+ All Categories
Home > Documents > A statistical modeling of mouse heart beat rate variability Paulo Gonçalves INRIA, France

A statistical modeling of mouse heart beat rate variability Paulo Gonçalves INRIA, France

Date post: 12-Feb-2016
Category:
Upload: argyle
View: 23 times
Download: 0 times
Share this document with a friend
Description:
A statistical modeling of mouse heart beat rate variability Paulo Gonçalves INRIA, France On leave at IST-ISR Lisbon, Portugal Joint work with Hôpital Lariboisière Paris, France Pr. Bernard Swynghedauw Dr. Pascale Mansier Christophe Lenoir - PowerPoint PPT Presentation
Popular Tags:
54
A statistical modeling of A statistical modeling of mouse heart beat rate variability mouse heart beat rate variability Paulo Gonçalves INRIA, France On leave at IST-ISR Lisbon, Portugal Joint work with Hôpital Lariboisière Paris, France Pr. Bernard Swynghedauw Dr. Pascale Mansier Christophe Lenoir Laboratório de Biomatemática, Faculdade de Medicina, Universidade de Lisboa June 15 th , 2005
Transcript
Page 1: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

A statistical modeling of A statistical modeling of mouse heart beat rate variabilitymouse heart beat rate variability

   

Paulo GonçalvesINRIA, France

On leave at IST-ISR Lisbon, Portugal

Joint work with Hôpital Lariboisière Paris, France Pr. Bernard Swynghedauw

Dr. Pascale MansierChristophe Lenoir

Laboratório de Biomatemática, Faculdade de Medicina, Universidade de Lisboa June 15th, 2005

 

Page 2: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Outline

Physiological and pharmacological motivations

Experimental set up

Signal analysis

Statistical analysis

Forthcoming work ?

Page 3: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Physiological and pharmacological motivations

Cardiovascular research and drugs testing protocoles are conducted on various mammalians: rats, dogs, monkeys…

Share the same vagal (parasympathetic) tonus as humans

Cardiovascular system of mice has not been very investigated

Difficulty of telemetric measurements on non anaesthetized freely moving animals

Economic stakes prompts the use of mice for pharmacological developments

Recent integrated technology allows in vivo studies

Page 4: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Physiological and pharmacological motivations

Autonomic Nervous System

Sympatheticbranch

accelerates heart beat rate

Parasympathetic (vagal) branch

decelerates heart beat rate

Controls cardiac rythm

Better understanding of the role of sympathovagal balance on

mice heart rate variability

Page 5: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Experimental setup

Sample set: eighteen male C57bl/6 mice (10 to 14 weeks old)

A biocompatible transmitter (TA10ETA-F20, DataSciences International)

implanted (under isofluran mixture with carbogene anaesthesia 1.5 vol %)

Electro-cardiograms recorded via telemetric instrumentation (Physiotel Receiver RLA1020, DataSciences International) at a 2KHz sampling frequency on non anaesthetized freely moving animals

1. Pharmacological conditions:• saline solution (placebo) Control• saturating dose of atropine (1 mg/kg) Parasympathetic blockage • saturating dose of propranolol (1 mg/kg) Sympathetic blockage • combination of atropine and propranolol ANS blockage

2. Physical conditions• day ECG Resting• night ECG Intensive Activity

Page 6: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis

frequency

Power spectrum densityBeat-to-beat interval (RR)

time VLF LF HF

Sympathetic

branch

Parasympathetic branch

Control

Page 7: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

0 10 20 30 40 50 60 70 80 90 1007.5

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

0 10 20 30 40 50 60 70 80 90 1007

8

9

10

11

12

13

Signal Analysis

frequency

Power spectrum density

VLF LF HF

Beat-to-beat interval (RR)

time

Sympathetic

branch

Parasympathetic branch

Atropine (effort)

Page 8: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

0 10 20 30 40 50 60 70 80 90 1007

8

9

10

11

12

13

Signal Analysis

frequency

Power spectrum density

VLF LF HF

Beat-to-beat interval (RR)

time

Sympathetic

branch

Parasympathetic branch

Propranolol (rest)

is an index of the sympathovagal balance Energy (LF)

Energy (HF)

(Akselrod et al. 1981)

Page 9: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis

0 50 100 150 200 250 300100

110

120

130

140

150

160

170

0 50 100 150 200 250 300100

110

120

130

140

150

160

170

0 50 100 150 200 250 300100

110

120

130

140

150

160

170

0 50 100 150 200 250 300100

110

120

130

140

150

160

170

Control Atropine

Propranolol Atropine & propranololTime (s)

RR (ms)

Linear Mixed Model proves no significant effect of atropine on HRV baseline

Page 10: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis

0 50 100 150 200 250 300

100

120

140

0 50 100 150 200 250 300

100

120

140

160

180

0 50 100 150 200 250 300100

120

140

0 50 100 150 200 250 30080

100

120

140

160

0 50 100 150 200 250 300100

120

140

160

0 50 100 150 200 250 300

100

120

140

0 50 100 150 200 250 300

100

150

200

0 50 100 150 200 250 30070

80

90

Day RR time series (resting) Night RR time series (active)

Time (s)

RR (ms)

Page 11: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis

0 50 100 150 200 250 30080

100

120

140

160

0 2 4 6 8 1010

-4

10-2

100

102

104

VLF LF HF Frequency (Hz)

Power spectrum density

Time (s)

RR (ms)

0 50 100 150 200 250 30080

100

120

140

160

Need to separate (non-stationary) low frequency trends from high frequency spike train (shot noise)

0 50 100 150 200 250 30080

100

120

140

160

Page 12: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

Objective — From one observation of x(t), get a AM-FM type representation

K

x(t) = Σ ak(t) Ψk(t)k=1

with ak(.) amplitude modulating functions and Ψk(.) oscillating functions.

Idea — “signal = fast oscillations superimposed to slow oscillations”.

Operating mode — (“EMD”, Huang et al., ’98) (1) identify locally in time, the fastest oscillation ; (2) subtract it from the original signal ; (3) iterate upon the residual.

Entirely adaptive signal decomposition

Page 13: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

0 1

-1

0

1

0 1

-1

0

1

0 1

0

A LF sawtooth

A linear FM

+

=

Page 14: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 15: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 16: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 17: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 18: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 19: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 20: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 21: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 22: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 23: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 24: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 25: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 26: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 27: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 28: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

First Intrinsic Mode Function

SIFTING

PROCESS

Page 29: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 30: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 31: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 32: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 33: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 34: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 35: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 36: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

Second Intrinsic Mode Function

SIFTING

PROCESS

Page 37: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 38: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 39: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 40: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 41: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 42: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 43: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

Third Intrinsic Mode Function

SIFTING

PROCESS

Page 44: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

SIFTING

PROCESS

Page 45: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

Residu

SIFTING

PROCESS

Page 46: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

Signal

1st Intrinsic Mode Function

2nd Intrinsic Mode Function

3rd Intrinsic Mode Function

Residu

Page 47: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Signal Analysis: Empirical Mode Decomposition

0 50 100 150 200 250 30090

100

110

120

130

140

150

0 50 100 150 200 250 300

-15

0

15

30HF

0 50 100 150 200 250 30090

100

110

120

130

140

150LF + VLF

Page 48: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

0 50 100 150 200 250 300-50

0

50

0 50 100 150 200 250 300-20

0

20

40

0 50 100 150 200 250 300-20

0

20

0 50 100 150 200 250 300-50

0

50

Signal Analysis: Empirical Mode Decomposition

Day heart rate variability

0 50 100 150 200 250 300

-20

0

20

0 50 100 150 200 250 300-20

0

20

0 50 100 150 200 250 300

0

50

100

0 50 100 150 200 250 300-5

0

5

10

15

Night heart rate variability

Next step: prove significant differences between day and night time series statistically spectrally

Page 49: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

0 50 100 150 200 250 300-50

0

50

0 50 100 150 200 250 300-20

0

20

40

0 50 100 150 200 250 300-20

0

20

0 50 100 150 200 250 300-50

0

50

Signal Analysis: Empirical Mode Decomposition

Day heart rate variability

0 50 100 150 200 250 300

-20

0

20

0 50 100 150 200 250 300-20

0

20

0 50 100 150 200 250 300

0

50

100

0 50 100 150 200 250 300-5

0

5

10

15

Night heart rate variability

Next step: prove significant differences between day and night time series statistically

spectrally

Page 50: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Statistical modeling

Empirical distributions of RR-intervals

Non Gaussian distributions

Normal plots

Similar tachycardia for day and night HRV Symmetric distribution for night RR Heavy tail distribution for day RR

Page 51: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Statistical modeling

We use Gamma probability distributions to fit RR data:

PY(y|b,c) = cb/Γ(b) yb-1 e-cy U(y)

Hypothesis testing : variance analysis

Deceleration spike trains are :

Not individual mouse effects An impulsive command to control mice sympathovagal balance (?)

Page 52: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Morphological modeling

Impulse model:

h(t) = Ai exp(-(t-ti)/θi) U(t-ti)

ti : random point process to model RR deceleration arrival times

θi

ti

Ai

ti

time

ti+1

Page 53: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Morphological modeling

Time constant (impulse duration) is reasonably constant (~ 10 inter-beat intervals)

Spike amplitude is not highly variable (RR intervals increase by ~ 25% during HR decelerations)

Intervals between deceleration spikes is extremely variable— not a periodic process— not a Poisson process— long range dependence (long memory process ?)

Impulse parameters estimates

Page 54: A statistical modeling of  mouse heart beat rate variability Paulo Gonçalves INRIA, France

Forthcoming work…

There is still a lot to do…

Methodology :

Characterize the underlying point process Understand the spectral signature of this impulse control

(does sympathovagal balance still hold ?) Compound control system with standard continuous regulation ?

Physiology :

Identify the respective roles of sympathetic and parasympathetic branches of ANS Support this conjecture with physiological evidences :

— A consistent cardiovascular regulation system (nerve spike trains)

— Why should mice be different from other mammalians ?— Is this a kind specificity or a strain specificity ?

Control Atropine

frequency frequency

Power spectrum density Power spectrum density


Recommended