..j..T"T"tf--ttfrtlrt1TtrrmTT r~-4·--t--if.-I~I-~ ~= :~: rz 7~ i~..n ~~ ... - '"7t; -;-m ;;.; u.iJ 'J.~ 1\ Ii ~ ~.L lW III U. : I+- . . . . -,... • •.•• 1 •• • ,. ',. • ~+. t·...... 1 ... i ".; 'I " 'lll i I ~. . . '. ··of ..... 1 .. t··· : .. ~~~fh~.1. d'- ;-. -. -:~ ill: .'1, ~.ill ii .. , 11;1 Hil ;,;; "lu.w. T!""'1 •. - ...... I ....... ~~-.- • 1 ,. '!" 'tl' Iii' ,To.I

I' . 'r" :1' ; .. : .... .

,~~ .~~ .":. J::':;~: ~~' .::: '~:: :::' ;:1: ';;; ;;;: ·i:mt tilj hi· HtHM1 ~; Wi ':!! ! Ii: '!' U;,m Ti" LL

H

• :;...., '''';';l~:::'''':'r.'! ~r:'~:!! ;:2~~;Efllli~$I~rf[I.2U':4 .1: ·-;t-:r:~ ~- Ct: -;:. ,~ .. - ..... ,.- ._. -, ~ .~ ........ ~ -'"7' ~~ + ... ..l.l.;.H-'- T * ''- -_. 1+ .. _. f-"- - ..... ~- --... _- .. . ! . ~~ . .. i l' . , • •.. . . _ .:C·_-- -_.'£"- ----:.-.-.. ---.:.~:::=7"" '-~I r-~':-··~·2":"4 ';l-II·+~I~illJ.· ,ii'II;'i ;'l! .~.~!'~lW:I~.;. ~ .. .1--------.. Ie.: ',., •••.. I' .~t.~- _~. .. ;~. I.f+.~-r--.""':I . . '. -:-:.-t":: -.. -.- .::-.. , .. :.~ . ..:.~: ~:.;~ ... j~ • ....t.. ~r;-:·-~. :jll II. :1; ... 1 :;;. lJ.L • j , ... ~ .... ; .... .• , .... ". • _. a_a •• ~w •• r ~ , ! l . • ,. ..!. !!.' .'; . ;! l~ •.•. -0 • .J •.• _; ';

'I::; :.:.ci ::-:: r'::" ~' ':':':-: ':~:.... ... ::~ _~ .;: :::: _, __ .. , .. ,". ~:~. -; .. :-~ ll:, '::: i j. J +j 1 J:. ,~~~ ~~L1·-· --. ..:~- -~ :-~ ;.:, .d'. :::, .;;.: .::. ;:: .-;: :::: ;~n :;;; \,: f;:: :!!' :;:i .1:. ! ;l ,,:, L .. d' . u! ,,,. ! u, u. 'I ..., , IJ ". ' -::r ""'-1 ~ . ,,:,'jI;H1 It'''' :~ "l~" "~lt It'}' ... , i, ',;:' . ;_~ J.: : 1 l"'tl:T:" : OC:tl:: ,:" 0::: ::!= ",': ::,; :::: : 1:; :::: ~ i: :::' i; ~ !::: ::::: :::: . --.~. -fl' .-~.t.l,lii. I!·l -t. ......... ~!' ........ -... -- I _-'- _ .... __ . \.. . 'L

l' :~.=, -:1 ~;.: ::--:~Cii, !,::: ,ill ,:,e ::;; : :.:. ;.! rf :: 'j:'::: . u " .. d" ,,,:: 'f j1 'T:'

;:';;'.'.' '7. ,,:7': ~ : ·------l-··~ ji!lZ;l~" ~;t 1;;--: Jlii~ \~ir,j : !~~ UJ:i.· . '1" ·jfl : . .t-. .... !.lJ,';. '.;11 . La.': '9·' .~~ :~r~~~:-:- _ .. · ~~~.+-.- "'!'I':-:-~ ': .. ~ ~::- .. '''''.' -- .. , ....... :. .... .. .... ___ .......... __ :. :: .

~~ .. !.: .. -~ .:~:t·R-· ·--···-~···-I····~-"·: .: .... : ... ". .. .. '-_1 ~.. ,:: R: .. .... -1 ... __ . "·1:1 1Z

: I 1 I,' I . J - . I -.' R

:I 2 4 :; FReQUENCY (KHZ)

t=::.J ~

. -/

./

---

/'

I

i

I : .--~-

, ! ,

, ~_..:_ ~ __ .. _._""".~: ...... 1\ •. '" ! ~. . .....

~~' )~.:..~;;....;;., .4"i,':':'.':· '/ ,,;"d ~~:.i;.;;.':'~~J.i:..~, )...:... .... ~/',.; :'.· ... ',L,'/;'.;,.;1;;;.:;.~'J~j';, :,;'::': .. ' . .;.....:.:.;.':"t.;:':;~.1

~ t;r~';!:a 1;1":;", t.:::J t'"tnJ t:~''i3 ~ t::::::::I c::tI r.;;:xJ ~ r:::::;:::J ~ c:;;:::;'O) rc.:::J ~ ~ c:r;;:J C

"tIU> !:lCD

10 W mo >'P ~J) N-

100 L~=-r·lr--I·--~-·-·I··-·l····I"'I' g-'- '--r'" ""11"- ·-'·1··_·'·· .. ·, .. - , -"-~--I-.~... "1".- ........... "" __ 0 •••• '_.' .•• " ....................... - 0··" " ••••.• ,- ...................... :I:Jlll::::I .. ;1:1;:1:rn."tTTT'T"T': • •••• ..... ~ ..................... ,'_ .................... 0.... .. -'T'

: ::~:~::: :::. F'lNOAMENTAL ~::: :::(::. ::::'.::. :,:::<.:::.: 5.5) P.II.G. LOAOING '1']' .- '''1--' -"-1---1"-'1'--'1""1-" .... , ........ I .... _ .......... I·· ,: •••• 1. , ••• ,... ••.. ••. .,_.. "... ,.. ••• ... I ..................................... _ ... - ........................ o. ••••••• - •••••• o.~ •• o.

, : .. :::.: ::~: • .:.:...~:' 3rd. hanrontc r:-- _··tl.:: ..• " .... ":'1:: " .. ,.. . .j". . , .... ":.@,.7.6%,,. . ..... .. .." .... , I I ' ,. I i

10·F · " , . ........ ,', ",.t~1" .--- ~- +-"F'·,·· 'T"i ~ .+t •• ," ...... 1-':- ..

B) 4333 RPM OATA ~OINT 4) HAR~!QNIC ANAlYSIS

Percent Fundamental YS. Frequency 4310 RPII, ~Iotor A, line A to B

1-13-84 · ." ... f$+'" ' .... ~!~·f~·~ .. ,. 1.Li~l-'~tf~~n~I""'+ 't·· .... • .. J,. 'i<tJj • .1 .. _..... ~.~ t" t·...... -+- - .... -- ......... - ... .. : ::::' '. . ,;: rr+~ ., ", ~~ .... ~ .-......... -1 ~ COOilOINATE WITH PHOTO 5.5-B-7

t ~_ ++t.. f-4.. J.. til ~ ·H· !!~!, - t+i ;;! .. :~ :l~' 'll' I I',,, @!Ihl~fll "" ' d4 "ll tt.t t! ' T! '!" "1:111""IJ1ITITITrlIIIIIlIIIIIIIIIlIIIIIlI'

.... mrlWrT'l~~~H;-- 5th. hanronic 4111 ·H· 1~ffi¥! ~t m !;: I;: ',I : ~j" 1m -. 'if: J1+! !"l :!., !:'l~": .: : 'll ',1: 11,11. 1 ; .lilTillflnnTITI!llJllldlllllllllllt!+tttHtHtH ~ 1 :;! ~:~i 1:;1; ,: tid :j~ :111 iT t)11 !'I T :~!: !::; ;n: ::., ::1~ ::r~ ;11' ~!i: lli . Hi o i ft?j. . . . ~. . GRUllNOI::O HARI·K:!IIC AiiALYlt:R~ ... 5 ; h' , ,,' '" '

· fff. :: ~'f 1: fHt ' I~;;' ~ ~ @ .48% ' !!JI Iii! 'fHlltfi· Hi HI ' ' It tt un t

.... • ' , 7th. hanronic .. .:. ..... "," , 11:1 ~ bJ U a: UJ 0.

:~~"4 H J ~IIH-T 1~1i 11+> K !Il III +HHHH Ijll lwttth iiil HIl q"ltH!llf!f, It If I . '. ' "11 '!I; I I! !,!<I!',' . I! ~i!1 II ,Ill' l"'l I .. i'j ,'1.: : ,'" ill. il! 1:1' it' I 11,1' :... .o., l r., : ~ +++:; ..: ~~ Po J.J .• ,L! ~h! ._l~ ... ~. H:~ i'n p~~ 'H ~,.-f' t, H t

.1 mi'fi~ ~~,;IffK ;"'I~~'~~ "; .': ;:U!E ~@jj~I~:'" ~~~Ji~ ~:ili~l!lJ~"j~:~I!;OU'1 : ::::~ B I un f/l "II '". ill I "t!! ,j 'III ,j, II m!l llill'!W IHH III H 1ii41rt4 ~~ In~ ~I!! hli " l!I!m' , ri:~:! :"~t~ ~ ~ i!,~ ,,:: ~.~.~ tr ~t:'I~Wl1181!+Hff1ffiqH ~$~~t~lm~ I,n I I WJ

lj' ,. ! J1 ,1 ""I kt\.l .. ,. !ti ·;t· t~! ,If,; ,;;- .;J. 'j, ... , •• :,: ... : .•. : "ii :H! /I', ;II· 'I d Hlt '1 !. I! J J I, . 'I' 01 . ~ Ui,J "; . ' ~ j ." : : ' .:: ! :: : , : I' : . ' .' • ' '" .. :, :.:: ::': : i I: l:!; !!!; !! L i; ! i, :: ~ ~ :,J.;

. l tlliisrr;i;B~ ~ dtniH ~Ii~ ¥'tt~ ~*: 'lullJ E1t ~:3; tE~::1E ~t4 :1~ I~W fmt ;ti~frnlltit'tIt" fnff l ~ ~ mUn 1ffrn'm fifo .

. fi ..... ' :~ llitt~fH~ \,\i4 1~1 ~'f -fro ':" I@ ·'ii~: .~., "-~h"i 'r' t~· \tflfRH[Jm~ i! ~l ~ ,1 d' .Hr ttt • • I' f, 'ir.Fi:· :,. , ." ~ tirntH: ,r.r f;in .. T. " t tln i:, t .~ .. '. ~ '~llnrt ~!\t ~I:* .\!~JI~; .. :~, .. ~, . :~: c ... ~YU· -·>tj~ill· ~[.!~.flill,~~ruJJ~ltI,n :1 rifnr ,,' I.

• +' 111 ~ .-~. 0 ~ - 0 .!·1~- 111 .................... l-· .... 'I" .... "-[f" ...... ~. :-- .... : .... -. "'j'l'pt +~m' , • '<J' '<J' MO' , ,,' ". It"~ I, ill ;:: Ltl • : •• : ~ ,;:1. ~. -1 . .... ...... .... .... ... , ...... ;~. ,;~i : .. : .:: ::H L!j ::I! i !..il...L.:..~ .:.J i- -,,-- --t .- - - --I-' - ., .-. - - • .

u 2 4 6 8 10 L! 14 .. FREQUENCY (KHZ).'

" :

En __ ... 1.:°'

) .. _ /"1

. - t ~

~

\ "

f _ ............. ')'----' "~"." •. ',--. -.. ·-:;;~~-::·-..'..: .. ...:'. .. ·~;':":S~:;,;:,;"'·,~" ;%~-~~~: ,,' ' .. ;.~.:."C.'h"t ...... :.:.:J ") fJ D ~ C"''D ~ 1o'Zc-J tt::m ~ ~ c:::::::I c:;:;:zJ c:::t.:J t::::.:::2 r:::::= ~ ~ ~ __ ~ ~

"cn 1I>(l) 10 to) (1)0

~cp .:..:0 1\)­I\)

SPEE[l LOAD 10,00(

r.p.m.

ACTUAl ACTUAL

13'15 9CJ83

~7.50 997J'

11J.S IO{)~D

550C 1()()o!3

1:,3'15 999J

KEo CJ990

TEMP IroRQUE

of U-LBl

I?!P 'I~.'

;(30 t,5. 5

~7f. ;'/.5

;1.9;;. 95.3

195 IO(P

;{Si /~'l.t,

MOTOR A

la Ib Ic lave Van

t..~ 5,~ S . .;. 5.7 ~/l/

9.9 /t).5 /.:? ;l. /O.:A. e:<oS

15 1'/.9 /'/; t/- /J/.f Iii

1[7,/ IJ'.S 17.9 13,1 1~3

;o,~ ;J.I. g a.o.3 ~o.q 16('·7

~~.g ~tj,1 ;?~·9 J3.3 11/9. ~

MOTOR A MOTOR A

V1 Vbn Vcn Vavo tla Ub nc ftot V1

I .:?~o ;J,19 :11K 1'/09 /1(;0 II~tf 13~531

n "-0 ~

- I::: 0 "

.:lIS ;1.09 .;uo ;ja.3S ;J,;J.7f ;?13t5' t.L/51 0 0 0

:::0

;<o¢. 196 19~ ;).f19 3~36 :<f3K 1J{'93 "'0 3:

,

1?9 /~o Igi ~O~I 35/0 319,f ?~d'.9, t:::J \:Z :> (;") ~ :> -0

I

If!).'" 17(1.6 173 i,30ejl 3935 35# 11Js;v) 0 -2: ~

I ,... 165:8 /55:.3 157 ;1.7';8 39?$> 3555 /1J93/1

. ~

~~ \;; ~ I' h1 ... '-. ~~ " m

"" " .... ~ "-7\: ....

(\

~,l

ti [ ;. .. i ::

'/ .. J:

• " !--. : r' ~ l' r ,

t: !

? , i t',

! 0'

r" ); r 1 t:.

'.~~ (. :"i' ,

[ ~ I-i, f' ~ " o·

i· I,'

<" L: • ~.

f

(\

~ ,

~

(-

.' :"

'" , ,/

7".

r· ; ,

(\

t " ~.

;

" , " ! .. ;..,....

/ , /

I J

I I I I J

fl B

~

n

Q

H

8 fl

~

U

a f11

5.5) f,[1,G, LOADHlG

I>

C) 10,000 RPM DATA POINT

QUADRANT tiPTOR A: RESISTIVE LOADED

tlQIQR A~ PH~SE VRMS I~~

PERIOD In r:l~~!; FREQ I~ZQ HZ SPEED IQ272 BPt! LOAD !!17 !lmO~ TEMP (F) I§Q

VERTICAL SCALE: 1 VOLTSIDIVISION PROBE R,",T10: X 100

HORIZONTAL SCALE: 100 USECIDIVISI~

A

, I

S8308·R1 Page A·1.

I I

'-'-. . <1 :.,' .... <.:.

.- :iJ ,

, ,-

"

~ ,

:,.,) '1 ',r

"

,. . . -

(\

),

{~~<: " '

.•... ,~, .. -'

D

n 0 ~

B n ~

f1J U

R t1

ORIGINAL PAGE . BLACK AND WHITE PHOTOGRAPH

5.5) r,M,G, LOADING

C) 10,000 B~ DATA poINT

COIl?ARISON OF 'PHASE' AND 'LItlE TO LWE' YOLTAGE WAVEFORMS FOR RESISTAnCE LQADEJ) t~RAHT noTOR 'A' AT T\/O LOAD rOWTS.

I VOLTIDJVJ~JON:

XIOO: 100 USECIDIVISION:

2) OOTOR A, lli\?E, A

VERTICAL SCAlf: 2 VOLTSIDIVISION

PROBE RATIO: XIOO HORIZOUTAL SCALE: 100 USECIDIVJSI~~

3) MOTOR A, LINE A TO B VRl'1S 198 SPEED 10275 RPM VFi!'1S 368 SPEED 10275 Rm PERIOD ,73 msec I.JWI 10 2 oms PERIOD 173 me': t.mD 10.2 QJ?S

FREQ 1370 Hz IDP (F) 1 SO Fl'-£Q 1370 Hz mP (f) 1S4

_._--_ ... -- -. /-/(,-et/ 1-/6-F</

L ____________________________ S8308-:

Page A

~ ,""""lliI

." (1, IIIQ) <0(..) "0 >'P .!.l) ",-

....... - - - - -- ~

100· .. ~-r···· ... ,_._; .. , ·--'--~·r-·--r- .,--:--. . ., .. , I' i ....,

I I -- I .; l'

, . I F\J!IOA.'I£IfTAlI 1: i ... , . I' 1 ... . I .' . 1 I " .. I " .; ,I· Iii

! I I .. , . j! I' !;: I. ··1· I I ; '1' I , :.

10 ,._ ........ j: •• ·--·· .. ·1···_· tnt. hil"l'tlnf ··1· ... ;. : .: ~ ..• : .... :~.. :(1 5.9S (non!VIllztd) i I. . " '1

1' -.- •. _ .... , I ,.

,L._.-i ____ + __ ._. -_ .. - ... -._... -- ... .

..!.

I .. I

1_._.\_. ---i·_· ····1··· .. ·· ·1··· .... , ., .. _, .. . ... ,_._ .... _. ... ' . £... .. I-i. I. . .' .: .' ... :--"1 \ -- . __ .1 __ ... ·t· .. - .... ~ St . Ita 1:' •. --. _ ............ .

1-- . I

I !

r .. , r

. i I

_ c:.::::.:3 ~

. ! . 1 . '1 5.5) P.H.G. lOADIHG

C) 10,000 RPM MTA POINT 1) HAR~ll!lIC ANALYSIS

Percent Fundamental vs. Frequency 10,000 RPM, Motor A, Phase A

1·13·84

COORDINATE WITH PHOTO 5.S-C-2

~

I . "--:-r 1 · .. r-:-.. I-····]~· :j:':'I"'!1': . I ... - ... -.- .... -. --- " .. __ . - - ..... , .. ,

...... - IRIGROUNDlD HARfllNIC ANALYZER ... i

~ . .. 1, . . .. I .. ' .... I· .. Ii' tI 3.05% (nortr. ltnd '. ~ !' .... • I ••

'1~~1 t~~ ····I:--:~ ··-:·t<;7T ~~: :-::::;: ~~::~. ~~:. :~~:~TT~i; i'i~:'H;; 0~j ~0~t;:T~' : , II . .,., ." . . ,.. '". ' , . . '1" 'j" I'" .1. j' I'" " ... ,' 11

' ..... • .•••. !t .,. • ••. :. _ .• ,I' ,. • •••

• _ . ~=I-~ ~FGU -'1"' •••• :... • •• , H_.' .J_ ~~j. -7+ f.L···r ·l:Il"r1I"!='~I~+.L·11H~ HU11-i~+t-'-• ---.. - .. "'-- - ........ ··ft· ....... . ........ _- ........... ~- - •••••.•.. "'+4~ .&. ....... !1·lt ..... ~±lL... .. ' fo.--+JfffiT

~ ~I~ 'e= == ~~ :~·':·:f· -.~~-~:~ : ~~~~~ ~~: "~~: ~t ~i L~ ~--=2,E~ :r::E r:f' ;~ Ii;: ~ .:. ,,_.oJ .: ..... ; .• ;; i~ ,;.: "f: . , .• (1;- :;%'\!IT.lII~cd1 ' ,~-:T :,~. ,;,~ Ill: 4+T~ll'~UI1.U' ill' Iq.: u f~ I .... , .' I -.-..... ~.-. ~ -~ .. , ........ ~.- f-:-~~- ~~ -~~~~ .. t .. ~I'" , ' :" J .+,""" :t" z: •. "-, . ..' _ .. _ •. ~~.-. -~-;. - ",. .. .. .... .... .......~... I ;. • I • , ,.;. •• i' .. I! ·1; ! ; 1 "1"1 II, i Iii' "I I • ~ i ~ r t ~ ~~~. ~l : ;~-j'~-;'; 11+; ~+~i );: ~ :~:. ~ ... :.: t~·~ .;!. ;+i; :~ij i!~; ;~:i ~~;~ ;~ij 'i~·;l !~ji !y ;Ji; l!~; g .. I ... , , .. ,', .. " ;. ", "" , .. "1' .' ... ' .1. 'Ij' '1" .'" '1'1 'j" I,,, w.l,~ • . II· ,,' .... I' .. _ ,,' ... 'I"~ ••. of •••• I' .' '" •• , •

.... 't ....... I~ ll~'- .. I~· .~~ ........ ,~ ..... L't.4.,;.·· .~.p~+~1 ,·W ,.JW l ·.!..+4.LII.·.u cLHt-HP .lU.I·- l ]":~l' ~; 'I~ '-~ _ :~~ •.• : ............. -- . .L.'4 ._.a. ...... - ...... ''''' .......... ~ •• - •• ·'"'·r-I··~~-' .~.!+ "1'" ..... '-.... -:--~!-, f_~;J::=l ' ........... f-,.-.--... It. ~; ••• _- ._ .. ' .... - ......... ~- •. L~ .J_l_ ._ •. ,.. ..•...••• _.- •• L. -1·' - .. ~.. • · -1tH ~~ ~ _.. _ ... ---- -11-.- . _. ~-.' ........ ~ ••. _ .... -~. _ ..... -:- _':J_ '1~ ,,-... 4-! ~ -'~t t "7" I ~i:~ '.. ~ -- "j"'- --- •.• -- .-~ ~-. -'T' -----........ ~- .~ ... "-1 _I~.J_ • ;1,1 .!' " , ' '..!h' _~~.~" ," " ,:::: .:, ',' .... ~-ihlqn '1\" . j:- "" .. ~ •• j •••• , ••• : -:77. : I" •.•. t'·· II., ,.j. 4+ : ~. , ·TtiT h,: .!,' t I:' . I! ' tit I . -It'~ - . Jl~~:r- ~- T---:-- - .~- t~:- ~ ~7 ,.,. -;' .. ~ t~,· G' -H~ .:-:- .1-

! '1" -I ~ ... - ·l lL.,,(_, •• ,- . ~ .•..• 1 •• , •. , .•.• :' ••.••• ;, •.••• !fl, 'Iff .!., 'i" :J .. ~' !~t' ,:.~ :~ ..

~ . .....!l.l 'H" . .L-.' . ,';" , , I . ..o....l. ' ' ;_, • , ' . ,i i : I p .. :': .

-~ I~\. ~ iT, '. ", -:-~~ ~r:"';'-! ~~. , .; :,;.;;:;:!! ,: :-;-:-~ -1':, I;fT --: T I;' .-~ "'1"'''/'-- I.~: ·"'t·" .~l: 'r!! .J!_ ..... : ... :. :: ... ":. ':!' ::-- I: ... !.! .. ,. I::' !~~. :"J, .~~! 'jr ~I: ill. lil~ ·1:i, .• :1 'rl!! ',,'," .,' . I' " :. ',:: .::: i .. :": j:;: ',:1: .',,': .,.1 :·1: 01 ,.. .• . , , • • ',.., I . .. ., ." ". . . . . .. . , . ., . . ~ f.rt-t-t., . :1 .... ~JI' • ~- ... T· .... :! .. :T ...... ,1dJ 4"I J" •• L~'. ,J. .+-I.~' ~,~t: ..

't' 1 3r.1J~il ~1,"' .. I .. ·, .. [tl :Iil W· , ... b~,1. .... "'i ....... ·· .. t:t ... r.ll ·· ..... 1.:=tT-·· 1 •• - 4~ .. L::tl J. ... _ :::1; 0\ ! 1" '. ~~a. t . . . ,. r 1_'" ~......... . J. •• _ ............ _...l. £. ..... - .... -f· "1--- 1_ ... _ ....... - •. ~- ...

'I i 111-.. '.!,tf 'l •. ~ ....... J '''.~'. _0. ....... ... .... --_. --- l .. !. "._0" .. ~ J __ +.- ._-- ...... - .-+ ... '~~I :::!11l!:,J. :1!1J .. ':1~ It _~'"111 "~ f :; ••. -- - ... 1 .• _._ ....... -_ ........ -1' ~ ........... -. iT'" __ I •• _ •• -

. k-.L .. ---I .. -.~.-,--.. -.... :. '·1 .. · .... -..... , .... [-..... _ .. J .... ) .... '-"l- .. _ ..... ····1·· .. · T 'N ~I": . ::J .. I . . I'" , " ....... ..... . ,... ." ..... ~ .. , _ -.01 • Q\ •

. il •. 1._. __ .... Ii II '" ..... -._-_.... ..- '24 8 I~ 16 2

o 4 FREQUENCY (KHZ)

t:ci

......... _-

--

--

! I ,

.,

9 0 f .

n

.. : :: ji:: .. Uiff: ... r.:..~::::: ~r:.; ~:j:tF:~~ l~. :::EJ:~~t.t··'>-:i 'j' •. I ~ ;:. .,... . ... ~ ~q' ... '-'r-' , ......... ~1·· .. ~- . -.. -tl:!J .+.1--::: • .. , ~ .. -:.~' . ,. --:. --7-: : . . :: : .: T . 1:::: ~l ~ ~+-:: _.,. ::1':-:: r-:::f ~::t-=. :-:~- ::::.1:.': -j L.::: ':'. !':':., ,., .... ··1·.· . !' 1 .. _.r::::=_ .... - Ri-' ... _ ... "'f'··- ~ ± .. ~, , - ~~ '7 -!' j'''' :.:.:: :';~~~.:~':.~::::,:' j' '.~ ':--'::.:~::~ :-'.~~

. ~~:::. ! : .! :::.::: I-1j! Ff~ 1~:J:::-: Ulf-I .. t:: ~> .::+::= ~.tfj h: ~ .: ... :::; '" :-"1 ffi 1"''''+'11'''-r-' '~-"-"-' R-.:"'~:j:+.-' ·~- .. ·.---·t:tHI f·I·-.;:--r-:-~

0- :.; !; :. ~ (·:;:~::~:l.l: ,; :~_<~:F: ·d M:::I7Tf.:::::~E:!tIn~h: ~ ·1: ; 0

~~~~~; H~ ~: J::1:::': ~.~t:I~~~E:~3:::--tU.1I~t:-.!=~.:::::L~R~P:I:~.tl:~-I:·":' : <. c~f!X. 5i I ~. L+_. ~.,.~- .I-.. ~ .. :1.._ t+t:. ~,...-- .. ·-.... ftPi1""·f.· .... '-' ~~-gi!?... . 25 .. f- ...... f-..~F+·+--·- _ . .., .. - +·~·~·h'·- .~-. H-"'j---1['" .. z :>cc: - 0- ,!II: • \' .... - .:T= --- .... ,.--. g.~:1 ....... - .... ·t···· r+! I 1 ... "lr-'! .... : ~ !~i~ ~ Ii ! : ;.:::~~ :~'4.::~:~: .. ~~= p~ .. !: .. ::::::. .. :::::::~:rt_1_~t:~ ::.~:: oJ 8"''''0 8 ,i ~ ".'j'- ,!j-'I---'~"""'~" ·:.t.t:rl ... -+-+ ..... l·'-7"~r·IR .! . co .~~- .... :; g . ,':,::-: :ll·:::'T:·:-::::·tt r .. :":- :::::.::r::--fi;11: 1:1 : ..

'- ~ =N'" r. ~ 'I"::~:~ ~j . .ti:~ .. -:-~" ·.:::.:.~~·J:i:"':::'=r:::F: "i:jl!--l :I , . "'.... lis 1--' .. ..;.....:::;.;.!:_: •. -+' ~H.~·j-+i-+::'_:::I-~"';·' _:_ .. +-:_:.:;.,. .. _:-.+:!j-. ~'-+J'l..;..' '--l--l-= t::::4 .. ....:.-J~;.,.~_···_·::_· 4-+-'1 ~1 ~,.~I .... i_· ~~ _'_1_'_' _ ~

.. 1

8

'" ,. :., ·::::··~.::1···!..:i·::::..! .~:::!:::: l+i'+ .. I .. ~_::.-i--.:~~ t;t i'l \:~ .\ . . , ..... ., ... r::J-. -1 .... ." ........ t-1-. I •. j .. - -... ::t--t-_. ·f 1· ···i" l , . .. .., .. ;.... i 1-1 .... _ .............. ro .; I- .. - - ..... :. • 'l-..J.' ,

i: I' .::::: 3= +t ~~,:l~~" .:;.:: 'j"l:!~'~~:h": ::::J::::~t;T!rp:"-. ~i ..... , ... . ..... -. I"~ -. _ •. ...l_ "-1"" .• :r:-r-~""- .-.~ ... t!-t "1 I . -. .. ... . : ....... ~ ... ~ ...... ..,.- !'-+-I··t----··,··· ""', ... .

iYJ.N3iffl1NIlJ IN3:l113d •

..

c

S8308·R1 Page A-12·

; ,.: :;.~.

, '-.

~~.~: (: ~ <. r.

: r ~.

" ",- .....

, " , r-;-s -

" ; ! .. .. /. t-, I .. [)

g g

.', f] ...

rn

rm \'

/.: g /'~ f.-~

~, , i~.

STATIC TORQUE VS. ROTOR POSITION DATA

>-"".:'-

. . ~.'.

5.6) STATIC TORQUE VS. ROTOR POSITION

TEST SUHMARY

a} TORQUE VS. ROTOR POSITION

. 1) Quadr~nt-Motor A 2) 3' Lever 3) 500 in-lb Torque Shaft (TS173) 4) Jan 18, 1984

b) TORQUE VS. CURRENT

1) Quadrant Motor A

2) Rotor Position: 30.94 Mechanical Degrees (#2.75) 3} 3' Lever 4} 500 in-1b Torque Shaft (TS173) 5) Jan 18, 1984

c) AVERAGE TORQUE VS. CURRENT

1} 'Quadrant Motors A, B, C & 0

2) Rotor Position: 91.13 Mechanical Degrees (#8.1) 3) Locked Shaft 4) 200 in-1b Torque Shaft (TS179) 5) Jan 19, .1984

REPEAT C

c} AVERAGE TORQUE VS. CURRENT

1) Quadrant Motors A, B, C & D

..

2) Rotor Position: Indeterminate due to motor assembly level 3) Locked Shaft 4) 500 in-1b Torque Shaft (TS173) 5) Feb 7, 1984

58308-Page A

\ . I

\. i

.:.-.

E:Z'; ,.,;::, ~)~-':;~;':;7;:':'7,:,2'Z~7:225I:;:7:,-C;r:~~I{;;~~;"")';';~~'~"~~'!~J:f;1,;"/S:·~~~)7:f:f;0:"; •. f~.;=.,;,';;:S~i1~ •. ;;J~---: ....- --

-oCl> "'CD to w 00 >'P .:...:0 1\) .....

<C

- - - -. - -

ROTOR Uti ITS ROTOR POSITlmf POSITlOfI # DEGREES IN-LRS # DEGREES 0 0 1/.0 8 90 I.< 1'1'.0 -~ 1 11.25 15.0' 9 101 25 )j &..0 _'l

2 22.5 Cf.O 10 1l2 L 5 'l IR,O I;i

3 33.75 c2,B.O in :123.75 ;K

I los /1/,0 Is 4 45 r.,0 12 135 Is /&.0 ~ 5 56.25 /?,() 13 146,,25 'li 4.0 ~ 6 67.5 /c:?o 14 157,5 ~ /9.0 ~ 7 78.15 ~3.0 15 168.75 Is /ot.o ~

AVERAGE VALUE: /3.14-

MAXUlUN VALUE: ;J.7.0

HlNmU~' VALUE: 0.0

I-Ig-g''f

,'- ~ --

mnTS ROTOR UNITS ROTOR UNITS POSITION POSITIOU ::0.0 me:

IN-LRS fI DEGREES IN-UlS fI DEGREES Ifl-LBS ==-r

_4-.0 J6 IRO J::Jdl ?4 270 g,Q 17.C; Is l?tD I:t /('0,0

"'''' 0. 0. ...... ~'" "" ~ <+

~a= <»<+

/3.0 17 191.25 I/. 0 25 281.25 I~,O <+0

0·" I,--Q I .3.0 I;i 0.0 ~>

"

L0_Cl_ 18 202,.25 ;)5.{) 26 292,,5 /5,() ~ ;)7.0 ~ ;:);).0 -~ ~t/.'fL IS, 0 19 213 75 /0,0 i27 303,75 17,0

0 n

! VI

3.0 ~ S.O ~ cr,o q.O 20 225 /0,0 18 ~15- ~>. 0

<l>

VI m ~ VI

I~ ~ /7.0 Is 16,0 0 .... ?o 21 236,,25 7.() 29 326,25 13.0 ,;1..0 ~ .;?,O Is 1.0

m

'" 0.

01,0 122 247,5 16.0 ~o 337,,5 /3,0 ';<0.0 "? ~3.0 Is ;i.5...Q... 17.0 23 258.75 10.0 31 348.75 ;('3,0 '1.0 .~ eJ.O Is '1.0

I NPUT CURRENT: 5 A.'1:>. C.

(i) }K- a.7S (30."~ l>~eEt::S)@ "<5 It--l-LBS

(z) l::E.Al)INr,S TAK.E.N U) IT.-\ Soo l"-l-Le

TI:l£QIJE. S~ AFT (IS '"7:3)

........ ,.,

P-0'1 .....

:>I VI -i

-i > 0 -i ::0 ....

n c: ", -l

0 < i3 VI

c: ",

'" 0 < -i VI 0

'" '" "" 0 0 -i VI 0 ::j '" .... '" 0 0 z VI ....

-I Ie; .z

L

:1

g

u

~ :. .

a

a

a

n

~ R g

if a

I ~ n

L 5.6) STATIC TORQUE VS. r:-oTOR POSITIO~ ! '-_ r

.... '" :::..Q .~-

o~ • C": I ot: .... --

b) TORQUE VS. CURRENT

Quadrant Motor A Rotor Position: 30.940

3' lever 1~18-84

,. , ~ .. -+--=--~ .. -.l+ !.~

160'~ ~~~~~~~~~ __ ~~ __ ~~+-~~_'~'-+ __ ~ __ ~~l_:_:~' ____ ~' __ ~ '.-- -l- '-'-'1'.'-0-:--+- -+-~";"-~+-"7"---4--;-J.~-+~'--!---:..-+-: U: I : i i- ; -,-.~-;

: , I ' i .: I: ···-·f·-T--·-f---!--~-.-· "';.'----+-; ': !: i . :; ! . :

14~·--~--~~~.-.. _-.-._~i·_-·-:_-_1~1_--.-_~!-__ -.-.+L---~·~.L----~--~.i.-.-----.~l-.-.---~;~---~--~---~~ ! : I :: !: I : I . , ,I 1 I: ; :, .' i :

1ZC ___ ~;' ___ ~l_' __ ~j~"_-_:'_'~! __ ~ __ '_'-~'f~'_"_-'~!_--_:'-_-+t._._.;._-~i_-_-_--...;!~·--~--~--~----j .... 1- .... .i ---I -~····l··-·-+----Ti.-- ..... l ._l ,--~--,-, L._

o

1 1- --

i .--, t

i

t : : , . , :, , 1 ,. j --------.; ,: !: 1 : " . J' -"1---: -'1'- ---T -.... -,_.,.-I i --"'t ..• -.,.

! l ····-t-··· .. -·-~· ! : .J... -... j ! r ..

. ... i _ .. ) .-. - ! --- .- -----~-

.. .or 'r I

j .:

------------ -.-

----r -.~ ~--r--.-:-.- .. -~-.-- ~---.--.-~- .. --',' .;. 1. ..

1 .- .. - ..... _"--.-! -.-1 j. :

--. :

.. i" ';

.----~-~.---.----. _. . .1 _".1. ., ....•

--',' I . ____ L __ --: ___ ,. ___ ._~_____L_ ____ L-__ .. , i :: !' i I' ! i ; , I , ; :! !;., -'T--: --T- -'1---'1---1' .--------j-- -:-- ---- -'--i ---

: "! --1 1 . --- I , , .. I , " !!,

. !

--'-r- I_! ---l-'T---T .... -.. --~--~ I ;'!

5 10 i 15 i za I 2(i 30 35 . i . I : I . i . I ! ' ,

_ .. _ ... _ ._, __ .. ____ ' __ ~ __ l ____ ' ______ .LI.:t. _Cu~rent. (Anperes).

S8308-R1 Page A-130

"_' ~ ~"_ 0" _, ...... 'r ~~_ .................... _ .. _______________________ =_. ______ .... . ~ AO

n 506) STATIC TORQUE VSo ROTOR POSITION

(\ . 9 g m

B o R.

~. ~

a ('\ . P

LJ

m

b) TORQUE VSo CURRENT

Quadrant Motor A 0 )

Rotor position: 30. qtj. (#;;?, 7 S

INPUT InpUT STATOR QUAD A CURRENT VOI.T1\GE TEMP. TORQUE ..

amperes volts of in-lbs

:< 0,3 7;:), //.0 J../- 0,7 7;)" ;. 1.0

IL> /,0 7~ 3010 J1 J. tf- 73 _4~,a

10 1,% 7i- SO!)

/c:1 ;;, / 75 _ .. .,:::-gO /¥ ;;.4- 7(0 ~?,O /~

. ;;,~ 7Z 75D

If? 3,~ 7~ !?5,Q ~Q 3,5 7tl 0'" ...

.. <"" . :.1

,;z~ 3/:t PO 10/,0 at.! _-i,3 xl ID10 ;;;.t:, ~.J., 7 g~ Il6~ ;).? 5./ ?3 1::=,0 30 5.5 ~~ 1:3::;,) 3;J. S.C; ['5 /37. 0

3"'- th.t/- p~ /'/:3.0

8. rE~IIJSK/ /4, KIIJ~i!:- I//~ /8't/-(/) Soc /N-l.e neQ(.}£ ..s#,4~T (7S /73)

C;<) 3" L€r.JE,e L_--------------------- S8308·R1

Page A·131

f? B ('

I I g

I , I a

0 u

I I I ~

I ~

I

(\ I

1

w- ... =>'" c.-.a c.:_ 0' I-C -

5.6) STATIC TORQUE VS. ROTOR POSITION c) AVErAGE TOROUE VS. CURRENT

Quadrant rtltors: A. B. C & 0 Rotor Position: 91.130

Locked Shaft 1-19-84

12~--~---~--~--~--~---+---+~~--~--~~~~~~--r-~ . '! i O:4_"r-· -I ----: : : ~

. i : I :

. ! : r---' 1J~--~--~~~--~~-+~-+~-+~-+~~'-'~~~~~: ~~'~'--~'

. I !; I •

~'_;_'~'~_" __ ~ __ -r~-+ __ -+ __ -+ __ -+ __ ~ __ ~I __ ~~"~'_-~l_'-_'-~i'_'_"_'''~!_'_'''~''; 8·. : ,., I

. i .~.+.: ... + . ·-t··· .... ;.. : ! ! :

I I , .. j ... ,. j ..... i I

\ 6,

...... L ... '1' .;. i ° !,

--~--~----~--~--~'~. +I--~--~----

. ";'''1 ... -i- .~ .. i 4:J : I

:· .. 1· •• 0 i

-+--+~--'--~----'--lii---'---------~ ...• i,. \'.; I ... - . i . :

; • j J

,'---j---' .1.. ..... I·· ,. ,

:.)

I -"---'---";

'M Um #bee A

S8308·R1 Page A-132

r: ~~I!!~iI"fljU:

8 0-

9 R a

n t'

H

~ Ij U.

U

n

il 0

H

H

n

U

B '.

J

I J

('

~

I

wazw_ ...

5.6) STATIC TORQUE VS. ROTOR POSITION

c) AVERAGE TORQUE VS. CURRENT

Quadrant Motors A. B. C & 0 Rotor position: 9/./3° (#oE'./)

INPUT INPUT QUAD A QUAD B QUAD C CURRENT VOLTAGE TORQUE TORQUE TORQUE

amperes VO.l.ts in-lbs in-lbs in-lbs

,~ r"\.S 7.9 C1.t./ P.C; 1- r - /6.;;' /ft:,.1 /6.1 -' , t, /.0 -;::,p ~i/.:;;' .; 3. (" ? /. '1-. 31.t:;. .3~·5 31.? /0 /.7 39.:;' =i.:1. P -s0 . .;<

/~ ;;{. / J/-f'.£ .4?'5 4P.S /~ ~.~ 5to.3 ~&:, t. 55 .. &;

It-. _.;. f1 /PS; ;}.. ~4.0 103.~

/1' 3./ ";!l.? 71.9 71. t,L ;;1.Q ~.5 R~./ J?O.;;< '79. 1 ;;1.;2 3,Q 9o.c? €'? ~ .f7.S r:;;t./ 4.~ ::;::'. ? ~~.7 Cj5.P ~Ir> d.1o la~.s 10_":::0 104,0 ~p 5'.1 1/5.9 //.3.0 I/~ 0 .30 .=:1- /~S.C 1~d.,O I~O . .? 3~ ,5.Cl /31/.: c l~o.O 1 ~C;. / .3t/- /. ':( '" ..., 141.7 1.37.0 137.0

I

d_.SSW

QUAD D AVERAGE ! TORQUE TORQUE

in-lbs in-lbs

9.~ Cl.o /7.5 lb. 5' ~5.,*- ,:". - J .... " ~:;. ::. 3~·3 40.7 4-r2.:..£. so.¢ 49.1 S,:;,; :~4

~5.3 ~~.~ 7.~.S '/.;.1-?~".O f?O·£ ?9.6 €'?.!l C?? ;l. 97.4 1~2. .:::- ItJt. "., /15.3 //~.I I:<~.? ,'e:~,R

1=<1.0 /31.CJ It/.O .. '/- 1,39.0

e. 1!E.L.IN.5K,/ / t-.1<.1A..J7i!: 1/t9/glj. (I) ;:''')0 IN-Le IO£a.V£ S"'IJ~I (is 179)

(;) I_Oc")::'£D SH4~1

58308-A1 Page A-133

-!DI'II

, , \'

, . f t) i U (\

{'

B

a u n 0 B

B I B' . '

i. :'

("""'-

n

i C -

i8"~" 5.6) STATIC TORQUE VS. ROTOR POS1TIO:~ '"I : 1 :'1 ;' . - 'I ". 'I :' I : ~ c) AVERAGE TORQUE VS. CURRENT : iii ,~_.J

" Quadrant Hotors: A, B, C & 0 : I :: I ,: I : i . I , , Rotor Position:, Ind~tenninatc

L--: Locked Shaft 2-7-84 ,I __ ~' 1 ~--l I ' '! I ~ I:'! !:! 16" , ,

'I' I, I I: : I, i: i i: I~_ .. ~_J .. ~-- -,--'1 ; I : .. -: -;-r-!'-~- i' '!' i )!1T ____ ! 14 , 1 , ' : I 'I I· : -1 'I ; -/{' ','

7C~-+---:--+-:-I---:-+-; -1--_: ~-r-;----l-, +--:-rl -~ -i--- ' I: J1 " I' I , ! :, I ' I, : I ' : ':'

58308-R1 Page A-134

L! r

I J I I I,

I U 'n

", H

B

,I I .J J I

0. I ri

'D

5.6) STATIC TORQUE VS. ROTOR POSITION

c) AVERAGE TORQUE VS. CURRENT

Quadrant Motors A. B. C & 0 Rotor position: IND~""el2.{;!INllm

INPUT INPUT QUAD A QUAD S CURRENT VOLTAGE TORQUl:: TORQUE

amperes volts in-lbs in-lbs

~ C. ;) r::- S .... .~ C.":' /5 I.'.:]

I.<> '" ~¢ :<3 .. ~

p ;..,L 33 .3.=< 10 /,7 -IS Jf3 1;2 ~.I 55 .53 1-1 ,;),.'1- 65 6~ I~ ;2P 7.f. 7/ IE' 3, / q4 gl ;:Jo .3·5 q4 &,q .;.,,;. ::;>a

-,. I IIJ~ CJ? ;<1- i·;" 1/1 LOZ_ ~~ t./-.b /I'? //Lf ;p ,5, I I:<? /:23

~"' .5'. J/. 135 13/ '!I --- 5.9 /'/3_ L37_ ':',t. 6.3 '/50 /i.fS

QUAD C QUAD D AVERAGE ! TORQUE TOP.QUE TORQUE i in-lbs in-lbs in-lbs

6 6 5.5 J IJ/. /5 I~, ~ I 0<.'1 ::2e.L R3,g

3~ 3¢. .33,3 ¥S ","5 #,5 s't ~5 ,c;d.5 ~3 IP+ _(p3,5 7.:2. 73 7:l.f:L. 111 R3 f?~. -' ql 9::< 91,5 Cf? lOt') 99.c ItJ? I/Y9 lOP. ~ liS 1/"'7 /1&,,3 1.;(3 1~5 I:)~. 5 /3/ /33 / .3,2,5 /3_~ I¥-O / ~'1. 3 /4'1 /'17 /1/-C,.5

L.KINT: ~/7/5',," (i) 500 1 tJ -L13 7OeQ.uG.. SH41='i (-rs 17 3] (.;.) LO CK.e;. D SHAF r

I

S8308-R1 Page A·135

t J

r! I I I I I J

",' - -._,' -..... ; .-n~ __ ·~ ;

STATIC TORQUE SUMMING DATA

· ' i I r-\

I J '3

I ,I 'I ,0 'a --. u

'('11 ; U ,

D

,n n hl

r, 11

~.:: \~~' , 0.

5.7) STATIC TORQUE sur·1MING

TEST SUMMARY

TORQUE VS. CURRENT

a) Quadrant f.4.otors·A & B b) Quadrant Motors A, B & C c) Quadrant Motors A, B, C & D

SERIES 1

1) Jan 18, 1984 2) Rotor Position: 30.94 Mechanical Degrees (#2.75) 3) 3' Lever 4) 500 in-lb Torque Shaft (TS173)

SERIES 2 .

1) Jan 19, 1984 2) Rotor Position: 91.13 r·lechanical Degrees (#8.1) 3) Locked Shaft 4) 200 in-lb Torque Shaft (TS179)

SERIES 3

1) Jan 19, 1984 2) Rotor Position: 93.38 Mechanical Degrees (#8.3) 3) Locked Shaft 4) 500 in-lb Torque Shaft (TS173)

SERIES 4

1) Feb 7, 1984 2) Rotor Position: Indeterminate due to motor assembly level 3) Locked Shaft 4) 500 in-lb Torque Shaft (TS173)

S830a·R1 Page A·136

'~I ,i 1

I

I "

t 3 l~: D

5.7) STATIC TORgUE SU~~ING "

SERIES 1 . ,

Rotor Position: 30.940 .. 3' Lever

: i i: 1--'''-4~-+-~''''i-'.'':', -. 4-:'-p--

500 in-1b Torque Shaft 1-18-84 ....

!:-

"1' , J' '" :r/-f··r i I I .. - : .. ·-500 1--:-- .----, -~- ""'- --'-1----+ .:- _.' ".--' ...... _.--r .. -1 _._ ... J I : I . !: : :: I : Iii

.-.-,---il-,--·+ I--~-+~-i : I: :-- _ijL_~ I-~-.-:-I.-. -t·-----ii : : • I : f : • -~-1- ;,-: .: I

S8308-At Page A-137

." ,.

;J n ~

B

B

I ~

~ 01

, 1 l,"::.

5.1 ) STATIC TORQUE SUMMING

a) Quadrant Motors A & B SERIES 1.

INPUT INPUT STATOR MAX SHAFT CURRE!':T VOLTAGE TEMP. TORQUE POSITION

---- of in-lbs degr~es amt-~:-es volts .---:-..

:< O.~ 75 let.D 30,9~ 4- /,3 75 -:;.q,D

~. /;., ;(,0 ~.~ ~h.D

R a,'7 75 710,0 I(J 3,3 76 9;.0 1:/ 4,/ 75 111.0 14- t/-,g' 75 130.0 /~ 5.1 7~ 141,0 I? 10.3 77 Ib3.tJ ;(0 6.9 ?? I?R,() ~;). 7.~ ?9 /93.0 ~""- ~, L/- Fo ;/07.0 O?t, CI.d.. f!1 ;2;2, ,,;, 0 ;J.? 10.0 F~ a,350 30 I().P 173 P-.tlf,Q ,3;). II,~ PI/- ~tt>o,o !

.3'-1- 1~.7 R5 ~7a.O .30.9{ i

8. ZEL/NSI<:I / L.K//-.IT2. (I&'/s¥ (I) 500 /N-LI3 ToI2QU£. S!-IIl,cr (7S" 173 ':

- -/

(;<) 3 I LE. ue:.R-

S8308-R1 L...-_______________________ PageA.131

j

I

I t I

5.7) STATIC TORQUE SUIv!l1ING

b) Quadrant Motors A & B & C SERIES i.

INPUT INPUT STATOR H1\X CURRENT VOLTAGE TEMP. TORQUE

arnp~r~.;. volts· . of in-lbs ~.'

:> _0, q f?3 ~cO

4- :;<,0 83 Sf? l, 3,CJ t?3 f?4 ? ¥, / g3 /13 /t:) 5,/ $[3 13g /~ h,;;' f?3 /ft, t/ II/- 7.~ P3 /g'7 /(~ f?,~ f3 ;;<./0 18'_ c;,S f'3 ;(33 ';;0 10,t/- 84- ~5~

;(d. //,5 d's ;...74 ;14- /;;<, ~ g(p J,.CJeo !)..~ 13,9 877 -; I;;'

~f /$,0 qg 3.;. '7 .30 Ito,;;' g9 \.'J. t./-;J.. 3~ 1'7,5 90 355 ~¢ If. f Cl/ 3G'i-

SHAFT POSITION

degrees

_.30, q4-

~C.q+

a. zELIN'Skl / L, KIN Ie 1/18/gtj. (I) 500 IN-Lt3 TOlZ..Qut: SHAF=T (75/73) (::l. ~ .3 1 L€ lJE..1Z

SB308·R1 '-----------------------.--- Page A·139

:a

! J

1 ! ~

t~:

n ~ D

B

~ :g

» on

n

5.7) STATIC TORQUE SU1·iMn~G

-

c) Quaurant Motors A & B & C & D SERIES i

INPUT INPUT STATOR MAX CURRENT VOLTAGE TEMP. TORQUE

amperes volts of in-lbs

.d., I,~ Fl7 33 4- ;).; &''7 75 I~ 4/~ &77 j 1 J/. g 5.tf 9? 1'17 /0 6,; g7 j-:fO

1;1.. P.4 g7 J.3/ 11- q,~ 87 ~fog

It:, //.o g;'i 30D If 1~,4 _87 333 <:20 13,tf ?'T 30+ d.;2.. /5,3 pg -0 ,...

"::;;/~

;;.e;. 17,0 gCf 4;2.~

~b / p, ~ c../o tfS/ ~f ~(),O 9/ .t.i.'74 ~0 ;;'/, "7 9~ 4QS :;...,

..... C' ;;'3,~ 9~ . so!!

.3t/- .~5.0 9~ 5;;.'1

!3HP;.FT P('lSITION

degrees

... -:;0 q~

30·Q4

. 8. ~ELINSK./ IL, K//VTe. If?/g>ij

(1)500 IIJ-t...(3 fO,eQ.e.JG SI-IAr:=T (,5173) (.lj 3' LG {)G£ \.

/

L--_______________________ SS30S-R1

Pag A-140

r~ ;~ I I 'r

, , i, t

,-t-t, !

i I

J

5.7) STATIC TORQUE SU'.'HItIG

cu,

'" t. I o !

SERIES 2 Rotor Position: 91.130

Locked Shaft 200 in-1~ Torque Shaft 1-19-S4

1-: ._.- i . f-'---

r---r---'--+ I I' .. , .... - '-• 1 !---- I ------,..-----

.... .- ....... . ::::1 :-: . "::;;:; ::: ........ : ... _. ::": ".:':":.

.... :--- .. _--: .:: - '::- , :::--: -I ::

I '. . :.- I,' ': I . I -+-~+--=---1 L _~ __ i...-l I: -:! I: i: ,

OSE'JOS-Rl Page A-141

.'

'\

L-;'~·

u 3 Q

e o m

9 0B

g

D

n ~

~

.' \ '

MU .. ill nr &ALN WE;_

5.7 ) STATIC TORQUE SUMHING

a) Quadrant Motors A & B SERIES :L

INPUT INPUT STATOR HAX I SHAFT CURRENT VOLTAGE TEMP. TORQUE POSITION

amperes volts OF in-lbs degrees

~ O.~d. 7b i~, .:! CJI.13 4- /,t/- 7{.., ~/,+

1--- ~ ,;(,j fh ":-::;,0

P ;;(,9 7t-:. t'c~,/ /0 3,5 76 f~.5 I~ 4-,~ 7(;;, qf,t:, /1/. L/-,Cf 7~ 11~,5 J~ 5,7 77 133 It' !c,t/- 7P l"CJ..7 :;'0 7.5 79 173.R 0<;)" 7,9 Po 199 91,/3

. ~

, B, rEt.ltVSK,IL. KINTZ.

(-,) ;(.00 IN-LB 7OeQU£ S ~AFT

(?) t-O Cf<..G.D St4 A ,::,

S8308-R1 l.-______________________ PagoA-142

*¥, t· * j S4t!4ttipg:.': rl###fi' ··d# "' t £{\/,:::t·!-i1fV tZltSB:::a

FJ I··

U r< .:

1-M f 5.7) STATIC TORQUE StJM1.1ING

!. i

B ! I-

b) Quadrant Hotors A & B& C SERIES ;;L

i'

S • INPUT INPUT STATOR MAX SHAFT CURRENT VOLTAGE TEMP. TORQUE POSITION

-

f V amperes volts of in-lbs degrcos

.. ::< !),qq ,'?D :J,tI,7 C? /,13 ! f

f· t

I I ! , I

fi !'

t

4- :2.0 $?C J..2. In i

~ 31/ r?t'"J fJ:J,B I g 4,/ )1,{) 1()9. b I /0 5./ ~t) /37,7 I I~ fa/~ 90 /(c~ I

/~ 7, / RO /9(", / 9/,/3

[

D I -0

I , t , !

B r

I ~ l

! I I r s·

I B ! , , , ! . R' !

I

i

H 1 , ~

n !J 0

8. 2ELINSI</ IL. KI'!T Z 1/;9/81 '1 (I) ~OO IN- '-/3 7t;'€'Qr../c, SII/11='T (~ 17q')

(~) ,-o~D oSHA;::1

: H i I t

L n ~ _______________________ S8308-R1

P:lnA A.1d~

f·.· 'Ci-~~ .... , ._. __ .. _________ ,._.,._ •• __ .. _ .. _____ ._ .. __ .,. .. =-.... =:. ___ ca ____ n_1arr_ ........ """.i._"""";o M,.,., _______ _

~D H

n B

rn

D ,r\~

g

~

o D n o m

0,. . B

8

5.7) STATIC TORQUE SUMMING

c) Quadrant Motors A & B & C & D SERIES ;t

INPUT InpUT STATOR MAX CURRENT VOLTAGE TEMP. TORQUE

amperes volts OF in-los

;.. . /, ~~ R/ 3/,7 4- ";<.7 &'1 7;2.9 In 3,9 fll /1;2.tf,

'6 5,;1.. gl /1./-9.3 /0 6,7 go, /97.8'

..

SHAFT POSITION

dcqrees

9/./3 I I I

9/,13

8, ~ELI;rJ.$!:1 /L. k//V/Z 1/9/&,t/-(i) ~oo IAl-'-8 702.QUG SH~FT (1.5'/79)

@) LOU<.E.'D SHA,cr

'--________________________ S8308-R1

Page A·144

, ~

f n !

n l i ! .

U f· t ,

n g

~

D

B f'

~

" ~.

B

n tl

; I n n n u

f", 8 9 9

-OJ III !:I.e CT_ ... , oc 1-.=

5.7) STATIC TOROUE SUMMING

SERIES 3

Rotor Position: 93.380

Locked Shaft 500 in-1b Torque Shaft 1-19-84 I ':

I '.

250 f- ...... j.L .. -.. l-·l·· .. ~L-:-:- . ~ ~ , __ ~ . .JL~~DJ .. __ .1 : I' : : I : ii :l. /:': : .

.. ;-I __ )_ .. Ll .... -.~- -~-r-~'~ -~-- -..:.-.~.-.,.~ ... ~-:. .. L~_-.~ .. ~ .. i ;·r: : '1: : : ·I.,(i·.i·l:!k;

.: .. J .. _;_. ..LJ_~"fi --'-+"~l' ·l.-r~"·ll-L-V~"ll. : .. J"~J?1r: --1 200 : I: : 'l :. . : : ; ;i1I': ;" . J

.. ·~ .... I .. tJ .+-... ~ ... + _:- .. L..i.. .. ~ ..... { -~ U;'-I-:-rl.J.--~-~}-~Q~~~.i • . I ., . I-)f·~. .L~ I I .

·:;-.. l .... ~·-·l· .. :-··t .. ··:· ·i-"·-'I'·-':'..J-~.I"-i-· .. ·: !.-~~~-: -} ... ; : ': . f I: I :7-; ,?T. I ! i

15') t- ... -+-·; .... 1· .. :· "!I'" ·;-·t-·-·v:!,,~,y·y !LYi··tj:J2:J . ! .: ...... 1 .: ... 1 .. j ..: . 1 .. .; .... !.._.~~ .. :.. .'

.i ... J -'l*~" l ; ·0: i "~I: .:. I f1i ... '.:~.1 .. ··~·::I;·-.. -' : ! i I I til :: I ! .

f-- - . +- _---L. . I' .

10:1 . i . '. Y I . L.A I '" j. .. t· .. j . .1. /i' I/:' I : ............. j : ..... j .. ~ -_!.._--.....L-7f! !.......: \' r--!-'" ' l--i . .1... i .... -.: J(,~. 1· ~1'" -1-. ~ _ ..... ~ "'1'" ~ .. ~ . · .. ·1 .. ! · .... · .. 1 . _. i .! !. ./ j71 ,. I ...--:....-~. I L . I

50 '*1"; j': i .. :·j,~.i .. ·:·+ : .. ·1 .. ·I .. ~·l .. ;· .\ ; .\ :. \. :. I .! --' .-.-.~~ I

. i ; ..... :.: ... !...~ ....... 1.. .. ; ............ ~ .. J'~"'1"'~" I .. ;" t.: .. 1.: .... 1 . !::::: 1· . t I . i . . _...... .. '-1" I: 1: : . I: . r 1 I: I I

o .. : .. ·: .. -i .. : .. - .... ~· .... :.·i .. · · .. i·· .. , .. ·: .. ··j . ·j· .. : .... t : .... 'J ;. I··· j:: Ip, ;"l'~"'+"i"'l'+"I"'j' ·j-.. ; .. -\-·: .. l·: .... !··: ·f . I 35: ........ -'''' - .. .i.ll..c...turrent (Amoor~s.)-

S8308·R1 Page A·145

r: I .0 t

A, U

0 0 n

B

0 U

B

'" H

n D

n

B

~~ n u

n

J 0 j

9

5.7) STATIC TORQUE sU!-iMnm

~,

a) Quadrant Motors A & B SERIES 3

INPUT INPUT STATOR CURRENT VOLTAGE TEHP.

amperes ,'olts of

;) 0,104- 7~

4- I,t/-~ ;(,/

8' ~.f

/0 3.5 /:( i/.;;. /¢ 4,9 /h 5.7 /1/ (P.e!-~o 7.5 ~~ 7.9 d-¢. ~7 :;;fo q,'i-~? 10. ;J. ..

.30 11./ 3;;;. !I,Cf .3'-/ 1~,9

HAX SHAFT TORQUE POSITION

in-lbs degrees

9 93.39 ;:(,0

30 40 #;.

4,t")

70 Fa ~'l 9? /~~

//5 /~t/-133 1M It,LP /S7 9.";.p:R

8. i!.E.'-INS/~ I / ,-, KINTZ! ;/;9/?¥ (I) 500 /AJ-I-t3 7?;),eQUE. SHAF I (7.5 173)

(01) LOCI::..G.D SHAFt

L..-. ______________________ S8308-R1

Page A-146

.>. ." R

I I-

I t-[

9 t. , • , r , t

I r ! 1. . r I r ~

i i.

.. I t

t n f ~

f· I

!

1-- D

n I

U I [

I D t

I: ~

~ I ! I

I I ~ .

~ t

I f ; i· t t I

,. I .. -.

~.

"

h B • H l. D

5.7) STATIC TORQUE SmnUNG

b) Quadrant Motors A & B & C ("ERIES 3 .J --

INPUT INPUT STATOR HAX SHAFT CURRENT VOLTAGE TEMP. TORQUE POSITION

amperes volts OF in-lbs deqrcos

~ ~.9q RO It-J- tJ3.3P t/- d.O ;;(9 ~ 3,/ ~5 ? 4,/ 59 10 5,/ 7t/. 1;1.. &.~ R9 Ie/- 7, I 101 /b R,3 /lh III - CJ.3 /30 c:;.o / (). t/ lei;;;. C?-~ II,¢' /55 ~t/ 1'J,7 It,g' ~~ 13.~ IRO ~p 11/-,9 19;J.. .30 110,;), ;{03

.3~ 17,5· ;"I'/-31- I~e ,;).;).¢,. 9:;.:3 P

13. ~£L/I\/SI<.I / L, ~ INTZ. 0 9 /e"'-(I) ..500 IN-L/3 7?;IZ.Qc)6, $#AFr (r.s 173)

(J..) Loc.K.E..D SH~F-r

S8308-R1 ~---------------------- PIlOAA-147

'.' i ~

D

a D

fi

0 U

/ //

B ./

, . . .

n (-\9

H

B

D

I I 1 J

(\1 . . .

I

5.7) STATIC TORQUE SUmUNG

c) Quadrant Motors A & B & C & D SERIES ..3

INPUT INPUT STATOR MAX CURRENT VOLTAGE TEHP. TORQUE

amperes volts OF in-lbs

~ 113 g'1 :)J./. d- ~,7 tf5 /... 3,9 ~;:!

X' S',;;. ~.~ In IP,7 10';;" Id. 7.9 )~()

14- '1,3 /37 II" /D.7 /L'5"1/-I? /~./ 1?t9.. ;:;'0 13,5 1?9 ;J..;J.. 1'1-,9 ~o¢ O].tt /~.5 ;). ;?./ :<~ 17, '1 ;:)'3b ;;;.g> 19,1- ~5D

30 ~1,3 ~bc:' .3;;;.. ;;,~ .1' ~7!? .31/. ;J.. Lj.. c:; d..90

SHAFT POSITION

degrees

q3.3~

C/3.3P

8. ~ ELltJ51<.1 / L. 1<' II\} T r 1;9/8'''1-(I) ..50'0 IN -L(3 TO~ t..J1:E. SI-I.4FI (-'--S /73)

(~) J..oc.I<.E'D SHA /=1

'--______________________ S8308·R1

Page A-148

~ ~,~ .,

~

u

I u

ft r I I f'

J [ B I ! I

H t !;-\ r

~ I I

B I I

I ~ I ! I I I' I I

H ! \ f I !

I. '1 /

~ "

I n t ,

( , . t

a t ; ! L--., ; ,

u [

I r

L ~ '.

, t ' ' ., . . _ .. -_.- --

-soo

:----: ------ -

i j

! ' ! '--.. ~-.--i

S8308-R1 Page A·149

, /

./'",

I f\

I 5.7 ) STA':'IC TORQUE SUMMING

I a) Quadrant Motors A & B SERIES 4-

I INPUT INPUT STATOR MAX SHAFT CURRENT VOLTAGE TEMP. TORQUE POSITION

I amperes volts of in-lbs degrees

.::1. 'Nor No .,-

14 RANDOA1 MC~, lUI> IM€AsueEt>

I 4- 3t.!- I

h ~~ I '.-

R' 7.~ , I

I /0 '15 Ie:< //3

I 14- /31 I I

16 IJ/?

-I I&' /66 ~o /;3

.,~ I ~;). /97 ;).c.f. ~/3

I ;1.t:, ~;),?

.;<p :<¥D -::10 ;;(5 t,L

I /'./""

3.;1 c:<fo5 .31 ~'7.r

'. '

I I

--. ---- I I t

L, I</NIZ :Jj".,/gJ/

(I) SOO IN-LoB lo12QUE. ..sH;:;~-r (T.$/73)

(;l.) LoC~G.J:) SH~F7

(" I I S8308-Rl

Page A-150

(.. :

·_. ···'1

'r-"I I

5.7) STATIC TORQUE SUHMING

I b) Quadrant Motors A & B & C SERIES 4-

~ l I , ,

f

INPUT INPUT STATOR MAX SH\FT CURRENT VOLTAGE TEMP. TORQUE PO£:TION

amperes volts OF in-lbs degreos

~ NOT ;1/07"

~t./- KANt:)oM Me.i~tJR~.D i J..f ~A. t::t;;?E D

I I I

~ 55 Ie J7S

t J I

r

fi .--. !

R II~

10 . /t/-O /;:( /h~ /~ /q.s

i Ito ;)./10 ! n ! ! l~ "

/~ ~39 ~O ;l.1t; ;<.,

l i I , , O<~ ;).f3

~t/- ·304-l

H / ~

!

c!:2~ .3~()

"'Y 339 C1"- _

I H i f

~/o 355 3~ 3t,Q -:::t/-,-. 3f3

H

H

n B

n L.I<INTZ Q/7/?4-

(I) SAO IN-,-6 7OR..Q.L)!= SHAFt ('IS 173)

(\

tl r (~) L.OCK€.D SHAt:=1

~ ~-----------------__ --------- S830B·R1 PAn .. A.1"1

r I a I ! n I Y

"-I

I,,· 9 D

i i J

J f'J

~

/

5.7) STATIC TORQUE SUMHING

c) Quadrant Motors A & B & C & 0 SERIES Jf-

INPUT INPU'l' STATOR MAX SHAFT CURRENT VOLTAGE TEMP. TORQUE POSITION

amperes volts of in-lbs degrees

~ /lJor

IAJEi .. ~[;J!F-D IMr:~~JP-ED .33 /?ArJ Dotl1

4- ?'~

4 / I:P.. f? 14R

10 19'7 /~ d;)'O 14- ;;'L5'O /b ;;P/ /b7 :3/() ~o 3310 ~~ 359 d-.c.f- :385 -c:;.fo 40-17 ;;..F 4~5 30 ij.l.J3 .3d.. J/-foO 3¢ 47/P

L. k'1/VTZ tR/~/.?~ (/) 500 11\/-1-13 70,eQUe SH/),cr (rs/'7.3)

(~) LOCK.E.D SA'.t}Pi

S8308·Rl Page A·152

· .. •. ".01

~""< ['; ooH /!J

( u ,,--. APPEN03X B

CONTROL STRATEGY

t, .~ ·~i :. :.··~.:i .0'

I} B r )

:~

L:: t·,~

~ i O

,

r~ r~ t= ji

.o.~ \ ft ,\

. ,

r~~: Eoo-o f" :~ o\-, rev r'i

\

0 r4.~

t~ "

~ '.,

I F

\

~ . ,0. f;, ; f

i~ .~:

r F

~ t· ~ ...... ! .. ,:, (~

.'l

]

1

B D

H g

U

u

~ rn

n

Optimization of Brushless DC Motor Design

By Jayant G. Vaidya, Sr. Research Engineer Sundstrand Corporation, Advanced Technology Operations Rockford, IL 61101

Introduction

Brushless dc motors are generally required to operate under widely varying conditions of load. These varying conditions include: changes in torque, changes in speed, and resulting changes in power output. On the other hand there are changes of input voltage and commutation angle that are optional and can be selected to suit the performance capabilities of the brushless dc motor. The back e.m.f. and the winding inductance per phase of a multi­phase brush less dc motor are the two design parameters that must be selected to obtain an optimum design. It is the purpose of this article to present . techniques for optimizing the performance of brushless dc motors by selecting the design parameters and the optional operating points for input voltage and commutation angle for specific load characteristics.

A simplified model representing one phase of a multi-phase, permanet magnet field brushless dc motor is employed. It is proposed that such a model is. an extremely convenient tool for evaluating performance under a variety of operating conditions. It is indicated how this simplified model can be applied to optimization of the brushless dc motor design. It is then shown how the technique of optimization can be applied to different types of designs for specific load characteristics such as constant torque, constant speed, con­stant power, and combinations thereof.

The Simplified Model of Brushless DC Motor

Consider one phase of a permanent magnet field brushless dc motor having an n-phase winding. If the winding resistance is neglected, this phase can be represented schematically as shown in Figure 1. The applied voltage is V volts r.m.s. per phase and the back e.m.f. is E volts r.m.s. per phase. Let us assume that both V and E art sinusoidal. The winding inductance is .. L henry. Let us assume that there is no magnetic saturation in the armature· iron so that the value of L remains constant regardless of changes in cur,·ent. Since most of the machines to which this analysis is applied are likely to use permanent magnets with the relative permeability close to one· (such as ceramic or samarium cobalt magnets), it is safe to assume that the winding inductance L remains practically constant regardless of the angular positionS830~Rl of the field with respect ~.o the armature winding. Page 8-1

i-,; "

L

L L.· [_.

r , r r· I ~ ,.

r 1: v­i , I ~ .-. ~ ..

I J

~ I h

;:

L

"-' ;

, .:.' I

I I

. ,

Defining the r.m.S. value of the current in the phase under consideration as I amperes.

i = ij E 2'ITfL

where i. ii. E are phasor quantities and f equil", ... e frequ~ncy in Hertz. Defining the commutation angle as 0 radians and the power factor angle as

(1)

¢ radians. the phasol diagrams with all the quantities can be drawn as sho~n in Figure 2. The power input to the motor is given by

P = n VI coslj> (2)

This is also the power output if all the losses such as iron losses and windage and friction losses are neglected for our simplified model. By examination of the phasor diagram.

I = Esino 2'ITfL (coslj>

Combining equations (2) and (3) above.

P = nVEsino 2'ITfL

(3)

(4)

This is the well-known power equation for the cylindrical rotor. synchronous machines.

Using the Simplified Model for Design Optimization

Certain general comments can be made regarding the brushless dc h.Jtor on the basis of equations (2). (3). and (4). These are as follows:

a) The power is proportional to the back e.m.f. E. This can be increased at the cost of increased weight of the permanent magnet field as well ~s the armature.

b) The power is inversely proportional to the inductance L. Thus if.· the number of turns in the armature ;s increased to increase the back Lt·'.F •• the ioductance increases in proportion to the square of the number of turns. This will in fact reduce the power.

S830a·R1 Page B·2

L . "

n B B ~

rn

~

B rn

rn

'" m

m

B n 9 ~

~

w ."

,--.. 8 g

c) To keep the motor current as low as possible, the power factor, cos~ must be kept close to 1. HcrNever any attempt to increase cos¢ requires changes in the back e.m.f. E and the commutation angle o.

To clarify these points, let us consider the case of a fixed pm'ler, constant speed brushless dc motor, operating from a fixed input voltage. Although such a simple requirement may not occur in practical situations. it will help illustrate the optimization procedure. In order to keep the armature current to a minimum, let us assume that the pm'ler factor is restricted to 1. Then applying equation (4), the power

p a: Esino L

Once a certain configuration of the motor is determined the value of E can be increased by increasing the stack length of the motor. However. the inductance L also increases with the stack length. Then

P a: sino

However, from the phasor diagram of Figure 2.

E coso = V, for COS9 = 1

or

If we define a variable e = ~/V,

sino =-Vl - 1/e2

then

Now the weight of the motor is a function of the back e.m.f. and we can express,

(5)

(6)

where x is va~iable dependent on the total weight increase caused by the increase of back e.m.f. E. Then we can define the power per unit weigh~ a~

(7)

S830B·R1 Pago B·3

t , I

I [ I ~

r.

0

i :

r/"..,

, i I I I I I J Il

~.

a n n D

a4g4a:53#t't#*

This equation is plotted in Figure 3 for several values,of x to illustrate how an optimum power to weight ratio can be obtained. From the curve for any specific value of x, the optimum value of e and the optimum value of the back e.m.f. E can be selected where the ratio P/W reaches its peak. Any further increase in the back e.m.f. E will in fact result in a less than optimum design. Similar curves can be plotted for power factors other than 1.

Let us consider another case where the value of E is fixed as a pe~ centa£eof the applied voltage V, and the power factor must be otimized. Two independent situations arise in this case: One \'Ihere E is less than V, and the other where E is greater than V. Fi gure 4 sho\,/s the phasor di a­gram for the situation where E is less than V. Here the maximum value of the power factor cos~ is attained when the power factor angle ¢ is smallest. This occurs when the phasor (\i-E) is tangential to the locus of E as shown in Fi9ure 4. At this point the power factor angle and the commutation angle are equal and

cos¢ = cosc = E/V

And the pm'ler equation (4) for the optimum power factor becomes,

P = nEVV2-E2 271fL

(a-a)

(9-a)

In the second situation where E is greater than V, the maximum value of the power factor that can be attained is 1 as sho\'In in the phasor di agram. The commutation angle c is given by

coso = VIE

And the pO\.,rer equa ti on (4) for the power factor of 1, becomes,

p = nVih2_V 2

271fL

Ilsinn equations (9-a) and (9-b), optimum values of the winding inductance

. (a-b)

(9-b)

per phase. L can be determi ned fl)r gi ven app 1 i ed voltage V· and back e. m. f. Lihe optimum value of commutation angle c' can be determined using equations (8-a) and (8-b).

S8308·R1 Page 8·4

r ". n " .

r: H

8 ,

U

il I.'

D

B ~

\ g ,r"'\. U ;

n tl

D (~

H n n H

D f,,\

D

H ~ ..

Constant Torgue Operation

The procedure for optimization of the power factor as discussed abdve can be extended to the constant torque load characteristics shown in Figure 6. First the design parameters may be optimized at the highest operating speed of N? R.P.M. where maximum power occurs. At this point the input voltage should be held at its maximum value V. As the operating speed of the motor is reduced, the back e.m.f. E as well as the reactance 2wfL reduce in proportion to the speed. The power factor can be held constant at its optimum value if the applied voltage V is reduced in proportion to the speed. The commutation angle c is also held at its original value throughout the operating range. The power as in equation (4) falls in proportion to the reduction of the applied voltage V as the speed is reduced.

Two cases, one with the back e.m.f. E less than the applied voltage V, and the other with the back e.m.f. greater than the applied voltage V are shown in Figures 7 and 8. Equations (8-a) and (9-a) and (8-b) and (9-b) app 1y to the b/o cases at the peak speed of N2 R. P. M. At any lower speed N, the power is re~uced by the factor N/N2 as required by the load.

Constant Speed Operation

The constant speed characteristic is shown in Figure 10. One approach ~ou1d be to optimize the power factor at the peak torque load keeping the back e.m.f. E below the value of the applied voltage V as shm·m in Figure 4. Then as the torque is reduced from its peak value, the applied voltage ~~n be reduced, holding the c~~mutation angle constant so that the power factor increases until it reaches the value of 1. This is shown by means of a phasor diagl~m in Figure 1). At the peak torque point, the relationships of equations (8-a) and (9-a) are valid for the optimum power factor. The' minimum torque level that can be then reached for the power factor of lis' then gi ven the fo 11 owi ng equa ti on, . ,

where,

T1 = Torque at power factor of

T2 = Peak torque.

(10)

Any further reduction in the torque can be obtained by reducing the commutation angle and simultaneously increasing the applied voltage to main­

S8308·R1 Page 8·5

, .

~

.. ~

;.

\.1

r' .. , ,~

i t"

f I, l ! V' iI-'-

t: ./ I

I "

J

(: .' . . ,. \ . I r

~

0'.

I r

J f. ! ~ '.

, ! .. i ;.

~ .

,~ . '.

,. t· f

I

k £..lJ. ...

I

J

I I I D if

I ! ~ g

il n n

tain the power facotr at 1. ihis procedure will allow unlimited reduction in the torque right down to zero.

Constant PmoJer Operation

Consider the load characteristics shown in Figure 11. where the power requirement remains constant over the speed range from N, r.p.m. to N, r.p.m. In this case to get the optimum design. it is best to restric~ the current at the maximum and minimum speeds to a certain value. consistent with highest possible power factor. Here once again the ratio of E to 2nfL remains constant over the speed range. and if we keep the applied voltage constant. then the power

pex sino

Since the power is constant throughout the operating range. the commutation angle 0 should rernain constant. Now let us set the back e.m.f. E at speed N1 such that at the required power level. the optimum conditions ~f Figure 4 and equations (8-a) and (9-a) are attained. Then at the highest speed of N2 '

(11)

(12)

Thi's will result in a shift in the power factor angle from <P1 lagging to 92 leading. In order to keep the currents for the two speeds equal. ~1 and ¢2 must be equal as can be readily seen by applying equation (2). Phasor dIagram for these t\oJO speed condi ti ons is shown in Fi gure 12. Then from. the phasor diagram. for the optimum condition of ¢1 = ¢2 = ¢.

(l3)

Combining equations (12) and (13)

. (14)

From equation (14) it can be seen that the optimum power factor for constant pm'ler operation at the extreme speeds of N1 R.P.M. and N2 R.P.M. is given by

co,~ = co, [i co,-1 :~ J '. '. (1S)

S8308·R1 Page 8·6

~

9 a u g

B ('~

~

As the speed range is widened, the power factor at the extreme speeds gets lower. The pOl'/er factor at all intermediate speeds is always above the value reached at the extreme speed conditions.

If it is desired to improve the power factor beyond the value obtained using equation (15), it \'Ii 11 be necessary to arrange switching of winding connections from star to delta or from parallel to series at a predetermined speed between the upper and 10'ller speed limits.

Combinations of Different Load Characteristics

In practical design applications combinations of two or more types of speed torque characteristic curves may occur. Figure 13 illustrates one such case. Yere the entire load characteristic can be split into two parts: one constant torque operation from the speed N R.P.M. to the speed N R.P.M. and another constant power operation from the ~peed N? R.P.M. to N, R~p.r~. Each part can be treated individually as already discassed. Thus ouring the constant power operation, the pOl'ler factor may be optimized at the extreme speeds of N, R.P.r~. and N3 R.p.r~. The applied voltage V and the commutation angle 0 are held constant throughout this speed range. On the other hand, during the constant torque operation, the applied voltage may be reduced as the speed is reduced and the commutation angle is held constant. Similar approach of dealing with the load characteristics in parts may be taken . where other combinations of speed torque curves occur.

Conclusion

An approach to the optimization of the design parameters for permanent magnet field brushless dc motors is presented in this article. Certain . assumptions have been made so that specific goals for the design parameters such as the back e.m.f., the winding inductance and the commutation angle can be established for any specific speed torque curve. Once this is done, the basic electromagnetic design of the brush1ess dc motor can be established. After this a detailed analysis of the design at specific load points of . interest will require inclusion of other parameters ·such as winding resistance, saturation of iron, variation of inductance, harmonics in applied voltage and back e.m.f., and various losses which were neglected in the model employed in this article.

sa3Da·R1 Page B·7

. r;.-;m A , '

I i I , • , ~,

I '

I I ! .. I I I ! f I I , • I ! f

! r r

.,

;-...... \

[ ~ I I L:

-.....-

J

I I I I

-I

I J

~

~

B £l

t P/w

.6

.• 4

.2

1.0 1.2 1.4

E = e 0+-

V

--.-~ .. .-.- -.. ~--- .. ~

x = .5

--~X=.75

x = 1

. x· = 1.25

1.6 1.8 2.0

Figure 3: Pm'ler to Height Ratio as a Function of Back E.f1.F. to Applied Voltage RL~iot with Power Factor~ cos~ = 1.

S8308-R1

~J - U

D ill ~

ill 9 rn g

("ill ~-- ; ill

B ~ g n jj

g

B ~'\~

~ """ : ....

L

E

I

/ /

v

Figure 1 Schematic Showing One Phase

v

Figure 2 Phasor Diagram

(V-E)= I(2TlfL)

I.l (V-E)

S8308-R1 Page B-9

/'

./

LOCUS /' OF E .,.. --

/ /

/

I

Figure 4 Optimum Power Factor for E <V

cp = 0 I V

I I

I LOCUS / OF E

/

Figure.5 Optimum Power Factor for E >V

S8308-R1 Page 8-10

·1

./

,.. ,:.:', a r-'--..

~

Q

[J

B

~

D

ill

. ~ ill

ill

t· . • ••• 0

TORQUE

~----

"

E

Figure 8 : Constant Torque Operation,E >V

, ;.: "

PEAK .--___ --. / POHER

: POINT

v

I J

I I I I , I

Figure 7 : Constant Torque Operation, E <V

<I> = 0 I

-

' ..

v

E

S8308·R1 "" Page B-11

\ ~

\

t

Torque

1.-

v" /

T -----------2

" i

tL,o a o g g

U rl B o

r-)1 ill

. Ii ,Ii D . '; u /

./ I

I

n U

n U

t

Torque

j

Speed -+

Fig~re 11 Constant Power Operation

Figure 12 Constant Power Operation Phasor Diagram

S8308-R1 Page 8-13

"'-""

J

I

I I I I i 1

t

Torque

Speed -+

Figure 13 Combination of Two Speed Torque Characteristics

."

...

SB30B-R1 Page B-14

End of Document


Recommended