+ All Categories
Home > Documents > A Simple SIS for Research - McGill...

A Simple SIS for Research - McGill...

Date post: 26-Feb-2019
Category:
Upload: buithuan
View: 216 times
Download: 0 times
Share this document with a friend
10
1 A Simple SIS for Research Reactive! Real-time! Embedded! Distributed! Heterogeneous!
Transcript

1

A Simple SIS for Research

Reactive! Real-time!

Embedded! Distributed!

Heterogeneous!

2

Process Modelling for MPM

Levi Lucio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, Maris Jukss, FTG+PM: An Integrated Framework for Investigating Model Transformation Chains. SDL Forum 2013: 182-202

Sadaf Mustafiz, Joachim Denil, Levi Lucio, and Hans Vangheluwe; "The FTG+PM Framework for Multi-Paradigm Modelling: An Automotive Case Study"; Accepted @ MPM2012 of Models2012, 2012

:ModelPlant :ModelControl:ModelEnv:ModelNetwork

:ControllerToSC

:ScToPn:PlantToPN:EnvToPN

:PlantToCbd

:EnvToCbd

AND False

:ScToAUTOSAR

:ToInstrumented

:ArchitectureDeployment

:ECUDeployment

False

True

:DetailedDeployment

False

True

:SwToC

:ArToRte:ArToMw

:CombineC

:RefineNetwork

TRUE:ExtractTiming

Behaviour

:RefineTimingBehaviour

:RefineTimingBehaviour

:RefineTimingBehaviour

True

:Boolean :Boolean

:Control DSL:Plant DSL:Environment DSL

:Network Formalism

:Statecharts

:CBD:Encapsulated PN

:CBD:Encapsulated PN

:Encapsulated PN

:Network Formalism

:AUTOSAR

:Performance Model

:AUTOSAR

:AUTOSAR

:AUTOSAR

:Boolean

:Boolean

:Boolean

:C-Code :C-code

:C-code

:C-Code

:Requirements Diagram

:TIMMO

:TIMMO

:TIMMO

:TIMMO

ModelRequirements

SafetyAnalysis HybridSimulation

CalibrationInfrastructure

EnvToCBD

Environment DSL

Causal Block Diagrams

PlantToCbd

Plant DSL

ControlToSc

Control DSL

StatechartsNetwork

FormalismEncapsulated

Petrinets

Hybrid Formalism

combineCBD

AUTOSAR

ScToAUTOSAR

C-code SwToC

Algebraic Equations

ToSchedulabilityAnalysis

DEVS

ToDeploymentSimulation

Performance Trace

ExecuteCalibration

Performance Formalism

ExtractPerformance

ToInstrumented

Architecture Deployment

ScToPnPlantToPnEnvToPN

combinePN

Reachability Graph

HybridSimula-tion Trace

SimulateHybrid

BuildRG

ToBinPackingAnalysis

RefineNetwork

ModelPlant ModelControlModelEnv

ECUDeployment

DetailedDeployment

ModelNetwork

ArToMwArToRte

CcombineC

SysML Req Diagram

TIMMO

CTL

ModelContext

ExtractRequirements

ToSafetyRequirement

Extract Timing Behaviour

Refine Timing Behaviour

SysML Use Case Diagram

Textual Requirements

ModelTextualReq

Boolean

CheckCtlCheckContinuous

Petrinets

RefineUseCases

RefineRequirements

DEVS Trace

SimulateDEVS

Bin Packing Trace

CheckDEVSTrace

Schedulability Trace

CalculateSchedulability

CheckBinPacking

GenerateCalibration

CombineCalibration

RefineUseCase

Description

ModelUseCaseDescription

SearchECUSearchDetailed

CheckSchedulability

:Use Cases

:Use Case Diagram

:SearchECU

:SearchDetailed

:SearchArchitecture False

SchedulabilityAnalysis

DEVSSimulation

BinPackingAnalysis

SearchArchitectureInteger

:Integer

:Integer

:Integer

:BinPackingTrace

:SchedulabilityTrace

:DEVSTrace

1

2

2

1

3

1

Use Cases

3

Hybrid Simulation

InterfaceBlock::update

Data-In

Data-Update-In

Control-rules

Control?

Model::update

Data-Update-Out

Data-Outno

yes

InterfaceBlock::Data-In

InterfaceBlock::Control-Rules

Data-In::data-InRule

ControlRules::store TriggeredRule

data-InRuledata-InRule2...

ControlRules:: onPeriodicRule

storeTriggeredRuleonPeriodicRule...

OR

AND Condition

Condition Expr

PeriodOffset

4

Process Modelling for MPM

* Levi Lucio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, Maris Jukss, FTG+PM: An Integrated Framework for Investigating Model Transformation Chains. SDL Forum 2013: 182-202 * Sadaf Mustafiz, Joachim Denil, Levi Lucio, and Hans Vangheluwe; "The FTG+PM Framework for Multi-Paradigm Modelling: An Automotive Case Study"; Proceedings of the 6th Workshop on Multi-Paradigm Modelling, 2012

:ModelPlant :ModelControl:ModelEnv:ModelNetwork

:ControllerToSC

:ScToPn:PlantToPN:EnvToPN

:PlantToCbd

:EnvToCbd

AND False

:ScToAUTOSAR

:ToInstrumented

:ArchitectureDeployment

:ECUDeployment

False

True

:DetailedDeployment

False

True

:SwToC

:ArToRte:ArToMw

:CombineC

:RefineNetwork

TRUE:ExtractTiming

Behaviour

:RefineTimingBehaviour

:RefineTimingBehaviour

:RefineTimingBehaviour

True

:Boolean :Boolean

:Control DSL:Plant DSL:Environment DSL

:Network Formalism

:Statecharts

:CBD:Encapsulated PN

:CBD:Encapsulated PN

:Encapsulated PN

:Network Formalism

:AUTOSAR

:Performance Model

:AUTOSAR

:AUTOSAR

:AUTOSAR

:Boolean

:Boolean

:Boolean

:C-Code :C-code

:C-code

:C-Code

:Requirements Diagram

:TIMMO

:TIMMO

:TIMMO

:TIMMO

ModelRequirements

SafetyAnalysis HybridSimulation

CalibrationInfrastructure

EnvToCBD

Environment DSL

Causal Block Diagrams

PlantToCbd

Plant DSL

ControlToSc

Control DSL

StatechartsNetwork

FormalismEncapsulated

Petrinets

Hybrid Formalism

combineCBD

AUTOSAR

ScToAUTOSAR

C-code SwToC

Algebraic Equations

ToSchedulabilityAnalysis

DEVS

ToDeploymentSimulation

Performance Trace

ExecuteCalibration

Performance Formalism

ExtractPerformance

ToInstrumented

Architecture Deployment

ScToPnPlantToPnEnvToPN

combinePN

Reachability Graph

HybridSimula-tion Trace

SimulateHybrid

BuildRG

ToBinPackingAnalysis

RefineNetwork

ModelPlant ModelControlModelEnv

ECUDeployment

DetailedDeployment

ModelNetwork

ArToMwArToRte

CcombineC

SysML Req Diagram

TIMMO

CTL

ModelContext

ExtractRequirements

ToSafetyRequirement

Extract Timing Behaviour

Refine Timing Behaviour

SysML Use Case Diagram

Textual Requirements

ModelTextualReq

Boolean

CheckCtlCheckContinuous

Petrinets

RefineUseCases

RefineRequirements

DEVS Trace

SimulateDEVS

Bin Packing Trace

CheckDEVSTrace

Schedulability Trace

CalculateSchedulability

CheckBinPacking

GenerateCalibration

CombineCalibration

RefineUseCase

Description

ModelUseCaseDescription

SearchECUSearchDetailed

CheckSchedulability

:Use Cases

:Use Case Diagram

:SearchECU

:SearchDetailed

:SearchArchitecture False

SchedulabilityAnalysis

DEVSSimulation

BinPackingAnalysis

SearchArchitectureInteger

:Integer

:Integer

:Integer

:BinPackingTrace

:SchedulabilityTrace

:DEVSTrace

1

2

2

1

3

1

Use Cases

5

Deployment Simulation

Application Layer

Run-Time Environment

OS

Communication Services

Communication Abstraction

Communication Drivers

Abstract Platform

Application Layer

Run-Time Environment

OS

Communication Services

Communication Abstraction

Communication Drivers

Abstract Platform

Application Layer

Run-Time Environment

Abstract Platform

(a) (b) (c)

6

Design-Space Exploration Full$deployment$space$

Horizontal$transforma5ons$Simulate/Analyse$Prune$bad$solu5ons$

Horizontal$transforma5ons$Simulate/Analyse$Prune$bad$solu5ons$

Horizontal$transforma5ons$Simulate/Analyse$Prune$Bad$Solu5ons$

Refin

emen

t$$transforma5

on$

Refin

emen

t$$transforma5

on$

Start$model$

Refin

emen

t$$transforma5

on$

Joachim Denil, Antonio Cicchetti, Matthias Biehl, Paul De Meulenaere, Romina Eramo and Serge Demeyer; Automatic Deployment Space Exploration Using Refinement Transformations; Accepted @ MPM Workshop of Models 2011

7

Explosion Exhaustive

Match

Iterate

Rewrite

ExhaustiveNext Rule

Checkpoint

nextRule?

trueRestore

Next Match

Save Solution Point

success?

success?

falsetrue

false

Random

Match

Iterate

Rewrite

Hill Climbing

Match

Iterate

Rewrite

Checkpoint

Evaluate

better?

Restore

Next Match

success?

false

no

true

RandomNext Rule

Save Solution Pointstop?

false

true

nextRule?

true false

Simulated Annealing

Match

Iterate

Rewrite

Checkpoint

Evaluateaccept?

Restore

false

temp?

iterate?

Decrease temp

true

false

true

Store Best; Clear Checkp.

falsetrue

Transform to MILP

Execute MILP

Task Mapping

Priority Assignement

Transform to MILP

Execute MILP

Transform to MM

Task Mapping

Priority Assignement

Transform to MILP

Execute MILP

Transform to MM

Task Mapping

Priority Assignement

Software to

Hardw

are m

apping

ToMILP

ExecuteMILP

ToDeployment

Random Sampling

Hill Climbing

Select Solution

enough samples?

DeploymentLanguage

MILP

ToMILP

ToDeployment

MILPTrace

ExecuteMILP

RandomSamplingHillClimbing

Joachim Denil, Han Gang, Magnus Persson, Xue Liu, Haibo Zeng, Hans Vangheluwe, "Model-Driven Engineering Approaches to Design Space Exploration", School of Computer Science, McGill University, January 2013, SOCS-TR-2013.1

8

Give Engineers the tools

9

Real-Time Preserving Instrumentation

Sine Wave

Gain Sine Wave

Gain Sine Wave

Gain

t

Normal Execution (no rate transition block):

Rate Decreased (two times):

Sine Wave

Gain Sine Wave

Sine Wave

Gain

t

10

Working on: •  Heterogeneous modelling and co-simulation:

-  Work with Bart Meyers: Hybrid to FMI co-sim -  Work with Bert Van Acker and Claudio Gomes

(see presentation) •  Extra-functional aware instrumentation of

models: -  Work with Sebastian Fishmeister (U of Waterloo)

•  Consistency during mechatronic design: -  Work with Istvan (see presentation)

•  Control – Deployment Co-Design: -  Work with Ken on RTE (see presentation) -  Design-space Exploration techniques for MDE


Recommended