+ All Categories
Home > Documents > A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory,...

A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory,...

Date post: 28-Dec-2015
Category:
Upload: sherman-hines
View: 214 times
Download: 1 times
Share this document with a friend
Popular Tags:
21
A. Spentzos 1 , G. Barakos 1 , K. Badcock 1 P. Wernert 2 , S. Schreck 3 & M. Raffel 4 D Laboratory, University of Glasgow, UK stitute de Recherche de Saint Louis, France tional renewable energy laboratory USA R - Institute for Aerodynamics and Flow Technology, Germany Numerical Simulation of 3D Dynamic Stall
Transcript
Page 1: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

A. Spentzos1, G. Barakos1, K. Badcock1

P. Wernert2, S. Schreck3 & M. Raffel4

1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche de Saint Louis, France3 National renewable energy laboratory USA4 DLR - Institute for Aerodynamics and Flow Technology, Germany

Numerical Simulation of 3D Dynamic Stall

Page 2: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Outline

Background and Objectives Past efforts in 3D dynamic stall CFD requirements for validation Summary of selected tools 2D dynamic stall Validation cases and results Conclusions

Page 3: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Motivation and Objectives

DS is encountered in rotorcraft and highly maneuverable aircraft

Complex problem – prediction of loads and flow structure 3D studies are rare Study 3D DS, use a variety of turbulence models and

simulation (LES) Improve existing turbulence models Understand flow physics Validate CFD so that industry can exploit Take things a bit further…

Page 4: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Background

What is Dynamic Stall? Experimental and CFD work on DS The majority of the work performed on DS (experimental

and CFD) has been done on 2-D Most CFD has been done for code validation rather than

investigation of the flow physics. 2D CFD suggested that turbulence modelling is a key

issue if fidelity is required Missing: 3D, centrifugal effects, dM/dt, interaction with

wake

Page 5: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

CFD requirements for validation

Surface pressure Integral loads Boundary layers Information for turbulence levels in the tunnel

and transition Higher Mach numbers Near-tip and flow-field measurements Measurements on rotating blades Measurements on more complex geometries

Page 6: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Summary of experiments Most experiments on DS are 2D 3D work has been done by the following:

Page 7: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Selected Validation Cases

Page 8: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

CFD solver PMB solver of the Univ. of Glasgow Control volume method Parallel (distributed memory) Multi-block (complex geometry) structured grids Moving grids Unsteady RANS - Variety of turbulence models – LES Implicit time marching Osher's and Roe's schemes for convective fluxes MUSCL scheme for effectively 3rd order accuracy Central differences for viscous fluxes Conjugate gradient linear solver with pre-conditioning Validation database

www.aero.gla.ac.uk/Research/CFD/validation

Page 9: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

2D Results for Ramping and Oscillating Aerofoils

CFD results for dynamic stall of helicopter sections

Page 10: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Flow Field Comparison

Sinusoidal pitch, k=0.15, Re=373,000, M=0.1

a) 22 Deg (upstroke) b) 23 Deg (upstroke) c) 24 Deg (upstroke)

Page 11: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Geometry – Grid Generation

Page 12: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Geometry – Grid Generation

One-block extruded tip

Page 13: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Geometry – Grid Generation

C-O topology

4-block extruded tip

Page 14: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Grid and Time Convergence

Three levels of refinement: 120k, 800k, 1,800k

Page 15: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Grid and Time Convergence

Two levels of time refinement resolving frequencies up to 20 Hz and 40Hz

Page 16: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Experimental evidence of the -shaped vortex

3D CFD

Schreck & Hellin2D CFD

Coton et al.

Page 17: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Surface Pressure

Ramping motion,Re=69,000, M=0.1, K=0.1Incidence 40.9 degrees

Experiment CFD

Page 18: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Close the loop – AnalysisONERA model

Cz Cz

Cz

C C Cz z z 1 2

C C C k C k C k C kz z z s z c1 z s z c2 20 2 1 2 2 2 2 22 2 sin cos sin cos C C C k C kz z z s z c 0 sin cos

Page 19: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Close the loop – AnalysisONERA model

Page 20: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Conclusions

Experimentalists like CFD pictures! Are keen to collaborate and look in their

databases for measurements They developed the ability to understand

much about the flow from a small number of measurements

They are getting used to the idea of CFD…or at least looking at CFD results

Page 21: A. Spentzos 1, G. Barakos 1, K. Badcock 1 P. Wernert 2, S. Schreck 3 & M. Raffel 4 1 CFD Laboratory, University of Glasgow, UK 2 Institute de Recherche.

Conclusions

CFD developers are always looking for good data and have many requirements

Have sometimes to make a first step Have to be open about any limitations of

their methods Perform simulations, validation,

comparisons and maybe …some analysis!


Recommended