+ All Categories
Home > Documents > A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake,...

A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake,...

Date post: 16-Dec-2015
Category:
Upload: zechariah-woodhouse
View: 215 times
Download: 1 times
Share this document with a friend
20
A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide Hotwiring the Transient Universe III, Santa Fe, Nov. 2013
Transcript
Page 1: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

A Systematic Exploration of the Time Domain

S. G. Djorgovski

With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide

Hotwiring the Transient Universe III, Santa Fe, Nov. 2013

Page 2: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

Data-Intensive Science in the 21st Century

1. The value shifts from the ownership of data to the ownership of expertise and creativity

2. There is much more latent science in the data than can be done by any individual or a group (especially in real time)

Open Data Philosophy}

4. Data farming, data mining, and informatics are the key new scientific skills (because the human intelligence and bandwidth do not follow the Moore’s law)

And remember - nobody ever over estimated the cost of software

3. You can do a great science without expensive observational facilities “The computer is the new telescope”

The exponential growth of data volumes, complexity, and quality has several important consequences:

Page 3: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

From “Morphological Box” to the Observable Parameter Spaces

Fritz Zwicky

Zwicky’s concept: explore all possible combinations of the relevant parameters in a given problem; these correspond to the individual cells . in a “Morphological Box”

Example: Zwicky’s discovery of the compact dwarfs

Page 4: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

Expanding the Observable Parameter Space

M. Harwit

Technology advances Expanded domain of measurements Discovery of new types of phenomena

As we open up the time domain, we are bound to discover some new things!

Page 5: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

Systematic Exploration of the Observable Parameter Space (OPS)Its axes are defined by the

observable quantities

Every observation, surveys included, carves out a

hypervolume in the OPS

Technology opens new domains of the OPS New discoveries

Page 6: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

MeasurementsParameter SpaceColors of stars and quasars

SDSS

Dimensionality ≤ the number of observed quantities

PhysicalParameter Space

Both are populated by objects or events

Fundamental Plane of hot stellar systems

EdSph

GC

Page 7: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

MeasurementsParameter SpaceColor-magnitude diagram

PhysicalParameter Space

H-R diagram

Theory+

Other data

• Not filled uniformly: clustering indicates different families• Clustering + dimensionality reduction _correlations• High dimensionality poses analysis challenges

Page 8: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

Parameter Spaces for the Time Domain

• For surveys:o Total exposure per pointing o Number of exposures per pointingo How to characterize the cadence?

AWindow function(s)

AInevitable biases

(in addition to everything else: flux, wavelength, etc.)

• For objects/events ~ light curves:o Significance of periodicity, periodso Descriptors of the power spectrum (e.g., power law)o Amplitudes and their statistical descriptors… etc. − over 70 parameters defined so far, but which ones are

the minimum / optimal set?

Page 9: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

Characterizing Synoptic Sky SurveysDefine a measure of depth (roughly ~ S/N of indiv. exposures):

D = [ A texp ]1/2 / FWHM

where A = the effective collecting area of the telescope in m2

texp = typical exposure length e = the overall throughput efficiency of the telescope+instrument

FWHM = seeing

Define the Scientific Discovery Potential for a survey:

SDP = D tot Nb Navg

where tot = total survey area coveredNb = number of bandpasses or spec. resolution elementsNavg = average number of exposures per pointing

Transient Discovery Rate:

TDR = D R Ne

where R = d/dt = area coverage rateNe = number of passes per night

Page 10: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

Towards the Automated Event Classification

• Data are heterogeneous and sparse: incorporation of the contextual information (archival, and from the data themselves) is essential

• Automated prioritization of follow-up observations, given the available resources and their cost

• A dynamical, iterative system

(because human time/attention does not scale)

A very hard problem!

Page 11: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

Contextual Information is Essential

Radio GammaVisible

CV not SN

Artifact SN

• Visual context contains valuable information about the reality and classification of transients

• So does the temporal context, from the archival light curves

• And the multi-λ context

• Initial detection data contain little information about the transient: α, δ, m, Δm, (tc). Almost all of the initial information is archival or contextual; follow-up data trickle in slowly, if at all

Page 12: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

Human-annotated images (via SkyDiscovery.org) Semantic descriptors

Machine processing Evolving novel algorithms

… and iterate

Challenges: Optimizing for different levels of user expertise; optimal input averaging; encoding contextual information; etc.

(Lead: M. Graham)

Harvesting the Human Pattern Recognition(and Domain Expertise)

Page 13: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

A Hierarchical Approach to Classification

We use some astrophysically motivated major features to separate different groups of classes

Proceeding down the classification hierarchy every node uses those classifiers that work best for that particular task

Different types of classifiers perform better for some event classes than for the others

Page 14: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

From Light Curves to Feature Vectors• We compute ~ 70 parameters and statistical measures for each

light curve: amplitudes, moments, periodicity, etc.• This turns heterogeneous light curves into homogeneous

feature vectors in the parameter space• Apply a variety of automated classification methods

Page 15: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

Optimizing Feature Selection

Eclipsing binary (W U Ma)RR Lyrae

Rank features in the order of classification quality for a given classification problem, e.g., RR Lyrae vs. WUMa

(Lead: C. Donalek)

Page 16: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

Metaclassification:

Markov Logic Networks, Diffusion Maps, Multi-Arm Bandit, Sleeping Expert…

Exploring a variety of techniques for an optimal classification fusion:

An optimal combining of classifiers

Page 17: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

The Follow-Up Crisis• Follow-up observations are essential, especially spectroscopy.

We are already limited by the available resources. This is a key bottleneck now, and it will get much worse– “Exciting” transients are no longer rare – the era of ToO

observations may be ending, we need dedicated follow-up facilities

… and most of the existing spectrographs are not suitable for this

– A hierarchical elimination of less interesting objects: iterative classification, photometric observations with smaller telescopes

– Coordinated coverage by multi-wavelength surveys would produce a first order, mutual “follow-up”

– We will always follow the brightest transients first (caveat LSST)

• Coordinated observations by surveys with different cadences can probe more of the observable parameter space

Page 18: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

Real-Time vs. Non-Time-Critical• Transients may be overemphasized; there is a lot of good science

in the archival studies, and that can only get better in time

Page 19: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

It Is NOT All About the LSST! (or LIGO, or SKA…)

NOW is the golden era of time-domain astronomy

Page 20: A Systematic Exploration of the Time Domain S. G. Djorgovski With M. Graham, A. Mahabal, A. Drake, C. Donalek, M. Turmon, and many collaborators world-wide.

Conclusions• Time domain astronomy is here now (CRTS, PTF, PS1, SkyMapper,

ASCAP, Kepler, Fermi, …), and it is a vibrant new frontier−Lots of exciting and diverse science already under way, from

the Solar system to cosmology – something for everyone!−CRTS data stream is open – use it! (and free ≠ bad)

• It is astronomy of telescope and computational systems, requiring a strong cyber-infrastructure (VO, astroinformatics)– Automated classification is a core problem; it is critical for a

proper scientific exploitation of synoptic sky surveys– Data mining of Petascale data streams both in real time and

archival modes is important well beyond astronomy

• Surveys today are science and methodology precursors and testbeds for the LSST, and they are delivering science now

• CRTS II consortium now forming – join us!


Recommended