+ All Categories
Home > Documents > A Singular Sturm-Liouville Problem with Limit Circle...

A Singular Sturm-Liouville Problem with Limit Circle...

Date post: 02-Feb-2018
Category:
Upload: vankien
View: 229 times
Download: 0 times
Share this document with a friend
13
Research Article A Singular Sturm-Liouville Problem with Limit Circle Endpoints and Eigenparameter Dependent Boundary Conditions Jinming Cai and Zhaowen Zheng School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, China Correspondence should be addressed to Zhaowen Zheng; [email protected] Received 5 December 2016; Accepted 23 January 2017; Published 21 March 2017 Academic Editor: Chris Goodrich Copyright © 2017 Jinming Cai and Zhaowen Zheng. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In this paper, we investigate a class of discontinuous singular Sturm-Liouville problems with limit circle endpoints and eigenparameter dependent boundary conditions. Operator formulation is constructed and asymptotic formulas for eigenvalues and fundamental solutions are given. Moreover, the completeness of eigenfunctions is discussed. 1. Introduction It is well known that many topics in mathematical physics require the investigation of eigenvalues and eigenfunctions of the Sturm-Liouville problems. e theory of regular Sturm- Liouville problems is well built; since the foundation work of Weyl on limit-point/limit-circle classification [1], the singular Sturm-Liouville problems (see [2–7] for real coefficients and [8] for complex coefficients) and more general Hamiltonian systems (see [9, 10]) are widely researched. Meanwhile, a large number of researchers are interested in the discontinuous Sturm-Liouville problem with inner discontinuous points, since these problems are of wide applications in engineering and mechanics (see [11–25]). Various physics applications of this kind of problems are found, such as oscillation of linear or nonlinear equation (see [26–29]) and heat and mass transfer problems (see [30]). e regular Sturm-Liouville problems with transmission conditions containing an eigenparameter on one of the boundary conditions have received a lot of attention in research (see [18–22]). Based on these results, some research- ers studied the regular Sturm-Liouville problems with eigen- parameter on both of the boundary conditions (see [23– 25]). In these papers, Yang and Wang in [18] considered a Sturm-Liouville problem with discontinuities at two points and eigenparameter dependent boundary condition at one endpoint; they obtained the fundamental solutions and gave the asymptotic formulas of eigenvalues and fundamental solutions. Further, they studied the discontinuous Sturm- Liouville problem with eigenparameter boundary conditions at two endpoints in [24] and extended the results of [18] to finite discontinuities case. In papers [19, 22, 23, 25], the authors obtained the estimations of eigenvalues and eigen- functions of the discontinuous Sturm-Liouville problem with one inner point, containing an eigenparameter in the bound- ary condition. S ¸en et al. considered the Sturm-Liouville prob- lem with two inner points containing an eigenparameter in the boundary condition and got similar result, respectively (see [20, 21]). Besides, the authors also discussed the com- pleteness of the eigenfunctions of a regular discontinuous Sturm-Liouville problem in papers [18, 25]. All of them researched the regular Sturm-Liouville problem. However, little is known about the singular Sturm-Liouville problems with limit-circle endpoints. We will consider the following singular discontinuous Sturm-Liouville problem with two limit-circle endpoints and eigenparameter in the boundary conditions: − ( () ()) + () () = () , ∈ (, ) ∪ (, ) , −∞ < < < < ∞, (1) with eigenparameter dependent conditions at the endpoints and : 1 1 [, ] () − 2 [, V] () = ( 1 [, ] () − 2 [, V] ()), (2) Hindawi Discrete Dynamics in Nature and Society Volume 2017, Article ID 9673846, 12 pages https://doi.org/10.1155/2017/9673846
Transcript
Page 1: A Singular Sturm-Liouville Problem with Limit Circle …downloads.hindawi.com/journals/ddns/2017/9673846.pdf · ResearchArticle A Singular Sturm-Liouville Problem with Limit Circle

Research ArticleA Singular Sturm-Liouville Problem with Limit Circle Endpointsand Eigenparameter Dependent Boundary Conditions

Jinming Cai and Zhaowen Zheng

School of Mathematical Sciences Qufu Normal University Qufu Shandong 273165 China

Correspondence should be addressed to Zhaowen Zheng zhwzheng126com

Received 5 December 2016 Accepted 23 January 2017 Published 21 March 2017

Academic Editor Chris Goodrich

Copyright copy 2017 Jinming Cai and Zhaowen Zheng This is an open access article distributed under the Creative CommonsAttribution License which permits unrestricted use distribution and reproduction in any medium provided the original work isproperly cited

In this paper we investigate a class of discontinuous singular Sturm-Liouville problems with limit circle endpoints andeigenparameter dependent boundary conditions Operator formulation is constructed and asymptotic formulas for eigenvaluesand fundamental solutions are given Moreover the completeness of eigenfunctions is discussed

1 Introduction

It is well known that many topics in mathematical physicsrequire the investigation of eigenvalues and eigenfunctions ofthe Sturm-Liouville problems The theory of regular Sturm-Liouville problems is well built since the foundation work ofWeyl on limit-pointlimit-circle classification [1] the singularSturm-Liouville problems (see [2ndash7] for real coefficients and[8] for complex coefficients) and more general Hamiltoniansystems (see [9 10]) are widely researchedMeanwhile a largenumber of researchers are interested in the discontinuousSturm-Liouville problem with inner discontinuous pointssince these problems are of wide applications in engineeringand mechanics (see [11ndash25]) Various physics applications ofthis kind of problems are found such as oscillation of linear ornonlinear equation (see [26ndash29]) and heat and mass transferproblems (see [30])

The regular Sturm-Liouville problems with transmissionconditions containing an eigenparameter on one of theboundary conditions have received a lot of attention inresearch (see [18ndash22]) Based on these results some research-ers studied the regular Sturm-Liouville problems with eigen-parameter on both of the boundary conditions (see [23ndash25]) In these papers Yang and Wang in [18] considered aSturm-Liouville problem with discontinuities at two pointsand eigenparameter dependent boundary condition at oneendpoint they obtained the fundamental solutions and gavethe asymptotic formulas of eigenvalues and fundamental

solutions Further they studied the discontinuous Sturm-Liouville problem with eigenparameter boundary conditionsat two endpoints in [24] and extended the results of [18]to finite discontinuities case In papers [19 22 23 25] theauthors obtained the estimations of eigenvalues and eigen-functions of the discontinuous Sturm-Liouville problemwithone inner point containing an eigenparameter in the bound-ary condition Sen et al considered the Sturm-Liouville prob-lem with two inner points containing an eigenparameter inthe boundary condition and got similar result respectively(see [20 21]) Besides the authors also discussed the com-pleteness of the eigenfunctions of a regular discontinuousSturm-Liouville problem in papers [18 25] All of themresearched the regular Sturm-Liouville problem Howeverlittle is known about the singular Sturm-Liouville problemswith limit-circle endpoints

We will consider the following singular discontinuousSturm-Liouville problem with two limit-circle endpoints andeigenparameter in the boundary conditions119871119910 fl minus (119901 (119909) 1199101015840 (119909))1015840 + 119902 (119909) 119910 (119909) = 120582119910 (119909) 119909 isin (119886 120585) cup (120585 119887) minusinfin lt 119886 lt 120585 lt 119887 lt infin (1)

with eigenparameter dependent conditions at the endpoints119886 and 119887 1198711119910 fl 1198861 [119910 119906] (119886) minus 1198862 [119910 V] (119886)= 120582 (1198871 [119910 119906] (119886) minus 1198872 [119910 V] (119886)) (2)

HindawiDiscrete Dynamics in Nature and SocietyVolume 2017 Article ID 9673846 12 pageshttpsdoiorg10115520179673846

2 Discrete Dynamics in Nature and Society

1198712119910 fl 1198881 [119910 119906] (119887) minus 1198882 [119910 V] (119887)= 120582 (1198891 [119910 119906] (119887) minus 1198892 [119910 V] (119887)) (3)

the transmission conditions at 119909 = 120585 are1198713119910 fl 119910 (120585 + 0) minus 1205751119910 (120585 minus 0) minus 12057521199101015840 (120585 minus 0) = 01198714119910 fl 1199101015840 (120585 + 0) minus 1205753119910 (120585 minus 0) minus 12057541199101015840 (120585 minus 0) = 0 (4)

(we assume that not all 120585119895 (1 le 119895 le 4) are equal to zerosince in this case the boundary value problem (1)ndash(3) hasno transmission conditions) where both 119886 and 119887 are limit-circle points 1199061(119909) and V1(119909) are linearly independent real-valued solutions of equation minus(119901(119909)1199101015840(119909))1015840 + 119902(119909)119910(119909) = 0on (119886 120585) and 1199062(119909) and V2(119909) are linearly independent real-valued solutions of equation minus(119901(119909)1199101015840(119909))1015840 + 119902(119909)119910(119909) = 0on (120585 119887) and satisfy [1199061 V1](119886) = 0 [1199062 V2](119887) = 0 where[119906 V] = 119901(119906V1015840 minus 1199061015840V) is the sesquilinear form 119901(119909) = 111990121for 119909 isin (119886 120585) 119901(119909) = 111990122 for 119909 isin (120585 119887) and 120582 isin C is aspectral parameter 119902(119909) is a real-valued continuous functionon (119886 120585)cup(120585 119887) and has finite limits 119902(120585plusmn0) = lim119909rarr(120585plusmn0)119902(119909)119901119894 119886119894 119887119894 119888119894 119889119894 (119894 = 1 2) and 120575119894 (119894 = 1 2 3 4) are nonzero realnumbers

For the convenience we set

119906 = 1199061 119909 isin (119886 120585) 1199062 119909 isin (120585 119887) V = V1 119909 isin (119886 120585)

V2 119909 isin (120585 119887) (5)

Moreover we assume that

120588 = 10038161003816100381610038161003816100381610038161003816100381610038161198871 11988611198872 11988621003816100381610038161003816100381610038161003816100381610038161003816 gt 0120574 = 10038161003816100381610038161003816100381610038161003816100381610038161205751 12057531205752 12057541003816100381610038161003816100381610038161003816100381610038161003816 gt 0120579 = 1003816100381610038161003816100381610038161003816100381610038161003816 1198881 11988821198891 11988921003816100381610038161003816100381610038161003816100381610038161003816 gt 0

(6)

Here we research a singular Sturm-Liouville problemwith two limit-circle endpoints and the parameter 120582 is notonly in the equation but also in the boundary conditionsBased on the modified inner product we define a newself-adjoint operator 119860 such that the eigenvalues of such aproblem are coincided with those of 119860 We rebuild its funda-mental solutions get the asymptotic formulas for eigenvaluesand eigenfunctions and also discuss the completeness of itseigenfunctions

At first we introduce the following lemmas

Lemma 1 (the Lagrange identity see [5]) Let119863(119871) = 119910 | 119910 isin1198712[119886 119887] 1199101015840 isin 119860119862[119886 119887] 119871119910 isin 1198712[119886 119887] where for any interval

119868 sub R 1198712(119868) denotes the set of functions on 119868 which are squareintegrable on 119868 For any 119910 isin 119863(119871) 119911 isin 119863(119871lowast) one has119911119871119910 minus 119910119871lowast119911 = 119889119889119909 [119910 119911] (119909) (7)

where 119871lowast is the adjoint expression of 119871 which is given by 119871lowast119911 =minus(1199011199111015840)1015840 + 119902119911Lemma 2 (Greenrsquos formula see [5]) Let 119868 = [119886 119887] forarbitrary 119910 isin 119863(119871) 119911 isin 119863(119871lowast) 119863(119871) and 119863(119871lowast) are definedas above one has(119871119910 119911) minus (119910 119871lowast119911) = int119887

119886(119911119871119910 minus 119910119871lowast119911) 119889119909= [119910 119911] (119887) minus [119910 119911] (119886) (8)

Since 119871119910 is of limit-circle type at 119909 = 119886int1199091119886

119906119871119910 119889119909 int1199091119886

119910119871lowast119906 119889119909 and [119910 119906](1199091) exist forall119909 isin (119886 1199091)So [119910 119906](119886) = lim119909rarr119886+[119910 119906](119909) exists Similarly [119910 V](119886)[119910 119906](119887) and [119910 V](119887) existLemma 3 (see [5]) For any 119891 119892 120572 120573 isin 119863(119871) while 119863(119871) isdefined in Lemma 1 one has1003816100381610038161003816100381610038161003816100381610038161003816[119891 120572] [119891 120573][119892 120572] [119892 120573]1003816100381610038161003816100381610038161003816100381610038161003816 = [119891 119892] [120572 120573] (9)

2 Operator Formulation

In this section we introduce the Hilbert space 119867 = 1198712(119886 120585) oplus1198712(120585 119887) oplus C2 the inner product on 119867 is defined by⟨119865 119866⟩ = 12057411990121 int120585119886

119891 (119909) 119892 (119909)119889119909 + 11990122 int119887120585

119891 (119909) 119892 (119909)119889119909+ 12057412058811989111198921 + 112057911989121198922 (10)

for 119865 = (119891 1198911 1198912) 119866 = (119892 1198921 1198922) isin 119867 119891 119892 isin 1198712((119886 120585) cup(120585 119887)) For the convenience we use the following notations1198671 = 1198712(119886 120585) oplus 1198712(120585 119887)119879119886 (119910) = 1198871 [119910 119906] (119886) minus 1198872 [119910 V] (119886) 1198791015840119886 (119910) = 1198861 [119910 119906] (119886) minus 1198862 [119910 V] (119886) 119879119887 (119910) = 1198891 [119910 119906] (119887) minus 1198892 [119910 V] (119887) 1198791015840119887 (119910) = 1198881 [119910 119906] (119887) minus 1198882 [119910 V] (119887) (11)

Besides we introduce the operator 119860 in the Hilbert space 119867as follows119863 (119860) = 119865 = (119891 (119909) 1198911 1198912) isin 119867 | 119891 (119909) 1198911015840 (119909) are absolutely continuous on (119886 120585)cup (120585119887) with finite limits 119891 (120585 plusmn 0) 1198911015840 (120585 plusmn 0) and satisfy 119871119891isin 1198712 ((119886 120585) cup (120585 119887)) 1198713119891 = 1198714119891 = 0 1198911 = 119879119886 (119891) 1198912= 119879119887 (119891)

(12)

Discrete Dynamics in Nature and Society 3

which acts by the rule

119860119865 = (119871119891 1198791015840119886 (119891) 1198791015840119887 (119891)) (13)

with119865 = (119891 119879119886(119891) 119879119887(119891)) isin 119863(119860)Nowwe can rewrite prob-lem (1)ndash(4) in the operator form 119860119865 = 120582119865 for 119865 = (119891 119879119886(119891)119879119887(119891)) isin 119863(119860) Obviously we have the following lemmas

Lemma 4 The eigenvalues and eigenfunctions of problem(1)ndash(4) are corresponding to the eigenvalues and the firstcomponent of the corresponding eigenfunctions of operator 119860respectively

Lemma 5 The domain 119863(119860) is dense in 119867

Proof Let 119865 = (119891(119909) 1198911 1198912) isin 119867 119865 perp 119863(119860) and let 119862infin0 be afunctional set which has compact support and can be differ-ential infinitely such that 1205991(119909) isin 119862infin0 (119886 120585) 1205992(119909) isin 119862infin0 (120585 119887)Since 119862infin0 oplus 0 oplus 0 sub 119863(119860) for forall119866 = (119892(119909) 0 0) isin 119862infin0 oplus 0 oplus 0is orthogonal to 119865 namely

⟨119865 119866⟩ = 12057411990121 int120585119886

119891 (119909) 119892 (119909)119889119909 + 11990122 int119887120585

119891 (119909) 119892 (119909)119889119909= 0 (14)

so 119891(119909) = 0 For all 119881 = (](119909) ]1 0) isin 119863(119860) ⟨119865 119881⟩ =(120574120588)1198911]1 = 0 1198911 = 0 since ]1 is arbitrary Similarly onegets 1198912 = 0 Above all one has 119865 = (0 0 0) which proves theassertion

Definition 6 Let 119882(119891 119892 119909) = 119891(119909)1198921015840(119909) minus 1198911015840(119909)119892(119909) denotethe Wronskian of functions 119891(119909) and 119892(119909) One has119882 (119891 119892 119886) = 11990121 [119891 119892] (119886) 119882 (119891 119892 119887) = 11990122 [119891 119892] (119887) (15)

Theorem 7 Operator 119860 is symmetric

Proof For each 119865 119866 isin 119863(119860) by the definition of inner pro-duct and operator 119860 we can get⟨119860119865 119866⟩ minus ⟨119865 119860119866⟩= 120574119882 (119891 119892 120585 minus 0) minus 119882 (119891 119892 120585 + 0) + 119882 (119891 119892 119887)minus 120574119882 (119891 119892 119886)+ 120574120588 [1198791015840119886 (119891) 119879119886 (119892) minus 119879119886 (119891) 1198791015840119886 (119892)]

+ 1120579 [1198791015840119887 (119891) 119879119887 (119892) minus 119879119887 (119891) 1198791015840119887 (119892)] (16)

then (4) implies that119882 (119891 119892 120585 + 0) = 120574119882 (119891 119892 120585 minus 0) (17)

using boundary condition (2) we get120574120588 [1198791015840119886 (119891) 119879119886 (119892) minus 119879119886 (119891) 1198791015840119886 (119892)] = 120574119882 (119891 119892 119886) (18)

and by boundary condition (3) we have1120579 [1198791015840119887 (119891) 119879119887 (119892) minus 119879119887 (119891) 1198791015840119887 (119892)] = 119882 (119891 119892 119887) (19)

Substituting (17)ndash(19) into (16) yields ⟨119860119865 119866⟩ minus ⟨119865 119860119866⟩ = 0This completes the proof

Moreover we have the following conclusion

Theorem 8 Operator 119860 is self-adjoint

Proof 119860 is self-adjoint if and only if for each 119865 =(119891(119909) 119879119886(119891) 119879119887(119891)) isin 119863(119860) ⟨119860119865 119882⟩ = ⟨119865 119880⟩ for some119880 isin 119867 implying that 119882 isin 119863(119860) and 119860119882 = 119880 where119882 = (119908(119909) ℎ 119903) 119880 = (120583(119909) 119896 119904) Concretely we shouldprove that the following properties hold

(i) 119908(119909) 1199081015840(119909) are absolutely continuous on (119886 120585) cup(120585 119887) 119871119908 isin 1198712((119886 120585) cup (120585 119887))(ii) ℎ = 1198871[119908 119906](119886) minus 1198872[119908 V](119886) 119903 = 1198891[119908 119906](119887) minus 1198892[119908

V](119887)(iii) 119871 119894119908 = 0 119894 = 3 4(iv) 120583(119909) = 119871119908(v) 119896 = 1198861[119908 119906](119886) minus 1198862[119908 V](119886) 119904 = 1198881[119908 119906](119887) minus 1198882[119908

V](119887)For an arbitrary point 119865 isin 119862infin0 oplus 0 oplus 0 sub 119863(119860) we have12057411990121 int120585119886

(119871119891 (119909)) 119908 (119909)119889119909 + 11990122 int119887120585

(119871119891 (119909)) 119908 (119909)119889119909= 12057411990121 int120585

119886119891 (119909) 120583 (119909)119889119909 + 11990122 int119887

120585119891 (119909) 120583 (119909)119889119909 (20)

that is ⟨119871119891 119908⟩1 = ⟨119891 120583⟩1 According to the classical Sturm-Liouville theory (i) and (iv) hold So ⟨119860119865 119882⟩ = ⟨119865 119880⟩ forall119865 isin119863(119860) ⟨119871119891 119908⟩1 + 1205741205881198791015840119886 (119891) ℎ + 11205791198791015840119887 (119891) 119903

= ⟨119891 119871119908⟩1 + 120574120588119879119886 (119891) 119896 + 1120579119879119887 (119891) 119904 (21)

Besides we have⟨119871119891 119908⟩1 = ⟨119891 119871119908⟩1 + 120574119882 (119891 119908 120585 minus 0)minus 119882 (119891 119908 120585 + 0) + 119882 (119891 119908 119887)minus 120574119882 (119891 119908 119886) (22)

Substituting (22) into (21) we get120574120588 (119879119886 (119891) 119896 minus 1198791015840119886 (119891) ℎ) + 1120579 (119879119887 (119891) 119904 minus 1198791015840119887 (119891) 119903)= 120574119882 (119891 119908 120585 minus 0) minus 119882 (119891 119908 120585 + 0) + 119882 (119891 119908 119887)minus 120574119882 (119891 119908 119886)

(23)

4 Discrete Dynamics in Nature and Society

By Naimarkrsquos Patching Lemma [4] there exists 119865 isin 119863(119860)such that[119891 119906] (119887) = [119891 V] (119887) = 119891 (120585 plusmn 0) = 1198911015840 (120585 plusmn 0) = 0[119891 119906] (119886) = 1198872[119891 V] (119886) = 1198871 (24)

Substituting (24) into (23) we have ℎ = 1198871[119908 119906](119886) minus1198872[119908 V](119886) Further there exists 119865 isin 119863(119860) such that[119891 119906] (119886) = [119891 V] (119886) = 119891 (120585 plusmn 0) = 1198911015840 (120585 plusmn 0) = 0[119891 119906] (119887) = 1198892[119891 V] (119887) = 1198891 (25)

Analogously we can get 119903 = 1198891[119908 119906](119887) minus 1198892[119908 V](119887) So (ii)holds Similarly one proves (v) Next let 119865 isin 119863(119860) such that[119891 119906] (119886) = [119891 V] (119886) = [119891 119906] (119887) = [119891 V] (119887)= 119891 (120585 + 0) = 0119891 (120585 minus 0) = minus12057521198911015840 (120585 minus 0) = 12057511198911015840 (120585 + 0) = 120574

(26)

Then by (23) we have 1198713119908 = 0 Similarly we can get 1198714119908 =0 So 119860 is a self-adjoint operator

From the properties of self-adjoint operators we have thefollowing corollaries

Corollary 9 All eigenvalues of the singular Sturm-Liouvilleproblem (1)ndash(4) are real

Corollary 10 Let 1205821 and 1205822 be two different eigenvalues ofthe singular Sturm-Liouville problem (1)ndash(4) then the corre-sponding eigenfunctions 119891(119909) and 119892(119909) are orthogonal in thesense of12057411990121 int120585

119886119891 (119909) 119892 (119909)119889119909 + 11990122 int119887

120585119891 (119909) 119892 (119909)119889119909 + 12057412058811989111198921

+ 112057911989121198922 = 0 (27)

3 Asymptotic Approximation ofFundamental Solutions

In this section we construct the fundamental solutions ofproblem (1)ndash(4) and get the asymptotic approximation forfundamental solutions

Lemma 11 (see [5]) Let the real-valued function 119902(119909) becontinuous on 119868 = (119886 120585) cup (120585 119887) and let 119891(120582) 119892(120582) be givenentire functions Then for any 120582 isin C the equation119871119910 fl minus (119901 (119909) 1199101015840 (119909))1015840 + 119902 (119909) 119910 (119909) = 120582119910 (119909) 119909 isin (119886 120585) cup (120585 119887) (28)

has unique solution 119910 = 119910(119909 120582) satisfying the initial conditions119910 (119886 120582) = 119891 (120582) 1199101015840 (119886 120582) = 119892 (120582) (29)

For each fixed 119909 isin (119886 120585) cup (120585 119887) 119910(119909 120582) is an entire functionof 120582

Herewe define fundamental solutions120593(119909 120582) and120594(119909 120582)of (1) by the following procedure

120593 (119909 120582) = 1205931 (119909 120582) 119909 isin (119886 120585) 1205932 (119909 120582) 119909 isin (120585 119887) 120594 (119909 120582) = 1205941 (119909 120582) 119909 isin (119886 120585) 1205942 (119909 120582) 119909 isin (120585 119887)

(30)

Let 1205931(119909 120582) be the solution of (1) on the interval (119886 120585)which satisfies the initial conditions1205931 (119886 120582) fl [119910 119906] (119886 120582) = 1198862 minus 120582119887212059310158401 (119886 120582) fl [119910 V] (119886 120582) = 1198861 minus 1205821198871 (31)

by virtue of Lemma 11 we can define the solution 1205932(119909 120582) of(1) on (120585 119887) by the initial conditions

(1205932 (120585 + 0)12059310158402 (120585 + 0)) = (12057511205931 (120585 minus 0) + 120575212059310158401 (120585 minus 0)12057531205931 (120585 minus 0) + 120575412059310158401 (120585 minus 0)) (32)

Analogously we define the solutions 1205942(119909 120582) and 1205941(119909 120582) of(1) by the initial conditions1205942 (119887 120582) fl [119910 119906] (119887 120582) = 1198882 minus 120582119889212059410158402 (119887 120582) fl [119910 V] (119887 120582) = 1198881 minus 1205821198891

(1205941 (120585 minus 0)12059410158401 (120585 minus 0)) = (12057541205942 (120585 + 0) minus 120575212059410158402 (120585 + 0)120574120575112059410158402 (120585 + 0) minus 12057531205942 (120585 + 0)120574 ) (33)

Now we consider Wronskian119882119894 (120582) fl 119882 (120593119894 120594119894 119909)= 120593119894 (119909 120582) 1205941015840119894 (119909 120582) minus 1205931015840119894 (119909 120582) 120594119894 (119909 120582)(119894 = 1 2) (34)

By the dependence of solutions of initial value problemson the parameter one has that 119882119894(120582) (119894 = 1 2) are entirefunctions of 120582 and are independent of 119909Lemma 12 For every 120582 isin C 1198822(120582) = 1205741198821(120582)

Discrete Dynamics in Nature and Society 5

Proof By the definition of 119882119894(120582) we have1198821 (120582) = 1205931 (120585 minus 0 120582) 12059410158401 (120585 minus 0 120582)minus 12059310158401 (120585 minus 0 120582) 1205941 (120585 minus 0 120582)

1198822 (120582) = 1205932 (120585 + 0 120582) 12059410158402 (120585 + 0 120582)minus 12059310158402 (120585 + 0 120582) 1205942 (120585 + 0 120582)

(35)

using the transmission conditions (4) simple computationgives 119882 (1205932 1205942 120585 + 0) = 120574119882 (1205931 1205941 120585 minus 0) (36)

Thus for each 120582 isin C we have 1198822(120582) = 1205741198821(120582) This com-pletes the proof

Besides we set 119882(120582) fl 1198821(120582) = (1120574)1199082(120582)Theorem 13 The eigenvalues of problem (1)ndash(4) coincide withthe zeros of the function 119882(120582)Proof Let ]0(119909 1205820) be any eigenfunction corresponding toeigenvalue 1205820 then the function ]0(119909 1205820)may be representedin the form

]0 (119909 1205820)=

11989811205931 (119909 1205820) + 11989821205941 (119909 1205820) 119909 isin (119886 120585) 11989831205932 (119909 1205820) + 11989841205942 (119909 1205820) 119909 isin (120585 119887) (37)

where at least one of the constants 119898119894 (119894 = 1 2 3 4) is notzero We should show that 119882(1205820) = 0 Suppose to thecontrary that there exists 1205820 isin 119877 such that119882(1205820) = 1198821(1205820) =(1120574)1198822(1205820) = 0 Since eigenfunction ]0(119909 1205820) satisfiesboth boundary and transmission conditions (2)ndash(4) we have119871 119894]0(119909 1205820) = 0 (119894 = 1 2 3 4) while the determinant ofcoefficient matrix is not zero so we obtain 119898119894 = 0 (119894 =1 2 3 4) which is a contradiction then 119882(1205820) = 0Conversely let 120582 = 1205820 be a zero of function 119882(120582) then119882(1205820) = 1198821(1205820) = (1120574)1198822(1205820) = 0 therefore 120594119894(119909 1205820) =119896120593119894(119909 1205820) (119894 = 1 2) for some 119896 = 0 Since both 1205932(119909 1205820) and1205942(119909 1205820) satisfy the boundary condition (3)

120593 (119909 1205820) = 1205931 (119909 1205820) 119909 isin (119886 120585) 1205932 (119909 1205820) 119909 isin (120585 119887) (38)

satisfies problem (1)ndash(4) So function 120593(119909 1205820) is an eigen-function of problem (1)ndash(4) corresponding to eigenvalue 1205820This completes the proof

Theorem 14 The eigenvalues of problem (1)ndash(4) are analyti-cally single

Proof Let 120582 = 119904 + 119894119905 and we use the following notions forsimplicity 120593 = 120593(119909 120582) 1205931120582 = 1205971205931120597120582 and 12059310158401120582 = 12059712059310158401120597120582

We differentiate the equation 119860120594 = 120582120594 with respect to 120582 toobtain 119860120594120582 = 120594 + 120582120594120582 (39)

Using integration by parts we get⟨119860120594120582 120593⟩1 minus ⟨120594120582 119860120593⟩1= 120574 (120594112058212059310158401 minus 12059410158401120582120593110038161003816100381610038161003816120585119886) + (120594212058212059310158402 minus 120594101584021205821205932)100381610038161003816100381610038161003816119887120585 (40)

Substituting (39) and 119860120593 = 120582120593 into the left side of (40) wehave ⟨120582120594120582 120593⟩1 minus ⟨120594120582 120582120593⟩1 = ⟨120594 120593⟩1 + 2119894119905 ⟨120594120582 120593⟩1 (41)

Moreover

120574 (120594112058212059310158401 minus 12059410158401120582120593110038161003816100381610038161003816120585119886) + (120594212058212059310158402 minus 120594101584021205821205932)100381610038161003816100381610038161003816119887120585= 11988911205932 (119887) minus 119889212059310158402 (119887)minus 120574 [(1198861 minus 1205821198871) 1205941120582 (119886) minus (1198862 minus 1205821198872) 12059410158401120582 (119886)]

(42)

By (31) we observe that1198821015840 (120582) = 1205931 (119886 120582) 12059410158401 (119886 120582) minus 12059310158401 (119886 120582) 1205941 (119886 120582)= 11988711205941 (119886) minus 119887212059410158401 (119886) + (1198862 minus 1205821198872) 12059410158401120582 (119886)minus (1198861 minus 1205821198871) 1205941120582 (119886)

(43)

then (40) becomes1205741198821015840 (120582) = ⟨120594 120593⟩1 + 2119894119905 ⟨120594120582 120593⟩1+ 120574 (11988711205941 (119886) minus 119887212059410158401 (119886))minus (11988911205932 (119887) minus 119889212059310158402 (119887))

(44)

Next let 1205830 be an arbitrary zero of119882(120582) Since119882(1205830) = 0 weobtain 120593119894(119909 1205830) = 119896120594119894(119909 1205830) (119894 = 1 2) (119896 = 0) 119896 isin R Notingthat 1205830 is real a short calculation (44) becomes1205741198821015840 (1205830)

= 119896 (12057411990121 int120585119886

10038161003816100381610038161205941 (119909)10038161003816100381610038162 119889119909 + 11990122 int119887120585

10038161003816100381610038161205942 (119909)10038161003816100381610038162 119889119909)+ 120588119896 + 120579119896

(45)

Since 120588 gt 0 120579 gt 0 120574 gt 0 and 119896 = 0 1198821015840(1205830) = 0 Hence theanalytic multiplicity of 1205830 is one which completes the proof

6 Discrete Dynamics in Nature and Society

Lemma 15 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the following integraland differential equations hold for 119896 = 0 and 119896 = 11198891198961198891199091198961205931 (119909 120582)

= (1198862 minus 11990421198872) 119889119896119889119909119896 cos [1199011119904 (119909 minus 119886)]minus 1198861 minus 119904211988711199011119904 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)]+ 1199011119904 int119909

119886

119889119896119889119909119896 sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205931 (120591) 119889120591(46)

1198891198961198891199091198961205932 (119909 120582)= 1205932 (120585 + 0) 119889119896119889119909119896 cos [1199012119904 (119909 minus 120585)]

+ 1119901211990412059310158402 (120585 + 0) 119889119896119889119909119896 sin [1199012119904 (119909 minus 120585)]+ 1199012119904 int119909

120585

119889119896119889119909119896 sin [1199012119904 (119909 minus 120591)] 119902 (120591) 1205932 (120591) 119889120591(47)

Proof For the case of 119896 = 0 consider 1205931(119909 120582) as the solutionof the following nonhomogeneous problem

minus (119901 (119909) 119910 (119909)1015840)1015840 + 120582119910 (119909) = 119902 (119909) 119910 (119909)1205931 (119886 120582) = 1198862 minus 120582119887212059310158401 (119886 120582) = 1198861 minus 1205821198871 (48)

Using the method of constant variation 1205931(119909 120582) satisfies1205931 (119909 120582) = (1198862 minus 11990421198872) cos [1199011119904 (119909 minus 119886)]minus 1198861 minus 119904211988711199011119904 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)]+ 1199011119904 int119909

119886sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205931 (120591) 119889120591

(49)

Then differentiating it with respect to 119909 we have (46) Theproof for (47) is similar so we omit the details

Similarly we have the following theorem

Lemma 16 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the following integraland differential equations hold for 119896 = 0 and 119896 = 11198891198961198891199091198961205941 (119909 120582) = 12057541205942 (120585 + 0) minus 120575212059410158402 (120585 + 0)120574 119889119896119889119909119896

sdot cos [1199011119904 (119909 minus 120585)] + 120575112059410158402 (120585 + 0) minus 12057531205942 (120585 + 0)1199011119904120574

sdot 119889119896119889119909119896 sin [1199011119904 (119909 minus 120585)] minus 1199011119904sdot int120585119909

119889119896119889119909119896 sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205941 (120591) 1198891205911198891198961198891199091198961205942 (119909 120582) = (1198882 minus 11990421198892) 119889119896119889119909119896 cos [1199012119904 (119909 minus 119887)]

+ 1198881 minus 119904211988911199012119904 119889119896119889119909119896 sin [1199012119904 (119909 minus 119887)] minus 1199012119904sdot int119887119909

119889119896119889119909119896 sin [1199012119904 (119909 minus 120591)] 119902 (120591) 1205942 (120591) 119889120591(50)

Lemma 17 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then for 119896 = 0 1 120593(119909 120582)have the following estimations

Case 1 If 1198872 = 0 then1198891198961198891199091198961205931 (119909 120582)= minus11990421198872 119889119896119889119909119896 cos [1199011119904 (119909 minus 119886)]

+ 119874 (|119904|119896+1 119890|119905|1199011(119909minus119886)) 1198891198961198891199091198961205932 (119909 120582)= 1199011120575211990431198872 sin [1199011119904 (120585 minus 119886)] 119889119896119889119909119896 cos [1199012119904 (119909 minus 119886)]

+ 119874 (|119904|119896+2 119890|119905|(1199011(120585minus119886)+1199012(119909minus119886)))

(51)

Case 2 If 1198872 = 0 then1198891198961198891199091198961205931 (119909 120582)= minus11988711199041199011 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)] + 119874 (|119904|119896 119890|119905|1199011(119909minus119886))

1198891198961198891199091198961205932 (119909 120582)= minus120575211988711199042 cos [1199011119904 (120585 minus 119886)] 119889119896119889119909119896 cos [1199012119904 (119909 minus 120585)]

+ 119874 (|119904|119896+1 119890|119905|(1199011(120585minus119886)+1199012(119909minus120585)))

(52)

Each of these asymptotic equalities holds uniformly for 119909 as|120582| rarr infin

Proof The proof of formulas for 1205931(119909 120582) is identical to thoseof Titchmarshrsquos proof for 120593(119909 120582) (see [6]) so we only give theproof of formulas for 1205932(119909 120582) namely equality (51) the otherequalities are similar

Discrete Dynamics in Nature and Society 7

For 119896 = 0 by the estimations of 1205931(119909 120582) and 12059310158401(119909 120582) wehave 1205931 (120585 minus 0 120582) = minus11990421198872 cos [1199011119904 (120585 minus 119886)]+ 119874 (|119904| 119890|119905|1199011(120585minus119886)) 12059310158401 (120585 minus 0 120582) = 119901111990431198872 sin [1199011119904 (120585 minus 119886)]+ 119874 (|119904|2 119890|119905|1199011(120585minus119886))

(53)

then substituting (53) into (47) and observing (32) we have1205932 (119909 120582)= 1199011120575211990431198872 sin [1199011119904 (120585 minus 119886)] cos [1199012119904 (119909 minus 119886)]+ 119874 (|119904|2 119890|119905|(1199011(120585minus119886)+1199012(119909minus120585))) (54)

differentiating (54) with respect to 119909 we have (51)Lemma 18 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then for 119896 = 0 1 120594(119909 120582)have the following estimations

Case 1 If 1198892 = 0 then1198891198961198891199091198961205941 (119909 120582)= minus1199012119889212057521199043120574 sin [1199012119904 (120585 minus 119887)] 119889119896119889119909119896 cos [1199011119904 (119909 minus 120585)]

+ 119874 (|119904|119896+2 119890|119905|(1199011(119909minus120585)+1199012(120585minus119887))) 1198891198961198891199091198961205942 (119909 120582)= minus11988921199042 119889119896119889119909119896 cos [1199012119904 (119909 minus 119887)]

+ 119874 (|119904|119896+1 119890|119905|1199012(119909minus119887))

(55)

Case 2 If 1198892 = 0 then1198891198961198891199091198961205941 (119909 120582)= minus119889112057521199042120574 cos [1199012119904 (120585 minus 119887)] 119889119896119889119909119896 cos [1199011119904 (119909 minus 120585)]

+ 119874 (|119904|119896+1 119890|119905|(1199011(119909minus120585)+1199012(120585minus119887))) 1198891198961198891199091198961205942 (119909 120582)= minus11988911199041199012 119889119896119889119909119896 sin [1199012119904 (119909 minus 119887)] + 119874 (|119904|119896 119890|119905|1199012(119909minus119887))

(56)

Each of these asymptotic equalities holds uniformly for 119909 as|120582| rarr infin

Theorem 19 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the function 1198822(120582)has the following asymptotic representations

Case 1 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= 120575211990111199012119887211988921199046 sin [1199011119904 (120585 minus 119886)] sin [1199012119904 (119887 minus 120585)]+ 119874 (|119904|5 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (57)

Case 2 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= minus12057521199011119887211988911199045 sin [1199011119904 (120585 minus 119886)] cos [1199012119904 (119887 minus 120585)]+ 119874 (|119904|4 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (58)

Case 3 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= minus12057521199012119887111988921199045 cos [1199011119904 (120585 minus 119886)] sin [1199012119904 (119887 minus 120585)]+ 119874 (|119904|4 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (59)

Case 4 If 1198872 = 0 and 1198892 = 0 then1198822 (120582) = 1205752119887111988911199044 cos [1199011119904 (120585 minus 119886)] cos [1199012119904 (119887 minus 120585)]+ 119874 (|119904|3 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (60)

Proof By the definition of 1198822(120582) we have1198822 (120582) = 1205932 (119887 120582) 12059410158402 (119887 120582) minus 12059310158402 (119887 120582) 1205942 (119887 120582)= (1198881 minus 1205821198891) 1205932 (119887 120582) minus (1198882 minus 1205821198892) 12059310158402 (119887 120582) (61)

According to the equalities of 1205932(119909 120582) and 12059310158402(119909 120582) inLemma 17 we can obtain the formulas of 1198822(120582) in thistheorem

Corollary 20 The eigenvalues of the boundary value problem(1)ndash(4) are bounded below

Proof Putting 119904 = 119894119905 (119905 gt 0) in Theorem 19 we can obtain1198822(120582) = 1198822(minus1199052) rarr infin (119905 rarr infin) Hence 1198822(minus1199052) = 0 forsufficiently negative 120582 and sufficiently large 120582 This completesthe proof

4 Asymptotic Formulas forEigenvalues and Eigenfunctions

In this section we can get the asymptotic formulas forthe eigenvalues and eigenfunctions of the singular Sturm-Liouville problem (1)ndash(4) Since the eigenvalues coincidewiththe zeros of the entire function119882(120582) it follows that they haveno finite limits

Theorem 21 The eigenvalues 120582119899 = 1199042119899 (119899 = 0 1 2 ) ofproblem (1)ndash(4) have the following asymptotic representationsas 119899 rarr infin

8 Discrete Dynamics in Nature and Society

Case 1 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (62)

Case 2 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (63)

Case 3 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (64)

Case 4 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (65)

Proof By applying the well-known Rouche theorem we canobtain these conclusions (see [3] Theorem 23)

According to Theorem 21 and Lemmas 17 and 18 wecan obtain the following asymptotic representations of theeigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899)Theorem 22 The eigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899) (119899 =0 1 2 ) of problem (1)ndash(4) have the following asymptoticrepresentations as 119899 rarr infin

Case 1 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

120593 (119909 12058210158401015840119899) = minus1198872 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]3 sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]3 sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(66)

Case 2 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

Discrete Dynamics in Nature and Society 9

120593 (119909 12058210158401015840119899) = minus1198872 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]3 sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = 11988911205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [ (119899 minus 1) 1205871199011 (120585 minus 119886)] sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(67)

Case 3 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [ (119899 minus 1) 1205871199012 (119887 minus 120585)] sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]3 sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(68)

Case 4 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

10 Discrete Dynamics in Nature and Society

120594 (119909 1205821015840119899) = 11988911205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(69)

5 Completeness of Eigenfunctions

In this section we get the property of spectrum for the oper-ator 119860 and discuss the completeness of the eigenfunctions ofproblem (1)ndash(4)

Theorem 23 The operator 119860 has only point spectrum that is120590(119860) = 120590119901(119860)Proof We only need to prove that if 120574 is not an eigenvalueof 119860 then 120574 isin 120588(119860) Here we investigate the equation (119860 minus120574)119885 = 119865 isin 119867 where 120574 isin R 119885 = (119911(119909) 119879119886(119911) 119879119887(119911)) and119865 = (119871119891 119879119886(119891) 119879119887(119891)) Consider the initial value problemminus (119901 (119909) 1199111015840 (119909))1015840 + 119902 (119909) 119911 (119909) minus 120574119911 (119909) = 119891 (119909) 119909 isin (119886 120585) cup (120585 119887)119911 (120585 + 0) minus 1205751119911 (120585 minus 0) minus 12057521199111015840 (120585 minus 0) = 01199111015840 (120585 + 0) minus 1205753119911 (120585 minus 0) minus 12057541199111015840 (120585 minus 0) = 0

(70)

Let

120595 (119909) = 1205951 (119909) 119909 isin (119886 120585) 1205952 (119909) 119909 isin (120585 119887) (71)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 0 satisfying the transmission conditions (4) Let

120601 (119909) = 1206011 (119909) 119909 isin (119886 120585) 1206012 (119909) 119909 isin (120585 119887) (72)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 119891(119909) satisfying120601 (120585 + 0) minus 1205751120601 (120585 minus 0) minus 12057521206011015840 (120585 minus 0) = 01206011015840 (120585 + 0) minus 1205753120601 (120585 minus 0) minus 12057541206011015840 (120585 minus 0) = 0 (73)

Then (70) has the general solution

119911 (119909) = 1198991205951 (119909) + 1206011 (119909) 119909 isin (119886 120585) 1198991205952 (119909) + 1206012 (119909) 119909 isin (120585 119887) (74)

where 119899 isin C

As 120574 is not an eigenvalue of problem (1)ndash(4) we have120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886))minus (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886)) = 0120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887))minus (1198881 [119911 119888] (119887) minus 1198882 [119911 V] (119887)) = 0(75)

The second and third components of (119860minus120574)119885 = 119865 isin 119867meanthat (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886))minus 120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886)) = 119879119886 (119891) (1198881 [119911 119906] (119887) minus 1198882 [119911 V] (119887))minus 120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887)) = 119879119887 (119891)

(76)

Substituting (74) into (76) we can get that 119899 is uniquelysolvable So 119911(119909) is uniquely determined Observing that (119860minus120574119868)minus1 is defined on all of 119867 we get that (119860 minus 120574119868)minus1 is boundedbyTheorem 8 and the closed graph theoremThus 120574 isin 120588(119860)Hence 120590(119860) = 120590119901(119860)Lemma 24 The eigenvalues of problem (1)ndash(4) are countablyinfinite and can cluster only at infin

Lemma 25 The operator 119860 has compact resolvent that is foreach 120575 isin R120590119901(119860) (119860 minus 120575119868)minus1 is compact on 119867 (see [14]Theorem 633)

By the above lemmas and the spectral theorem forcompact operator we obtain the following theorem

Theorem26 The eigenfunctions of problem (1)ndash(4) expandedto become eigenfunctions of 119860 are complete in 119867 that is letΦ119899 = (120593119899(119909) 119879119886(120593119899) 119879119887(120593119899)) 119899 isin N be a maximum set oforthogonal eigenfunctions of119860 where 120593119899(119909) 119899 isin N are eigen-functions of problem (1)ndash(4) Then for all 119865 isin 119867 119865 =suminfin119899=1⟨119865 Φ119899⟩Φ119899Remark 27 In this paper the spectral properties of singu-lar Sturm-Liouville problems with one inner discontinuouspoint are considered if there are two or even multi-innerdiscontinuous points 1205851 1205852 120585119899 in the interval (119886 119887) we

Discrete Dynamics in Nature and Society 11

can obtain similar results by defining a more complicatedHilbert space

Conflicts of Interest

The authors declare that there are no conflicts of interest

Authorsrsquo Contributions

Jinming Cai prepared the manuscript and corrected the mainresults and Zhaowen Zheng gave the main thought andrevised the manuscript

Acknowledgments

This research was partially supported by the NSF of China(Grants 11271225 and 11671227)

References

[1] H Weyl ldquoUber gewohnliche Differentialgleichungen mit Sin-gularitaten und die zugehorigen Entwicklungenrdquo Mathematis-che Annalen vol 68 no 2 pp 220ndash269 1910

[2] JWeidmann SpectralTheory ofOrdinaryDifferential Operatorsvol 1258 of Lecture Notes in Mathematics Springer new YorkNY USA 1987

[3] Z Cao Ordinary Differential Operator Shanhai Science andTechnology Press Shanghai China 1986 (Chinese)

[4] M A Naimark Linear Differential Operators Part 2 HarrapLondon UK 1968

[5] A Zettl Sturm-Liouville Theory vol 121 of Mathematical Sur-veys and Monographs American Mathematics Society Provi-dence RI USA 2005

[6] E C TitchmarshEigenfunction Expansions Associatedwith Sec-ond-Order Differential Equations Part 1 Oxford UniversityPress London UK 1962

[7] Z Zheng and W Zhang ldquoCharacterization of eigenvalues inspectral gap for singular differential operatorsrdquo Abstract andApplied Analysis vol 2012 Article ID 271657 10 pages 2012

[8] J Qi Z Zheng and H Sun ldquoClassification of Sturm-Liouvilledifferential equations with complex coefficients and operatorrealizationsrdquo Proceedings of The Royal Society of London SeriesAMathematical Physical and Engineering Sciences vol 467 no2131 pp 1835ndash1850 2011

[9] Z Zheng J Qi and S Chen ldquoEigenvalues below the lowerbound of minimal operators of singular Hamiltonian expres-sionsrdquo Computers ampMathematics with Applications vol 56 no11 pp 2825ndash2833 2008

[10] Z Zheng ldquoInvariance of deficiency indices under perturbationfor discrete Hamiltonian systemsrdquo Journal of Difference Equa-tions and Applications vol 19 no 8 pp 1243ndash1250 2013

[11] M Demirci Z Akdogan and O S H Mukhtarov ldquoAsymptoticbehavior of eigenvalues and eigenfunctions of one discontin-uous boundary value problemrdquo International Journal of Com-putational Cognition vol 2 article 3 pp 101ndash113 2004

[12] D Buschmann G Stolz and J Weidmann ldquoOne-dimensionalschrodinger operators with local point interactionsrdquo Journal furdie Reine und Angewandte Mathematik vol 467 pp 169ndash1861995

[13] M Kadakal O S Mukhtarov and F S Muhtarov ldquoSome spec-tral properties of Sturm-Liouville problem with transmissionconditionsrdquo Iranian Journal of Science and Technology Trans-action A Science vol 29 no 2 pp 229ndash245 2005

[14] A P Wang Research on weimann conjecture and differentialoperators with transmission conditions [PhD thesis] InnerMongolia University 2006 (Chinese)

[15] O S H Mukhtarov and M Kadakal ldquoSome spectral proper-ties of one Sturm-Liouville type problem with discontinuousweightrdquo Siberian Mathematical Journal vol 46 no 4 pp 681ndash694 2005

[16] C T Fulton ldquoTwo-point boundary value problems with eigen-value parameter contained in the boundary conditionsrdquo Pro-ceedings of the Royal Society of Edinburgh Section A Mathemat-ics vol 77 no 3-4 pp 293ndash308 1977

[17] E Sen andA Bayramov ldquoAsymptotic formulations of the eigen-values and eigenfunctions for a boundary value problemrdquoMathematical Methods in the Applied Sciences vol 36 no 12pp 1512ndash1519 2013

[18] Q Yang and W Wang ldquoAsymptotic behavior of a differentialoperator with discontinuities at two pointsrdquo MathematicalMethods in the Applied Sciences vol 34 no 4 pp 373ndash383 2011

[19] O S Mukhtarov M Kadakal and F S Muhtarov ldquoEigenvaluesand normalized eigenfunctions of discontinuous Sturm-Liou-ville problem with transmission conditionsrdquo Reports on Mathe-matical Physics vol 54 no 1 pp 41ndash56 2004

[20] E Sen ldquoA Sturm-Liouville problemwith a discontinuous coeffi-cient and containing an eigenparameter in the boundary con-ditionrdquo Physics Research International vol 2013 Article ID159243 9 pages 2013

[21] M Kadakal and O S Mukhtarov ldquoSturm-Liouville problemswith discontinuities at two pointsrdquo Computers amp Mathematicswith Applications vol 54 no 11-12 pp 1367ndash1379 2007

[22] M Kadakal and O S Mukhtarov ldquoDiscontinuous Sturm-Liou-ville problems containing eigenparameter in the boundary con-ditionsrdquo Acta Mathematica Sinica vol 22 no 5 pp 1519ndash15282006

[23] Z Akdogan M Demirci and O S H Mukhtarov ldquoSturm-Liouville problems with eigendependent boundary and trans-missions conditionsrdquo Acta Mathematica Scientia vol 25 no 4pp 731ndash740 2005

[24] Q Yang and W Wang ldquoSpectral properties of Sturm-Liouvilleoperators with discontinuities at finite pointsrdquo MathematicalSciences vol 6 no 1 pp 1ndash9 2012

[25] K Li and Z Zheng ldquoSpectral properties for Sturm-Liouvilleequations with transmission conditionsrdquo Acta MathematicaScientia vol 35 no 5 pp 910ndash926 2015 (Chinese)

[26] F Meng and Y Huang ldquoInterval oscillation criteria for a forcedsecond-order nonlinear differential equations with dampingrdquoAppliedMathematics and Computation vol 218 no 5 pp 1857ndash1861 2011

[27] Z Zheng X Wang and H Han ldquoOscillation criteria for forcedsecond order differential equations with mixed nonlinearitiesrdquoApplied Mathematics Letters vol 22 no 7 pp 1096ndash1101 2009

[28] J Shao F Meng and X Pang ldquoGeneralized variational oscil-lation principles for second-order differential equations withmixed-nonlinearitiesrdquoDiscrete Dynamics in Nature and Societyvol 2012 Article ID 539213 10 pages 2012

[29] J Shao and F Meng ldquoGeneralized variational principleson oscillation for nonlinear nonhomogeneous differential

12 Discrete Dynamics in Nature and Society

equationsrdquo Abstract and Applied Analysis vol 2011 Article ID972656 10 pages 2011

[30] A V Likov and Yu A MikhailovTheTheory of Heat and MassTransfer Qosenerqoizdat 1963 (Russian)

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: A Singular Sturm-Liouville Problem with Limit Circle …downloads.hindawi.com/journals/ddns/2017/9673846.pdf · ResearchArticle A Singular Sturm-Liouville Problem with Limit Circle

2 Discrete Dynamics in Nature and Society

1198712119910 fl 1198881 [119910 119906] (119887) minus 1198882 [119910 V] (119887)= 120582 (1198891 [119910 119906] (119887) minus 1198892 [119910 V] (119887)) (3)

the transmission conditions at 119909 = 120585 are1198713119910 fl 119910 (120585 + 0) minus 1205751119910 (120585 minus 0) minus 12057521199101015840 (120585 minus 0) = 01198714119910 fl 1199101015840 (120585 + 0) minus 1205753119910 (120585 minus 0) minus 12057541199101015840 (120585 minus 0) = 0 (4)

(we assume that not all 120585119895 (1 le 119895 le 4) are equal to zerosince in this case the boundary value problem (1)ndash(3) hasno transmission conditions) where both 119886 and 119887 are limit-circle points 1199061(119909) and V1(119909) are linearly independent real-valued solutions of equation minus(119901(119909)1199101015840(119909))1015840 + 119902(119909)119910(119909) = 0on (119886 120585) and 1199062(119909) and V2(119909) are linearly independent real-valued solutions of equation minus(119901(119909)1199101015840(119909))1015840 + 119902(119909)119910(119909) = 0on (120585 119887) and satisfy [1199061 V1](119886) = 0 [1199062 V2](119887) = 0 where[119906 V] = 119901(119906V1015840 minus 1199061015840V) is the sesquilinear form 119901(119909) = 111990121for 119909 isin (119886 120585) 119901(119909) = 111990122 for 119909 isin (120585 119887) and 120582 isin C is aspectral parameter 119902(119909) is a real-valued continuous functionon (119886 120585)cup(120585 119887) and has finite limits 119902(120585plusmn0) = lim119909rarr(120585plusmn0)119902(119909)119901119894 119886119894 119887119894 119888119894 119889119894 (119894 = 1 2) and 120575119894 (119894 = 1 2 3 4) are nonzero realnumbers

For the convenience we set

119906 = 1199061 119909 isin (119886 120585) 1199062 119909 isin (120585 119887) V = V1 119909 isin (119886 120585)

V2 119909 isin (120585 119887) (5)

Moreover we assume that

120588 = 10038161003816100381610038161003816100381610038161003816100381610038161198871 11988611198872 11988621003816100381610038161003816100381610038161003816100381610038161003816 gt 0120574 = 10038161003816100381610038161003816100381610038161003816100381610038161205751 12057531205752 12057541003816100381610038161003816100381610038161003816100381610038161003816 gt 0120579 = 1003816100381610038161003816100381610038161003816100381610038161003816 1198881 11988821198891 11988921003816100381610038161003816100381610038161003816100381610038161003816 gt 0

(6)

Here we research a singular Sturm-Liouville problemwith two limit-circle endpoints and the parameter 120582 is notonly in the equation but also in the boundary conditionsBased on the modified inner product we define a newself-adjoint operator 119860 such that the eigenvalues of such aproblem are coincided with those of 119860 We rebuild its funda-mental solutions get the asymptotic formulas for eigenvaluesand eigenfunctions and also discuss the completeness of itseigenfunctions

At first we introduce the following lemmas

Lemma 1 (the Lagrange identity see [5]) Let119863(119871) = 119910 | 119910 isin1198712[119886 119887] 1199101015840 isin 119860119862[119886 119887] 119871119910 isin 1198712[119886 119887] where for any interval

119868 sub R 1198712(119868) denotes the set of functions on 119868 which are squareintegrable on 119868 For any 119910 isin 119863(119871) 119911 isin 119863(119871lowast) one has119911119871119910 minus 119910119871lowast119911 = 119889119889119909 [119910 119911] (119909) (7)

where 119871lowast is the adjoint expression of 119871 which is given by 119871lowast119911 =minus(1199011199111015840)1015840 + 119902119911Lemma 2 (Greenrsquos formula see [5]) Let 119868 = [119886 119887] forarbitrary 119910 isin 119863(119871) 119911 isin 119863(119871lowast) 119863(119871) and 119863(119871lowast) are definedas above one has(119871119910 119911) minus (119910 119871lowast119911) = int119887

119886(119911119871119910 minus 119910119871lowast119911) 119889119909= [119910 119911] (119887) minus [119910 119911] (119886) (8)

Since 119871119910 is of limit-circle type at 119909 = 119886int1199091119886

119906119871119910 119889119909 int1199091119886

119910119871lowast119906 119889119909 and [119910 119906](1199091) exist forall119909 isin (119886 1199091)So [119910 119906](119886) = lim119909rarr119886+[119910 119906](119909) exists Similarly [119910 V](119886)[119910 119906](119887) and [119910 V](119887) existLemma 3 (see [5]) For any 119891 119892 120572 120573 isin 119863(119871) while 119863(119871) isdefined in Lemma 1 one has1003816100381610038161003816100381610038161003816100381610038161003816[119891 120572] [119891 120573][119892 120572] [119892 120573]1003816100381610038161003816100381610038161003816100381610038161003816 = [119891 119892] [120572 120573] (9)

2 Operator Formulation

In this section we introduce the Hilbert space 119867 = 1198712(119886 120585) oplus1198712(120585 119887) oplus C2 the inner product on 119867 is defined by⟨119865 119866⟩ = 12057411990121 int120585119886

119891 (119909) 119892 (119909)119889119909 + 11990122 int119887120585

119891 (119909) 119892 (119909)119889119909+ 12057412058811989111198921 + 112057911989121198922 (10)

for 119865 = (119891 1198911 1198912) 119866 = (119892 1198921 1198922) isin 119867 119891 119892 isin 1198712((119886 120585) cup(120585 119887)) For the convenience we use the following notations1198671 = 1198712(119886 120585) oplus 1198712(120585 119887)119879119886 (119910) = 1198871 [119910 119906] (119886) minus 1198872 [119910 V] (119886) 1198791015840119886 (119910) = 1198861 [119910 119906] (119886) minus 1198862 [119910 V] (119886) 119879119887 (119910) = 1198891 [119910 119906] (119887) minus 1198892 [119910 V] (119887) 1198791015840119887 (119910) = 1198881 [119910 119906] (119887) minus 1198882 [119910 V] (119887) (11)

Besides we introduce the operator 119860 in the Hilbert space 119867as follows119863 (119860) = 119865 = (119891 (119909) 1198911 1198912) isin 119867 | 119891 (119909) 1198911015840 (119909) are absolutely continuous on (119886 120585)cup (120585119887) with finite limits 119891 (120585 plusmn 0) 1198911015840 (120585 plusmn 0) and satisfy 119871119891isin 1198712 ((119886 120585) cup (120585 119887)) 1198713119891 = 1198714119891 = 0 1198911 = 119879119886 (119891) 1198912= 119879119887 (119891)

(12)

Discrete Dynamics in Nature and Society 3

which acts by the rule

119860119865 = (119871119891 1198791015840119886 (119891) 1198791015840119887 (119891)) (13)

with119865 = (119891 119879119886(119891) 119879119887(119891)) isin 119863(119860)Nowwe can rewrite prob-lem (1)ndash(4) in the operator form 119860119865 = 120582119865 for 119865 = (119891 119879119886(119891)119879119887(119891)) isin 119863(119860) Obviously we have the following lemmas

Lemma 4 The eigenvalues and eigenfunctions of problem(1)ndash(4) are corresponding to the eigenvalues and the firstcomponent of the corresponding eigenfunctions of operator 119860respectively

Lemma 5 The domain 119863(119860) is dense in 119867

Proof Let 119865 = (119891(119909) 1198911 1198912) isin 119867 119865 perp 119863(119860) and let 119862infin0 be afunctional set which has compact support and can be differ-ential infinitely such that 1205991(119909) isin 119862infin0 (119886 120585) 1205992(119909) isin 119862infin0 (120585 119887)Since 119862infin0 oplus 0 oplus 0 sub 119863(119860) for forall119866 = (119892(119909) 0 0) isin 119862infin0 oplus 0 oplus 0is orthogonal to 119865 namely

⟨119865 119866⟩ = 12057411990121 int120585119886

119891 (119909) 119892 (119909)119889119909 + 11990122 int119887120585

119891 (119909) 119892 (119909)119889119909= 0 (14)

so 119891(119909) = 0 For all 119881 = (](119909) ]1 0) isin 119863(119860) ⟨119865 119881⟩ =(120574120588)1198911]1 = 0 1198911 = 0 since ]1 is arbitrary Similarly onegets 1198912 = 0 Above all one has 119865 = (0 0 0) which proves theassertion

Definition 6 Let 119882(119891 119892 119909) = 119891(119909)1198921015840(119909) minus 1198911015840(119909)119892(119909) denotethe Wronskian of functions 119891(119909) and 119892(119909) One has119882 (119891 119892 119886) = 11990121 [119891 119892] (119886) 119882 (119891 119892 119887) = 11990122 [119891 119892] (119887) (15)

Theorem 7 Operator 119860 is symmetric

Proof For each 119865 119866 isin 119863(119860) by the definition of inner pro-duct and operator 119860 we can get⟨119860119865 119866⟩ minus ⟨119865 119860119866⟩= 120574119882 (119891 119892 120585 minus 0) minus 119882 (119891 119892 120585 + 0) + 119882 (119891 119892 119887)minus 120574119882 (119891 119892 119886)+ 120574120588 [1198791015840119886 (119891) 119879119886 (119892) minus 119879119886 (119891) 1198791015840119886 (119892)]

+ 1120579 [1198791015840119887 (119891) 119879119887 (119892) minus 119879119887 (119891) 1198791015840119887 (119892)] (16)

then (4) implies that119882 (119891 119892 120585 + 0) = 120574119882 (119891 119892 120585 minus 0) (17)

using boundary condition (2) we get120574120588 [1198791015840119886 (119891) 119879119886 (119892) minus 119879119886 (119891) 1198791015840119886 (119892)] = 120574119882 (119891 119892 119886) (18)

and by boundary condition (3) we have1120579 [1198791015840119887 (119891) 119879119887 (119892) minus 119879119887 (119891) 1198791015840119887 (119892)] = 119882 (119891 119892 119887) (19)

Substituting (17)ndash(19) into (16) yields ⟨119860119865 119866⟩ minus ⟨119865 119860119866⟩ = 0This completes the proof

Moreover we have the following conclusion

Theorem 8 Operator 119860 is self-adjoint

Proof 119860 is self-adjoint if and only if for each 119865 =(119891(119909) 119879119886(119891) 119879119887(119891)) isin 119863(119860) ⟨119860119865 119882⟩ = ⟨119865 119880⟩ for some119880 isin 119867 implying that 119882 isin 119863(119860) and 119860119882 = 119880 where119882 = (119908(119909) ℎ 119903) 119880 = (120583(119909) 119896 119904) Concretely we shouldprove that the following properties hold

(i) 119908(119909) 1199081015840(119909) are absolutely continuous on (119886 120585) cup(120585 119887) 119871119908 isin 1198712((119886 120585) cup (120585 119887))(ii) ℎ = 1198871[119908 119906](119886) minus 1198872[119908 V](119886) 119903 = 1198891[119908 119906](119887) minus 1198892[119908

V](119887)(iii) 119871 119894119908 = 0 119894 = 3 4(iv) 120583(119909) = 119871119908(v) 119896 = 1198861[119908 119906](119886) minus 1198862[119908 V](119886) 119904 = 1198881[119908 119906](119887) minus 1198882[119908

V](119887)For an arbitrary point 119865 isin 119862infin0 oplus 0 oplus 0 sub 119863(119860) we have12057411990121 int120585119886

(119871119891 (119909)) 119908 (119909)119889119909 + 11990122 int119887120585

(119871119891 (119909)) 119908 (119909)119889119909= 12057411990121 int120585

119886119891 (119909) 120583 (119909)119889119909 + 11990122 int119887

120585119891 (119909) 120583 (119909)119889119909 (20)

that is ⟨119871119891 119908⟩1 = ⟨119891 120583⟩1 According to the classical Sturm-Liouville theory (i) and (iv) hold So ⟨119860119865 119882⟩ = ⟨119865 119880⟩ forall119865 isin119863(119860) ⟨119871119891 119908⟩1 + 1205741205881198791015840119886 (119891) ℎ + 11205791198791015840119887 (119891) 119903

= ⟨119891 119871119908⟩1 + 120574120588119879119886 (119891) 119896 + 1120579119879119887 (119891) 119904 (21)

Besides we have⟨119871119891 119908⟩1 = ⟨119891 119871119908⟩1 + 120574119882 (119891 119908 120585 minus 0)minus 119882 (119891 119908 120585 + 0) + 119882 (119891 119908 119887)minus 120574119882 (119891 119908 119886) (22)

Substituting (22) into (21) we get120574120588 (119879119886 (119891) 119896 minus 1198791015840119886 (119891) ℎ) + 1120579 (119879119887 (119891) 119904 minus 1198791015840119887 (119891) 119903)= 120574119882 (119891 119908 120585 minus 0) minus 119882 (119891 119908 120585 + 0) + 119882 (119891 119908 119887)minus 120574119882 (119891 119908 119886)

(23)

4 Discrete Dynamics in Nature and Society

By Naimarkrsquos Patching Lemma [4] there exists 119865 isin 119863(119860)such that[119891 119906] (119887) = [119891 V] (119887) = 119891 (120585 plusmn 0) = 1198911015840 (120585 plusmn 0) = 0[119891 119906] (119886) = 1198872[119891 V] (119886) = 1198871 (24)

Substituting (24) into (23) we have ℎ = 1198871[119908 119906](119886) minus1198872[119908 V](119886) Further there exists 119865 isin 119863(119860) such that[119891 119906] (119886) = [119891 V] (119886) = 119891 (120585 plusmn 0) = 1198911015840 (120585 plusmn 0) = 0[119891 119906] (119887) = 1198892[119891 V] (119887) = 1198891 (25)

Analogously we can get 119903 = 1198891[119908 119906](119887) minus 1198892[119908 V](119887) So (ii)holds Similarly one proves (v) Next let 119865 isin 119863(119860) such that[119891 119906] (119886) = [119891 V] (119886) = [119891 119906] (119887) = [119891 V] (119887)= 119891 (120585 + 0) = 0119891 (120585 minus 0) = minus12057521198911015840 (120585 minus 0) = 12057511198911015840 (120585 + 0) = 120574

(26)

Then by (23) we have 1198713119908 = 0 Similarly we can get 1198714119908 =0 So 119860 is a self-adjoint operator

From the properties of self-adjoint operators we have thefollowing corollaries

Corollary 9 All eigenvalues of the singular Sturm-Liouvilleproblem (1)ndash(4) are real

Corollary 10 Let 1205821 and 1205822 be two different eigenvalues ofthe singular Sturm-Liouville problem (1)ndash(4) then the corre-sponding eigenfunctions 119891(119909) and 119892(119909) are orthogonal in thesense of12057411990121 int120585

119886119891 (119909) 119892 (119909)119889119909 + 11990122 int119887

120585119891 (119909) 119892 (119909)119889119909 + 12057412058811989111198921

+ 112057911989121198922 = 0 (27)

3 Asymptotic Approximation ofFundamental Solutions

In this section we construct the fundamental solutions ofproblem (1)ndash(4) and get the asymptotic approximation forfundamental solutions

Lemma 11 (see [5]) Let the real-valued function 119902(119909) becontinuous on 119868 = (119886 120585) cup (120585 119887) and let 119891(120582) 119892(120582) be givenentire functions Then for any 120582 isin C the equation119871119910 fl minus (119901 (119909) 1199101015840 (119909))1015840 + 119902 (119909) 119910 (119909) = 120582119910 (119909) 119909 isin (119886 120585) cup (120585 119887) (28)

has unique solution 119910 = 119910(119909 120582) satisfying the initial conditions119910 (119886 120582) = 119891 (120582) 1199101015840 (119886 120582) = 119892 (120582) (29)

For each fixed 119909 isin (119886 120585) cup (120585 119887) 119910(119909 120582) is an entire functionof 120582

Herewe define fundamental solutions120593(119909 120582) and120594(119909 120582)of (1) by the following procedure

120593 (119909 120582) = 1205931 (119909 120582) 119909 isin (119886 120585) 1205932 (119909 120582) 119909 isin (120585 119887) 120594 (119909 120582) = 1205941 (119909 120582) 119909 isin (119886 120585) 1205942 (119909 120582) 119909 isin (120585 119887)

(30)

Let 1205931(119909 120582) be the solution of (1) on the interval (119886 120585)which satisfies the initial conditions1205931 (119886 120582) fl [119910 119906] (119886 120582) = 1198862 minus 120582119887212059310158401 (119886 120582) fl [119910 V] (119886 120582) = 1198861 minus 1205821198871 (31)

by virtue of Lemma 11 we can define the solution 1205932(119909 120582) of(1) on (120585 119887) by the initial conditions

(1205932 (120585 + 0)12059310158402 (120585 + 0)) = (12057511205931 (120585 minus 0) + 120575212059310158401 (120585 minus 0)12057531205931 (120585 minus 0) + 120575412059310158401 (120585 minus 0)) (32)

Analogously we define the solutions 1205942(119909 120582) and 1205941(119909 120582) of(1) by the initial conditions1205942 (119887 120582) fl [119910 119906] (119887 120582) = 1198882 minus 120582119889212059410158402 (119887 120582) fl [119910 V] (119887 120582) = 1198881 minus 1205821198891

(1205941 (120585 minus 0)12059410158401 (120585 minus 0)) = (12057541205942 (120585 + 0) minus 120575212059410158402 (120585 + 0)120574120575112059410158402 (120585 + 0) minus 12057531205942 (120585 + 0)120574 ) (33)

Now we consider Wronskian119882119894 (120582) fl 119882 (120593119894 120594119894 119909)= 120593119894 (119909 120582) 1205941015840119894 (119909 120582) minus 1205931015840119894 (119909 120582) 120594119894 (119909 120582)(119894 = 1 2) (34)

By the dependence of solutions of initial value problemson the parameter one has that 119882119894(120582) (119894 = 1 2) are entirefunctions of 120582 and are independent of 119909Lemma 12 For every 120582 isin C 1198822(120582) = 1205741198821(120582)

Discrete Dynamics in Nature and Society 5

Proof By the definition of 119882119894(120582) we have1198821 (120582) = 1205931 (120585 minus 0 120582) 12059410158401 (120585 minus 0 120582)minus 12059310158401 (120585 minus 0 120582) 1205941 (120585 minus 0 120582)

1198822 (120582) = 1205932 (120585 + 0 120582) 12059410158402 (120585 + 0 120582)minus 12059310158402 (120585 + 0 120582) 1205942 (120585 + 0 120582)

(35)

using the transmission conditions (4) simple computationgives 119882 (1205932 1205942 120585 + 0) = 120574119882 (1205931 1205941 120585 minus 0) (36)

Thus for each 120582 isin C we have 1198822(120582) = 1205741198821(120582) This com-pletes the proof

Besides we set 119882(120582) fl 1198821(120582) = (1120574)1199082(120582)Theorem 13 The eigenvalues of problem (1)ndash(4) coincide withthe zeros of the function 119882(120582)Proof Let ]0(119909 1205820) be any eigenfunction corresponding toeigenvalue 1205820 then the function ]0(119909 1205820)may be representedin the form

]0 (119909 1205820)=

11989811205931 (119909 1205820) + 11989821205941 (119909 1205820) 119909 isin (119886 120585) 11989831205932 (119909 1205820) + 11989841205942 (119909 1205820) 119909 isin (120585 119887) (37)

where at least one of the constants 119898119894 (119894 = 1 2 3 4) is notzero We should show that 119882(1205820) = 0 Suppose to thecontrary that there exists 1205820 isin 119877 such that119882(1205820) = 1198821(1205820) =(1120574)1198822(1205820) = 0 Since eigenfunction ]0(119909 1205820) satisfiesboth boundary and transmission conditions (2)ndash(4) we have119871 119894]0(119909 1205820) = 0 (119894 = 1 2 3 4) while the determinant ofcoefficient matrix is not zero so we obtain 119898119894 = 0 (119894 =1 2 3 4) which is a contradiction then 119882(1205820) = 0Conversely let 120582 = 1205820 be a zero of function 119882(120582) then119882(1205820) = 1198821(1205820) = (1120574)1198822(1205820) = 0 therefore 120594119894(119909 1205820) =119896120593119894(119909 1205820) (119894 = 1 2) for some 119896 = 0 Since both 1205932(119909 1205820) and1205942(119909 1205820) satisfy the boundary condition (3)

120593 (119909 1205820) = 1205931 (119909 1205820) 119909 isin (119886 120585) 1205932 (119909 1205820) 119909 isin (120585 119887) (38)

satisfies problem (1)ndash(4) So function 120593(119909 1205820) is an eigen-function of problem (1)ndash(4) corresponding to eigenvalue 1205820This completes the proof

Theorem 14 The eigenvalues of problem (1)ndash(4) are analyti-cally single

Proof Let 120582 = 119904 + 119894119905 and we use the following notions forsimplicity 120593 = 120593(119909 120582) 1205931120582 = 1205971205931120597120582 and 12059310158401120582 = 12059712059310158401120597120582

We differentiate the equation 119860120594 = 120582120594 with respect to 120582 toobtain 119860120594120582 = 120594 + 120582120594120582 (39)

Using integration by parts we get⟨119860120594120582 120593⟩1 minus ⟨120594120582 119860120593⟩1= 120574 (120594112058212059310158401 minus 12059410158401120582120593110038161003816100381610038161003816120585119886) + (120594212058212059310158402 minus 120594101584021205821205932)100381610038161003816100381610038161003816119887120585 (40)

Substituting (39) and 119860120593 = 120582120593 into the left side of (40) wehave ⟨120582120594120582 120593⟩1 minus ⟨120594120582 120582120593⟩1 = ⟨120594 120593⟩1 + 2119894119905 ⟨120594120582 120593⟩1 (41)

Moreover

120574 (120594112058212059310158401 minus 12059410158401120582120593110038161003816100381610038161003816120585119886) + (120594212058212059310158402 minus 120594101584021205821205932)100381610038161003816100381610038161003816119887120585= 11988911205932 (119887) minus 119889212059310158402 (119887)minus 120574 [(1198861 minus 1205821198871) 1205941120582 (119886) minus (1198862 minus 1205821198872) 12059410158401120582 (119886)]

(42)

By (31) we observe that1198821015840 (120582) = 1205931 (119886 120582) 12059410158401 (119886 120582) minus 12059310158401 (119886 120582) 1205941 (119886 120582)= 11988711205941 (119886) minus 119887212059410158401 (119886) + (1198862 minus 1205821198872) 12059410158401120582 (119886)minus (1198861 minus 1205821198871) 1205941120582 (119886)

(43)

then (40) becomes1205741198821015840 (120582) = ⟨120594 120593⟩1 + 2119894119905 ⟨120594120582 120593⟩1+ 120574 (11988711205941 (119886) minus 119887212059410158401 (119886))minus (11988911205932 (119887) minus 119889212059310158402 (119887))

(44)

Next let 1205830 be an arbitrary zero of119882(120582) Since119882(1205830) = 0 weobtain 120593119894(119909 1205830) = 119896120594119894(119909 1205830) (119894 = 1 2) (119896 = 0) 119896 isin R Notingthat 1205830 is real a short calculation (44) becomes1205741198821015840 (1205830)

= 119896 (12057411990121 int120585119886

10038161003816100381610038161205941 (119909)10038161003816100381610038162 119889119909 + 11990122 int119887120585

10038161003816100381610038161205942 (119909)10038161003816100381610038162 119889119909)+ 120588119896 + 120579119896

(45)

Since 120588 gt 0 120579 gt 0 120574 gt 0 and 119896 = 0 1198821015840(1205830) = 0 Hence theanalytic multiplicity of 1205830 is one which completes the proof

6 Discrete Dynamics in Nature and Society

Lemma 15 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the following integraland differential equations hold for 119896 = 0 and 119896 = 11198891198961198891199091198961205931 (119909 120582)

= (1198862 minus 11990421198872) 119889119896119889119909119896 cos [1199011119904 (119909 minus 119886)]minus 1198861 minus 119904211988711199011119904 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)]+ 1199011119904 int119909

119886

119889119896119889119909119896 sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205931 (120591) 119889120591(46)

1198891198961198891199091198961205932 (119909 120582)= 1205932 (120585 + 0) 119889119896119889119909119896 cos [1199012119904 (119909 minus 120585)]

+ 1119901211990412059310158402 (120585 + 0) 119889119896119889119909119896 sin [1199012119904 (119909 minus 120585)]+ 1199012119904 int119909

120585

119889119896119889119909119896 sin [1199012119904 (119909 minus 120591)] 119902 (120591) 1205932 (120591) 119889120591(47)

Proof For the case of 119896 = 0 consider 1205931(119909 120582) as the solutionof the following nonhomogeneous problem

minus (119901 (119909) 119910 (119909)1015840)1015840 + 120582119910 (119909) = 119902 (119909) 119910 (119909)1205931 (119886 120582) = 1198862 minus 120582119887212059310158401 (119886 120582) = 1198861 minus 1205821198871 (48)

Using the method of constant variation 1205931(119909 120582) satisfies1205931 (119909 120582) = (1198862 minus 11990421198872) cos [1199011119904 (119909 minus 119886)]minus 1198861 minus 119904211988711199011119904 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)]+ 1199011119904 int119909

119886sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205931 (120591) 119889120591

(49)

Then differentiating it with respect to 119909 we have (46) Theproof for (47) is similar so we omit the details

Similarly we have the following theorem

Lemma 16 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the following integraland differential equations hold for 119896 = 0 and 119896 = 11198891198961198891199091198961205941 (119909 120582) = 12057541205942 (120585 + 0) minus 120575212059410158402 (120585 + 0)120574 119889119896119889119909119896

sdot cos [1199011119904 (119909 minus 120585)] + 120575112059410158402 (120585 + 0) minus 12057531205942 (120585 + 0)1199011119904120574

sdot 119889119896119889119909119896 sin [1199011119904 (119909 minus 120585)] minus 1199011119904sdot int120585119909

119889119896119889119909119896 sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205941 (120591) 1198891205911198891198961198891199091198961205942 (119909 120582) = (1198882 minus 11990421198892) 119889119896119889119909119896 cos [1199012119904 (119909 minus 119887)]

+ 1198881 minus 119904211988911199012119904 119889119896119889119909119896 sin [1199012119904 (119909 minus 119887)] minus 1199012119904sdot int119887119909

119889119896119889119909119896 sin [1199012119904 (119909 minus 120591)] 119902 (120591) 1205942 (120591) 119889120591(50)

Lemma 17 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then for 119896 = 0 1 120593(119909 120582)have the following estimations

Case 1 If 1198872 = 0 then1198891198961198891199091198961205931 (119909 120582)= minus11990421198872 119889119896119889119909119896 cos [1199011119904 (119909 minus 119886)]

+ 119874 (|119904|119896+1 119890|119905|1199011(119909minus119886)) 1198891198961198891199091198961205932 (119909 120582)= 1199011120575211990431198872 sin [1199011119904 (120585 minus 119886)] 119889119896119889119909119896 cos [1199012119904 (119909 minus 119886)]

+ 119874 (|119904|119896+2 119890|119905|(1199011(120585minus119886)+1199012(119909minus119886)))

(51)

Case 2 If 1198872 = 0 then1198891198961198891199091198961205931 (119909 120582)= minus11988711199041199011 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)] + 119874 (|119904|119896 119890|119905|1199011(119909minus119886))

1198891198961198891199091198961205932 (119909 120582)= minus120575211988711199042 cos [1199011119904 (120585 minus 119886)] 119889119896119889119909119896 cos [1199012119904 (119909 minus 120585)]

+ 119874 (|119904|119896+1 119890|119905|(1199011(120585minus119886)+1199012(119909minus120585)))

(52)

Each of these asymptotic equalities holds uniformly for 119909 as|120582| rarr infin

Proof The proof of formulas for 1205931(119909 120582) is identical to thoseof Titchmarshrsquos proof for 120593(119909 120582) (see [6]) so we only give theproof of formulas for 1205932(119909 120582) namely equality (51) the otherequalities are similar

Discrete Dynamics in Nature and Society 7

For 119896 = 0 by the estimations of 1205931(119909 120582) and 12059310158401(119909 120582) wehave 1205931 (120585 minus 0 120582) = minus11990421198872 cos [1199011119904 (120585 minus 119886)]+ 119874 (|119904| 119890|119905|1199011(120585minus119886)) 12059310158401 (120585 minus 0 120582) = 119901111990431198872 sin [1199011119904 (120585 minus 119886)]+ 119874 (|119904|2 119890|119905|1199011(120585minus119886))

(53)

then substituting (53) into (47) and observing (32) we have1205932 (119909 120582)= 1199011120575211990431198872 sin [1199011119904 (120585 minus 119886)] cos [1199012119904 (119909 minus 119886)]+ 119874 (|119904|2 119890|119905|(1199011(120585minus119886)+1199012(119909minus120585))) (54)

differentiating (54) with respect to 119909 we have (51)Lemma 18 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then for 119896 = 0 1 120594(119909 120582)have the following estimations

Case 1 If 1198892 = 0 then1198891198961198891199091198961205941 (119909 120582)= minus1199012119889212057521199043120574 sin [1199012119904 (120585 minus 119887)] 119889119896119889119909119896 cos [1199011119904 (119909 minus 120585)]

+ 119874 (|119904|119896+2 119890|119905|(1199011(119909minus120585)+1199012(120585minus119887))) 1198891198961198891199091198961205942 (119909 120582)= minus11988921199042 119889119896119889119909119896 cos [1199012119904 (119909 minus 119887)]

+ 119874 (|119904|119896+1 119890|119905|1199012(119909minus119887))

(55)

Case 2 If 1198892 = 0 then1198891198961198891199091198961205941 (119909 120582)= minus119889112057521199042120574 cos [1199012119904 (120585 minus 119887)] 119889119896119889119909119896 cos [1199011119904 (119909 minus 120585)]

+ 119874 (|119904|119896+1 119890|119905|(1199011(119909minus120585)+1199012(120585minus119887))) 1198891198961198891199091198961205942 (119909 120582)= minus11988911199041199012 119889119896119889119909119896 sin [1199012119904 (119909 minus 119887)] + 119874 (|119904|119896 119890|119905|1199012(119909minus119887))

(56)

Each of these asymptotic equalities holds uniformly for 119909 as|120582| rarr infin

Theorem 19 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the function 1198822(120582)has the following asymptotic representations

Case 1 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= 120575211990111199012119887211988921199046 sin [1199011119904 (120585 minus 119886)] sin [1199012119904 (119887 minus 120585)]+ 119874 (|119904|5 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (57)

Case 2 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= minus12057521199011119887211988911199045 sin [1199011119904 (120585 minus 119886)] cos [1199012119904 (119887 minus 120585)]+ 119874 (|119904|4 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (58)

Case 3 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= minus12057521199012119887111988921199045 cos [1199011119904 (120585 minus 119886)] sin [1199012119904 (119887 minus 120585)]+ 119874 (|119904|4 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (59)

Case 4 If 1198872 = 0 and 1198892 = 0 then1198822 (120582) = 1205752119887111988911199044 cos [1199011119904 (120585 minus 119886)] cos [1199012119904 (119887 minus 120585)]+ 119874 (|119904|3 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (60)

Proof By the definition of 1198822(120582) we have1198822 (120582) = 1205932 (119887 120582) 12059410158402 (119887 120582) minus 12059310158402 (119887 120582) 1205942 (119887 120582)= (1198881 minus 1205821198891) 1205932 (119887 120582) minus (1198882 minus 1205821198892) 12059310158402 (119887 120582) (61)

According to the equalities of 1205932(119909 120582) and 12059310158402(119909 120582) inLemma 17 we can obtain the formulas of 1198822(120582) in thistheorem

Corollary 20 The eigenvalues of the boundary value problem(1)ndash(4) are bounded below

Proof Putting 119904 = 119894119905 (119905 gt 0) in Theorem 19 we can obtain1198822(120582) = 1198822(minus1199052) rarr infin (119905 rarr infin) Hence 1198822(minus1199052) = 0 forsufficiently negative 120582 and sufficiently large 120582 This completesthe proof

4 Asymptotic Formulas forEigenvalues and Eigenfunctions

In this section we can get the asymptotic formulas forthe eigenvalues and eigenfunctions of the singular Sturm-Liouville problem (1)ndash(4) Since the eigenvalues coincidewiththe zeros of the entire function119882(120582) it follows that they haveno finite limits

Theorem 21 The eigenvalues 120582119899 = 1199042119899 (119899 = 0 1 2 ) ofproblem (1)ndash(4) have the following asymptotic representationsas 119899 rarr infin

8 Discrete Dynamics in Nature and Society

Case 1 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (62)

Case 2 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (63)

Case 3 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (64)

Case 4 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (65)

Proof By applying the well-known Rouche theorem we canobtain these conclusions (see [3] Theorem 23)

According to Theorem 21 and Lemmas 17 and 18 wecan obtain the following asymptotic representations of theeigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899)Theorem 22 The eigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899) (119899 =0 1 2 ) of problem (1)ndash(4) have the following asymptoticrepresentations as 119899 rarr infin

Case 1 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

120593 (119909 12058210158401015840119899) = minus1198872 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]3 sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]3 sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(66)

Case 2 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

Discrete Dynamics in Nature and Society 9

120593 (119909 12058210158401015840119899) = minus1198872 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]3 sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = 11988911205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [ (119899 minus 1) 1205871199011 (120585 minus 119886)] sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(67)

Case 3 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [ (119899 minus 1) 1205871199012 (119887 minus 120585)] sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]3 sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(68)

Case 4 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

10 Discrete Dynamics in Nature and Society

120594 (119909 1205821015840119899) = 11988911205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(69)

5 Completeness of Eigenfunctions

In this section we get the property of spectrum for the oper-ator 119860 and discuss the completeness of the eigenfunctions ofproblem (1)ndash(4)

Theorem 23 The operator 119860 has only point spectrum that is120590(119860) = 120590119901(119860)Proof We only need to prove that if 120574 is not an eigenvalueof 119860 then 120574 isin 120588(119860) Here we investigate the equation (119860 minus120574)119885 = 119865 isin 119867 where 120574 isin R 119885 = (119911(119909) 119879119886(119911) 119879119887(119911)) and119865 = (119871119891 119879119886(119891) 119879119887(119891)) Consider the initial value problemminus (119901 (119909) 1199111015840 (119909))1015840 + 119902 (119909) 119911 (119909) minus 120574119911 (119909) = 119891 (119909) 119909 isin (119886 120585) cup (120585 119887)119911 (120585 + 0) minus 1205751119911 (120585 minus 0) minus 12057521199111015840 (120585 minus 0) = 01199111015840 (120585 + 0) minus 1205753119911 (120585 minus 0) minus 12057541199111015840 (120585 minus 0) = 0

(70)

Let

120595 (119909) = 1205951 (119909) 119909 isin (119886 120585) 1205952 (119909) 119909 isin (120585 119887) (71)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 0 satisfying the transmission conditions (4) Let

120601 (119909) = 1206011 (119909) 119909 isin (119886 120585) 1206012 (119909) 119909 isin (120585 119887) (72)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 119891(119909) satisfying120601 (120585 + 0) minus 1205751120601 (120585 minus 0) minus 12057521206011015840 (120585 minus 0) = 01206011015840 (120585 + 0) minus 1205753120601 (120585 minus 0) minus 12057541206011015840 (120585 minus 0) = 0 (73)

Then (70) has the general solution

119911 (119909) = 1198991205951 (119909) + 1206011 (119909) 119909 isin (119886 120585) 1198991205952 (119909) + 1206012 (119909) 119909 isin (120585 119887) (74)

where 119899 isin C

As 120574 is not an eigenvalue of problem (1)ndash(4) we have120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886))minus (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886)) = 0120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887))minus (1198881 [119911 119888] (119887) minus 1198882 [119911 V] (119887)) = 0(75)

The second and third components of (119860minus120574)119885 = 119865 isin 119867meanthat (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886))minus 120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886)) = 119879119886 (119891) (1198881 [119911 119906] (119887) minus 1198882 [119911 V] (119887))minus 120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887)) = 119879119887 (119891)

(76)

Substituting (74) into (76) we can get that 119899 is uniquelysolvable So 119911(119909) is uniquely determined Observing that (119860minus120574119868)minus1 is defined on all of 119867 we get that (119860 minus 120574119868)minus1 is boundedbyTheorem 8 and the closed graph theoremThus 120574 isin 120588(119860)Hence 120590(119860) = 120590119901(119860)Lemma 24 The eigenvalues of problem (1)ndash(4) are countablyinfinite and can cluster only at infin

Lemma 25 The operator 119860 has compact resolvent that is foreach 120575 isin R120590119901(119860) (119860 minus 120575119868)minus1 is compact on 119867 (see [14]Theorem 633)

By the above lemmas and the spectral theorem forcompact operator we obtain the following theorem

Theorem26 The eigenfunctions of problem (1)ndash(4) expandedto become eigenfunctions of 119860 are complete in 119867 that is letΦ119899 = (120593119899(119909) 119879119886(120593119899) 119879119887(120593119899)) 119899 isin N be a maximum set oforthogonal eigenfunctions of119860 where 120593119899(119909) 119899 isin N are eigen-functions of problem (1)ndash(4) Then for all 119865 isin 119867 119865 =suminfin119899=1⟨119865 Φ119899⟩Φ119899Remark 27 In this paper the spectral properties of singu-lar Sturm-Liouville problems with one inner discontinuouspoint are considered if there are two or even multi-innerdiscontinuous points 1205851 1205852 120585119899 in the interval (119886 119887) we

Discrete Dynamics in Nature and Society 11

can obtain similar results by defining a more complicatedHilbert space

Conflicts of Interest

The authors declare that there are no conflicts of interest

Authorsrsquo Contributions

Jinming Cai prepared the manuscript and corrected the mainresults and Zhaowen Zheng gave the main thought andrevised the manuscript

Acknowledgments

This research was partially supported by the NSF of China(Grants 11271225 and 11671227)

References

[1] H Weyl ldquoUber gewohnliche Differentialgleichungen mit Sin-gularitaten und die zugehorigen Entwicklungenrdquo Mathematis-che Annalen vol 68 no 2 pp 220ndash269 1910

[2] JWeidmann SpectralTheory ofOrdinaryDifferential Operatorsvol 1258 of Lecture Notes in Mathematics Springer new YorkNY USA 1987

[3] Z Cao Ordinary Differential Operator Shanhai Science andTechnology Press Shanghai China 1986 (Chinese)

[4] M A Naimark Linear Differential Operators Part 2 HarrapLondon UK 1968

[5] A Zettl Sturm-Liouville Theory vol 121 of Mathematical Sur-veys and Monographs American Mathematics Society Provi-dence RI USA 2005

[6] E C TitchmarshEigenfunction Expansions Associatedwith Sec-ond-Order Differential Equations Part 1 Oxford UniversityPress London UK 1962

[7] Z Zheng and W Zhang ldquoCharacterization of eigenvalues inspectral gap for singular differential operatorsrdquo Abstract andApplied Analysis vol 2012 Article ID 271657 10 pages 2012

[8] J Qi Z Zheng and H Sun ldquoClassification of Sturm-Liouvilledifferential equations with complex coefficients and operatorrealizationsrdquo Proceedings of The Royal Society of London SeriesAMathematical Physical and Engineering Sciences vol 467 no2131 pp 1835ndash1850 2011

[9] Z Zheng J Qi and S Chen ldquoEigenvalues below the lowerbound of minimal operators of singular Hamiltonian expres-sionsrdquo Computers ampMathematics with Applications vol 56 no11 pp 2825ndash2833 2008

[10] Z Zheng ldquoInvariance of deficiency indices under perturbationfor discrete Hamiltonian systemsrdquo Journal of Difference Equa-tions and Applications vol 19 no 8 pp 1243ndash1250 2013

[11] M Demirci Z Akdogan and O S H Mukhtarov ldquoAsymptoticbehavior of eigenvalues and eigenfunctions of one discontin-uous boundary value problemrdquo International Journal of Com-putational Cognition vol 2 article 3 pp 101ndash113 2004

[12] D Buschmann G Stolz and J Weidmann ldquoOne-dimensionalschrodinger operators with local point interactionsrdquo Journal furdie Reine und Angewandte Mathematik vol 467 pp 169ndash1861995

[13] M Kadakal O S Mukhtarov and F S Muhtarov ldquoSome spec-tral properties of Sturm-Liouville problem with transmissionconditionsrdquo Iranian Journal of Science and Technology Trans-action A Science vol 29 no 2 pp 229ndash245 2005

[14] A P Wang Research on weimann conjecture and differentialoperators with transmission conditions [PhD thesis] InnerMongolia University 2006 (Chinese)

[15] O S H Mukhtarov and M Kadakal ldquoSome spectral proper-ties of one Sturm-Liouville type problem with discontinuousweightrdquo Siberian Mathematical Journal vol 46 no 4 pp 681ndash694 2005

[16] C T Fulton ldquoTwo-point boundary value problems with eigen-value parameter contained in the boundary conditionsrdquo Pro-ceedings of the Royal Society of Edinburgh Section A Mathemat-ics vol 77 no 3-4 pp 293ndash308 1977

[17] E Sen andA Bayramov ldquoAsymptotic formulations of the eigen-values and eigenfunctions for a boundary value problemrdquoMathematical Methods in the Applied Sciences vol 36 no 12pp 1512ndash1519 2013

[18] Q Yang and W Wang ldquoAsymptotic behavior of a differentialoperator with discontinuities at two pointsrdquo MathematicalMethods in the Applied Sciences vol 34 no 4 pp 373ndash383 2011

[19] O S Mukhtarov M Kadakal and F S Muhtarov ldquoEigenvaluesand normalized eigenfunctions of discontinuous Sturm-Liou-ville problem with transmission conditionsrdquo Reports on Mathe-matical Physics vol 54 no 1 pp 41ndash56 2004

[20] E Sen ldquoA Sturm-Liouville problemwith a discontinuous coeffi-cient and containing an eigenparameter in the boundary con-ditionrdquo Physics Research International vol 2013 Article ID159243 9 pages 2013

[21] M Kadakal and O S Mukhtarov ldquoSturm-Liouville problemswith discontinuities at two pointsrdquo Computers amp Mathematicswith Applications vol 54 no 11-12 pp 1367ndash1379 2007

[22] M Kadakal and O S Mukhtarov ldquoDiscontinuous Sturm-Liou-ville problems containing eigenparameter in the boundary con-ditionsrdquo Acta Mathematica Sinica vol 22 no 5 pp 1519ndash15282006

[23] Z Akdogan M Demirci and O S H Mukhtarov ldquoSturm-Liouville problems with eigendependent boundary and trans-missions conditionsrdquo Acta Mathematica Scientia vol 25 no 4pp 731ndash740 2005

[24] Q Yang and W Wang ldquoSpectral properties of Sturm-Liouvilleoperators with discontinuities at finite pointsrdquo MathematicalSciences vol 6 no 1 pp 1ndash9 2012

[25] K Li and Z Zheng ldquoSpectral properties for Sturm-Liouvilleequations with transmission conditionsrdquo Acta MathematicaScientia vol 35 no 5 pp 910ndash926 2015 (Chinese)

[26] F Meng and Y Huang ldquoInterval oscillation criteria for a forcedsecond-order nonlinear differential equations with dampingrdquoAppliedMathematics and Computation vol 218 no 5 pp 1857ndash1861 2011

[27] Z Zheng X Wang and H Han ldquoOscillation criteria for forcedsecond order differential equations with mixed nonlinearitiesrdquoApplied Mathematics Letters vol 22 no 7 pp 1096ndash1101 2009

[28] J Shao F Meng and X Pang ldquoGeneralized variational oscil-lation principles for second-order differential equations withmixed-nonlinearitiesrdquoDiscrete Dynamics in Nature and Societyvol 2012 Article ID 539213 10 pages 2012

[29] J Shao and F Meng ldquoGeneralized variational principleson oscillation for nonlinear nonhomogeneous differential

12 Discrete Dynamics in Nature and Society

equationsrdquo Abstract and Applied Analysis vol 2011 Article ID972656 10 pages 2011

[30] A V Likov and Yu A MikhailovTheTheory of Heat and MassTransfer Qosenerqoizdat 1963 (Russian)

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: A Singular Sturm-Liouville Problem with Limit Circle …downloads.hindawi.com/journals/ddns/2017/9673846.pdf · ResearchArticle A Singular Sturm-Liouville Problem with Limit Circle

Discrete Dynamics in Nature and Society 3

which acts by the rule

119860119865 = (119871119891 1198791015840119886 (119891) 1198791015840119887 (119891)) (13)

with119865 = (119891 119879119886(119891) 119879119887(119891)) isin 119863(119860)Nowwe can rewrite prob-lem (1)ndash(4) in the operator form 119860119865 = 120582119865 for 119865 = (119891 119879119886(119891)119879119887(119891)) isin 119863(119860) Obviously we have the following lemmas

Lemma 4 The eigenvalues and eigenfunctions of problem(1)ndash(4) are corresponding to the eigenvalues and the firstcomponent of the corresponding eigenfunctions of operator 119860respectively

Lemma 5 The domain 119863(119860) is dense in 119867

Proof Let 119865 = (119891(119909) 1198911 1198912) isin 119867 119865 perp 119863(119860) and let 119862infin0 be afunctional set which has compact support and can be differ-ential infinitely such that 1205991(119909) isin 119862infin0 (119886 120585) 1205992(119909) isin 119862infin0 (120585 119887)Since 119862infin0 oplus 0 oplus 0 sub 119863(119860) for forall119866 = (119892(119909) 0 0) isin 119862infin0 oplus 0 oplus 0is orthogonal to 119865 namely

⟨119865 119866⟩ = 12057411990121 int120585119886

119891 (119909) 119892 (119909)119889119909 + 11990122 int119887120585

119891 (119909) 119892 (119909)119889119909= 0 (14)

so 119891(119909) = 0 For all 119881 = (](119909) ]1 0) isin 119863(119860) ⟨119865 119881⟩ =(120574120588)1198911]1 = 0 1198911 = 0 since ]1 is arbitrary Similarly onegets 1198912 = 0 Above all one has 119865 = (0 0 0) which proves theassertion

Definition 6 Let 119882(119891 119892 119909) = 119891(119909)1198921015840(119909) minus 1198911015840(119909)119892(119909) denotethe Wronskian of functions 119891(119909) and 119892(119909) One has119882 (119891 119892 119886) = 11990121 [119891 119892] (119886) 119882 (119891 119892 119887) = 11990122 [119891 119892] (119887) (15)

Theorem 7 Operator 119860 is symmetric

Proof For each 119865 119866 isin 119863(119860) by the definition of inner pro-duct and operator 119860 we can get⟨119860119865 119866⟩ minus ⟨119865 119860119866⟩= 120574119882 (119891 119892 120585 minus 0) minus 119882 (119891 119892 120585 + 0) + 119882 (119891 119892 119887)minus 120574119882 (119891 119892 119886)+ 120574120588 [1198791015840119886 (119891) 119879119886 (119892) minus 119879119886 (119891) 1198791015840119886 (119892)]

+ 1120579 [1198791015840119887 (119891) 119879119887 (119892) minus 119879119887 (119891) 1198791015840119887 (119892)] (16)

then (4) implies that119882 (119891 119892 120585 + 0) = 120574119882 (119891 119892 120585 minus 0) (17)

using boundary condition (2) we get120574120588 [1198791015840119886 (119891) 119879119886 (119892) minus 119879119886 (119891) 1198791015840119886 (119892)] = 120574119882 (119891 119892 119886) (18)

and by boundary condition (3) we have1120579 [1198791015840119887 (119891) 119879119887 (119892) minus 119879119887 (119891) 1198791015840119887 (119892)] = 119882 (119891 119892 119887) (19)

Substituting (17)ndash(19) into (16) yields ⟨119860119865 119866⟩ minus ⟨119865 119860119866⟩ = 0This completes the proof

Moreover we have the following conclusion

Theorem 8 Operator 119860 is self-adjoint

Proof 119860 is self-adjoint if and only if for each 119865 =(119891(119909) 119879119886(119891) 119879119887(119891)) isin 119863(119860) ⟨119860119865 119882⟩ = ⟨119865 119880⟩ for some119880 isin 119867 implying that 119882 isin 119863(119860) and 119860119882 = 119880 where119882 = (119908(119909) ℎ 119903) 119880 = (120583(119909) 119896 119904) Concretely we shouldprove that the following properties hold

(i) 119908(119909) 1199081015840(119909) are absolutely continuous on (119886 120585) cup(120585 119887) 119871119908 isin 1198712((119886 120585) cup (120585 119887))(ii) ℎ = 1198871[119908 119906](119886) minus 1198872[119908 V](119886) 119903 = 1198891[119908 119906](119887) minus 1198892[119908

V](119887)(iii) 119871 119894119908 = 0 119894 = 3 4(iv) 120583(119909) = 119871119908(v) 119896 = 1198861[119908 119906](119886) minus 1198862[119908 V](119886) 119904 = 1198881[119908 119906](119887) minus 1198882[119908

V](119887)For an arbitrary point 119865 isin 119862infin0 oplus 0 oplus 0 sub 119863(119860) we have12057411990121 int120585119886

(119871119891 (119909)) 119908 (119909)119889119909 + 11990122 int119887120585

(119871119891 (119909)) 119908 (119909)119889119909= 12057411990121 int120585

119886119891 (119909) 120583 (119909)119889119909 + 11990122 int119887

120585119891 (119909) 120583 (119909)119889119909 (20)

that is ⟨119871119891 119908⟩1 = ⟨119891 120583⟩1 According to the classical Sturm-Liouville theory (i) and (iv) hold So ⟨119860119865 119882⟩ = ⟨119865 119880⟩ forall119865 isin119863(119860) ⟨119871119891 119908⟩1 + 1205741205881198791015840119886 (119891) ℎ + 11205791198791015840119887 (119891) 119903

= ⟨119891 119871119908⟩1 + 120574120588119879119886 (119891) 119896 + 1120579119879119887 (119891) 119904 (21)

Besides we have⟨119871119891 119908⟩1 = ⟨119891 119871119908⟩1 + 120574119882 (119891 119908 120585 minus 0)minus 119882 (119891 119908 120585 + 0) + 119882 (119891 119908 119887)minus 120574119882 (119891 119908 119886) (22)

Substituting (22) into (21) we get120574120588 (119879119886 (119891) 119896 minus 1198791015840119886 (119891) ℎ) + 1120579 (119879119887 (119891) 119904 minus 1198791015840119887 (119891) 119903)= 120574119882 (119891 119908 120585 minus 0) minus 119882 (119891 119908 120585 + 0) + 119882 (119891 119908 119887)minus 120574119882 (119891 119908 119886)

(23)

4 Discrete Dynamics in Nature and Society

By Naimarkrsquos Patching Lemma [4] there exists 119865 isin 119863(119860)such that[119891 119906] (119887) = [119891 V] (119887) = 119891 (120585 plusmn 0) = 1198911015840 (120585 plusmn 0) = 0[119891 119906] (119886) = 1198872[119891 V] (119886) = 1198871 (24)

Substituting (24) into (23) we have ℎ = 1198871[119908 119906](119886) minus1198872[119908 V](119886) Further there exists 119865 isin 119863(119860) such that[119891 119906] (119886) = [119891 V] (119886) = 119891 (120585 plusmn 0) = 1198911015840 (120585 plusmn 0) = 0[119891 119906] (119887) = 1198892[119891 V] (119887) = 1198891 (25)

Analogously we can get 119903 = 1198891[119908 119906](119887) minus 1198892[119908 V](119887) So (ii)holds Similarly one proves (v) Next let 119865 isin 119863(119860) such that[119891 119906] (119886) = [119891 V] (119886) = [119891 119906] (119887) = [119891 V] (119887)= 119891 (120585 + 0) = 0119891 (120585 minus 0) = minus12057521198911015840 (120585 minus 0) = 12057511198911015840 (120585 + 0) = 120574

(26)

Then by (23) we have 1198713119908 = 0 Similarly we can get 1198714119908 =0 So 119860 is a self-adjoint operator

From the properties of self-adjoint operators we have thefollowing corollaries

Corollary 9 All eigenvalues of the singular Sturm-Liouvilleproblem (1)ndash(4) are real

Corollary 10 Let 1205821 and 1205822 be two different eigenvalues ofthe singular Sturm-Liouville problem (1)ndash(4) then the corre-sponding eigenfunctions 119891(119909) and 119892(119909) are orthogonal in thesense of12057411990121 int120585

119886119891 (119909) 119892 (119909)119889119909 + 11990122 int119887

120585119891 (119909) 119892 (119909)119889119909 + 12057412058811989111198921

+ 112057911989121198922 = 0 (27)

3 Asymptotic Approximation ofFundamental Solutions

In this section we construct the fundamental solutions ofproblem (1)ndash(4) and get the asymptotic approximation forfundamental solutions

Lemma 11 (see [5]) Let the real-valued function 119902(119909) becontinuous on 119868 = (119886 120585) cup (120585 119887) and let 119891(120582) 119892(120582) be givenentire functions Then for any 120582 isin C the equation119871119910 fl minus (119901 (119909) 1199101015840 (119909))1015840 + 119902 (119909) 119910 (119909) = 120582119910 (119909) 119909 isin (119886 120585) cup (120585 119887) (28)

has unique solution 119910 = 119910(119909 120582) satisfying the initial conditions119910 (119886 120582) = 119891 (120582) 1199101015840 (119886 120582) = 119892 (120582) (29)

For each fixed 119909 isin (119886 120585) cup (120585 119887) 119910(119909 120582) is an entire functionof 120582

Herewe define fundamental solutions120593(119909 120582) and120594(119909 120582)of (1) by the following procedure

120593 (119909 120582) = 1205931 (119909 120582) 119909 isin (119886 120585) 1205932 (119909 120582) 119909 isin (120585 119887) 120594 (119909 120582) = 1205941 (119909 120582) 119909 isin (119886 120585) 1205942 (119909 120582) 119909 isin (120585 119887)

(30)

Let 1205931(119909 120582) be the solution of (1) on the interval (119886 120585)which satisfies the initial conditions1205931 (119886 120582) fl [119910 119906] (119886 120582) = 1198862 minus 120582119887212059310158401 (119886 120582) fl [119910 V] (119886 120582) = 1198861 minus 1205821198871 (31)

by virtue of Lemma 11 we can define the solution 1205932(119909 120582) of(1) on (120585 119887) by the initial conditions

(1205932 (120585 + 0)12059310158402 (120585 + 0)) = (12057511205931 (120585 minus 0) + 120575212059310158401 (120585 minus 0)12057531205931 (120585 minus 0) + 120575412059310158401 (120585 minus 0)) (32)

Analogously we define the solutions 1205942(119909 120582) and 1205941(119909 120582) of(1) by the initial conditions1205942 (119887 120582) fl [119910 119906] (119887 120582) = 1198882 minus 120582119889212059410158402 (119887 120582) fl [119910 V] (119887 120582) = 1198881 minus 1205821198891

(1205941 (120585 minus 0)12059410158401 (120585 minus 0)) = (12057541205942 (120585 + 0) minus 120575212059410158402 (120585 + 0)120574120575112059410158402 (120585 + 0) minus 12057531205942 (120585 + 0)120574 ) (33)

Now we consider Wronskian119882119894 (120582) fl 119882 (120593119894 120594119894 119909)= 120593119894 (119909 120582) 1205941015840119894 (119909 120582) minus 1205931015840119894 (119909 120582) 120594119894 (119909 120582)(119894 = 1 2) (34)

By the dependence of solutions of initial value problemson the parameter one has that 119882119894(120582) (119894 = 1 2) are entirefunctions of 120582 and are independent of 119909Lemma 12 For every 120582 isin C 1198822(120582) = 1205741198821(120582)

Discrete Dynamics in Nature and Society 5

Proof By the definition of 119882119894(120582) we have1198821 (120582) = 1205931 (120585 minus 0 120582) 12059410158401 (120585 minus 0 120582)minus 12059310158401 (120585 minus 0 120582) 1205941 (120585 minus 0 120582)

1198822 (120582) = 1205932 (120585 + 0 120582) 12059410158402 (120585 + 0 120582)minus 12059310158402 (120585 + 0 120582) 1205942 (120585 + 0 120582)

(35)

using the transmission conditions (4) simple computationgives 119882 (1205932 1205942 120585 + 0) = 120574119882 (1205931 1205941 120585 minus 0) (36)

Thus for each 120582 isin C we have 1198822(120582) = 1205741198821(120582) This com-pletes the proof

Besides we set 119882(120582) fl 1198821(120582) = (1120574)1199082(120582)Theorem 13 The eigenvalues of problem (1)ndash(4) coincide withthe zeros of the function 119882(120582)Proof Let ]0(119909 1205820) be any eigenfunction corresponding toeigenvalue 1205820 then the function ]0(119909 1205820)may be representedin the form

]0 (119909 1205820)=

11989811205931 (119909 1205820) + 11989821205941 (119909 1205820) 119909 isin (119886 120585) 11989831205932 (119909 1205820) + 11989841205942 (119909 1205820) 119909 isin (120585 119887) (37)

where at least one of the constants 119898119894 (119894 = 1 2 3 4) is notzero We should show that 119882(1205820) = 0 Suppose to thecontrary that there exists 1205820 isin 119877 such that119882(1205820) = 1198821(1205820) =(1120574)1198822(1205820) = 0 Since eigenfunction ]0(119909 1205820) satisfiesboth boundary and transmission conditions (2)ndash(4) we have119871 119894]0(119909 1205820) = 0 (119894 = 1 2 3 4) while the determinant ofcoefficient matrix is not zero so we obtain 119898119894 = 0 (119894 =1 2 3 4) which is a contradiction then 119882(1205820) = 0Conversely let 120582 = 1205820 be a zero of function 119882(120582) then119882(1205820) = 1198821(1205820) = (1120574)1198822(1205820) = 0 therefore 120594119894(119909 1205820) =119896120593119894(119909 1205820) (119894 = 1 2) for some 119896 = 0 Since both 1205932(119909 1205820) and1205942(119909 1205820) satisfy the boundary condition (3)

120593 (119909 1205820) = 1205931 (119909 1205820) 119909 isin (119886 120585) 1205932 (119909 1205820) 119909 isin (120585 119887) (38)

satisfies problem (1)ndash(4) So function 120593(119909 1205820) is an eigen-function of problem (1)ndash(4) corresponding to eigenvalue 1205820This completes the proof

Theorem 14 The eigenvalues of problem (1)ndash(4) are analyti-cally single

Proof Let 120582 = 119904 + 119894119905 and we use the following notions forsimplicity 120593 = 120593(119909 120582) 1205931120582 = 1205971205931120597120582 and 12059310158401120582 = 12059712059310158401120597120582

We differentiate the equation 119860120594 = 120582120594 with respect to 120582 toobtain 119860120594120582 = 120594 + 120582120594120582 (39)

Using integration by parts we get⟨119860120594120582 120593⟩1 minus ⟨120594120582 119860120593⟩1= 120574 (120594112058212059310158401 minus 12059410158401120582120593110038161003816100381610038161003816120585119886) + (120594212058212059310158402 minus 120594101584021205821205932)100381610038161003816100381610038161003816119887120585 (40)

Substituting (39) and 119860120593 = 120582120593 into the left side of (40) wehave ⟨120582120594120582 120593⟩1 minus ⟨120594120582 120582120593⟩1 = ⟨120594 120593⟩1 + 2119894119905 ⟨120594120582 120593⟩1 (41)

Moreover

120574 (120594112058212059310158401 minus 12059410158401120582120593110038161003816100381610038161003816120585119886) + (120594212058212059310158402 minus 120594101584021205821205932)100381610038161003816100381610038161003816119887120585= 11988911205932 (119887) minus 119889212059310158402 (119887)minus 120574 [(1198861 minus 1205821198871) 1205941120582 (119886) minus (1198862 minus 1205821198872) 12059410158401120582 (119886)]

(42)

By (31) we observe that1198821015840 (120582) = 1205931 (119886 120582) 12059410158401 (119886 120582) minus 12059310158401 (119886 120582) 1205941 (119886 120582)= 11988711205941 (119886) minus 119887212059410158401 (119886) + (1198862 minus 1205821198872) 12059410158401120582 (119886)minus (1198861 minus 1205821198871) 1205941120582 (119886)

(43)

then (40) becomes1205741198821015840 (120582) = ⟨120594 120593⟩1 + 2119894119905 ⟨120594120582 120593⟩1+ 120574 (11988711205941 (119886) minus 119887212059410158401 (119886))minus (11988911205932 (119887) minus 119889212059310158402 (119887))

(44)

Next let 1205830 be an arbitrary zero of119882(120582) Since119882(1205830) = 0 weobtain 120593119894(119909 1205830) = 119896120594119894(119909 1205830) (119894 = 1 2) (119896 = 0) 119896 isin R Notingthat 1205830 is real a short calculation (44) becomes1205741198821015840 (1205830)

= 119896 (12057411990121 int120585119886

10038161003816100381610038161205941 (119909)10038161003816100381610038162 119889119909 + 11990122 int119887120585

10038161003816100381610038161205942 (119909)10038161003816100381610038162 119889119909)+ 120588119896 + 120579119896

(45)

Since 120588 gt 0 120579 gt 0 120574 gt 0 and 119896 = 0 1198821015840(1205830) = 0 Hence theanalytic multiplicity of 1205830 is one which completes the proof

6 Discrete Dynamics in Nature and Society

Lemma 15 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the following integraland differential equations hold for 119896 = 0 and 119896 = 11198891198961198891199091198961205931 (119909 120582)

= (1198862 minus 11990421198872) 119889119896119889119909119896 cos [1199011119904 (119909 minus 119886)]minus 1198861 minus 119904211988711199011119904 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)]+ 1199011119904 int119909

119886

119889119896119889119909119896 sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205931 (120591) 119889120591(46)

1198891198961198891199091198961205932 (119909 120582)= 1205932 (120585 + 0) 119889119896119889119909119896 cos [1199012119904 (119909 minus 120585)]

+ 1119901211990412059310158402 (120585 + 0) 119889119896119889119909119896 sin [1199012119904 (119909 minus 120585)]+ 1199012119904 int119909

120585

119889119896119889119909119896 sin [1199012119904 (119909 minus 120591)] 119902 (120591) 1205932 (120591) 119889120591(47)

Proof For the case of 119896 = 0 consider 1205931(119909 120582) as the solutionof the following nonhomogeneous problem

minus (119901 (119909) 119910 (119909)1015840)1015840 + 120582119910 (119909) = 119902 (119909) 119910 (119909)1205931 (119886 120582) = 1198862 minus 120582119887212059310158401 (119886 120582) = 1198861 minus 1205821198871 (48)

Using the method of constant variation 1205931(119909 120582) satisfies1205931 (119909 120582) = (1198862 minus 11990421198872) cos [1199011119904 (119909 minus 119886)]minus 1198861 minus 119904211988711199011119904 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)]+ 1199011119904 int119909

119886sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205931 (120591) 119889120591

(49)

Then differentiating it with respect to 119909 we have (46) Theproof for (47) is similar so we omit the details

Similarly we have the following theorem

Lemma 16 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the following integraland differential equations hold for 119896 = 0 and 119896 = 11198891198961198891199091198961205941 (119909 120582) = 12057541205942 (120585 + 0) minus 120575212059410158402 (120585 + 0)120574 119889119896119889119909119896

sdot cos [1199011119904 (119909 minus 120585)] + 120575112059410158402 (120585 + 0) minus 12057531205942 (120585 + 0)1199011119904120574

sdot 119889119896119889119909119896 sin [1199011119904 (119909 minus 120585)] minus 1199011119904sdot int120585119909

119889119896119889119909119896 sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205941 (120591) 1198891205911198891198961198891199091198961205942 (119909 120582) = (1198882 minus 11990421198892) 119889119896119889119909119896 cos [1199012119904 (119909 minus 119887)]

+ 1198881 minus 119904211988911199012119904 119889119896119889119909119896 sin [1199012119904 (119909 minus 119887)] minus 1199012119904sdot int119887119909

119889119896119889119909119896 sin [1199012119904 (119909 minus 120591)] 119902 (120591) 1205942 (120591) 119889120591(50)

Lemma 17 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then for 119896 = 0 1 120593(119909 120582)have the following estimations

Case 1 If 1198872 = 0 then1198891198961198891199091198961205931 (119909 120582)= minus11990421198872 119889119896119889119909119896 cos [1199011119904 (119909 minus 119886)]

+ 119874 (|119904|119896+1 119890|119905|1199011(119909minus119886)) 1198891198961198891199091198961205932 (119909 120582)= 1199011120575211990431198872 sin [1199011119904 (120585 minus 119886)] 119889119896119889119909119896 cos [1199012119904 (119909 minus 119886)]

+ 119874 (|119904|119896+2 119890|119905|(1199011(120585minus119886)+1199012(119909minus119886)))

(51)

Case 2 If 1198872 = 0 then1198891198961198891199091198961205931 (119909 120582)= minus11988711199041199011 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)] + 119874 (|119904|119896 119890|119905|1199011(119909minus119886))

1198891198961198891199091198961205932 (119909 120582)= minus120575211988711199042 cos [1199011119904 (120585 minus 119886)] 119889119896119889119909119896 cos [1199012119904 (119909 minus 120585)]

+ 119874 (|119904|119896+1 119890|119905|(1199011(120585minus119886)+1199012(119909minus120585)))

(52)

Each of these asymptotic equalities holds uniformly for 119909 as|120582| rarr infin

Proof The proof of formulas for 1205931(119909 120582) is identical to thoseof Titchmarshrsquos proof for 120593(119909 120582) (see [6]) so we only give theproof of formulas for 1205932(119909 120582) namely equality (51) the otherequalities are similar

Discrete Dynamics in Nature and Society 7

For 119896 = 0 by the estimations of 1205931(119909 120582) and 12059310158401(119909 120582) wehave 1205931 (120585 minus 0 120582) = minus11990421198872 cos [1199011119904 (120585 minus 119886)]+ 119874 (|119904| 119890|119905|1199011(120585minus119886)) 12059310158401 (120585 minus 0 120582) = 119901111990431198872 sin [1199011119904 (120585 minus 119886)]+ 119874 (|119904|2 119890|119905|1199011(120585minus119886))

(53)

then substituting (53) into (47) and observing (32) we have1205932 (119909 120582)= 1199011120575211990431198872 sin [1199011119904 (120585 minus 119886)] cos [1199012119904 (119909 minus 119886)]+ 119874 (|119904|2 119890|119905|(1199011(120585minus119886)+1199012(119909minus120585))) (54)

differentiating (54) with respect to 119909 we have (51)Lemma 18 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then for 119896 = 0 1 120594(119909 120582)have the following estimations

Case 1 If 1198892 = 0 then1198891198961198891199091198961205941 (119909 120582)= minus1199012119889212057521199043120574 sin [1199012119904 (120585 minus 119887)] 119889119896119889119909119896 cos [1199011119904 (119909 minus 120585)]

+ 119874 (|119904|119896+2 119890|119905|(1199011(119909minus120585)+1199012(120585minus119887))) 1198891198961198891199091198961205942 (119909 120582)= minus11988921199042 119889119896119889119909119896 cos [1199012119904 (119909 minus 119887)]

+ 119874 (|119904|119896+1 119890|119905|1199012(119909minus119887))

(55)

Case 2 If 1198892 = 0 then1198891198961198891199091198961205941 (119909 120582)= minus119889112057521199042120574 cos [1199012119904 (120585 minus 119887)] 119889119896119889119909119896 cos [1199011119904 (119909 minus 120585)]

+ 119874 (|119904|119896+1 119890|119905|(1199011(119909minus120585)+1199012(120585minus119887))) 1198891198961198891199091198961205942 (119909 120582)= minus11988911199041199012 119889119896119889119909119896 sin [1199012119904 (119909 minus 119887)] + 119874 (|119904|119896 119890|119905|1199012(119909minus119887))

(56)

Each of these asymptotic equalities holds uniformly for 119909 as|120582| rarr infin

Theorem 19 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the function 1198822(120582)has the following asymptotic representations

Case 1 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= 120575211990111199012119887211988921199046 sin [1199011119904 (120585 minus 119886)] sin [1199012119904 (119887 minus 120585)]+ 119874 (|119904|5 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (57)

Case 2 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= minus12057521199011119887211988911199045 sin [1199011119904 (120585 minus 119886)] cos [1199012119904 (119887 minus 120585)]+ 119874 (|119904|4 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (58)

Case 3 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= minus12057521199012119887111988921199045 cos [1199011119904 (120585 minus 119886)] sin [1199012119904 (119887 minus 120585)]+ 119874 (|119904|4 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (59)

Case 4 If 1198872 = 0 and 1198892 = 0 then1198822 (120582) = 1205752119887111988911199044 cos [1199011119904 (120585 minus 119886)] cos [1199012119904 (119887 minus 120585)]+ 119874 (|119904|3 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (60)

Proof By the definition of 1198822(120582) we have1198822 (120582) = 1205932 (119887 120582) 12059410158402 (119887 120582) minus 12059310158402 (119887 120582) 1205942 (119887 120582)= (1198881 minus 1205821198891) 1205932 (119887 120582) minus (1198882 minus 1205821198892) 12059310158402 (119887 120582) (61)

According to the equalities of 1205932(119909 120582) and 12059310158402(119909 120582) inLemma 17 we can obtain the formulas of 1198822(120582) in thistheorem

Corollary 20 The eigenvalues of the boundary value problem(1)ndash(4) are bounded below

Proof Putting 119904 = 119894119905 (119905 gt 0) in Theorem 19 we can obtain1198822(120582) = 1198822(minus1199052) rarr infin (119905 rarr infin) Hence 1198822(minus1199052) = 0 forsufficiently negative 120582 and sufficiently large 120582 This completesthe proof

4 Asymptotic Formulas forEigenvalues and Eigenfunctions

In this section we can get the asymptotic formulas forthe eigenvalues and eigenfunctions of the singular Sturm-Liouville problem (1)ndash(4) Since the eigenvalues coincidewiththe zeros of the entire function119882(120582) it follows that they haveno finite limits

Theorem 21 The eigenvalues 120582119899 = 1199042119899 (119899 = 0 1 2 ) ofproblem (1)ndash(4) have the following asymptotic representationsas 119899 rarr infin

8 Discrete Dynamics in Nature and Society

Case 1 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (62)

Case 2 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (63)

Case 3 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (64)

Case 4 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (65)

Proof By applying the well-known Rouche theorem we canobtain these conclusions (see [3] Theorem 23)

According to Theorem 21 and Lemmas 17 and 18 wecan obtain the following asymptotic representations of theeigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899)Theorem 22 The eigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899) (119899 =0 1 2 ) of problem (1)ndash(4) have the following asymptoticrepresentations as 119899 rarr infin

Case 1 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

120593 (119909 12058210158401015840119899) = minus1198872 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]3 sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]3 sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(66)

Case 2 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

Discrete Dynamics in Nature and Society 9

120593 (119909 12058210158401015840119899) = minus1198872 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]3 sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = 11988911205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [ (119899 minus 1) 1205871199011 (120585 minus 119886)] sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(67)

Case 3 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [ (119899 minus 1) 1205871199012 (119887 minus 120585)] sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]3 sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(68)

Case 4 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

10 Discrete Dynamics in Nature and Society

120594 (119909 1205821015840119899) = 11988911205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(69)

5 Completeness of Eigenfunctions

In this section we get the property of spectrum for the oper-ator 119860 and discuss the completeness of the eigenfunctions ofproblem (1)ndash(4)

Theorem 23 The operator 119860 has only point spectrum that is120590(119860) = 120590119901(119860)Proof We only need to prove that if 120574 is not an eigenvalueof 119860 then 120574 isin 120588(119860) Here we investigate the equation (119860 minus120574)119885 = 119865 isin 119867 where 120574 isin R 119885 = (119911(119909) 119879119886(119911) 119879119887(119911)) and119865 = (119871119891 119879119886(119891) 119879119887(119891)) Consider the initial value problemminus (119901 (119909) 1199111015840 (119909))1015840 + 119902 (119909) 119911 (119909) minus 120574119911 (119909) = 119891 (119909) 119909 isin (119886 120585) cup (120585 119887)119911 (120585 + 0) minus 1205751119911 (120585 minus 0) minus 12057521199111015840 (120585 minus 0) = 01199111015840 (120585 + 0) minus 1205753119911 (120585 minus 0) minus 12057541199111015840 (120585 minus 0) = 0

(70)

Let

120595 (119909) = 1205951 (119909) 119909 isin (119886 120585) 1205952 (119909) 119909 isin (120585 119887) (71)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 0 satisfying the transmission conditions (4) Let

120601 (119909) = 1206011 (119909) 119909 isin (119886 120585) 1206012 (119909) 119909 isin (120585 119887) (72)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 119891(119909) satisfying120601 (120585 + 0) minus 1205751120601 (120585 minus 0) minus 12057521206011015840 (120585 minus 0) = 01206011015840 (120585 + 0) minus 1205753120601 (120585 minus 0) minus 12057541206011015840 (120585 minus 0) = 0 (73)

Then (70) has the general solution

119911 (119909) = 1198991205951 (119909) + 1206011 (119909) 119909 isin (119886 120585) 1198991205952 (119909) + 1206012 (119909) 119909 isin (120585 119887) (74)

where 119899 isin C

As 120574 is not an eigenvalue of problem (1)ndash(4) we have120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886))minus (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886)) = 0120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887))minus (1198881 [119911 119888] (119887) minus 1198882 [119911 V] (119887)) = 0(75)

The second and third components of (119860minus120574)119885 = 119865 isin 119867meanthat (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886))minus 120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886)) = 119879119886 (119891) (1198881 [119911 119906] (119887) minus 1198882 [119911 V] (119887))minus 120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887)) = 119879119887 (119891)

(76)

Substituting (74) into (76) we can get that 119899 is uniquelysolvable So 119911(119909) is uniquely determined Observing that (119860minus120574119868)minus1 is defined on all of 119867 we get that (119860 minus 120574119868)minus1 is boundedbyTheorem 8 and the closed graph theoremThus 120574 isin 120588(119860)Hence 120590(119860) = 120590119901(119860)Lemma 24 The eigenvalues of problem (1)ndash(4) are countablyinfinite and can cluster only at infin

Lemma 25 The operator 119860 has compact resolvent that is foreach 120575 isin R120590119901(119860) (119860 minus 120575119868)minus1 is compact on 119867 (see [14]Theorem 633)

By the above lemmas and the spectral theorem forcompact operator we obtain the following theorem

Theorem26 The eigenfunctions of problem (1)ndash(4) expandedto become eigenfunctions of 119860 are complete in 119867 that is letΦ119899 = (120593119899(119909) 119879119886(120593119899) 119879119887(120593119899)) 119899 isin N be a maximum set oforthogonal eigenfunctions of119860 where 120593119899(119909) 119899 isin N are eigen-functions of problem (1)ndash(4) Then for all 119865 isin 119867 119865 =suminfin119899=1⟨119865 Φ119899⟩Φ119899Remark 27 In this paper the spectral properties of singu-lar Sturm-Liouville problems with one inner discontinuouspoint are considered if there are two or even multi-innerdiscontinuous points 1205851 1205852 120585119899 in the interval (119886 119887) we

Discrete Dynamics in Nature and Society 11

can obtain similar results by defining a more complicatedHilbert space

Conflicts of Interest

The authors declare that there are no conflicts of interest

Authorsrsquo Contributions

Jinming Cai prepared the manuscript and corrected the mainresults and Zhaowen Zheng gave the main thought andrevised the manuscript

Acknowledgments

This research was partially supported by the NSF of China(Grants 11271225 and 11671227)

References

[1] H Weyl ldquoUber gewohnliche Differentialgleichungen mit Sin-gularitaten und die zugehorigen Entwicklungenrdquo Mathematis-che Annalen vol 68 no 2 pp 220ndash269 1910

[2] JWeidmann SpectralTheory ofOrdinaryDifferential Operatorsvol 1258 of Lecture Notes in Mathematics Springer new YorkNY USA 1987

[3] Z Cao Ordinary Differential Operator Shanhai Science andTechnology Press Shanghai China 1986 (Chinese)

[4] M A Naimark Linear Differential Operators Part 2 HarrapLondon UK 1968

[5] A Zettl Sturm-Liouville Theory vol 121 of Mathematical Sur-veys and Monographs American Mathematics Society Provi-dence RI USA 2005

[6] E C TitchmarshEigenfunction Expansions Associatedwith Sec-ond-Order Differential Equations Part 1 Oxford UniversityPress London UK 1962

[7] Z Zheng and W Zhang ldquoCharacterization of eigenvalues inspectral gap for singular differential operatorsrdquo Abstract andApplied Analysis vol 2012 Article ID 271657 10 pages 2012

[8] J Qi Z Zheng and H Sun ldquoClassification of Sturm-Liouvilledifferential equations with complex coefficients and operatorrealizationsrdquo Proceedings of The Royal Society of London SeriesAMathematical Physical and Engineering Sciences vol 467 no2131 pp 1835ndash1850 2011

[9] Z Zheng J Qi and S Chen ldquoEigenvalues below the lowerbound of minimal operators of singular Hamiltonian expres-sionsrdquo Computers ampMathematics with Applications vol 56 no11 pp 2825ndash2833 2008

[10] Z Zheng ldquoInvariance of deficiency indices under perturbationfor discrete Hamiltonian systemsrdquo Journal of Difference Equa-tions and Applications vol 19 no 8 pp 1243ndash1250 2013

[11] M Demirci Z Akdogan and O S H Mukhtarov ldquoAsymptoticbehavior of eigenvalues and eigenfunctions of one discontin-uous boundary value problemrdquo International Journal of Com-putational Cognition vol 2 article 3 pp 101ndash113 2004

[12] D Buschmann G Stolz and J Weidmann ldquoOne-dimensionalschrodinger operators with local point interactionsrdquo Journal furdie Reine und Angewandte Mathematik vol 467 pp 169ndash1861995

[13] M Kadakal O S Mukhtarov and F S Muhtarov ldquoSome spec-tral properties of Sturm-Liouville problem with transmissionconditionsrdquo Iranian Journal of Science and Technology Trans-action A Science vol 29 no 2 pp 229ndash245 2005

[14] A P Wang Research on weimann conjecture and differentialoperators with transmission conditions [PhD thesis] InnerMongolia University 2006 (Chinese)

[15] O S H Mukhtarov and M Kadakal ldquoSome spectral proper-ties of one Sturm-Liouville type problem with discontinuousweightrdquo Siberian Mathematical Journal vol 46 no 4 pp 681ndash694 2005

[16] C T Fulton ldquoTwo-point boundary value problems with eigen-value parameter contained in the boundary conditionsrdquo Pro-ceedings of the Royal Society of Edinburgh Section A Mathemat-ics vol 77 no 3-4 pp 293ndash308 1977

[17] E Sen andA Bayramov ldquoAsymptotic formulations of the eigen-values and eigenfunctions for a boundary value problemrdquoMathematical Methods in the Applied Sciences vol 36 no 12pp 1512ndash1519 2013

[18] Q Yang and W Wang ldquoAsymptotic behavior of a differentialoperator with discontinuities at two pointsrdquo MathematicalMethods in the Applied Sciences vol 34 no 4 pp 373ndash383 2011

[19] O S Mukhtarov M Kadakal and F S Muhtarov ldquoEigenvaluesand normalized eigenfunctions of discontinuous Sturm-Liou-ville problem with transmission conditionsrdquo Reports on Mathe-matical Physics vol 54 no 1 pp 41ndash56 2004

[20] E Sen ldquoA Sturm-Liouville problemwith a discontinuous coeffi-cient and containing an eigenparameter in the boundary con-ditionrdquo Physics Research International vol 2013 Article ID159243 9 pages 2013

[21] M Kadakal and O S Mukhtarov ldquoSturm-Liouville problemswith discontinuities at two pointsrdquo Computers amp Mathematicswith Applications vol 54 no 11-12 pp 1367ndash1379 2007

[22] M Kadakal and O S Mukhtarov ldquoDiscontinuous Sturm-Liou-ville problems containing eigenparameter in the boundary con-ditionsrdquo Acta Mathematica Sinica vol 22 no 5 pp 1519ndash15282006

[23] Z Akdogan M Demirci and O S H Mukhtarov ldquoSturm-Liouville problems with eigendependent boundary and trans-missions conditionsrdquo Acta Mathematica Scientia vol 25 no 4pp 731ndash740 2005

[24] Q Yang and W Wang ldquoSpectral properties of Sturm-Liouvilleoperators with discontinuities at finite pointsrdquo MathematicalSciences vol 6 no 1 pp 1ndash9 2012

[25] K Li and Z Zheng ldquoSpectral properties for Sturm-Liouvilleequations with transmission conditionsrdquo Acta MathematicaScientia vol 35 no 5 pp 910ndash926 2015 (Chinese)

[26] F Meng and Y Huang ldquoInterval oscillation criteria for a forcedsecond-order nonlinear differential equations with dampingrdquoAppliedMathematics and Computation vol 218 no 5 pp 1857ndash1861 2011

[27] Z Zheng X Wang and H Han ldquoOscillation criteria for forcedsecond order differential equations with mixed nonlinearitiesrdquoApplied Mathematics Letters vol 22 no 7 pp 1096ndash1101 2009

[28] J Shao F Meng and X Pang ldquoGeneralized variational oscil-lation principles for second-order differential equations withmixed-nonlinearitiesrdquoDiscrete Dynamics in Nature and Societyvol 2012 Article ID 539213 10 pages 2012

[29] J Shao and F Meng ldquoGeneralized variational principleson oscillation for nonlinear nonhomogeneous differential

12 Discrete Dynamics in Nature and Society

equationsrdquo Abstract and Applied Analysis vol 2011 Article ID972656 10 pages 2011

[30] A V Likov and Yu A MikhailovTheTheory of Heat and MassTransfer Qosenerqoizdat 1963 (Russian)

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: A Singular Sturm-Liouville Problem with Limit Circle …downloads.hindawi.com/journals/ddns/2017/9673846.pdf · ResearchArticle A Singular Sturm-Liouville Problem with Limit Circle

4 Discrete Dynamics in Nature and Society

By Naimarkrsquos Patching Lemma [4] there exists 119865 isin 119863(119860)such that[119891 119906] (119887) = [119891 V] (119887) = 119891 (120585 plusmn 0) = 1198911015840 (120585 plusmn 0) = 0[119891 119906] (119886) = 1198872[119891 V] (119886) = 1198871 (24)

Substituting (24) into (23) we have ℎ = 1198871[119908 119906](119886) minus1198872[119908 V](119886) Further there exists 119865 isin 119863(119860) such that[119891 119906] (119886) = [119891 V] (119886) = 119891 (120585 plusmn 0) = 1198911015840 (120585 plusmn 0) = 0[119891 119906] (119887) = 1198892[119891 V] (119887) = 1198891 (25)

Analogously we can get 119903 = 1198891[119908 119906](119887) minus 1198892[119908 V](119887) So (ii)holds Similarly one proves (v) Next let 119865 isin 119863(119860) such that[119891 119906] (119886) = [119891 V] (119886) = [119891 119906] (119887) = [119891 V] (119887)= 119891 (120585 + 0) = 0119891 (120585 minus 0) = minus12057521198911015840 (120585 minus 0) = 12057511198911015840 (120585 + 0) = 120574

(26)

Then by (23) we have 1198713119908 = 0 Similarly we can get 1198714119908 =0 So 119860 is a self-adjoint operator

From the properties of self-adjoint operators we have thefollowing corollaries

Corollary 9 All eigenvalues of the singular Sturm-Liouvilleproblem (1)ndash(4) are real

Corollary 10 Let 1205821 and 1205822 be two different eigenvalues ofthe singular Sturm-Liouville problem (1)ndash(4) then the corre-sponding eigenfunctions 119891(119909) and 119892(119909) are orthogonal in thesense of12057411990121 int120585

119886119891 (119909) 119892 (119909)119889119909 + 11990122 int119887

120585119891 (119909) 119892 (119909)119889119909 + 12057412058811989111198921

+ 112057911989121198922 = 0 (27)

3 Asymptotic Approximation ofFundamental Solutions

In this section we construct the fundamental solutions ofproblem (1)ndash(4) and get the asymptotic approximation forfundamental solutions

Lemma 11 (see [5]) Let the real-valued function 119902(119909) becontinuous on 119868 = (119886 120585) cup (120585 119887) and let 119891(120582) 119892(120582) be givenentire functions Then for any 120582 isin C the equation119871119910 fl minus (119901 (119909) 1199101015840 (119909))1015840 + 119902 (119909) 119910 (119909) = 120582119910 (119909) 119909 isin (119886 120585) cup (120585 119887) (28)

has unique solution 119910 = 119910(119909 120582) satisfying the initial conditions119910 (119886 120582) = 119891 (120582) 1199101015840 (119886 120582) = 119892 (120582) (29)

For each fixed 119909 isin (119886 120585) cup (120585 119887) 119910(119909 120582) is an entire functionof 120582

Herewe define fundamental solutions120593(119909 120582) and120594(119909 120582)of (1) by the following procedure

120593 (119909 120582) = 1205931 (119909 120582) 119909 isin (119886 120585) 1205932 (119909 120582) 119909 isin (120585 119887) 120594 (119909 120582) = 1205941 (119909 120582) 119909 isin (119886 120585) 1205942 (119909 120582) 119909 isin (120585 119887)

(30)

Let 1205931(119909 120582) be the solution of (1) on the interval (119886 120585)which satisfies the initial conditions1205931 (119886 120582) fl [119910 119906] (119886 120582) = 1198862 minus 120582119887212059310158401 (119886 120582) fl [119910 V] (119886 120582) = 1198861 minus 1205821198871 (31)

by virtue of Lemma 11 we can define the solution 1205932(119909 120582) of(1) on (120585 119887) by the initial conditions

(1205932 (120585 + 0)12059310158402 (120585 + 0)) = (12057511205931 (120585 minus 0) + 120575212059310158401 (120585 minus 0)12057531205931 (120585 minus 0) + 120575412059310158401 (120585 minus 0)) (32)

Analogously we define the solutions 1205942(119909 120582) and 1205941(119909 120582) of(1) by the initial conditions1205942 (119887 120582) fl [119910 119906] (119887 120582) = 1198882 minus 120582119889212059410158402 (119887 120582) fl [119910 V] (119887 120582) = 1198881 minus 1205821198891

(1205941 (120585 minus 0)12059410158401 (120585 minus 0)) = (12057541205942 (120585 + 0) minus 120575212059410158402 (120585 + 0)120574120575112059410158402 (120585 + 0) minus 12057531205942 (120585 + 0)120574 ) (33)

Now we consider Wronskian119882119894 (120582) fl 119882 (120593119894 120594119894 119909)= 120593119894 (119909 120582) 1205941015840119894 (119909 120582) minus 1205931015840119894 (119909 120582) 120594119894 (119909 120582)(119894 = 1 2) (34)

By the dependence of solutions of initial value problemson the parameter one has that 119882119894(120582) (119894 = 1 2) are entirefunctions of 120582 and are independent of 119909Lemma 12 For every 120582 isin C 1198822(120582) = 1205741198821(120582)

Discrete Dynamics in Nature and Society 5

Proof By the definition of 119882119894(120582) we have1198821 (120582) = 1205931 (120585 minus 0 120582) 12059410158401 (120585 minus 0 120582)minus 12059310158401 (120585 minus 0 120582) 1205941 (120585 minus 0 120582)

1198822 (120582) = 1205932 (120585 + 0 120582) 12059410158402 (120585 + 0 120582)minus 12059310158402 (120585 + 0 120582) 1205942 (120585 + 0 120582)

(35)

using the transmission conditions (4) simple computationgives 119882 (1205932 1205942 120585 + 0) = 120574119882 (1205931 1205941 120585 minus 0) (36)

Thus for each 120582 isin C we have 1198822(120582) = 1205741198821(120582) This com-pletes the proof

Besides we set 119882(120582) fl 1198821(120582) = (1120574)1199082(120582)Theorem 13 The eigenvalues of problem (1)ndash(4) coincide withthe zeros of the function 119882(120582)Proof Let ]0(119909 1205820) be any eigenfunction corresponding toeigenvalue 1205820 then the function ]0(119909 1205820)may be representedin the form

]0 (119909 1205820)=

11989811205931 (119909 1205820) + 11989821205941 (119909 1205820) 119909 isin (119886 120585) 11989831205932 (119909 1205820) + 11989841205942 (119909 1205820) 119909 isin (120585 119887) (37)

where at least one of the constants 119898119894 (119894 = 1 2 3 4) is notzero We should show that 119882(1205820) = 0 Suppose to thecontrary that there exists 1205820 isin 119877 such that119882(1205820) = 1198821(1205820) =(1120574)1198822(1205820) = 0 Since eigenfunction ]0(119909 1205820) satisfiesboth boundary and transmission conditions (2)ndash(4) we have119871 119894]0(119909 1205820) = 0 (119894 = 1 2 3 4) while the determinant ofcoefficient matrix is not zero so we obtain 119898119894 = 0 (119894 =1 2 3 4) which is a contradiction then 119882(1205820) = 0Conversely let 120582 = 1205820 be a zero of function 119882(120582) then119882(1205820) = 1198821(1205820) = (1120574)1198822(1205820) = 0 therefore 120594119894(119909 1205820) =119896120593119894(119909 1205820) (119894 = 1 2) for some 119896 = 0 Since both 1205932(119909 1205820) and1205942(119909 1205820) satisfy the boundary condition (3)

120593 (119909 1205820) = 1205931 (119909 1205820) 119909 isin (119886 120585) 1205932 (119909 1205820) 119909 isin (120585 119887) (38)

satisfies problem (1)ndash(4) So function 120593(119909 1205820) is an eigen-function of problem (1)ndash(4) corresponding to eigenvalue 1205820This completes the proof

Theorem 14 The eigenvalues of problem (1)ndash(4) are analyti-cally single

Proof Let 120582 = 119904 + 119894119905 and we use the following notions forsimplicity 120593 = 120593(119909 120582) 1205931120582 = 1205971205931120597120582 and 12059310158401120582 = 12059712059310158401120597120582

We differentiate the equation 119860120594 = 120582120594 with respect to 120582 toobtain 119860120594120582 = 120594 + 120582120594120582 (39)

Using integration by parts we get⟨119860120594120582 120593⟩1 minus ⟨120594120582 119860120593⟩1= 120574 (120594112058212059310158401 minus 12059410158401120582120593110038161003816100381610038161003816120585119886) + (120594212058212059310158402 minus 120594101584021205821205932)100381610038161003816100381610038161003816119887120585 (40)

Substituting (39) and 119860120593 = 120582120593 into the left side of (40) wehave ⟨120582120594120582 120593⟩1 minus ⟨120594120582 120582120593⟩1 = ⟨120594 120593⟩1 + 2119894119905 ⟨120594120582 120593⟩1 (41)

Moreover

120574 (120594112058212059310158401 minus 12059410158401120582120593110038161003816100381610038161003816120585119886) + (120594212058212059310158402 minus 120594101584021205821205932)100381610038161003816100381610038161003816119887120585= 11988911205932 (119887) minus 119889212059310158402 (119887)minus 120574 [(1198861 minus 1205821198871) 1205941120582 (119886) minus (1198862 minus 1205821198872) 12059410158401120582 (119886)]

(42)

By (31) we observe that1198821015840 (120582) = 1205931 (119886 120582) 12059410158401 (119886 120582) minus 12059310158401 (119886 120582) 1205941 (119886 120582)= 11988711205941 (119886) minus 119887212059410158401 (119886) + (1198862 minus 1205821198872) 12059410158401120582 (119886)minus (1198861 minus 1205821198871) 1205941120582 (119886)

(43)

then (40) becomes1205741198821015840 (120582) = ⟨120594 120593⟩1 + 2119894119905 ⟨120594120582 120593⟩1+ 120574 (11988711205941 (119886) minus 119887212059410158401 (119886))minus (11988911205932 (119887) minus 119889212059310158402 (119887))

(44)

Next let 1205830 be an arbitrary zero of119882(120582) Since119882(1205830) = 0 weobtain 120593119894(119909 1205830) = 119896120594119894(119909 1205830) (119894 = 1 2) (119896 = 0) 119896 isin R Notingthat 1205830 is real a short calculation (44) becomes1205741198821015840 (1205830)

= 119896 (12057411990121 int120585119886

10038161003816100381610038161205941 (119909)10038161003816100381610038162 119889119909 + 11990122 int119887120585

10038161003816100381610038161205942 (119909)10038161003816100381610038162 119889119909)+ 120588119896 + 120579119896

(45)

Since 120588 gt 0 120579 gt 0 120574 gt 0 and 119896 = 0 1198821015840(1205830) = 0 Hence theanalytic multiplicity of 1205830 is one which completes the proof

6 Discrete Dynamics in Nature and Society

Lemma 15 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the following integraland differential equations hold for 119896 = 0 and 119896 = 11198891198961198891199091198961205931 (119909 120582)

= (1198862 minus 11990421198872) 119889119896119889119909119896 cos [1199011119904 (119909 minus 119886)]minus 1198861 minus 119904211988711199011119904 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)]+ 1199011119904 int119909

119886

119889119896119889119909119896 sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205931 (120591) 119889120591(46)

1198891198961198891199091198961205932 (119909 120582)= 1205932 (120585 + 0) 119889119896119889119909119896 cos [1199012119904 (119909 minus 120585)]

+ 1119901211990412059310158402 (120585 + 0) 119889119896119889119909119896 sin [1199012119904 (119909 minus 120585)]+ 1199012119904 int119909

120585

119889119896119889119909119896 sin [1199012119904 (119909 minus 120591)] 119902 (120591) 1205932 (120591) 119889120591(47)

Proof For the case of 119896 = 0 consider 1205931(119909 120582) as the solutionof the following nonhomogeneous problem

minus (119901 (119909) 119910 (119909)1015840)1015840 + 120582119910 (119909) = 119902 (119909) 119910 (119909)1205931 (119886 120582) = 1198862 minus 120582119887212059310158401 (119886 120582) = 1198861 minus 1205821198871 (48)

Using the method of constant variation 1205931(119909 120582) satisfies1205931 (119909 120582) = (1198862 minus 11990421198872) cos [1199011119904 (119909 minus 119886)]minus 1198861 minus 119904211988711199011119904 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)]+ 1199011119904 int119909

119886sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205931 (120591) 119889120591

(49)

Then differentiating it with respect to 119909 we have (46) Theproof for (47) is similar so we omit the details

Similarly we have the following theorem

Lemma 16 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the following integraland differential equations hold for 119896 = 0 and 119896 = 11198891198961198891199091198961205941 (119909 120582) = 12057541205942 (120585 + 0) minus 120575212059410158402 (120585 + 0)120574 119889119896119889119909119896

sdot cos [1199011119904 (119909 minus 120585)] + 120575112059410158402 (120585 + 0) minus 12057531205942 (120585 + 0)1199011119904120574

sdot 119889119896119889119909119896 sin [1199011119904 (119909 minus 120585)] minus 1199011119904sdot int120585119909

119889119896119889119909119896 sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205941 (120591) 1198891205911198891198961198891199091198961205942 (119909 120582) = (1198882 minus 11990421198892) 119889119896119889119909119896 cos [1199012119904 (119909 minus 119887)]

+ 1198881 minus 119904211988911199012119904 119889119896119889119909119896 sin [1199012119904 (119909 minus 119887)] minus 1199012119904sdot int119887119909

119889119896119889119909119896 sin [1199012119904 (119909 minus 120591)] 119902 (120591) 1205942 (120591) 119889120591(50)

Lemma 17 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then for 119896 = 0 1 120593(119909 120582)have the following estimations

Case 1 If 1198872 = 0 then1198891198961198891199091198961205931 (119909 120582)= minus11990421198872 119889119896119889119909119896 cos [1199011119904 (119909 minus 119886)]

+ 119874 (|119904|119896+1 119890|119905|1199011(119909minus119886)) 1198891198961198891199091198961205932 (119909 120582)= 1199011120575211990431198872 sin [1199011119904 (120585 minus 119886)] 119889119896119889119909119896 cos [1199012119904 (119909 minus 119886)]

+ 119874 (|119904|119896+2 119890|119905|(1199011(120585minus119886)+1199012(119909minus119886)))

(51)

Case 2 If 1198872 = 0 then1198891198961198891199091198961205931 (119909 120582)= minus11988711199041199011 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)] + 119874 (|119904|119896 119890|119905|1199011(119909minus119886))

1198891198961198891199091198961205932 (119909 120582)= minus120575211988711199042 cos [1199011119904 (120585 minus 119886)] 119889119896119889119909119896 cos [1199012119904 (119909 minus 120585)]

+ 119874 (|119904|119896+1 119890|119905|(1199011(120585minus119886)+1199012(119909minus120585)))

(52)

Each of these asymptotic equalities holds uniformly for 119909 as|120582| rarr infin

Proof The proof of formulas for 1205931(119909 120582) is identical to thoseof Titchmarshrsquos proof for 120593(119909 120582) (see [6]) so we only give theproof of formulas for 1205932(119909 120582) namely equality (51) the otherequalities are similar

Discrete Dynamics in Nature and Society 7

For 119896 = 0 by the estimations of 1205931(119909 120582) and 12059310158401(119909 120582) wehave 1205931 (120585 minus 0 120582) = minus11990421198872 cos [1199011119904 (120585 minus 119886)]+ 119874 (|119904| 119890|119905|1199011(120585minus119886)) 12059310158401 (120585 minus 0 120582) = 119901111990431198872 sin [1199011119904 (120585 minus 119886)]+ 119874 (|119904|2 119890|119905|1199011(120585minus119886))

(53)

then substituting (53) into (47) and observing (32) we have1205932 (119909 120582)= 1199011120575211990431198872 sin [1199011119904 (120585 minus 119886)] cos [1199012119904 (119909 minus 119886)]+ 119874 (|119904|2 119890|119905|(1199011(120585minus119886)+1199012(119909minus120585))) (54)

differentiating (54) with respect to 119909 we have (51)Lemma 18 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then for 119896 = 0 1 120594(119909 120582)have the following estimations

Case 1 If 1198892 = 0 then1198891198961198891199091198961205941 (119909 120582)= minus1199012119889212057521199043120574 sin [1199012119904 (120585 minus 119887)] 119889119896119889119909119896 cos [1199011119904 (119909 minus 120585)]

+ 119874 (|119904|119896+2 119890|119905|(1199011(119909minus120585)+1199012(120585minus119887))) 1198891198961198891199091198961205942 (119909 120582)= minus11988921199042 119889119896119889119909119896 cos [1199012119904 (119909 minus 119887)]

+ 119874 (|119904|119896+1 119890|119905|1199012(119909minus119887))

(55)

Case 2 If 1198892 = 0 then1198891198961198891199091198961205941 (119909 120582)= minus119889112057521199042120574 cos [1199012119904 (120585 minus 119887)] 119889119896119889119909119896 cos [1199011119904 (119909 minus 120585)]

+ 119874 (|119904|119896+1 119890|119905|(1199011(119909minus120585)+1199012(120585minus119887))) 1198891198961198891199091198961205942 (119909 120582)= minus11988911199041199012 119889119896119889119909119896 sin [1199012119904 (119909 minus 119887)] + 119874 (|119904|119896 119890|119905|1199012(119909minus119887))

(56)

Each of these asymptotic equalities holds uniformly for 119909 as|120582| rarr infin

Theorem 19 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the function 1198822(120582)has the following asymptotic representations

Case 1 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= 120575211990111199012119887211988921199046 sin [1199011119904 (120585 minus 119886)] sin [1199012119904 (119887 minus 120585)]+ 119874 (|119904|5 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (57)

Case 2 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= minus12057521199011119887211988911199045 sin [1199011119904 (120585 minus 119886)] cos [1199012119904 (119887 minus 120585)]+ 119874 (|119904|4 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (58)

Case 3 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= minus12057521199012119887111988921199045 cos [1199011119904 (120585 minus 119886)] sin [1199012119904 (119887 minus 120585)]+ 119874 (|119904|4 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (59)

Case 4 If 1198872 = 0 and 1198892 = 0 then1198822 (120582) = 1205752119887111988911199044 cos [1199011119904 (120585 minus 119886)] cos [1199012119904 (119887 minus 120585)]+ 119874 (|119904|3 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (60)

Proof By the definition of 1198822(120582) we have1198822 (120582) = 1205932 (119887 120582) 12059410158402 (119887 120582) minus 12059310158402 (119887 120582) 1205942 (119887 120582)= (1198881 minus 1205821198891) 1205932 (119887 120582) minus (1198882 minus 1205821198892) 12059310158402 (119887 120582) (61)

According to the equalities of 1205932(119909 120582) and 12059310158402(119909 120582) inLemma 17 we can obtain the formulas of 1198822(120582) in thistheorem

Corollary 20 The eigenvalues of the boundary value problem(1)ndash(4) are bounded below

Proof Putting 119904 = 119894119905 (119905 gt 0) in Theorem 19 we can obtain1198822(120582) = 1198822(minus1199052) rarr infin (119905 rarr infin) Hence 1198822(minus1199052) = 0 forsufficiently negative 120582 and sufficiently large 120582 This completesthe proof

4 Asymptotic Formulas forEigenvalues and Eigenfunctions

In this section we can get the asymptotic formulas forthe eigenvalues and eigenfunctions of the singular Sturm-Liouville problem (1)ndash(4) Since the eigenvalues coincidewiththe zeros of the entire function119882(120582) it follows that they haveno finite limits

Theorem 21 The eigenvalues 120582119899 = 1199042119899 (119899 = 0 1 2 ) ofproblem (1)ndash(4) have the following asymptotic representationsas 119899 rarr infin

8 Discrete Dynamics in Nature and Society

Case 1 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (62)

Case 2 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (63)

Case 3 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (64)

Case 4 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (65)

Proof By applying the well-known Rouche theorem we canobtain these conclusions (see [3] Theorem 23)

According to Theorem 21 and Lemmas 17 and 18 wecan obtain the following asymptotic representations of theeigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899)Theorem 22 The eigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899) (119899 =0 1 2 ) of problem (1)ndash(4) have the following asymptoticrepresentations as 119899 rarr infin

Case 1 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

120593 (119909 12058210158401015840119899) = minus1198872 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]3 sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]3 sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(66)

Case 2 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

Discrete Dynamics in Nature and Society 9

120593 (119909 12058210158401015840119899) = minus1198872 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]3 sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = 11988911205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [ (119899 minus 1) 1205871199011 (120585 minus 119886)] sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(67)

Case 3 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [ (119899 minus 1) 1205871199012 (119887 minus 120585)] sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]3 sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(68)

Case 4 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

10 Discrete Dynamics in Nature and Society

120594 (119909 1205821015840119899) = 11988911205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(69)

5 Completeness of Eigenfunctions

In this section we get the property of spectrum for the oper-ator 119860 and discuss the completeness of the eigenfunctions ofproblem (1)ndash(4)

Theorem 23 The operator 119860 has only point spectrum that is120590(119860) = 120590119901(119860)Proof We only need to prove that if 120574 is not an eigenvalueof 119860 then 120574 isin 120588(119860) Here we investigate the equation (119860 minus120574)119885 = 119865 isin 119867 where 120574 isin R 119885 = (119911(119909) 119879119886(119911) 119879119887(119911)) and119865 = (119871119891 119879119886(119891) 119879119887(119891)) Consider the initial value problemminus (119901 (119909) 1199111015840 (119909))1015840 + 119902 (119909) 119911 (119909) minus 120574119911 (119909) = 119891 (119909) 119909 isin (119886 120585) cup (120585 119887)119911 (120585 + 0) minus 1205751119911 (120585 minus 0) minus 12057521199111015840 (120585 minus 0) = 01199111015840 (120585 + 0) minus 1205753119911 (120585 minus 0) minus 12057541199111015840 (120585 minus 0) = 0

(70)

Let

120595 (119909) = 1205951 (119909) 119909 isin (119886 120585) 1205952 (119909) 119909 isin (120585 119887) (71)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 0 satisfying the transmission conditions (4) Let

120601 (119909) = 1206011 (119909) 119909 isin (119886 120585) 1206012 (119909) 119909 isin (120585 119887) (72)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 119891(119909) satisfying120601 (120585 + 0) minus 1205751120601 (120585 minus 0) minus 12057521206011015840 (120585 minus 0) = 01206011015840 (120585 + 0) minus 1205753120601 (120585 minus 0) minus 12057541206011015840 (120585 minus 0) = 0 (73)

Then (70) has the general solution

119911 (119909) = 1198991205951 (119909) + 1206011 (119909) 119909 isin (119886 120585) 1198991205952 (119909) + 1206012 (119909) 119909 isin (120585 119887) (74)

where 119899 isin C

As 120574 is not an eigenvalue of problem (1)ndash(4) we have120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886))minus (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886)) = 0120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887))minus (1198881 [119911 119888] (119887) minus 1198882 [119911 V] (119887)) = 0(75)

The second and third components of (119860minus120574)119885 = 119865 isin 119867meanthat (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886))minus 120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886)) = 119879119886 (119891) (1198881 [119911 119906] (119887) minus 1198882 [119911 V] (119887))minus 120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887)) = 119879119887 (119891)

(76)

Substituting (74) into (76) we can get that 119899 is uniquelysolvable So 119911(119909) is uniquely determined Observing that (119860minus120574119868)minus1 is defined on all of 119867 we get that (119860 minus 120574119868)minus1 is boundedbyTheorem 8 and the closed graph theoremThus 120574 isin 120588(119860)Hence 120590(119860) = 120590119901(119860)Lemma 24 The eigenvalues of problem (1)ndash(4) are countablyinfinite and can cluster only at infin

Lemma 25 The operator 119860 has compact resolvent that is foreach 120575 isin R120590119901(119860) (119860 minus 120575119868)minus1 is compact on 119867 (see [14]Theorem 633)

By the above lemmas and the spectral theorem forcompact operator we obtain the following theorem

Theorem26 The eigenfunctions of problem (1)ndash(4) expandedto become eigenfunctions of 119860 are complete in 119867 that is letΦ119899 = (120593119899(119909) 119879119886(120593119899) 119879119887(120593119899)) 119899 isin N be a maximum set oforthogonal eigenfunctions of119860 where 120593119899(119909) 119899 isin N are eigen-functions of problem (1)ndash(4) Then for all 119865 isin 119867 119865 =suminfin119899=1⟨119865 Φ119899⟩Φ119899Remark 27 In this paper the spectral properties of singu-lar Sturm-Liouville problems with one inner discontinuouspoint are considered if there are two or even multi-innerdiscontinuous points 1205851 1205852 120585119899 in the interval (119886 119887) we

Discrete Dynamics in Nature and Society 11

can obtain similar results by defining a more complicatedHilbert space

Conflicts of Interest

The authors declare that there are no conflicts of interest

Authorsrsquo Contributions

Jinming Cai prepared the manuscript and corrected the mainresults and Zhaowen Zheng gave the main thought andrevised the manuscript

Acknowledgments

This research was partially supported by the NSF of China(Grants 11271225 and 11671227)

References

[1] H Weyl ldquoUber gewohnliche Differentialgleichungen mit Sin-gularitaten und die zugehorigen Entwicklungenrdquo Mathematis-che Annalen vol 68 no 2 pp 220ndash269 1910

[2] JWeidmann SpectralTheory ofOrdinaryDifferential Operatorsvol 1258 of Lecture Notes in Mathematics Springer new YorkNY USA 1987

[3] Z Cao Ordinary Differential Operator Shanhai Science andTechnology Press Shanghai China 1986 (Chinese)

[4] M A Naimark Linear Differential Operators Part 2 HarrapLondon UK 1968

[5] A Zettl Sturm-Liouville Theory vol 121 of Mathematical Sur-veys and Monographs American Mathematics Society Provi-dence RI USA 2005

[6] E C TitchmarshEigenfunction Expansions Associatedwith Sec-ond-Order Differential Equations Part 1 Oxford UniversityPress London UK 1962

[7] Z Zheng and W Zhang ldquoCharacterization of eigenvalues inspectral gap for singular differential operatorsrdquo Abstract andApplied Analysis vol 2012 Article ID 271657 10 pages 2012

[8] J Qi Z Zheng and H Sun ldquoClassification of Sturm-Liouvilledifferential equations with complex coefficients and operatorrealizationsrdquo Proceedings of The Royal Society of London SeriesAMathematical Physical and Engineering Sciences vol 467 no2131 pp 1835ndash1850 2011

[9] Z Zheng J Qi and S Chen ldquoEigenvalues below the lowerbound of minimal operators of singular Hamiltonian expres-sionsrdquo Computers ampMathematics with Applications vol 56 no11 pp 2825ndash2833 2008

[10] Z Zheng ldquoInvariance of deficiency indices under perturbationfor discrete Hamiltonian systemsrdquo Journal of Difference Equa-tions and Applications vol 19 no 8 pp 1243ndash1250 2013

[11] M Demirci Z Akdogan and O S H Mukhtarov ldquoAsymptoticbehavior of eigenvalues and eigenfunctions of one discontin-uous boundary value problemrdquo International Journal of Com-putational Cognition vol 2 article 3 pp 101ndash113 2004

[12] D Buschmann G Stolz and J Weidmann ldquoOne-dimensionalschrodinger operators with local point interactionsrdquo Journal furdie Reine und Angewandte Mathematik vol 467 pp 169ndash1861995

[13] M Kadakal O S Mukhtarov and F S Muhtarov ldquoSome spec-tral properties of Sturm-Liouville problem with transmissionconditionsrdquo Iranian Journal of Science and Technology Trans-action A Science vol 29 no 2 pp 229ndash245 2005

[14] A P Wang Research on weimann conjecture and differentialoperators with transmission conditions [PhD thesis] InnerMongolia University 2006 (Chinese)

[15] O S H Mukhtarov and M Kadakal ldquoSome spectral proper-ties of one Sturm-Liouville type problem with discontinuousweightrdquo Siberian Mathematical Journal vol 46 no 4 pp 681ndash694 2005

[16] C T Fulton ldquoTwo-point boundary value problems with eigen-value parameter contained in the boundary conditionsrdquo Pro-ceedings of the Royal Society of Edinburgh Section A Mathemat-ics vol 77 no 3-4 pp 293ndash308 1977

[17] E Sen andA Bayramov ldquoAsymptotic formulations of the eigen-values and eigenfunctions for a boundary value problemrdquoMathematical Methods in the Applied Sciences vol 36 no 12pp 1512ndash1519 2013

[18] Q Yang and W Wang ldquoAsymptotic behavior of a differentialoperator with discontinuities at two pointsrdquo MathematicalMethods in the Applied Sciences vol 34 no 4 pp 373ndash383 2011

[19] O S Mukhtarov M Kadakal and F S Muhtarov ldquoEigenvaluesand normalized eigenfunctions of discontinuous Sturm-Liou-ville problem with transmission conditionsrdquo Reports on Mathe-matical Physics vol 54 no 1 pp 41ndash56 2004

[20] E Sen ldquoA Sturm-Liouville problemwith a discontinuous coeffi-cient and containing an eigenparameter in the boundary con-ditionrdquo Physics Research International vol 2013 Article ID159243 9 pages 2013

[21] M Kadakal and O S Mukhtarov ldquoSturm-Liouville problemswith discontinuities at two pointsrdquo Computers amp Mathematicswith Applications vol 54 no 11-12 pp 1367ndash1379 2007

[22] M Kadakal and O S Mukhtarov ldquoDiscontinuous Sturm-Liou-ville problems containing eigenparameter in the boundary con-ditionsrdquo Acta Mathematica Sinica vol 22 no 5 pp 1519ndash15282006

[23] Z Akdogan M Demirci and O S H Mukhtarov ldquoSturm-Liouville problems with eigendependent boundary and trans-missions conditionsrdquo Acta Mathematica Scientia vol 25 no 4pp 731ndash740 2005

[24] Q Yang and W Wang ldquoSpectral properties of Sturm-Liouvilleoperators with discontinuities at finite pointsrdquo MathematicalSciences vol 6 no 1 pp 1ndash9 2012

[25] K Li and Z Zheng ldquoSpectral properties for Sturm-Liouvilleequations with transmission conditionsrdquo Acta MathematicaScientia vol 35 no 5 pp 910ndash926 2015 (Chinese)

[26] F Meng and Y Huang ldquoInterval oscillation criteria for a forcedsecond-order nonlinear differential equations with dampingrdquoAppliedMathematics and Computation vol 218 no 5 pp 1857ndash1861 2011

[27] Z Zheng X Wang and H Han ldquoOscillation criteria for forcedsecond order differential equations with mixed nonlinearitiesrdquoApplied Mathematics Letters vol 22 no 7 pp 1096ndash1101 2009

[28] J Shao F Meng and X Pang ldquoGeneralized variational oscil-lation principles for second-order differential equations withmixed-nonlinearitiesrdquoDiscrete Dynamics in Nature and Societyvol 2012 Article ID 539213 10 pages 2012

[29] J Shao and F Meng ldquoGeneralized variational principleson oscillation for nonlinear nonhomogeneous differential

12 Discrete Dynamics in Nature and Society

equationsrdquo Abstract and Applied Analysis vol 2011 Article ID972656 10 pages 2011

[30] A V Likov and Yu A MikhailovTheTheory of Heat and MassTransfer Qosenerqoizdat 1963 (Russian)

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: A Singular Sturm-Liouville Problem with Limit Circle …downloads.hindawi.com/journals/ddns/2017/9673846.pdf · ResearchArticle A Singular Sturm-Liouville Problem with Limit Circle

Discrete Dynamics in Nature and Society 5

Proof By the definition of 119882119894(120582) we have1198821 (120582) = 1205931 (120585 minus 0 120582) 12059410158401 (120585 minus 0 120582)minus 12059310158401 (120585 minus 0 120582) 1205941 (120585 minus 0 120582)

1198822 (120582) = 1205932 (120585 + 0 120582) 12059410158402 (120585 + 0 120582)minus 12059310158402 (120585 + 0 120582) 1205942 (120585 + 0 120582)

(35)

using the transmission conditions (4) simple computationgives 119882 (1205932 1205942 120585 + 0) = 120574119882 (1205931 1205941 120585 minus 0) (36)

Thus for each 120582 isin C we have 1198822(120582) = 1205741198821(120582) This com-pletes the proof

Besides we set 119882(120582) fl 1198821(120582) = (1120574)1199082(120582)Theorem 13 The eigenvalues of problem (1)ndash(4) coincide withthe zeros of the function 119882(120582)Proof Let ]0(119909 1205820) be any eigenfunction corresponding toeigenvalue 1205820 then the function ]0(119909 1205820)may be representedin the form

]0 (119909 1205820)=

11989811205931 (119909 1205820) + 11989821205941 (119909 1205820) 119909 isin (119886 120585) 11989831205932 (119909 1205820) + 11989841205942 (119909 1205820) 119909 isin (120585 119887) (37)

where at least one of the constants 119898119894 (119894 = 1 2 3 4) is notzero We should show that 119882(1205820) = 0 Suppose to thecontrary that there exists 1205820 isin 119877 such that119882(1205820) = 1198821(1205820) =(1120574)1198822(1205820) = 0 Since eigenfunction ]0(119909 1205820) satisfiesboth boundary and transmission conditions (2)ndash(4) we have119871 119894]0(119909 1205820) = 0 (119894 = 1 2 3 4) while the determinant ofcoefficient matrix is not zero so we obtain 119898119894 = 0 (119894 =1 2 3 4) which is a contradiction then 119882(1205820) = 0Conversely let 120582 = 1205820 be a zero of function 119882(120582) then119882(1205820) = 1198821(1205820) = (1120574)1198822(1205820) = 0 therefore 120594119894(119909 1205820) =119896120593119894(119909 1205820) (119894 = 1 2) for some 119896 = 0 Since both 1205932(119909 1205820) and1205942(119909 1205820) satisfy the boundary condition (3)

120593 (119909 1205820) = 1205931 (119909 1205820) 119909 isin (119886 120585) 1205932 (119909 1205820) 119909 isin (120585 119887) (38)

satisfies problem (1)ndash(4) So function 120593(119909 1205820) is an eigen-function of problem (1)ndash(4) corresponding to eigenvalue 1205820This completes the proof

Theorem 14 The eigenvalues of problem (1)ndash(4) are analyti-cally single

Proof Let 120582 = 119904 + 119894119905 and we use the following notions forsimplicity 120593 = 120593(119909 120582) 1205931120582 = 1205971205931120597120582 and 12059310158401120582 = 12059712059310158401120597120582

We differentiate the equation 119860120594 = 120582120594 with respect to 120582 toobtain 119860120594120582 = 120594 + 120582120594120582 (39)

Using integration by parts we get⟨119860120594120582 120593⟩1 minus ⟨120594120582 119860120593⟩1= 120574 (120594112058212059310158401 minus 12059410158401120582120593110038161003816100381610038161003816120585119886) + (120594212058212059310158402 minus 120594101584021205821205932)100381610038161003816100381610038161003816119887120585 (40)

Substituting (39) and 119860120593 = 120582120593 into the left side of (40) wehave ⟨120582120594120582 120593⟩1 minus ⟨120594120582 120582120593⟩1 = ⟨120594 120593⟩1 + 2119894119905 ⟨120594120582 120593⟩1 (41)

Moreover

120574 (120594112058212059310158401 minus 12059410158401120582120593110038161003816100381610038161003816120585119886) + (120594212058212059310158402 minus 120594101584021205821205932)100381610038161003816100381610038161003816119887120585= 11988911205932 (119887) minus 119889212059310158402 (119887)minus 120574 [(1198861 minus 1205821198871) 1205941120582 (119886) minus (1198862 minus 1205821198872) 12059410158401120582 (119886)]

(42)

By (31) we observe that1198821015840 (120582) = 1205931 (119886 120582) 12059410158401 (119886 120582) minus 12059310158401 (119886 120582) 1205941 (119886 120582)= 11988711205941 (119886) minus 119887212059410158401 (119886) + (1198862 minus 1205821198872) 12059410158401120582 (119886)minus (1198861 minus 1205821198871) 1205941120582 (119886)

(43)

then (40) becomes1205741198821015840 (120582) = ⟨120594 120593⟩1 + 2119894119905 ⟨120594120582 120593⟩1+ 120574 (11988711205941 (119886) minus 119887212059410158401 (119886))minus (11988911205932 (119887) minus 119889212059310158402 (119887))

(44)

Next let 1205830 be an arbitrary zero of119882(120582) Since119882(1205830) = 0 weobtain 120593119894(119909 1205830) = 119896120594119894(119909 1205830) (119894 = 1 2) (119896 = 0) 119896 isin R Notingthat 1205830 is real a short calculation (44) becomes1205741198821015840 (1205830)

= 119896 (12057411990121 int120585119886

10038161003816100381610038161205941 (119909)10038161003816100381610038162 119889119909 + 11990122 int119887120585

10038161003816100381610038161205942 (119909)10038161003816100381610038162 119889119909)+ 120588119896 + 120579119896

(45)

Since 120588 gt 0 120579 gt 0 120574 gt 0 and 119896 = 0 1198821015840(1205830) = 0 Hence theanalytic multiplicity of 1205830 is one which completes the proof

6 Discrete Dynamics in Nature and Society

Lemma 15 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the following integraland differential equations hold for 119896 = 0 and 119896 = 11198891198961198891199091198961205931 (119909 120582)

= (1198862 minus 11990421198872) 119889119896119889119909119896 cos [1199011119904 (119909 minus 119886)]minus 1198861 minus 119904211988711199011119904 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)]+ 1199011119904 int119909

119886

119889119896119889119909119896 sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205931 (120591) 119889120591(46)

1198891198961198891199091198961205932 (119909 120582)= 1205932 (120585 + 0) 119889119896119889119909119896 cos [1199012119904 (119909 minus 120585)]

+ 1119901211990412059310158402 (120585 + 0) 119889119896119889119909119896 sin [1199012119904 (119909 minus 120585)]+ 1199012119904 int119909

120585

119889119896119889119909119896 sin [1199012119904 (119909 minus 120591)] 119902 (120591) 1205932 (120591) 119889120591(47)

Proof For the case of 119896 = 0 consider 1205931(119909 120582) as the solutionof the following nonhomogeneous problem

minus (119901 (119909) 119910 (119909)1015840)1015840 + 120582119910 (119909) = 119902 (119909) 119910 (119909)1205931 (119886 120582) = 1198862 minus 120582119887212059310158401 (119886 120582) = 1198861 minus 1205821198871 (48)

Using the method of constant variation 1205931(119909 120582) satisfies1205931 (119909 120582) = (1198862 minus 11990421198872) cos [1199011119904 (119909 minus 119886)]minus 1198861 minus 119904211988711199011119904 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)]+ 1199011119904 int119909

119886sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205931 (120591) 119889120591

(49)

Then differentiating it with respect to 119909 we have (46) Theproof for (47) is similar so we omit the details

Similarly we have the following theorem

Lemma 16 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the following integraland differential equations hold for 119896 = 0 and 119896 = 11198891198961198891199091198961205941 (119909 120582) = 12057541205942 (120585 + 0) minus 120575212059410158402 (120585 + 0)120574 119889119896119889119909119896

sdot cos [1199011119904 (119909 minus 120585)] + 120575112059410158402 (120585 + 0) minus 12057531205942 (120585 + 0)1199011119904120574

sdot 119889119896119889119909119896 sin [1199011119904 (119909 minus 120585)] minus 1199011119904sdot int120585119909

119889119896119889119909119896 sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205941 (120591) 1198891205911198891198961198891199091198961205942 (119909 120582) = (1198882 minus 11990421198892) 119889119896119889119909119896 cos [1199012119904 (119909 minus 119887)]

+ 1198881 minus 119904211988911199012119904 119889119896119889119909119896 sin [1199012119904 (119909 minus 119887)] minus 1199012119904sdot int119887119909

119889119896119889119909119896 sin [1199012119904 (119909 minus 120591)] 119902 (120591) 1205942 (120591) 119889120591(50)

Lemma 17 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then for 119896 = 0 1 120593(119909 120582)have the following estimations

Case 1 If 1198872 = 0 then1198891198961198891199091198961205931 (119909 120582)= minus11990421198872 119889119896119889119909119896 cos [1199011119904 (119909 minus 119886)]

+ 119874 (|119904|119896+1 119890|119905|1199011(119909minus119886)) 1198891198961198891199091198961205932 (119909 120582)= 1199011120575211990431198872 sin [1199011119904 (120585 minus 119886)] 119889119896119889119909119896 cos [1199012119904 (119909 minus 119886)]

+ 119874 (|119904|119896+2 119890|119905|(1199011(120585minus119886)+1199012(119909minus119886)))

(51)

Case 2 If 1198872 = 0 then1198891198961198891199091198961205931 (119909 120582)= minus11988711199041199011 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)] + 119874 (|119904|119896 119890|119905|1199011(119909minus119886))

1198891198961198891199091198961205932 (119909 120582)= minus120575211988711199042 cos [1199011119904 (120585 minus 119886)] 119889119896119889119909119896 cos [1199012119904 (119909 minus 120585)]

+ 119874 (|119904|119896+1 119890|119905|(1199011(120585minus119886)+1199012(119909minus120585)))

(52)

Each of these asymptotic equalities holds uniformly for 119909 as|120582| rarr infin

Proof The proof of formulas for 1205931(119909 120582) is identical to thoseof Titchmarshrsquos proof for 120593(119909 120582) (see [6]) so we only give theproof of formulas for 1205932(119909 120582) namely equality (51) the otherequalities are similar

Discrete Dynamics in Nature and Society 7

For 119896 = 0 by the estimations of 1205931(119909 120582) and 12059310158401(119909 120582) wehave 1205931 (120585 minus 0 120582) = minus11990421198872 cos [1199011119904 (120585 minus 119886)]+ 119874 (|119904| 119890|119905|1199011(120585minus119886)) 12059310158401 (120585 minus 0 120582) = 119901111990431198872 sin [1199011119904 (120585 minus 119886)]+ 119874 (|119904|2 119890|119905|1199011(120585minus119886))

(53)

then substituting (53) into (47) and observing (32) we have1205932 (119909 120582)= 1199011120575211990431198872 sin [1199011119904 (120585 minus 119886)] cos [1199012119904 (119909 minus 119886)]+ 119874 (|119904|2 119890|119905|(1199011(120585minus119886)+1199012(119909minus120585))) (54)

differentiating (54) with respect to 119909 we have (51)Lemma 18 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then for 119896 = 0 1 120594(119909 120582)have the following estimations

Case 1 If 1198892 = 0 then1198891198961198891199091198961205941 (119909 120582)= minus1199012119889212057521199043120574 sin [1199012119904 (120585 minus 119887)] 119889119896119889119909119896 cos [1199011119904 (119909 minus 120585)]

+ 119874 (|119904|119896+2 119890|119905|(1199011(119909minus120585)+1199012(120585minus119887))) 1198891198961198891199091198961205942 (119909 120582)= minus11988921199042 119889119896119889119909119896 cos [1199012119904 (119909 minus 119887)]

+ 119874 (|119904|119896+1 119890|119905|1199012(119909minus119887))

(55)

Case 2 If 1198892 = 0 then1198891198961198891199091198961205941 (119909 120582)= minus119889112057521199042120574 cos [1199012119904 (120585 minus 119887)] 119889119896119889119909119896 cos [1199011119904 (119909 minus 120585)]

+ 119874 (|119904|119896+1 119890|119905|(1199011(119909minus120585)+1199012(120585minus119887))) 1198891198961198891199091198961205942 (119909 120582)= minus11988911199041199012 119889119896119889119909119896 sin [1199012119904 (119909 minus 119887)] + 119874 (|119904|119896 119890|119905|1199012(119909minus119887))

(56)

Each of these asymptotic equalities holds uniformly for 119909 as|120582| rarr infin

Theorem 19 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the function 1198822(120582)has the following asymptotic representations

Case 1 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= 120575211990111199012119887211988921199046 sin [1199011119904 (120585 minus 119886)] sin [1199012119904 (119887 minus 120585)]+ 119874 (|119904|5 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (57)

Case 2 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= minus12057521199011119887211988911199045 sin [1199011119904 (120585 minus 119886)] cos [1199012119904 (119887 minus 120585)]+ 119874 (|119904|4 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (58)

Case 3 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= minus12057521199012119887111988921199045 cos [1199011119904 (120585 minus 119886)] sin [1199012119904 (119887 minus 120585)]+ 119874 (|119904|4 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (59)

Case 4 If 1198872 = 0 and 1198892 = 0 then1198822 (120582) = 1205752119887111988911199044 cos [1199011119904 (120585 minus 119886)] cos [1199012119904 (119887 minus 120585)]+ 119874 (|119904|3 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (60)

Proof By the definition of 1198822(120582) we have1198822 (120582) = 1205932 (119887 120582) 12059410158402 (119887 120582) minus 12059310158402 (119887 120582) 1205942 (119887 120582)= (1198881 minus 1205821198891) 1205932 (119887 120582) minus (1198882 minus 1205821198892) 12059310158402 (119887 120582) (61)

According to the equalities of 1205932(119909 120582) and 12059310158402(119909 120582) inLemma 17 we can obtain the formulas of 1198822(120582) in thistheorem

Corollary 20 The eigenvalues of the boundary value problem(1)ndash(4) are bounded below

Proof Putting 119904 = 119894119905 (119905 gt 0) in Theorem 19 we can obtain1198822(120582) = 1198822(minus1199052) rarr infin (119905 rarr infin) Hence 1198822(minus1199052) = 0 forsufficiently negative 120582 and sufficiently large 120582 This completesthe proof

4 Asymptotic Formulas forEigenvalues and Eigenfunctions

In this section we can get the asymptotic formulas forthe eigenvalues and eigenfunctions of the singular Sturm-Liouville problem (1)ndash(4) Since the eigenvalues coincidewiththe zeros of the entire function119882(120582) it follows that they haveno finite limits

Theorem 21 The eigenvalues 120582119899 = 1199042119899 (119899 = 0 1 2 ) ofproblem (1)ndash(4) have the following asymptotic representationsas 119899 rarr infin

8 Discrete Dynamics in Nature and Society

Case 1 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (62)

Case 2 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (63)

Case 3 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (64)

Case 4 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (65)

Proof By applying the well-known Rouche theorem we canobtain these conclusions (see [3] Theorem 23)

According to Theorem 21 and Lemmas 17 and 18 wecan obtain the following asymptotic representations of theeigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899)Theorem 22 The eigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899) (119899 =0 1 2 ) of problem (1)ndash(4) have the following asymptoticrepresentations as 119899 rarr infin

Case 1 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

120593 (119909 12058210158401015840119899) = minus1198872 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]3 sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]3 sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(66)

Case 2 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

Discrete Dynamics in Nature and Society 9

120593 (119909 12058210158401015840119899) = minus1198872 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]3 sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = 11988911205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [ (119899 minus 1) 1205871199011 (120585 minus 119886)] sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(67)

Case 3 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [ (119899 minus 1) 1205871199012 (119887 minus 120585)] sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]3 sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(68)

Case 4 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

10 Discrete Dynamics in Nature and Society

120594 (119909 1205821015840119899) = 11988911205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(69)

5 Completeness of Eigenfunctions

In this section we get the property of spectrum for the oper-ator 119860 and discuss the completeness of the eigenfunctions ofproblem (1)ndash(4)

Theorem 23 The operator 119860 has only point spectrum that is120590(119860) = 120590119901(119860)Proof We only need to prove that if 120574 is not an eigenvalueof 119860 then 120574 isin 120588(119860) Here we investigate the equation (119860 minus120574)119885 = 119865 isin 119867 where 120574 isin R 119885 = (119911(119909) 119879119886(119911) 119879119887(119911)) and119865 = (119871119891 119879119886(119891) 119879119887(119891)) Consider the initial value problemminus (119901 (119909) 1199111015840 (119909))1015840 + 119902 (119909) 119911 (119909) minus 120574119911 (119909) = 119891 (119909) 119909 isin (119886 120585) cup (120585 119887)119911 (120585 + 0) minus 1205751119911 (120585 minus 0) minus 12057521199111015840 (120585 minus 0) = 01199111015840 (120585 + 0) minus 1205753119911 (120585 minus 0) minus 12057541199111015840 (120585 minus 0) = 0

(70)

Let

120595 (119909) = 1205951 (119909) 119909 isin (119886 120585) 1205952 (119909) 119909 isin (120585 119887) (71)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 0 satisfying the transmission conditions (4) Let

120601 (119909) = 1206011 (119909) 119909 isin (119886 120585) 1206012 (119909) 119909 isin (120585 119887) (72)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 119891(119909) satisfying120601 (120585 + 0) minus 1205751120601 (120585 minus 0) minus 12057521206011015840 (120585 minus 0) = 01206011015840 (120585 + 0) minus 1205753120601 (120585 minus 0) minus 12057541206011015840 (120585 minus 0) = 0 (73)

Then (70) has the general solution

119911 (119909) = 1198991205951 (119909) + 1206011 (119909) 119909 isin (119886 120585) 1198991205952 (119909) + 1206012 (119909) 119909 isin (120585 119887) (74)

where 119899 isin C

As 120574 is not an eigenvalue of problem (1)ndash(4) we have120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886))minus (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886)) = 0120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887))minus (1198881 [119911 119888] (119887) minus 1198882 [119911 V] (119887)) = 0(75)

The second and third components of (119860minus120574)119885 = 119865 isin 119867meanthat (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886))minus 120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886)) = 119879119886 (119891) (1198881 [119911 119906] (119887) minus 1198882 [119911 V] (119887))minus 120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887)) = 119879119887 (119891)

(76)

Substituting (74) into (76) we can get that 119899 is uniquelysolvable So 119911(119909) is uniquely determined Observing that (119860minus120574119868)minus1 is defined on all of 119867 we get that (119860 minus 120574119868)minus1 is boundedbyTheorem 8 and the closed graph theoremThus 120574 isin 120588(119860)Hence 120590(119860) = 120590119901(119860)Lemma 24 The eigenvalues of problem (1)ndash(4) are countablyinfinite and can cluster only at infin

Lemma 25 The operator 119860 has compact resolvent that is foreach 120575 isin R120590119901(119860) (119860 minus 120575119868)minus1 is compact on 119867 (see [14]Theorem 633)

By the above lemmas and the spectral theorem forcompact operator we obtain the following theorem

Theorem26 The eigenfunctions of problem (1)ndash(4) expandedto become eigenfunctions of 119860 are complete in 119867 that is letΦ119899 = (120593119899(119909) 119879119886(120593119899) 119879119887(120593119899)) 119899 isin N be a maximum set oforthogonal eigenfunctions of119860 where 120593119899(119909) 119899 isin N are eigen-functions of problem (1)ndash(4) Then for all 119865 isin 119867 119865 =suminfin119899=1⟨119865 Φ119899⟩Φ119899Remark 27 In this paper the spectral properties of singu-lar Sturm-Liouville problems with one inner discontinuouspoint are considered if there are two or even multi-innerdiscontinuous points 1205851 1205852 120585119899 in the interval (119886 119887) we

Discrete Dynamics in Nature and Society 11

can obtain similar results by defining a more complicatedHilbert space

Conflicts of Interest

The authors declare that there are no conflicts of interest

Authorsrsquo Contributions

Jinming Cai prepared the manuscript and corrected the mainresults and Zhaowen Zheng gave the main thought andrevised the manuscript

Acknowledgments

This research was partially supported by the NSF of China(Grants 11271225 and 11671227)

References

[1] H Weyl ldquoUber gewohnliche Differentialgleichungen mit Sin-gularitaten und die zugehorigen Entwicklungenrdquo Mathematis-che Annalen vol 68 no 2 pp 220ndash269 1910

[2] JWeidmann SpectralTheory ofOrdinaryDifferential Operatorsvol 1258 of Lecture Notes in Mathematics Springer new YorkNY USA 1987

[3] Z Cao Ordinary Differential Operator Shanhai Science andTechnology Press Shanghai China 1986 (Chinese)

[4] M A Naimark Linear Differential Operators Part 2 HarrapLondon UK 1968

[5] A Zettl Sturm-Liouville Theory vol 121 of Mathematical Sur-veys and Monographs American Mathematics Society Provi-dence RI USA 2005

[6] E C TitchmarshEigenfunction Expansions Associatedwith Sec-ond-Order Differential Equations Part 1 Oxford UniversityPress London UK 1962

[7] Z Zheng and W Zhang ldquoCharacterization of eigenvalues inspectral gap for singular differential operatorsrdquo Abstract andApplied Analysis vol 2012 Article ID 271657 10 pages 2012

[8] J Qi Z Zheng and H Sun ldquoClassification of Sturm-Liouvilledifferential equations with complex coefficients and operatorrealizationsrdquo Proceedings of The Royal Society of London SeriesAMathematical Physical and Engineering Sciences vol 467 no2131 pp 1835ndash1850 2011

[9] Z Zheng J Qi and S Chen ldquoEigenvalues below the lowerbound of minimal operators of singular Hamiltonian expres-sionsrdquo Computers ampMathematics with Applications vol 56 no11 pp 2825ndash2833 2008

[10] Z Zheng ldquoInvariance of deficiency indices under perturbationfor discrete Hamiltonian systemsrdquo Journal of Difference Equa-tions and Applications vol 19 no 8 pp 1243ndash1250 2013

[11] M Demirci Z Akdogan and O S H Mukhtarov ldquoAsymptoticbehavior of eigenvalues and eigenfunctions of one discontin-uous boundary value problemrdquo International Journal of Com-putational Cognition vol 2 article 3 pp 101ndash113 2004

[12] D Buschmann G Stolz and J Weidmann ldquoOne-dimensionalschrodinger operators with local point interactionsrdquo Journal furdie Reine und Angewandte Mathematik vol 467 pp 169ndash1861995

[13] M Kadakal O S Mukhtarov and F S Muhtarov ldquoSome spec-tral properties of Sturm-Liouville problem with transmissionconditionsrdquo Iranian Journal of Science and Technology Trans-action A Science vol 29 no 2 pp 229ndash245 2005

[14] A P Wang Research on weimann conjecture and differentialoperators with transmission conditions [PhD thesis] InnerMongolia University 2006 (Chinese)

[15] O S H Mukhtarov and M Kadakal ldquoSome spectral proper-ties of one Sturm-Liouville type problem with discontinuousweightrdquo Siberian Mathematical Journal vol 46 no 4 pp 681ndash694 2005

[16] C T Fulton ldquoTwo-point boundary value problems with eigen-value parameter contained in the boundary conditionsrdquo Pro-ceedings of the Royal Society of Edinburgh Section A Mathemat-ics vol 77 no 3-4 pp 293ndash308 1977

[17] E Sen andA Bayramov ldquoAsymptotic formulations of the eigen-values and eigenfunctions for a boundary value problemrdquoMathematical Methods in the Applied Sciences vol 36 no 12pp 1512ndash1519 2013

[18] Q Yang and W Wang ldquoAsymptotic behavior of a differentialoperator with discontinuities at two pointsrdquo MathematicalMethods in the Applied Sciences vol 34 no 4 pp 373ndash383 2011

[19] O S Mukhtarov M Kadakal and F S Muhtarov ldquoEigenvaluesand normalized eigenfunctions of discontinuous Sturm-Liou-ville problem with transmission conditionsrdquo Reports on Mathe-matical Physics vol 54 no 1 pp 41ndash56 2004

[20] E Sen ldquoA Sturm-Liouville problemwith a discontinuous coeffi-cient and containing an eigenparameter in the boundary con-ditionrdquo Physics Research International vol 2013 Article ID159243 9 pages 2013

[21] M Kadakal and O S Mukhtarov ldquoSturm-Liouville problemswith discontinuities at two pointsrdquo Computers amp Mathematicswith Applications vol 54 no 11-12 pp 1367ndash1379 2007

[22] M Kadakal and O S Mukhtarov ldquoDiscontinuous Sturm-Liou-ville problems containing eigenparameter in the boundary con-ditionsrdquo Acta Mathematica Sinica vol 22 no 5 pp 1519ndash15282006

[23] Z Akdogan M Demirci and O S H Mukhtarov ldquoSturm-Liouville problems with eigendependent boundary and trans-missions conditionsrdquo Acta Mathematica Scientia vol 25 no 4pp 731ndash740 2005

[24] Q Yang and W Wang ldquoSpectral properties of Sturm-Liouvilleoperators with discontinuities at finite pointsrdquo MathematicalSciences vol 6 no 1 pp 1ndash9 2012

[25] K Li and Z Zheng ldquoSpectral properties for Sturm-Liouvilleequations with transmission conditionsrdquo Acta MathematicaScientia vol 35 no 5 pp 910ndash926 2015 (Chinese)

[26] F Meng and Y Huang ldquoInterval oscillation criteria for a forcedsecond-order nonlinear differential equations with dampingrdquoAppliedMathematics and Computation vol 218 no 5 pp 1857ndash1861 2011

[27] Z Zheng X Wang and H Han ldquoOscillation criteria for forcedsecond order differential equations with mixed nonlinearitiesrdquoApplied Mathematics Letters vol 22 no 7 pp 1096ndash1101 2009

[28] J Shao F Meng and X Pang ldquoGeneralized variational oscil-lation principles for second-order differential equations withmixed-nonlinearitiesrdquoDiscrete Dynamics in Nature and Societyvol 2012 Article ID 539213 10 pages 2012

[29] J Shao and F Meng ldquoGeneralized variational principleson oscillation for nonlinear nonhomogeneous differential

12 Discrete Dynamics in Nature and Society

equationsrdquo Abstract and Applied Analysis vol 2011 Article ID972656 10 pages 2011

[30] A V Likov and Yu A MikhailovTheTheory of Heat and MassTransfer Qosenerqoizdat 1963 (Russian)

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: A Singular Sturm-Liouville Problem with Limit Circle …downloads.hindawi.com/journals/ddns/2017/9673846.pdf · ResearchArticle A Singular Sturm-Liouville Problem with Limit Circle

6 Discrete Dynamics in Nature and Society

Lemma 15 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the following integraland differential equations hold for 119896 = 0 and 119896 = 11198891198961198891199091198961205931 (119909 120582)

= (1198862 minus 11990421198872) 119889119896119889119909119896 cos [1199011119904 (119909 minus 119886)]minus 1198861 minus 119904211988711199011119904 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)]+ 1199011119904 int119909

119886

119889119896119889119909119896 sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205931 (120591) 119889120591(46)

1198891198961198891199091198961205932 (119909 120582)= 1205932 (120585 + 0) 119889119896119889119909119896 cos [1199012119904 (119909 minus 120585)]

+ 1119901211990412059310158402 (120585 + 0) 119889119896119889119909119896 sin [1199012119904 (119909 minus 120585)]+ 1199012119904 int119909

120585

119889119896119889119909119896 sin [1199012119904 (119909 minus 120591)] 119902 (120591) 1205932 (120591) 119889120591(47)

Proof For the case of 119896 = 0 consider 1205931(119909 120582) as the solutionof the following nonhomogeneous problem

minus (119901 (119909) 119910 (119909)1015840)1015840 + 120582119910 (119909) = 119902 (119909) 119910 (119909)1205931 (119886 120582) = 1198862 minus 120582119887212059310158401 (119886 120582) = 1198861 minus 1205821198871 (48)

Using the method of constant variation 1205931(119909 120582) satisfies1205931 (119909 120582) = (1198862 minus 11990421198872) cos [1199011119904 (119909 minus 119886)]minus 1198861 minus 119904211988711199011119904 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)]+ 1199011119904 int119909

119886sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205931 (120591) 119889120591

(49)

Then differentiating it with respect to 119909 we have (46) Theproof for (47) is similar so we omit the details

Similarly we have the following theorem

Lemma 16 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the following integraland differential equations hold for 119896 = 0 and 119896 = 11198891198961198891199091198961205941 (119909 120582) = 12057541205942 (120585 + 0) minus 120575212059410158402 (120585 + 0)120574 119889119896119889119909119896

sdot cos [1199011119904 (119909 minus 120585)] + 120575112059410158402 (120585 + 0) minus 12057531205942 (120585 + 0)1199011119904120574

sdot 119889119896119889119909119896 sin [1199011119904 (119909 minus 120585)] minus 1199011119904sdot int120585119909

119889119896119889119909119896 sin [1199011119904 (119909 minus 120591)] 119902 (120591) 1205941 (120591) 1198891205911198891198961198891199091198961205942 (119909 120582) = (1198882 minus 11990421198892) 119889119896119889119909119896 cos [1199012119904 (119909 minus 119887)]

+ 1198881 minus 119904211988911199012119904 119889119896119889119909119896 sin [1199012119904 (119909 minus 119887)] minus 1199012119904sdot int119887119909

119889119896119889119909119896 sin [1199012119904 (119909 minus 120591)] 119902 (120591) 1205942 (120591) 119889120591(50)

Lemma 17 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then for 119896 = 0 1 120593(119909 120582)have the following estimations

Case 1 If 1198872 = 0 then1198891198961198891199091198961205931 (119909 120582)= minus11990421198872 119889119896119889119909119896 cos [1199011119904 (119909 minus 119886)]

+ 119874 (|119904|119896+1 119890|119905|1199011(119909minus119886)) 1198891198961198891199091198961205932 (119909 120582)= 1199011120575211990431198872 sin [1199011119904 (120585 minus 119886)] 119889119896119889119909119896 cos [1199012119904 (119909 minus 119886)]

+ 119874 (|119904|119896+2 119890|119905|(1199011(120585minus119886)+1199012(119909minus119886)))

(51)

Case 2 If 1198872 = 0 then1198891198961198891199091198961205931 (119909 120582)= minus11988711199041199011 119889119896119889119909119896 sin [1199011119904 (119909 minus 119886)] + 119874 (|119904|119896 119890|119905|1199011(119909minus119886))

1198891198961198891199091198961205932 (119909 120582)= minus120575211988711199042 cos [1199011119904 (120585 minus 119886)] 119889119896119889119909119896 cos [1199012119904 (119909 minus 120585)]

+ 119874 (|119904|119896+1 119890|119905|(1199011(120585minus119886)+1199012(119909minus120585)))

(52)

Each of these asymptotic equalities holds uniformly for 119909 as|120582| rarr infin

Proof The proof of formulas for 1205931(119909 120582) is identical to thoseof Titchmarshrsquos proof for 120593(119909 120582) (see [6]) so we only give theproof of formulas for 1205932(119909 120582) namely equality (51) the otherequalities are similar

Discrete Dynamics in Nature and Society 7

For 119896 = 0 by the estimations of 1205931(119909 120582) and 12059310158401(119909 120582) wehave 1205931 (120585 minus 0 120582) = minus11990421198872 cos [1199011119904 (120585 minus 119886)]+ 119874 (|119904| 119890|119905|1199011(120585minus119886)) 12059310158401 (120585 minus 0 120582) = 119901111990431198872 sin [1199011119904 (120585 minus 119886)]+ 119874 (|119904|2 119890|119905|1199011(120585minus119886))

(53)

then substituting (53) into (47) and observing (32) we have1205932 (119909 120582)= 1199011120575211990431198872 sin [1199011119904 (120585 minus 119886)] cos [1199012119904 (119909 minus 119886)]+ 119874 (|119904|2 119890|119905|(1199011(120585minus119886)+1199012(119909minus120585))) (54)

differentiating (54) with respect to 119909 we have (51)Lemma 18 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then for 119896 = 0 1 120594(119909 120582)have the following estimations

Case 1 If 1198892 = 0 then1198891198961198891199091198961205941 (119909 120582)= minus1199012119889212057521199043120574 sin [1199012119904 (120585 minus 119887)] 119889119896119889119909119896 cos [1199011119904 (119909 minus 120585)]

+ 119874 (|119904|119896+2 119890|119905|(1199011(119909minus120585)+1199012(120585minus119887))) 1198891198961198891199091198961205942 (119909 120582)= minus11988921199042 119889119896119889119909119896 cos [1199012119904 (119909 minus 119887)]

+ 119874 (|119904|119896+1 119890|119905|1199012(119909minus119887))

(55)

Case 2 If 1198892 = 0 then1198891198961198891199091198961205941 (119909 120582)= minus119889112057521199042120574 cos [1199012119904 (120585 minus 119887)] 119889119896119889119909119896 cos [1199011119904 (119909 minus 120585)]

+ 119874 (|119904|119896+1 119890|119905|(1199011(119909minus120585)+1199012(120585minus119887))) 1198891198961198891199091198961205942 (119909 120582)= minus11988911199041199012 119889119896119889119909119896 sin [1199012119904 (119909 minus 119887)] + 119874 (|119904|119896 119890|119905|1199012(119909minus119887))

(56)

Each of these asymptotic equalities holds uniformly for 119909 as|120582| rarr infin

Theorem 19 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the function 1198822(120582)has the following asymptotic representations

Case 1 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= 120575211990111199012119887211988921199046 sin [1199011119904 (120585 minus 119886)] sin [1199012119904 (119887 minus 120585)]+ 119874 (|119904|5 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (57)

Case 2 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= minus12057521199011119887211988911199045 sin [1199011119904 (120585 minus 119886)] cos [1199012119904 (119887 minus 120585)]+ 119874 (|119904|4 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (58)

Case 3 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= minus12057521199012119887111988921199045 cos [1199011119904 (120585 minus 119886)] sin [1199012119904 (119887 minus 120585)]+ 119874 (|119904|4 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (59)

Case 4 If 1198872 = 0 and 1198892 = 0 then1198822 (120582) = 1205752119887111988911199044 cos [1199011119904 (120585 minus 119886)] cos [1199012119904 (119887 minus 120585)]+ 119874 (|119904|3 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (60)

Proof By the definition of 1198822(120582) we have1198822 (120582) = 1205932 (119887 120582) 12059410158402 (119887 120582) minus 12059310158402 (119887 120582) 1205942 (119887 120582)= (1198881 minus 1205821198891) 1205932 (119887 120582) minus (1198882 minus 1205821198892) 12059310158402 (119887 120582) (61)

According to the equalities of 1205932(119909 120582) and 12059310158402(119909 120582) inLemma 17 we can obtain the formulas of 1198822(120582) in thistheorem

Corollary 20 The eigenvalues of the boundary value problem(1)ndash(4) are bounded below

Proof Putting 119904 = 119894119905 (119905 gt 0) in Theorem 19 we can obtain1198822(120582) = 1198822(minus1199052) rarr infin (119905 rarr infin) Hence 1198822(minus1199052) = 0 forsufficiently negative 120582 and sufficiently large 120582 This completesthe proof

4 Asymptotic Formulas forEigenvalues and Eigenfunctions

In this section we can get the asymptotic formulas forthe eigenvalues and eigenfunctions of the singular Sturm-Liouville problem (1)ndash(4) Since the eigenvalues coincidewiththe zeros of the entire function119882(120582) it follows that they haveno finite limits

Theorem 21 The eigenvalues 120582119899 = 1199042119899 (119899 = 0 1 2 ) ofproblem (1)ndash(4) have the following asymptotic representationsas 119899 rarr infin

8 Discrete Dynamics in Nature and Society

Case 1 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (62)

Case 2 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (63)

Case 3 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (64)

Case 4 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (65)

Proof By applying the well-known Rouche theorem we canobtain these conclusions (see [3] Theorem 23)

According to Theorem 21 and Lemmas 17 and 18 wecan obtain the following asymptotic representations of theeigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899)Theorem 22 The eigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899) (119899 =0 1 2 ) of problem (1)ndash(4) have the following asymptoticrepresentations as 119899 rarr infin

Case 1 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

120593 (119909 12058210158401015840119899) = minus1198872 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]3 sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]3 sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(66)

Case 2 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

Discrete Dynamics in Nature and Society 9

120593 (119909 12058210158401015840119899) = minus1198872 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]3 sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = 11988911205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [ (119899 minus 1) 1205871199011 (120585 minus 119886)] sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(67)

Case 3 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [ (119899 minus 1) 1205871199012 (119887 minus 120585)] sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]3 sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(68)

Case 4 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

10 Discrete Dynamics in Nature and Society

120594 (119909 1205821015840119899) = 11988911205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(69)

5 Completeness of Eigenfunctions

In this section we get the property of spectrum for the oper-ator 119860 and discuss the completeness of the eigenfunctions ofproblem (1)ndash(4)

Theorem 23 The operator 119860 has only point spectrum that is120590(119860) = 120590119901(119860)Proof We only need to prove that if 120574 is not an eigenvalueof 119860 then 120574 isin 120588(119860) Here we investigate the equation (119860 minus120574)119885 = 119865 isin 119867 where 120574 isin R 119885 = (119911(119909) 119879119886(119911) 119879119887(119911)) and119865 = (119871119891 119879119886(119891) 119879119887(119891)) Consider the initial value problemminus (119901 (119909) 1199111015840 (119909))1015840 + 119902 (119909) 119911 (119909) minus 120574119911 (119909) = 119891 (119909) 119909 isin (119886 120585) cup (120585 119887)119911 (120585 + 0) minus 1205751119911 (120585 minus 0) minus 12057521199111015840 (120585 minus 0) = 01199111015840 (120585 + 0) minus 1205753119911 (120585 minus 0) minus 12057541199111015840 (120585 minus 0) = 0

(70)

Let

120595 (119909) = 1205951 (119909) 119909 isin (119886 120585) 1205952 (119909) 119909 isin (120585 119887) (71)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 0 satisfying the transmission conditions (4) Let

120601 (119909) = 1206011 (119909) 119909 isin (119886 120585) 1206012 (119909) 119909 isin (120585 119887) (72)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 119891(119909) satisfying120601 (120585 + 0) minus 1205751120601 (120585 minus 0) minus 12057521206011015840 (120585 minus 0) = 01206011015840 (120585 + 0) minus 1205753120601 (120585 minus 0) minus 12057541206011015840 (120585 minus 0) = 0 (73)

Then (70) has the general solution

119911 (119909) = 1198991205951 (119909) + 1206011 (119909) 119909 isin (119886 120585) 1198991205952 (119909) + 1206012 (119909) 119909 isin (120585 119887) (74)

where 119899 isin C

As 120574 is not an eigenvalue of problem (1)ndash(4) we have120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886))minus (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886)) = 0120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887))minus (1198881 [119911 119888] (119887) minus 1198882 [119911 V] (119887)) = 0(75)

The second and third components of (119860minus120574)119885 = 119865 isin 119867meanthat (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886))minus 120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886)) = 119879119886 (119891) (1198881 [119911 119906] (119887) minus 1198882 [119911 V] (119887))minus 120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887)) = 119879119887 (119891)

(76)

Substituting (74) into (76) we can get that 119899 is uniquelysolvable So 119911(119909) is uniquely determined Observing that (119860minus120574119868)minus1 is defined on all of 119867 we get that (119860 minus 120574119868)minus1 is boundedbyTheorem 8 and the closed graph theoremThus 120574 isin 120588(119860)Hence 120590(119860) = 120590119901(119860)Lemma 24 The eigenvalues of problem (1)ndash(4) are countablyinfinite and can cluster only at infin

Lemma 25 The operator 119860 has compact resolvent that is foreach 120575 isin R120590119901(119860) (119860 minus 120575119868)minus1 is compact on 119867 (see [14]Theorem 633)

By the above lemmas and the spectral theorem forcompact operator we obtain the following theorem

Theorem26 The eigenfunctions of problem (1)ndash(4) expandedto become eigenfunctions of 119860 are complete in 119867 that is letΦ119899 = (120593119899(119909) 119879119886(120593119899) 119879119887(120593119899)) 119899 isin N be a maximum set oforthogonal eigenfunctions of119860 where 120593119899(119909) 119899 isin N are eigen-functions of problem (1)ndash(4) Then for all 119865 isin 119867 119865 =suminfin119899=1⟨119865 Φ119899⟩Φ119899Remark 27 In this paper the spectral properties of singu-lar Sturm-Liouville problems with one inner discontinuouspoint are considered if there are two or even multi-innerdiscontinuous points 1205851 1205852 120585119899 in the interval (119886 119887) we

Discrete Dynamics in Nature and Society 11

can obtain similar results by defining a more complicatedHilbert space

Conflicts of Interest

The authors declare that there are no conflicts of interest

Authorsrsquo Contributions

Jinming Cai prepared the manuscript and corrected the mainresults and Zhaowen Zheng gave the main thought andrevised the manuscript

Acknowledgments

This research was partially supported by the NSF of China(Grants 11271225 and 11671227)

References

[1] H Weyl ldquoUber gewohnliche Differentialgleichungen mit Sin-gularitaten und die zugehorigen Entwicklungenrdquo Mathematis-che Annalen vol 68 no 2 pp 220ndash269 1910

[2] JWeidmann SpectralTheory ofOrdinaryDifferential Operatorsvol 1258 of Lecture Notes in Mathematics Springer new YorkNY USA 1987

[3] Z Cao Ordinary Differential Operator Shanhai Science andTechnology Press Shanghai China 1986 (Chinese)

[4] M A Naimark Linear Differential Operators Part 2 HarrapLondon UK 1968

[5] A Zettl Sturm-Liouville Theory vol 121 of Mathematical Sur-veys and Monographs American Mathematics Society Provi-dence RI USA 2005

[6] E C TitchmarshEigenfunction Expansions Associatedwith Sec-ond-Order Differential Equations Part 1 Oxford UniversityPress London UK 1962

[7] Z Zheng and W Zhang ldquoCharacterization of eigenvalues inspectral gap for singular differential operatorsrdquo Abstract andApplied Analysis vol 2012 Article ID 271657 10 pages 2012

[8] J Qi Z Zheng and H Sun ldquoClassification of Sturm-Liouvilledifferential equations with complex coefficients and operatorrealizationsrdquo Proceedings of The Royal Society of London SeriesAMathematical Physical and Engineering Sciences vol 467 no2131 pp 1835ndash1850 2011

[9] Z Zheng J Qi and S Chen ldquoEigenvalues below the lowerbound of minimal operators of singular Hamiltonian expres-sionsrdquo Computers ampMathematics with Applications vol 56 no11 pp 2825ndash2833 2008

[10] Z Zheng ldquoInvariance of deficiency indices under perturbationfor discrete Hamiltonian systemsrdquo Journal of Difference Equa-tions and Applications vol 19 no 8 pp 1243ndash1250 2013

[11] M Demirci Z Akdogan and O S H Mukhtarov ldquoAsymptoticbehavior of eigenvalues and eigenfunctions of one discontin-uous boundary value problemrdquo International Journal of Com-putational Cognition vol 2 article 3 pp 101ndash113 2004

[12] D Buschmann G Stolz and J Weidmann ldquoOne-dimensionalschrodinger operators with local point interactionsrdquo Journal furdie Reine und Angewandte Mathematik vol 467 pp 169ndash1861995

[13] M Kadakal O S Mukhtarov and F S Muhtarov ldquoSome spec-tral properties of Sturm-Liouville problem with transmissionconditionsrdquo Iranian Journal of Science and Technology Trans-action A Science vol 29 no 2 pp 229ndash245 2005

[14] A P Wang Research on weimann conjecture and differentialoperators with transmission conditions [PhD thesis] InnerMongolia University 2006 (Chinese)

[15] O S H Mukhtarov and M Kadakal ldquoSome spectral proper-ties of one Sturm-Liouville type problem with discontinuousweightrdquo Siberian Mathematical Journal vol 46 no 4 pp 681ndash694 2005

[16] C T Fulton ldquoTwo-point boundary value problems with eigen-value parameter contained in the boundary conditionsrdquo Pro-ceedings of the Royal Society of Edinburgh Section A Mathemat-ics vol 77 no 3-4 pp 293ndash308 1977

[17] E Sen andA Bayramov ldquoAsymptotic formulations of the eigen-values and eigenfunctions for a boundary value problemrdquoMathematical Methods in the Applied Sciences vol 36 no 12pp 1512ndash1519 2013

[18] Q Yang and W Wang ldquoAsymptotic behavior of a differentialoperator with discontinuities at two pointsrdquo MathematicalMethods in the Applied Sciences vol 34 no 4 pp 373ndash383 2011

[19] O S Mukhtarov M Kadakal and F S Muhtarov ldquoEigenvaluesand normalized eigenfunctions of discontinuous Sturm-Liou-ville problem with transmission conditionsrdquo Reports on Mathe-matical Physics vol 54 no 1 pp 41ndash56 2004

[20] E Sen ldquoA Sturm-Liouville problemwith a discontinuous coeffi-cient and containing an eigenparameter in the boundary con-ditionrdquo Physics Research International vol 2013 Article ID159243 9 pages 2013

[21] M Kadakal and O S Mukhtarov ldquoSturm-Liouville problemswith discontinuities at two pointsrdquo Computers amp Mathematicswith Applications vol 54 no 11-12 pp 1367ndash1379 2007

[22] M Kadakal and O S Mukhtarov ldquoDiscontinuous Sturm-Liou-ville problems containing eigenparameter in the boundary con-ditionsrdquo Acta Mathematica Sinica vol 22 no 5 pp 1519ndash15282006

[23] Z Akdogan M Demirci and O S H Mukhtarov ldquoSturm-Liouville problems with eigendependent boundary and trans-missions conditionsrdquo Acta Mathematica Scientia vol 25 no 4pp 731ndash740 2005

[24] Q Yang and W Wang ldquoSpectral properties of Sturm-Liouvilleoperators with discontinuities at finite pointsrdquo MathematicalSciences vol 6 no 1 pp 1ndash9 2012

[25] K Li and Z Zheng ldquoSpectral properties for Sturm-Liouvilleequations with transmission conditionsrdquo Acta MathematicaScientia vol 35 no 5 pp 910ndash926 2015 (Chinese)

[26] F Meng and Y Huang ldquoInterval oscillation criteria for a forcedsecond-order nonlinear differential equations with dampingrdquoAppliedMathematics and Computation vol 218 no 5 pp 1857ndash1861 2011

[27] Z Zheng X Wang and H Han ldquoOscillation criteria for forcedsecond order differential equations with mixed nonlinearitiesrdquoApplied Mathematics Letters vol 22 no 7 pp 1096ndash1101 2009

[28] J Shao F Meng and X Pang ldquoGeneralized variational oscil-lation principles for second-order differential equations withmixed-nonlinearitiesrdquoDiscrete Dynamics in Nature and Societyvol 2012 Article ID 539213 10 pages 2012

[29] J Shao and F Meng ldquoGeneralized variational principleson oscillation for nonlinear nonhomogeneous differential

12 Discrete Dynamics in Nature and Society

equationsrdquo Abstract and Applied Analysis vol 2011 Article ID972656 10 pages 2011

[30] A V Likov and Yu A MikhailovTheTheory of Heat and MassTransfer Qosenerqoizdat 1963 (Russian)

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: A Singular Sturm-Liouville Problem with Limit Circle …downloads.hindawi.com/journals/ddns/2017/9673846.pdf · ResearchArticle A Singular Sturm-Liouville Problem with Limit Circle

Discrete Dynamics in Nature and Society 7

For 119896 = 0 by the estimations of 1205931(119909 120582) and 12059310158401(119909 120582) wehave 1205931 (120585 minus 0 120582) = minus11990421198872 cos [1199011119904 (120585 minus 119886)]+ 119874 (|119904| 119890|119905|1199011(120585minus119886)) 12059310158401 (120585 minus 0 120582) = 119901111990431198872 sin [1199011119904 (120585 minus 119886)]+ 119874 (|119904|2 119890|119905|1199011(120585minus119886))

(53)

then substituting (53) into (47) and observing (32) we have1205932 (119909 120582)= 1199011120575211990431198872 sin [1199011119904 (120585 minus 119886)] cos [1199012119904 (119909 minus 119886)]+ 119874 (|119904|2 119890|119905|(1199011(120585minus119886)+1199012(119909minus120585))) (54)

differentiating (54) with respect to 119909 we have (51)Lemma 18 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then for 119896 = 0 1 120594(119909 120582)have the following estimations

Case 1 If 1198892 = 0 then1198891198961198891199091198961205941 (119909 120582)= minus1199012119889212057521199043120574 sin [1199012119904 (120585 minus 119887)] 119889119896119889119909119896 cos [1199011119904 (119909 minus 120585)]

+ 119874 (|119904|119896+2 119890|119905|(1199011(119909minus120585)+1199012(120585minus119887))) 1198891198961198891199091198961205942 (119909 120582)= minus11988921199042 119889119896119889119909119896 cos [1199012119904 (119909 minus 119887)]

+ 119874 (|119904|119896+1 119890|119905|1199012(119909minus119887))

(55)

Case 2 If 1198892 = 0 then1198891198961198891199091198961205941 (119909 120582)= minus119889112057521199042120574 cos [1199012119904 (120585 minus 119887)] 119889119896119889119909119896 cos [1199011119904 (119909 minus 120585)]

+ 119874 (|119904|119896+1 119890|119905|(1199011(119909minus120585)+1199012(120585minus119887))) 1198891198961198891199091198961205942 (119909 120582)= minus11988911199041199012 119889119896119889119909119896 sin [1199012119904 (119909 minus 119887)] + 119874 (|119904|119896 119890|119905|1199012(119909minus119887))

(56)

Each of these asymptotic equalities holds uniformly for 119909 as|120582| rarr infin

Theorem 19 Let 120582 = 1199042 119904 = 120590 + 119894119905 Then the function 1198822(120582)has the following asymptotic representations

Case 1 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= 120575211990111199012119887211988921199046 sin [1199011119904 (120585 minus 119886)] sin [1199012119904 (119887 minus 120585)]+ 119874 (|119904|5 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (57)

Case 2 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= minus12057521199011119887211988911199045 sin [1199011119904 (120585 minus 119886)] cos [1199012119904 (119887 minus 120585)]+ 119874 (|119904|4 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (58)

Case 3 If 1198872 = 0 and 1198892 = 0 then1198822 (120582)= minus12057521199012119887111988921199045 cos [1199011119904 (120585 minus 119886)] sin [1199012119904 (119887 minus 120585)]+ 119874 (|119904|4 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (59)

Case 4 If 1198872 = 0 and 1198892 = 0 then1198822 (120582) = 1205752119887111988911199044 cos [1199011119904 (120585 minus 119886)] cos [1199012119904 (119887 minus 120585)]+ 119874 (|119904|3 119890|119905|(1199011(120585minus119886)+1199012(119887minus120585))) (60)

Proof By the definition of 1198822(120582) we have1198822 (120582) = 1205932 (119887 120582) 12059410158402 (119887 120582) minus 12059310158402 (119887 120582) 1205942 (119887 120582)= (1198881 minus 1205821198891) 1205932 (119887 120582) minus (1198882 minus 1205821198892) 12059310158402 (119887 120582) (61)

According to the equalities of 1205932(119909 120582) and 12059310158402(119909 120582) inLemma 17 we can obtain the formulas of 1198822(120582) in thistheorem

Corollary 20 The eigenvalues of the boundary value problem(1)ndash(4) are bounded below

Proof Putting 119904 = 119894119905 (119905 gt 0) in Theorem 19 we can obtain1198822(120582) = 1198822(minus1199052) rarr infin (119905 rarr infin) Hence 1198822(minus1199052) = 0 forsufficiently negative 120582 and sufficiently large 120582 This completesthe proof

4 Asymptotic Formulas forEigenvalues and Eigenfunctions

In this section we can get the asymptotic formulas forthe eigenvalues and eigenfunctions of the singular Sturm-Liouville problem (1)ndash(4) Since the eigenvalues coincidewiththe zeros of the entire function119882(120582) it follows that they haveno finite limits

Theorem 21 The eigenvalues 120582119899 = 1199042119899 (119899 = 0 1 2 ) ofproblem (1)ndash(4) have the following asymptotic representationsas 119899 rarr infin

8 Discrete Dynamics in Nature and Society

Case 1 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (62)

Case 2 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (63)

Case 3 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (64)

Case 4 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (65)

Proof By applying the well-known Rouche theorem we canobtain these conclusions (see [3] Theorem 23)

According to Theorem 21 and Lemmas 17 and 18 wecan obtain the following asymptotic representations of theeigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899)Theorem 22 The eigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899) (119899 =0 1 2 ) of problem (1)ndash(4) have the following asymptoticrepresentations as 119899 rarr infin

Case 1 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

120593 (119909 12058210158401015840119899) = minus1198872 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]3 sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]3 sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(66)

Case 2 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

Discrete Dynamics in Nature and Society 9

120593 (119909 12058210158401015840119899) = minus1198872 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]3 sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = 11988911205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [ (119899 minus 1) 1205871199011 (120585 minus 119886)] sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(67)

Case 3 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [ (119899 minus 1) 1205871199012 (119887 minus 120585)] sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]3 sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(68)

Case 4 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

10 Discrete Dynamics in Nature and Society

120594 (119909 1205821015840119899) = 11988911205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(69)

5 Completeness of Eigenfunctions

In this section we get the property of spectrum for the oper-ator 119860 and discuss the completeness of the eigenfunctions ofproblem (1)ndash(4)

Theorem 23 The operator 119860 has only point spectrum that is120590(119860) = 120590119901(119860)Proof We only need to prove that if 120574 is not an eigenvalueof 119860 then 120574 isin 120588(119860) Here we investigate the equation (119860 minus120574)119885 = 119865 isin 119867 where 120574 isin R 119885 = (119911(119909) 119879119886(119911) 119879119887(119911)) and119865 = (119871119891 119879119886(119891) 119879119887(119891)) Consider the initial value problemminus (119901 (119909) 1199111015840 (119909))1015840 + 119902 (119909) 119911 (119909) minus 120574119911 (119909) = 119891 (119909) 119909 isin (119886 120585) cup (120585 119887)119911 (120585 + 0) minus 1205751119911 (120585 minus 0) minus 12057521199111015840 (120585 minus 0) = 01199111015840 (120585 + 0) minus 1205753119911 (120585 minus 0) minus 12057541199111015840 (120585 minus 0) = 0

(70)

Let

120595 (119909) = 1205951 (119909) 119909 isin (119886 120585) 1205952 (119909) 119909 isin (120585 119887) (71)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 0 satisfying the transmission conditions (4) Let

120601 (119909) = 1206011 (119909) 119909 isin (119886 120585) 1206012 (119909) 119909 isin (120585 119887) (72)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 119891(119909) satisfying120601 (120585 + 0) minus 1205751120601 (120585 minus 0) minus 12057521206011015840 (120585 minus 0) = 01206011015840 (120585 + 0) minus 1205753120601 (120585 minus 0) minus 12057541206011015840 (120585 minus 0) = 0 (73)

Then (70) has the general solution

119911 (119909) = 1198991205951 (119909) + 1206011 (119909) 119909 isin (119886 120585) 1198991205952 (119909) + 1206012 (119909) 119909 isin (120585 119887) (74)

where 119899 isin C

As 120574 is not an eigenvalue of problem (1)ndash(4) we have120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886))minus (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886)) = 0120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887))minus (1198881 [119911 119888] (119887) minus 1198882 [119911 V] (119887)) = 0(75)

The second and third components of (119860minus120574)119885 = 119865 isin 119867meanthat (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886))minus 120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886)) = 119879119886 (119891) (1198881 [119911 119906] (119887) minus 1198882 [119911 V] (119887))minus 120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887)) = 119879119887 (119891)

(76)

Substituting (74) into (76) we can get that 119899 is uniquelysolvable So 119911(119909) is uniquely determined Observing that (119860minus120574119868)minus1 is defined on all of 119867 we get that (119860 minus 120574119868)minus1 is boundedbyTheorem 8 and the closed graph theoremThus 120574 isin 120588(119860)Hence 120590(119860) = 120590119901(119860)Lemma 24 The eigenvalues of problem (1)ndash(4) are countablyinfinite and can cluster only at infin

Lemma 25 The operator 119860 has compact resolvent that is foreach 120575 isin R120590119901(119860) (119860 minus 120575119868)minus1 is compact on 119867 (see [14]Theorem 633)

By the above lemmas and the spectral theorem forcompact operator we obtain the following theorem

Theorem26 The eigenfunctions of problem (1)ndash(4) expandedto become eigenfunctions of 119860 are complete in 119867 that is letΦ119899 = (120593119899(119909) 119879119886(120593119899) 119879119887(120593119899)) 119899 isin N be a maximum set oforthogonal eigenfunctions of119860 where 120593119899(119909) 119899 isin N are eigen-functions of problem (1)ndash(4) Then for all 119865 isin 119867 119865 =suminfin119899=1⟨119865 Φ119899⟩Φ119899Remark 27 In this paper the spectral properties of singu-lar Sturm-Liouville problems with one inner discontinuouspoint are considered if there are two or even multi-innerdiscontinuous points 1205851 1205852 120585119899 in the interval (119886 119887) we

Discrete Dynamics in Nature and Society 11

can obtain similar results by defining a more complicatedHilbert space

Conflicts of Interest

The authors declare that there are no conflicts of interest

Authorsrsquo Contributions

Jinming Cai prepared the manuscript and corrected the mainresults and Zhaowen Zheng gave the main thought andrevised the manuscript

Acknowledgments

This research was partially supported by the NSF of China(Grants 11271225 and 11671227)

References

[1] H Weyl ldquoUber gewohnliche Differentialgleichungen mit Sin-gularitaten und die zugehorigen Entwicklungenrdquo Mathematis-che Annalen vol 68 no 2 pp 220ndash269 1910

[2] JWeidmann SpectralTheory ofOrdinaryDifferential Operatorsvol 1258 of Lecture Notes in Mathematics Springer new YorkNY USA 1987

[3] Z Cao Ordinary Differential Operator Shanhai Science andTechnology Press Shanghai China 1986 (Chinese)

[4] M A Naimark Linear Differential Operators Part 2 HarrapLondon UK 1968

[5] A Zettl Sturm-Liouville Theory vol 121 of Mathematical Sur-veys and Monographs American Mathematics Society Provi-dence RI USA 2005

[6] E C TitchmarshEigenfunction Expansions Associatedwith Sec-ond-Order Differential Equations Part 1 Oxford UniversityPress London UK 1962

[7] Z Zheng and W Zhang ldquoCharacterization of eigenvalues inspectral gap for singular differential operatorsrdquo Abstract andApplied Analysis vol 2012 Article ID 271657 10 pages 2012

[8] J Qi Z Zheng and H Sun ldquoClassification of Sturm-Liouvilledifferential equations with complex coefficients and operatorrealizationsrdquo Proceedings of The Royal Society of London SeriesAMathematical Physical and Engineering Sciences vol 467 no2131 pp 1835ndash1850 2011

[9] Z Zheng J Qi and S Chen ldquoEigenvalues below the lowerbound of minimal operators of singular Hamiltonian expres-sionsrdquo Computers ampMathematics with Applications vol 56 no11 pp 2825ndash2833 2008

[10] Z Zheng ldquoInvariance of deficiency indices under perturbationfor discrete Hamiltonian systemsrdquo Journal of Difference Equa-tions and Applications vol 19 no 8 pp 1243ndash1250 2013

[11] M Demirci Z Akdogan and O S H Mukhtarov ldquoAsymptoticbehavior of eigenvalues and eigenfunctions of one discontin-uous boundary value problemrdquo International Journal of Com-putational Cognition vol 2 article 3 pp 101ndash113 2004

[12] D Buschmann G Stolz and J Weidmann ldquoOne-dimensionalschrodinger operators with local point interactionsrdquo Journal furdie Reine und Angewandte Mathematik vol 467 pp 169ndash1861995

[13] M Kadakal O S Mukhtarov and F S Muhtarov ldquoSome spec-tral properties of Sturm-Liouville problem with transmissionconditionsrdquo Iranian Journal of Science and Technology Trans-action A Science vol 29 no 2 pp 229ndash245 2005

[14] A P Wang Research on weimann conjecture and differentialoperators with transmission conditions [PhD thesis] InnerMongolia University 2006 (Chinese)

[15] O S H Mukhtarov and M Kadakal ldquoSome spectral proper-ties of one Sturm-Liouville type problem with discontinuousweightrdquo Siberian Mathematical Journal vol 46 no 4 pp 681ndash694 2005

[16] C T Fulton ldquoTwo-point boundary value problems with eigen-value parameter contained in the boundary conditionsrdquo Pro-ceedings of the Royal Society of Edinburgh Section A Mathemat-ics vol 77 no 3-4 pp 293ndash308 1977

[17] E Sen andA Bayramov ldquoAsymptotic formulations of the eigen-values and eigenfunctions for a boundary value problemrdquoMathematical Methods in the Applied Sciences vol 36 no 12pp 1512ndash1519 2013

[18] Q Yang and W Wang ldquoAsymptotic behavior of a differentialoperator with discontinuities at two pointsrdquo MathematicalMethods in the Applied Sciences vol 34 no 4 pp 373ndash383 2011

[19] O S Mukhtarov M Kadakal and F S Muhtarov ldquoEigenvaluesand normalized eigenfunctions of discontinuous Sturm-Liou-ville problem with transmission conditionsrdquo Reports on Mathe-matical Physics vol 54 no 1 pp 41ndash56 2004

[20] E Sen ldquoA Sturm-Liouville problemwith a discontinuous coeffi-cient and containing an eigenparameter in the boundary con-ditionrdquo Physics Research International vol 2013 Article ID159243 9 pages 2013

[21] M Kadakal and O S Mukhtarov ldquoSturm-Liouville problemswith discontinuities at two pointsrdquo Computers amp Mathematicswith Applications vol 54 no 11-12 pp 1367ndash1379 2007

[22] M Kadakal and O S Mukhtarov ldquoDiscontinuous Sturm-Liou-ville problems containing eigenparameter in the boundary con-ditionsrdquo Acta Mathematica Sinica vol 22 no 5 pp 1519ndash15282006

[23] Z Akdogan M Demirci and O S H Mukhtarov ldquoSturm-Liouville problems with eigendependent boundary and trans-missions conditionsrdquo Acta Mathematica Scientia vol 25 no 4pp 731ndash740 2005

[24] Q Yang and W Wang ldquoSpectral properties of Sturm-Liouvilleoperators with discontinuities at finite pointsrdquo MathematicalSciences vol 6 no 1 pp 1ndash9 2012

[25] K Li and Z Zheng ldquoSpectral properties for Sturm-Liouvilleequations with transmission conditionsrdquo Acta MathematicaScientia vol 35 no 5 pp 910ndash926 2015 (Chinese)

[26] F Meng and Y Huang ldquoInterval oscillation criteria for a forcedsecond-order nonlinear differential equations with dampingrdquoAppliedMathematics and Computation vol 218 no 5 pp 1857ndash1861 2011

[27] Z Zheng X Wang and H Han ldquoOscillation criteria for forcedsecond order differential equations with mixed nonlinearitiesrdquoApplied Mathematics Letters vol 22 no 7 pp 1096ndash1101 2009

[28] J Shao F Meng and X Pang ldquoGeneralized variational oscil-lation principles for second-order differential equations withmixed-nonlinearitiesrdquoDiscrete Dynamics in Nature and Societyvol 2012 Article ID 539213 10 pages 2012

[29] J Shao and F Meng ldquoGeneralized variational principleson oscillation for nonlinear nonhomogeneous differential

12 Discrete Dynamics in Nature and Society

equationsrdquo Abstract and Applied Analysis vol 2011 Article ID972656 10 pages 2011

[30] A V Likov and Yu A MikhailovTheTheory of Heat and MassTransfer Qosenerqoizdat 1963 (Russian)

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: A Singular Sturm-Liouville Problem with Limit Circle …downloads.hindawi.com/journals/ddns/2017/9673846.pdf · ResearchArticle A Singular Sturm-Liouville Problem with Limit Circle

8 Discrete Dynamics in Nature and Society

Case 1 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (62)

Case 2 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 1) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (63)

Case 3 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 1) 1205871199012 (119887 minus 120585) + 119874 (1119899) (64)

Case 4 If 1198872 = 0 and 1198892 = 0 then1199041015840119899 = (119899 minus 12) 1205871199011 (120585 minus 119886) + 119874 (1119899) 11990410158401015840119899 = (119899 minus 12) 1205871199012 (119887 minus 120585) + 119874 (1119899) (65)

Proof By applying the well-known Rouche theorem we canobtain these conclusions (see [3] Theorem 23)

According to Theorem 21 and Lemmas 17 and 18 wecan obtain the following asymptotic representations of theeigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899)Theorem 22 The eigenfunctions 120593(119909 120582119899) and 120594(119909 120582119899) (119899 =0 1 2 ) of problem (1)ndash(4) have the following asymptoticrepresentations as 119899 rarr infin

Case 1 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

120593 (119909 12058210158401015840119899) = minus1198872 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]3 sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]3 sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(66)

Case 2 If 1198872 = 0 and 1198892 = 0 then

120593 (119909 1205821015840119899) = minus1198872 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119874 (1198992) 119909 isin (120585 119887)

Discrete Dynamics in Nature and Society 9

120593 (119909 12058210158401015840119899) = minus1198872 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]3 sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = 11988911205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [ (119899 minus 1) 1205871199011 (120585 minus 119886)] sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(67)

Case 3 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [ (119899 minus 1) 1205871199012 (119887 minus 120585)] sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]3 sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(68)

Case 4 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

10 Discrete Dynamics in Nature and Society

120594 (119909 1205821015840119899) = 11988911205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(69)

5 Completeness of Eigenfunctions

In this section we get the property of spectrum for the oper-ator 119860 and discuss the completeness of the eigenfunctions ofproblem (1)ndash(4)

Theorem 23 The operator 119860 has only point spectrum that is120590(119860) = 120590119901(119860)Proof We only need to prove that if 120574 is not an eigenvalueof 119860 then 120574 isin 120588(119860) Here we investigate the equation (119860 minus120574)119885 = 119865 isin 119867 where 120574 isin R 119885 = (119911(119909) 119879119886(119911) 119879119887(119911)) and119865 = (119871119891 119879119886(119891) 119879119887(119891)) Consider the initial value problemminus (119901 (119909) 1199111015840 (119909))1015840 + 119902 (119909) 119911 (119909) minus 120574119911 (119909) = 119891 (119909) 119909 isin (119886 120585) cup (120585 119887)119911 (120585 + 0) minus 1205751119911 (120585 minus 0) minus 12057521199111015840 (120585 minus 0) = 01199111015840 (120585 + 0) minus 1205753119911 (120585 minus 0) minus 12057541199111015840 (120585 minus 0) = 0

(70)

Let

120595 (119909) = 1205951 (119909) 119909 isin (119886 120585) 1205952 (119909) 119909 isin (120585 119887) (71)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 0 satisfying the transmission conditions (4) Let

120601 (119909) = 1206011 (119909) 119909 isin (119886 120585) 1206012 (119909) 119909 isin (120585 119887) (72)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 119891(119909) satisfying120601 (120585 + 0) minus 1205751120601 (120585 minus 0) minus 12057521206011015840 (120585 minus 0) = 01206011015840 (120585 + 0) minus 1205753120601 (120585 minus 0) minus 12057541206011015840 (120585 minus 0) = 0 (73)

Then (70) has the general solution

119911 (119909) = 1198991205951 (119909) + 1206011 (119909) 119909 isin (119886 120585) 1198991205952 (119909) + 1206012 (119909) 119909 isin (120585 119887) (74)

where 119899 isin C

As 120574 is not an eigenvalue of problem (1)ndash(4) we have120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886))minus (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886)) = 0120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887))minus (1198881 [119911 119888] (119887) minus 1198882 [119911 V] (119887)) = 0(75)

The second and third components of (119860minus120574)119885 = 119865 isin 119867meanthat (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886))minus 120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886)) = 119879119886 (119891) (1198881 [119911 119906] (119887) minus 1198882 [119911 V] (119887))minus 120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887)) = 119879119887 (119891)

(76)

Substituting (74) into (76) we can get that 119899 is uniquelysolvable So 119911(119909) is uniquely determined Observing that (119860minus120574119868)minus1 is defined on all of 119867 we get that (119860 minus 120574119868)minus1 is boundedbyTheorem 8 and the closed graph theoremThus 120574 isin 120588(119860)Hence 120590(119860) = 120590119901(119860)Lemma 24 The eigenvalues of problem (1)ndash(4) are countablyinfinite and can cluster only at infin

Lemma 25 The operator 119860 has compact resolvent that is foreach 120575 isin R120590119901(119860) (119860 minus 120575119868)minus1 is compact on 119867 (see [14]Theorem 633)

By the above lemmas and the spectral theorem forcompact operator we obtain the following theorem

Theorem26 The eigenfunctions of problem (1)ndash(4) expandedto become eigenfunctions of 119860 are complete in 119867 that is letΦ119899 = (120593119899(119909) 119879119886(120593119899) 119879119887(120593119899)) 119899 isin N be a maximum set oforthogonal eigenfunctions of119860 where 120593119899(119909) 119899 isin N are eigen-functions of problem (1)ndash(4) Then for all 119865 isin 119867 119865 =suminfin119899=1⟨119865 Φ119899⟩Φ119899Remark 27 In this paper the spectral properties of singu-lar Sturm-Liouville problems with one inner discontinuouspoint are considered if there are two or even multi-innerdiscontinuous points 1205851 1205852 120585119899 in the interval (119886 119887) we

Discrete Dynamics in Nature and Society 11

can obtain similar results by defining a more complicatedHilbert space

Conflicts of Interest

The authors declare that there are no conflicts of interest

Authorsrsquo Contributions

Jinming Cai prepared the manuscript and corrected the mainresults and Zhaowen Zheng gave the main thought andrevised the manuscript

Acknowledgments

This research was partially supported by the NSF of China(Grants 11271225 and 11671227)

References

[1] H Weyl ldquoUber gewohnliche Differentialgleichungen mit Sin-gularitaten und die zugehorigen Entwicklungenrdquo Mathematis-che Annalen vol 68 no 2 pp 220ndash269 1910

[2] JWeidmann SpectralTheory ofOrdinaryDifferential Operatorsvol 1258 of Lecture Notes in Mathematics Springer new YorkNY USA 1987

[3] Z Cao Ordinary Differential Operator Shanhai Science andTechnology Press Shanghai China 1986 (Chinese)

[4] M A Naimark Linear Differential Operators Part 2 HarrapLondon UK 1968

[5] A Zettl Sturm-Liouville Theory vol 121 of Mathematical Sur-veys and Monographs American Mathematics Society Provi-dence RI USA 2005

[6] E C TitchmarshEigenfunction Expansions Associatedwith Sec-ond-Order Differential Equations Part 1 Oxford UniversityPress London UK 1962

[7] Z Zheng and W Zhang ldquoCharacterization of eigenvalues inspectral gap for singular differential operatorsrdquo Abstract andApplied Analysis vol 2012 Article ID 271657 10 pages 2012

[8] J Qi Z Zheng and H Sun ldquoClassification of Sturm-Liouvilledifferential equations with complex coefficients and operatorrealizationsrdquo Proceedings of The Royal Society of London SeriesAMathematical Physical and Engineering Sciences vol 467 no2131 pp 1835ndash1850 2011

[9] Z Zheng J Qi and S Chen ldquoEigenvalues below the lowerbound of minimal operators of singular Hamiltonian expres-sionsrdquo Computers ampMathematics with Applications vol 56 no11 pp 2825ndash2833 2008

[10] Z Zheng ldquoInvariance of deficiency indices under perturbationfor discrete Hamiltonian systemsrdquo Journal of Difference Equa-tions and Applications vol 19 no 8 pp 1243ndash1250 2013

[11] M Demirci Z Akdogan and O S H Mukhtarov ldquoAsymptoticbehavior of eigenvalues and eigenfunctions of one discontin-uous boundary value problemrdquo International Journal of Com-putational Cognition vol 2 article 3 pp 101ndash113 2004

[12] D Buschmann G Stolz and J Weidmann ldquoOne-dimensionalschrodinger operators with local point interactionsrdquo Journal furdie Reine und Angewandte Mathematik vol 467 pp 169ndash1861995

[13] M Kadakal O S Mukhtarov and F S Muhtarov ldquoSome spec-tral properties of Sturm-Liouville problem with transmissionconditionsrdquo Iranian Journal of Science and Technology Trans-action A Science vol 29 no 2 pp 229ndash245 2005

[14] A P Wang Research on weimann conjecture and differentialoperators with transmission conditions [PhD thesis] InnerMongolia University 2006 (Chinese)

[15] O S H Mukhtarov and M Kadakal ldquoSome spectral proper-ties of one Sturm-Liouville type problem with discontinuousweightrdquo Siberian Mathematical Journal vol 46 no 4 pp 681ndash694 2005

[16] C T Fulton ldquoTwo-point boundary value problems with eigen-value parameter contained in the boundary conditionsrdquo Pro-ceedings of the Royal Society of Edinburgh Section A Mathemat-ics vol 77 no 3-4 pp 293ndash308 1977

[17] E Sen andA Bayramov ldquoAsymptotic formulations of the eigen-values and eigenfunctions for a boundary value problemrdquoMathematical Methods in the Applied Sciences vol 36 no 12pp 1512ndash1519 2013

[18] Q Yang and W Wang ldquoAsymptotic behavior of a differentialoperator with discontinuities at two pointsrdquo MathematicalMethods in the Applied Sciences vol 34 no 4 pp 373ndash383 2011

[19] O S Mukhtarov M Kadakal and F S Muhtarov ldquoEigenvaluesand normalized eigenfunctions of discontinuous Sturm-Liou-ville problem with transmission conditionsrdquo Reports on Mathe-matical Physics vol 54 no 1 pp 41ndash56 2004

[20] E Sen ldquoA Sturm-Liouville problemwith a discontinuous coeffi-cient and containing an eigenparameter in the boundary con-ditionrdquo Physics Research International vol 2013 Article ID159243 9 pages 2013

[21] M Kadakal and O S Mukhtarov ldquoSturm-Liouville problemswith discontinuities at two pointsrdquo Computers amp Mathematicswith Applications vol 54 no 11-12 pp 1367ndash1379 2007

[22] M Kadakal and O S Mukhtarov ldquoDiscontinuous Sturm-Liou-ville problems containing eigenparameter in the boundary con-ditionsrdquo Acta Mathematica Sinica vol 22 no 5 pp 1519ndash15282006

[23] Z Akdogan M Demirci and O S H Mukhtarov ldquoSturm-Liouville problems with eigendependent boundary and trans-missions conditionsrdquo Acta Mathematica Scientia vol 25 no 4pp 731ndash740 2005

[24] Q Yang and W Wang ldquoSpectral properties of Sturm-Liouvilleoperators with discontinuities at finite pointsrdquo MathematicalSciences vol 6 no 1 pp 1ndash9 2012

[25] K Li and Z Zheng ldquoSpectral properties for Sturm-Liouvilleequations with transmission conditionsrdquo Acta MathematicaScientia vol 35 no 5 pp 910ndash926 2015 (Chinese)

[26] F Meng and Y Huang ldquoInterval oscillation criteria for a forcedsecond-order nonlinear differential equations with dampingrdquoAppliedMathematics and Computation vol 218 no 5 pp 1857ndash1861 2011

[27] Z Zheng X Wang and H Han ldquoOscillation criteria for forcedsecond order differential equations with mixed nonlinearitiesrdquoApplied Mathematics Letters vol 22 no 7 pp 1096ndash1101 2009

[28] J Shao F Meng and X Pang ldquoGeneralized variational oscil-lation principles for second-order differential equations withmixed-nonlinearitiesrdquoDiscrete Dynamics in Nature and Societyvol 2012 Article ID 539213 10 pages 2012

[29] J Shao and F Meng ldquoGeneralized variational principleson oscillation for nonlinear nonhomogeneous differential

12 Discrete Dynamics in Nature and Society

equationsrdquo Abstract and Applied Analysis vol 2011 Article ID972656 10 pages 2011

[30] A V Likov and Yu A MikhailovTheTheory of Heat and MassTransfer Qosenerqoizdat 1963 (Russian)

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: A Singular Sturm-Liouville Problem with Limit Circle …downloads.hindawi.com/journals/ddns/2017/9673846.pdf · ResearchArticle A Singular Sturm-Liouville Problem with Limit Circle

Discrete Dynamics in Nature and Society 9

120593 (119909 12058210158401015840119899) = minus1198872 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (119899) 119909 isin (119886 120585) 119901111988721205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]3 sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119886)] + 119874 (1198992) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = 11988911205752120574 [ (119899 minus 1) 1205871199011 (120585 minus 119886)]2 cos [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 1) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [ (119899 minus 1) 1205871199011 (120585 minus 119886)] sin [1199012 (119899 minus 1) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(67)

Case 3 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [ (119899 minus 1) 1205871199012 (119887 minus 120585)] sin [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [1199011 (119899 minus 1) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 1205821015840119899) = minus119901211988921205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]3 sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (1198992) 119909 isin (119886 120585) minus1198892 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (1198992) 119909 isin (119886 120585) minus1198892 [ (119899 minus 1) 1205871199012 (119887 minus 120585)]2 cos [(119899 minus 1) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (119899) 119909 isin (120585 119887)

(68)

Case 4 If 1198872 = 0 and 1198892 = 0 then120593 (119909 1205821015840119899) = minus1198871 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [(119899 minus 12) 120587120585 minus 119886 (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) 119874 (119899) 119909 isin (120585 119887) 120593 (119909 12058210158401015840119899) =

minus1198871 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (119909 minus 119886)] + 119874 (1) 119909 isin (119886 120585) minus11988711205752 [(119899 minus 12) 1205871199012 (119887 minus 120585) ]2 cos [1199011 (119899 minus 12) 1205871199012 (119887 minus 120585) (120585 minus 119886)] cos [(119899 minus 12) 120587119887 minus 120585 (119909 minus 120585)] + 119874 (119899) 119909 isin (120585 119887)

10 Discrete Dynamics in Nature and Society

120594 (119909 1205821015840119899) = 11988911205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(69)

5 Completeness of Eigenfunctions

In this section we get the property of spectrum for the oper-ator 119860 and discuss the completeness of the eigenfunctions ofproblem (1)ndash(4)

Theorem 23 The operator 119860 has only point spectrum that is120590(119860) = 120590119901(119860)Proof We only need to prove that if 120574 is not an eigenvalueof 119860 then 120574 isin 120588(119860) Here we investigate the equation (119860 minus120574)119885 = 119865 isin 119867 where 120574 isin R 119885 = (119911(119909) 119879119886(119911) 119879119887(119911)) and119865 = (119871119891 119879119886(119891) 119879119887(119891)) Consider the initial value problemminus (119901 (119909) 1199111015840 (119909))1015840 + 119902 (119909) 119911 (119909) minus 120574119911 (119909) = 119891 (119909) 119909 isin (119886 120585) cup (120585 119887)119911 (120585 + 0) minus 1205751119911 (120585 minus 0) minus 12057521199111015840 (120585 minus 0) = 01199111015840 (120585 + 0) minus 1205753119911 (120585 minus 0) minus 12057541199111015840 (120585 minus 0) = 0

(70)

Let

120595 (119909) = 1205951 (119909) 119909 isin (119886 120585) 1205952 (119909) 119909 isin (120585 119887) (71)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 0 satisfying the transmission conditions (4) Let

120601 (119909) = 1206011 (119909) 119909 isin (119886 120585) 1206012 (119909) 119909 isin (120585 119887) (72)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 119891(119909) satisfying120601 (120585 + 0) minus 1205751120601 (120585 minus 0) minus 12057521206011015840 (120585 minus 0) = 01206011015840 (120585 + 0) minus 1205753120601 (120585 minus 0) minus 12057541206011015840 (120585 minus 0) = 0 (73)

Then (70) has the general solution

119911 (119909) = 1198991205951 (119909) + 1206011 (119909) 119909 isin (119886 120585) 1198991205952 (119909) + 1206012 (119909) 119909 isin (120585 119887) (74)

where 119899 isin C

As 120574 is not an eigenvalue of problem (1)ndash(4) we have120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886))minus (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886)) = 0120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887))minus (1198881 [119911 119888] (119887) minus 1198882 [119911 V] (119887)) = 0(75)

The second and third components of (119860minus120574)119885 = 119865 isin 119867meanthat (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886))minus 120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886)) = 119879119886 (119891) (1198881 [119911 119906] (119887) minus 1198882 [119911 V] (119887))minus 120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887)) = 119879119887 (119891)

(76)

Substituting (74) into (76) we can get that 119899 is uniquelysolvable So 119911(119909) is uniquely determined Observing that (119860minus120574119868)minus1 is defined on all of 119867 we get that (119860 minus 120574119868)minus1 is boundedbyTheorem 8 and the closed graph theoremThus 120574 isin 120588(119860)Hence 120590(119860) = 120590119901(119860)Lemma 24 The eigenvalues of problem (1)ndash(4) are countablyinfinite and can cluster only at infin

Lemma 25 The operator 119860 has compact resolvent that is foreach 120575 isin R120590119901(119860) (119860 minus 120575119868)minus1 is compact on 119867 (see [14]Theorem 633)

By the above lemmas and the spectral theorem forcompact operator we obtain the following theorem

Theorem26 The eigenfunctions of problem (1)ndash(4) expandedto become eigenfunctions of 119860 are complete in 119867 that is letΦ119899 = (120593119899(119909) 119879119886(120593119899) 119879119887(120593119899)) 119899 isin N be a maximum set oforthogonal eigenfunctions of119860 where 120593119899(119909) 119899 isin N are eigen-functions of problem (1)ndash(4) Then for all 119865 isin 119867 119865 =suminfin119899=1⟨119865 Φ119899⟩Φ119899Remark 27 In this paper the spectral properties of singu-lar Sturm-Liouville problems with one inner discontinuouspoint are considered if there are two or even multi-innerdiscontinuous points 1205851 1205852 120585119899 in the interval (119886 119887) we

Discrete Dynamics in Nature and Society 11

can obtain similar results by defining a more complicatedHilbert space

Conflicts of Interest

The authors declare that there are no conflicts of interest

Authorsrsquo Contributions

Jinming Cai prepared the manuscript and corrected the mainresults and Zhaowen Zheng gave the main thought andrevised the manuscript

Acknowledgments

This research was partially supported by the NSF of China(Grants 11271225 and 11671227)

References

[1] H Weyl ldquoUber gewohnliche Differentialgleichungen mit Sin-gularitaten und die zugehorigen Entwicklungenrdquo Mathematis-che Annalen vol 68 no 2 pp 220ndash269 1910

[2] JWeidmann SpectralTheory ofOrdinaryDifferential Operatorsvol 1258 of Lecture Notes in Mathematics Springer new YorkNY USA 1987

[3] Z Cao Ordinary Differential Operator Shanhai Science andTechnology Press Shanghai China 1986 (Chinese)

[4] M A Naimark Linear Differential Operators Part 2 HarrapLondon UK 1968

[5] A Zettl Sturm-Liouville Theory vol 121 of Mathematical Sur-veys and Monographs American Mathematics Society Provi-dence RI USA 2005

[6] E C TitchmarshEigenfunction Expansions Associatedwith Sec-ond-Order Differential Equations Part 1 Oxford UniversityPress London UK 1962

[7] Z Zheng and W Zhang ldquoCharacterization of eigenvalues inspectral gap for singular differential operatorsrdquo Abstract andApplied Analysis vol 2012 Article ID 271657 10 pages 2012

[8] J Qi Z Zheng and H Sun ldquoClassification of Sturm-Liouvilledifferential equations with complex coefficients and operatorrealizationsrdquo Proceedings of The Royal Society of London SeriesAMathematical Physical and Engineering Sciences vol 467 no2131 pp 1835ndash1850 2011

[9] Z Zheng J Qi and S Chen ldquoEigenvalues below the lowerbound of minimal operators of singular Hamiltonian expres-sionsrdquo Computers ampMathematics with Applications vol 56 no11 pp 2825ndash2833 2008

[10] Z Zheng ldquoInvariance of deficiency indices under perturbationfor discrete Hamiltonian systemsrdquo Journal of Difference Equa-tions and Applications vol 19 no 8 pp 1243ndash1250 2013

[11] M Demirci Z Akdogan and O S H Mukhtarov ldquoAsymptoticbehavior of eigenvalues and eigenfunctions of one discontin-uous boundary value problemrdquo International Journal of Com-putational Cognition vol 2 article 3 pp 101ndash113 2004

[12] D Buschmann G Stolz and J Weidmann ldquoOne-dimensionalschrodinger operators with local point interactionsrdquo Journal furdie Reine und Angewandte Mathematik vol 467 pp 169ndash1861995

[13] M Kadakal O S Mukhtarov and F S Muhtarov ldquoSome spec-tral properties of Sturm-Liouville problem with transmissionconditionsrdquo Iranian Journal of Science and Technology Trans-action A Science vol 29 no 2 pp 229ndash245 2005

[14] A P Wang Research on weimann conjecture and differentialoperators with transmission conditions [PhD thesis] InnerMongolia University 2006 (Chinese)

[15] O S H Mukhtarov and M Kadakal ldquoSome spectral proper-ties of one Sturm-Liouville type problem with discontinuousweightrdquo Siberian Mathematical Journal vol 46 no 4 pp 681ndash694 2005

[16] C T Fulton ldquoTwo-point boundary value problems with eigen-value parameter contained in the boundary conditionsrdquo Pro-ceedings of the Royal Society of Edinburgh Section A Mathemat-ics vol 77 no 3-4 pp 293ndash308 1977

[17] E Sen andA Bayramov ldquoAsymptotic formulations of the eigen-values and eigenfunctions for a boundary value problemrdquoMathematical Methods in the Applied Sciences vol 36 no 12pp 1512ndash1519 2013

[18] Q Yang and W Wang ldquoAsymptotic behavior of a differentialoperator with discontinuities at two pointsrdquo MathematicalMethods in the Applied Sciences vol 34 no 4 pp 373ndash383 2011

[19] O S Mukhtarov M Kadakal and F S Muhtarov ldquoEigenvaluesand normalized eigenfunctions of discontinuous Sturm-Liou-ville problem with transmission conditionsrdquo Reports on Mathe-matical Physics vol 54 no 1 pp 41ndash56 2004

[20] E Sen ldquoA Sturm-Liouville problemwith a discontinuous coeffi-cient and containing an eigenparameter in the boundary con-ditionrdquo Physics Research International vol 2013 Article ID159243 9 pages 2013

[21] M Kadakal and O S Mukhtarov ldquoSturm-Liouville problemswith discontinuities at two pointsrdquo Computers amp Mathematicswith Applications vol 54 no 11-12 pp 1367ndash1379 2007

[22] M Kadakal and O S Mukhtarov ldquoDiscontinuous Sturm-Liou-ville problems containing eigenparameter in the boundary con-ditionsrdquo Acta Mathematica Sinica vol 22 no 5 pp 1519ndash15282006

[23] Z Akdogan M Demirci and O S H Mukhtarov ldquoSturm-Liouville problems with eigendependent boundary and trans-missions conditionsrdquo Acta Mathematica Scientia vol 25 no 4pp 731ndash740 2005

[24] Q Yang and W Wang ldquoSpectral properties of Sturm-Liouvilleoperators with discontinuities at finite pointsrdquo MathematicalSciences vol 6 no 1 pp 1ndash9 2012

[25] K Li and Z Zheng ldquoSpectral properties for Sturm-Liouvilleequations with transmission conditionsrdquo Acta MathematicaScientia vol 35 no 5 pp 910ndash926 2015 (Chinese)

[26] F Meng and Y Huang ldquoInterval oscillation criteria for a forcedsecond-order nonlinear differential equations with dampingrdquoAppliedMathematics and Computation vol 218 no 5 pp 1857ndash1861 2011

[27] Z Zheng X Wang and H Han ldquoOscillation criteria for forcedsecond order differential equations with mixed nonlinearitiesrdquoApplied Mathematics Letters vol 22 no 7 pp 1096ndash1101 2009

[28] J Shao F Meng and X Pang ldquoGeneralized variational oscil-lation principles for second-order differential equations withmixed-nonlinearitiesrdquoDiscrete Dynamics in Nature and Societyvol 2012 Article ID 539213 10 pages 2012

[29] J Shao and F Meng ldquoGeneralized variational principleson oscillation for nonlinear nonhomogeneous differential

12 Discrete Dynamics in Nature and Society

equationsrdquo Abstract and Applied Analysis vol 2011 Article ID972656 10 pages 2011

[30] A V Likov and Yu A MikhailovTheTheory of Heat and MassTransfer Qosenerqoizdat 1963 (Russian)

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: A Singular Sturm-Liouville Problem with Limit Circle …downloads.hindawi.com/journals/ddns/2017/9673846.pdf · ResearchArticle A Singular Sturm-Liouville Problem with Limit Circle

10 Discrete Dynamics in Nature and Society

120594 (119909 1205821015840119899) = 11988911205752120574 [(119899 minus 12) 1205871199011 (120585 minus 119886) ]2 cos [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) ] cos [(119899 minus 12) 120587120585 minus 119886 (119909 minus 120585)] + 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199011 (120585 minus 119886) ] sin [1199012 (119899 minus 12) 1205871199011 (120585 minus 119886) (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

120594 (119909 12058210158401015840119899) = 119874 (119899) 119909 isin (119886 120585) minus11988911199012 [(119899 minus 12) 1205871199012 (119887 minus 120585) ] sin [(119899 minus 12) 120587119887 minus 120585 (119909 minus 119887)] + 119874 (1) 119909 isin (120585 119887)

(69)

5 Completeness of Eigenfunctions

In this section we get the property of spectrum for the oper-ator 119860 and discuss the completeness of the eigenfunctions ofproblem (1)ndash(4)

Theorem 23 The operator 119860 has only point spectrum that is120590(119860) = 120590119901(119860)Proof We only need to prove that if 120574 is not an eigenvalueof 119860 then 120574 isin 120588(119860) Here we investigate the equation (119860 minus120574)119885 = 119865 isin 119867 where 120574 isin R 119885 = (119911(119909) 119879119886(119911) 119879119887(119911)) and119865 = (119871119891 119879119886(119891) 119879119887(119891)) Consider the initial value problemminus (119901 (119909) 1199111015840 (119909))1015840 + 119902 (119909) 119911 (119909) minus 120574119911 (119909) = 119891 (119909) 119909 isin (119886 120585) cup (120585 119887)119911 (120585 + 0) minus 1205751119911 (120585 minus 0) minus 12057521199111015840 (120585 minus 0) = 01199111015840 (120585 + 0) minus 1205753119911 (120585 minus 0) minus 12057541199111015840 (120585 minus 0) = 0

(70)

Let

120595 (119909) = 1205951 (119909) 119909 isin (119886 120585) 1205952 (119909) 119909 isin (120585 119887) (71)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 0 satisfying the transmission conditions (4) Let

120601 (119909) = 1206011 (119909) 119909 isin (119886 120585) 1206012 (119909) 119909 isin (120585 119887) (72)

be the solution of the equation minus(119901(119909)1199111015840(119909))1015840 + 119902(119909)119911(119909) minus120574119911(119909) = 119891(119909) satisfying120601 (120585 + 0) minus 1205751120601 (120585 minus 0) minus 12057521206011015840 (120585 minus 0) = 01206011015840 (120585 + 0) minus 1205753120601 (120585 minus 0) minus 12057541206011015840 (120585 minus 0) = 0 (73)

Then (70) has the general solution

119911 (119909) = 1198991205951 (119909) + 1206011 (119909) 119909 isin (119886 120585) 1198991205952 (119909) + 1206012 (119909) 119909 isin (120585 119887) (74)

where 119899 isin C

As 120574 is not an eigenvalue of problem (1)ndash(4) we have120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886))minus (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886)) = 0120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887))minus (1198881 [119911 119888] (119887) minus 1198882 [119911 V] (119887)) = 0(75)

The second and third components of (119860minus120574)119885 = 119865 isin 119867meanthat (1198861 [119911 119906] (119886) minus 1198862 [119911 V] (119886))minus 120574 (1198871 [119911 119906] (119886) minus 1198872 [119911 V] (119886)) = 119879119886 (119891) (1198881 [119911 119906] (119887) minus 1198882 [119911 V] (119887))minus 120574 (1198891 [119911 119906] (119887) minus 1198892 [119911 V] (119887)) = 119879119887 (119891)

(76)

Substituting (74) into (76) we can get that 119899 is uniquelysolvable So 119911(119909) is uniquely determined Observing that (119860minus120574119868)minus1 is defined on all of 119867 we get that (119860 minus 120574119868)minus1 is boundedbyTheorem 8 and the closed graph theoremThus 120574 isin 120588(119860)Hence 120590(119860) = 120590119901(119860)Lemma 24 The eigenvalues of problem (1)ndash(4) are countablyinfinite and can cluster only at infin

Lemma 25 The operator 119860 has compact resolvent that is foreach 120575 isin R120590119901(119860) (119860 minus 120575119868)minus1 is compact on 119867 (see [14]Theorem 633)

By the above lemmas and the spectral theorem forcompact operator we obtain the following theorem

Theorem26 The eigenfunctions of problem (1)ndash(4) expandedto become eigenfunctions of 119860 are complete in 119867 that is letΦ119899 = (120593119899(119909) 119879119886(120593119899) 119879119887(120593119899)) 119899 isin N be a maximum set oforthogonal eigenfunctions of119860 where 120593119899(119909) 119899 isin N are eigen-functions of problem (1)ndash(4) Then for all 119865 isin 119867 119865 =suminfin119899=1⟨119865 Φ119899⟩Φ119899Remark 27 In this paper the spectral properties of singu-lar Sturm-Liouville problems with one inner discontinuouspoint are considered if there are two or even multi-innerdiscontinuous points 1205851 1205852 120585119899 in the interval (119886 119887) we

Discrete Dynamics in Nature and Society 11

can obtain similar results by defining a more complicatedHilbert space

Conflicts of Interest

The authors declare that there are no conflicts of interest

Authorsrsquo Contributions

Jinming Cai prepared the manuscript and corrected the mainresults and Zhaowen Zheng gave the main thought andrevised the manuscript

Acknowledgments

This research was partially supported by the NSF of China(Grants 11271225 and 11671227)

References

[1] H Weyl ldquoUber gewohnliche Differentialgleichungen mit Sin-gularitaten und die zugehorigen Entwicklungenrdquo Mathematis-che Annalen vol 68 no 2 pp 220ndash269 1910

[2] JWeidmann SpectralTheory ofOrdinaryDifferential Operatorsvol 1258 of Lecture Notes in Mathematics Springer new YorkNY USA 1987

[3] Z Cao Ordinary Differential Operator Shanhai Science andTechnology Press Shanghai China 1986 (Chinese)

[4] M A Naimark Linear Differential Operators Part 2 HarrapLondon UK 1968

[5] A Zettl Sturm-Liouville Theory vol 121 of Mathematical Sur-veys and Monographs American Mathematics Society Provi-dence RI USA 2005

[6] E C TitchmarshEigenfunction Expansions Associatedwith Sec-ond-Order Differential Equations Part 1 Oxford UniversityPress London UK 1962

[7] Z Zheng and W Zhang ldquoCharacterization of eigenvalues inspectral gap for singular differential operatorsrdquo Abstract andApplied Analysis vol 2012 Article ID 271657 10 pages 2012

[8] J Qi Z Zheng and H Sun ldquoClassification of Sturm-Liouvilledifferential equations with complex coefficients and operatorrealizationsrdquo Proceedings of The Royal Society of London SeriesAMathematical Physical and Engineering Sciences vol 467 no2131 pp 1835ndash1850 2011

[9] Z Zheng J Qi and S Chen ldquoEigenvalues below the lowerbound of minimal operators of singular Hamiltonian expres-sionsrdquo Computers ampMathematics with Applications vol 56 no11 pp 2825ndash2833 2008

[10] Z Zheng ldquoInvariance of deficiency indices under perturbationfor discrete Hamiltonian systemsrdquo Journal of Difference Equa-tions and Applications vol 19 no 8 pp 1243ndash1250 2013

[11] M Demirci Z Akdogan and O S H Mukhtarov ldquoAsymptoticbehavior of eigenvalues and eigenfunctions of one discontin-uous boundary value problemrdquo International Journal of Com-putational Cognition vol 2 article 3 pp 101ndash113 2004

[12] D Buschmann G Stolz and J Weidmann ldquoOne-dimensionalschrodinger operators with local point interactionsrdquo Journal furdie Reine und Angewandte Mathematik vol 467 pp 169ndash1861995

[13] M Kadakal O S Mukhtarov and F S Muhtarov ldquoSome spec-tral properties of Sturm-Liouville problem with transmissionconditionsrdquo Iranian Journal of Science and Technology Trans-action A Science vol 29 no 2 pp 229ndash245 2005

[14] A P Wang Research on weimann conjecture and differentialoperators with transmission conditions [PhD thesis] InnerMongolia University 2006 (Chinese)

[15] O S H Mukhtarov and M Kadakal ldquoSome spectral proper-ties of one Sturm-Liouville type problem with discontinuousweightrdquo Siberian Mathematical Journal vol 46 no 4 pp 681ndash694 2005

[16] C T Fulton ldquoTwo-point boundary value problems with eigen-value parameter contained in the boundary conditionsrdquo Pro-ceedings of the Royal Society of Edinburgh Section A Mathemat-ics vol 77 no 3-4 pp 293ndash308 1977

[17] E Sen andA Bayramov ldquoAsymptotic formulations of the eigen-values and eigenfunctions for a boundary value problemrdquoMathematical Methods in the Applied Sciences vol 36 no 12pp 1512ndash1519 2013

[18] Q Yang and W Wang ldquoAsymptotic behavior of a differentialoperator with discontinuities at two pointsrdquo MathematicalMethods in the Applied Sciences vol 34 no 4 pp 373ndash383 2011

[19] O S Mukhtarov M Kadakal and F S Muhtarov ldquoEigenvaluesand normalized eigenfunctions of discontinuous Sturm-Liou-ville problem with transmission conditionsrdquo Reports on Mathe-matical Physics vol 54 no 1 pp 41ndash56 2004

[20] E Sen ldquoA Sturm-Liouville problemwith a discontinuous coeffi-cient and containing an eigenparameter in the boundary con-ditionrdquo Physics Research International vol 2013 Article ID159243 9 pages 2013

[21] M Kadakal and O S Mukhtarov ldquoSturm-Liouville problemswith discontinuities at two pointsrdquo Computers amp Mathematicswith Applications vol 54 no 11-12 pp 1367ndash1379 2007

[22] M Kadakal and O S Mukhtarov ldquoDiscontinuous Sturm-Liou-ville problems containing eigenparameter in the boundary con-ditionsrdquo Acta Mathematica Sinica vol 22 no 5 pp 1519ndash15282006

[23] Z Akdogan M Demirci and O S H Mukhtarov ldquoSturm-Liouville problems with eigendependent boundary and trans-missions conditionsrdquo Acta Mathematica Scientia vol 25 no 4pp 731ndash740 2005

[24] Q Yang and W Wang ldquoSpectral properties of Sturm-Liouvilleoperators with discontinuities at finite pointsrdquo MathematicalSciences vol 6 no 1 pp 1ndash9 2012

[25] K Li and Z Zheng ldquoSpectral properties for Sturm-Liouvilleequations with transmission conditionsrdquo Acta MathematicaScientia vol 35 no 5 pp 910ndash926 2015 (Chinese)

[26] F Meng and Y Huang ldquoInterval oscillation criteria for a forcedsecond-order nonlinear differential equations with dampingrdquoAppliedMathematics and Computation vol 218 no 5 pp 1857ndash1861 2011

[27] Z Zheng X Wang and H Han ldquoOscillation criteria for forcedsecond order differential equations with mixed nonlinearitiesrdquoApplied Mathematics Letters vol 22 no 7 pp 1096ndash1101 2009

[28] J Shao F Meng and X Pang ldquoGeneralized variational oscil-lation principles for second-order differential equations withmixed-nonlinearitiesrdquoDiscrete Dynamics in Nature and Societyvol 2012 Article ID 539213 10 pages 2012

[29] J Shao and F Meng ldquoGeneralized variational principleson oscillation for nonlinear nonhomogeneous differential

12 Discrete Dynamics in Nature and Society

equationsrdquo Abstract and Applied Analysis vol 2011 Article ID972656 10 pages 2011

[30] A V Likov and Yu A MikhailovTheTheory of Heat and MassTransfer Qosenerqoizdat 1963 (Russian)

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 11: A Singular Sturm-Liouville Problem with Limit Circle …downloads.hindawi.com/journals/ddns/2017/9673846.pdf · ResearchArticle A Singular Sturm-Liouville Problem with Limit Circle

Discrete Dynamics in Nature and Society 11

can obtain similar results by defining a more complicatedHilbert space

Conflicts of Interest

The authors declare that there are no conflicts of interest

Authorsrsquo Contributions

Jinming Cai prepared the manuscript and corrected the mainresults and Zhaowen Zheng gave the main thought andrevised the manuscript

Acknowledgments

This research was partially supported by the NSF of China(Grants 11271225 and 11671227)

References

[1] H Weyl ldquoUber gewohnliche Differentialgleichungen mit Sin-gularitaten und die zugehorigen Entwicklungenrdquo Mathematis-che Annalen vol 68 no 2 pp 220ndash269 1910

[2] JWeidmann SpectralTheory ofOrdinaryDifferential Operatorsvol 1258 of Lecture Notes in Mathematics Springer new YorkNY USA 1987

[3] Z Cao Ordinary Differential Operator Shanhai Science andTechnology Press Shanghai China 1986 (Chinese)

[4] M A Naimark Linear Differential Operators Part 2 HarrapLondon UK 1968

[5] A Zettl Sturm-Liouville Theory vol 121 of Mathematical Sur-veys and Monographs American Mathematics Society Provi-dence RI USA 2005

[6] E C TitchmarshEigenfunction Expansions Associatedwith Sec-ond-Order Differential Equations Part 1 Oxford UniversityPress London UK 1962

[7] Z Zheng and W Zhang ldquoCharacterization of eigenvalues inspectral gap for singular differential operatorsrdquo Abstract andApplied Analysis vol 2012 Article ID 271657 10 pages 2012

[8] J Qi Z Zheng and H Sun ldquoClassification of Sturm-Liouvilledifferential equations with complex coefficients and operatorrealizationsrdquo Proceedings of The Royal Society of London SeriesAMathematical Physical and Engineering Sciences vol 467 no2131 pp 1835ndash1850 2011

[9] Z Zheng J Qi and S Chen ldquoEigenvalues below the lowerbound of minimal operators of singular Hamiltonian expres-sionsrdquo Computers ampMathematics with Applications vol 56 no11 pp 2825ndash2833 2008

[10] Z Zheng ldquoInvariance of deficiency indices under perturbationfor discrete Hamiltonian systemsrdquo Journal of Difference Equa-tions and Applications vol 19 no 8 pp 1243ndash1250 2013

[11] M Demirci Z Akdogan and O S H Mukhtarov ldquoAsymptoticbehavior of eigenvalues and eigenfunctions of one discontin-uous boundary value problemrdquo International Journal of Com-putational Cognition vol 2 article 3 pp 101ndash113 2004

[12] D Buschmann G Stolz and J Weidmann ldquoOne-dimensionalschrodinger operators with local point interactionsrdquo Journal furdie Reine und Angewandte Mathematik vol 467 pp 169ndash1861995

[13] M Kadakal O S Mukhtarov and F S Muhtarov ldquoSome spec-tral properties of Sturm-Liouville problem with transmissionconditionsrdquo Iranian Journal of Science and Technology Trans-action A Science vol 29 no 2 pp 229ndash245 2005

[14] A P Wang Research on weimann conjecture and differentialoperators with transmission conditions [PhD thesis] InnerMongolia University 2006 (Chinese)

[15] O S H Mukhtarov and M Kadakal ldquoSome spectral proper-ties of one Sturm-Liouville type problem with discontinuousweightrdquo Siberian Mathematical Journal vol 46 no 4 pp 681ndash694 2005

[16] C T Fulton ldquoTwo-point boundary value problems with eigen-value parameter contained in the boundary conditionsrdquo Pro-ceedings of the Royal Society of Edinburgh Section A Mathemat-ics vol 77 no 3-4 pp 293ndash308 1977

[17] E Sen andA Bayramov ldquoAsymptotic formulations of the eigen-values and eigenfunctions for a boundary value problemrdquoMathematical Methods in the Applied Sciences vol 36 no 12pp 1512ndash1519 2013

[18] Q Yang and W Wang ldquoAsymptotic behavior of a differentialoperator with discontinuities at two pointsrdquo MathematicalMethods in the Applied Sciences vol 34 no 4 pp 373ndash383 2011

[19] O S Mukhtarov M Kadakal and F S Muhtarov ldquoEigenvaluesand normalized eigenfunctions of discontinuous Sturm-Liou-ville problem with transmission conditionsrdquo Reports on Mathe-matical Physics vol 54 no 1 pp 41ndash56 2004

[20] E Sen ldquoA Sturm-Liouville problemwith a discontinuous coeffi-cient and containing an eigenparameter in the boundary con-ditionrdquo Physics Research International vol 2013 Article ID159243 9 pages 2013

[21] M Kadakal and O S Mukhtarov ldquoSturm-Liouville problemswith discontinuities at two pointsrdquo Computers amp Mathematicswith Applications vol 54 no 11-12 pp 1367ndash1379 2007

[22] M Kadakal and O S Mukhtarov ldquoDiscontinuous Sturm-Liou-ville problems containing eigenparameter in the boundary con-ditionsrdquo Acta Mathematica Sinica vol 22 no 5 pp 1519ndash15282006

[23] Z Akdogan M Demirci and O S H Mukhtarov ldquoSturm-Liouville problems with eigendependent boundary and trans-missions conditionsrdquo Acta Mathematica Scientia vol 25 no 4pp 731ndash740 2005

[24] Q Yang and W Wang ldquoSpectral properties of Sturm-Liouvilleoperators with discontinuities at finite pointsrdquo MathematicalSciences vol 6 no 1 pp 1ndash9 2012

[25] K Li and Z Zheng ldquoSpectral properties for Sturm-Liouvilleequations with transmission conditionsrdquo Acta MathematicaScientia vol 35 no 5 pp 910ndash926 2015 (Chinese)

[26] F Meng and Y Huang ldquoInterval oscillation criteria for a forcedsecond-order nonlinear differential equations with dampingrdquoAppliedMathematics and Computation vol 218 no 5 pp 1857ndash1861 2011

[27] Z Zheng X Wang and H Han ldquoOscillation criteria for forcedsecond order differential equations with mixed nonlinearitiesrdquoApplied Mathematics Letters vol 22 no 7 pp 1096ndash1101 2009

[28] J Shao F Meng and X Pang ldquoGeneralized variational oscil-lation principles for second-order differential equations withmixed-nonlinearitiesrdquoDiscrete Dynamics in Nature and Societyvol 2012 Article ID 539213 10 pages 2012

[29] J Shao and F Meng ldquoGeneralized variational principleson oscillation for nonlinear nonhomogeneous differential

12 Discrete Dynamics in Nature and Society

equationsrdquo Abstract and Applied Analysis vol 2011 Article ID972656 10 pages 2011

[30] A V Likov and Yu A MikhailovTheTheory of Heat and MassTransfer Qosenerqoizdat 1963 (Russian)

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 12: A Singular Sturm-Liouville Problem with Limit Circle …downloads.hindawi.com/journals/ddns/2017/9673846.pdf · ResearchArticle A Singular Sturm-Liouville Problem with Limit Circle

12 Discrete Dynamics in Nature and Society

equationsrdquo Abstract and Applied Analysis vol 2011 Article ID972656 10 pages 2011

[30] A V Likov and Yu A MikhailovTheTheory of Heat and MassTransfer Qosenerqoizdat 1963 (Russian)

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 13: A Singular Sturm-Liouville Problem with Limit Circle …downloads.hindawi.com/journals/ddns/2017/9673846.pdf · ResearchArticle A Singular Sturm-Liouville Problem with Limit Circle

Submit your manuscripts athttpswwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of


Recommended