+ All Categories
Home > Documents > A Three-dimensional Numerical Model Describing Fully...

A Three-dimensional Numerical Model Describing Fully...

Date post: 02-Feb-2018
Category:
Upload: haque
View: 215 times
Download: 1 times
Share this document with a friend
55
Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011 HydroGeoSphere A Three-dimensional Numerical Model Describing Fully-Integrated Subsurface and Surface Flow and Solute Transport
Transcript
Page 1: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Rene TherrienLaval University, Quebec, Canada

NiCA Meeting May 31, 2011

HydroGeoSphereA Three-dimensional Numerical Model

Describing Fully-Integrated Subsurface andSurface Flow and Solute Transport

Page 2: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Integrated Physically-Based Modelling

• Attempt to account for all interactions between surface and subsurface flow regimes

• Conceptually superior to linked simulators or iteratively coupled simulators

Complex (more processes, highly nonlinear)

Page 3: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Challenges

Disparate time frames between (atmosphere) surface/subsurface flow and transport regimes, myriad of processesVery large unstructured grids, irregular topography, complex boundary conditions, surface properties & geological featuresStrong nonlinearities in governing equationsData availability and upscaling issues

Page 4: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Some Issues• How well can we represent all the relevant

processes in a scientifically plausible, physically-based manner?

• How big can we go in 3D, and over what time frames?

• Do we have the needed input data and, if not, how do we acquire it?

• What linkages should be made to other disciplines (atmospheric science, agriculture, geomorphology, biology, ecology, economics, policy & decision making…)?

Page 5: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Waterloo-Laval HydroGeoSphere Model(Group of Ed Sudicky)

• Physically-based, fully-integrated surface and subsurface flow

• 2D overland flow and solute transport on the land surface, and 3D variably-saturated flow and transport in the subsurface, including porous media, fractures, macropores, ET, etc.

• Can be executed in either Control-Volume Finite Element mode or Finite Difference mode.

• Sub-gridding, sub-timing and thermal transport were recently added.

• Parallelization of HGS completed.• Has been successfully applied to multiple spatial and

temporal scales of problems.• Mostly academic users

Page 6: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Flow Equations

Porous Medium (3D):Richards’ Equation

Surface Water Flow (2D):Diffusion Wave Equation

o oo o o o o

hd q d Qt

∂φΓ∂

−∇⋅ − ± =v

−∇⋅ + Γ ± =∑v s wm ex m

Sq Q

t∂θ

ω ω∂

Manning Equation (2D):

Darcy Equation:

( )2 3

1 2o

o ro o odq k d z

nΦ=− ∇ +v rv

( )rq K k zψ=− ⋅ ∇ +rv

,,,

o

w

s

m

r ro

o

ex o

dz

S

Kk kQ Q

n

ψ

θω

Γ Γ

Φ

==

==

=

=

==

=

==

=

r

v

r

pressure headwater depthelevationsaturation porositypm volume fraction

permeabilityrel. perm.source/sink rateexchange fluxes

roughness sw gradient

Page 7: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Flow Equations: Integrated Solution

os w

m mSq Qt

∂θω ω∂

−∇⋅ + ±Γ =vinteract via water exchange relationsfeed-back SW-GWconvergence difficulties reducedexchange relationships need explicit definition

o oo o

o o ohq Qddt

Γ ∂φ∂

−∇⋅ − ± =v

( )o o rso so od k K h hΓ = −

so

rso

Kk

=

=

surface/subsurface conductance coupling rel. perm./rill storage

Coupled Equations:

First-Order Exchange (head difference):

c

Page 8: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Transport Equations: Integrated Solution

[ ]s wm s w m s w p

o

ar

c

S RC S R C qC S D C R Ct

Q

∂θω θ λ ω θ∂

Ω

λ⎡ ⎤ ⎡ ⎤+ =−∇⋅ − ∇ +⎣ ⎦⎢ ⎥⎣ ⎦± +

vv

[ ]

o o o oo o o o s o o o o o o

o o o o cop o oar

h R C h R C q C D h Ct

h R C Q d

∂φ φ λ ψ φ∂φ λ Ω

⎡ ⎤+ = −∇⋅ − ∇⎣ ⎦

+ ± −

vv

( )o ups o o oC C CΩ Γ α= + −

Coupled Advection-Dispersion Equations:

Advective-dispersive Solute Exchange Flux (e.g.):

• interact via advective and diffusive transport processes

• feed-back SW-GW• distinct surface and

subsurface concentrations

• exchange relationships need explicit definition

Page 9: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Heat Transport Equations: Integrated Solution

• interact via convective and diffusive transport processes

• feed-back SW-GW• distinct surface and

subsurface temperatures

• exchange relationships need explicit definition

[ ]( )b bw w b b b oT

cT q c T k c D T Qt

∂ρ ρ ρ∂

Ω⎡ ⎤=−∇⋅ − + ∇ ± +⎢ ⎥⎣ ⎦

[ ]( )w w o oo w w o b o w w o o oTo o

c h T q c T k D c d T dQt

∂ρ ρ ρ∂

Ω= −∇⋅ − + ∇ ± −

( )o w w ups o o w w oc T c T TΩ ρ Γ α ρ= + −

Coupled Advection-Dispersion Equations:

Thermal Exchange Flux (e.g.):

Page 10: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Evapotranspiration• PET from empirical relationships (Penman-Monteith, Thornthwaite)• Interception storage

• Function of Leaf Area Index (LAI)• Infiltration

• After interception is full• Total PET first met from interception storage• Remaining PET from transpiration and evaporation

• Transpiration is a function of:• LAI• Moisture Content• Root Zone Distribution Function

• Evaporation is a function of:• Moisture Content• Evaporation Distribution Function

Page 11: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Second continuum

11

- Same input parameters as porous medium- Interaction with porous medium : Γd

- Example (Fractured clay till, Denmark)Porous medium equation : clay matrixSecond continuum : macropores

3D flow equation

Page 12: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Discrete fractures

12

2D Variably-saturated flow equation (modified Richards' equation) for fracture of aperture wf

Storage term

Darcy flux

Page 13: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Numerical formulationControl volume finite element method (CVFE)

Local conservation of massEfficient computation of Jacobian matrix for Newton-Raphson method (non-linear equations)Easy to modify advective flux weighting

upstream weightingflux limiter

Influence coefficient method for computing elemental matrices

avoids numerical integration (faster)allows easy switch to finite difference discretization

13

Page 14: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Discretization

• Not required to identify location of streams

• Discretization of topography to capture surface flow

Page 15: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Discretized equation

15

Simplified flow equation

- Discretized flow equation CVFE - Mass balance for volume associated to node i:

- LHS : Mass stored- RHS : Flow in/out of volume- Implicit time weighting - Element-wise assembly- λ : k at interface (upstream)- γij : K and element dimensions

Page 16: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Element types

16

- 3D Rectangular prisms (blocks), 8 nodes- 3D Triangular prisms, 6 nodes- Internal decomposition of prisms into tetrahedra (deformed meshes)- 2D rectangles and triangles-1D line elements- Finite element / finite difference switch (modify γij in discretized equation)

Page 17: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Superposition 3D/2D

17

For example, matrix node 2 has same coordinates as fracture node 1• Common approach: h and c are same in matrix and fracture (1 unknown)• Dual approach: h and c are different in matrix and fracture (2 unknowns)

Page 18: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

FracturesPossible geometriesPossible geometries

Page 19: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Obstruction

h oh s

Retention

Flow zone

h d

0

HFlow depth

Volumestorage

Soil surface

Microtopography and Vegetation

Horizontal flow if water depth > hdSurface relative permeability kro = 0 at hd, kro = 1 at hd + h0SW-GW transfer term (krso) goes from 0 (soil surface) to 1 at hd

Page 20: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Sub-Catchment of Laurel Creek Watershed(17 km2)

Page 21: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Land Use

Page 22: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Soil Series

Page 23: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Hydrostratigraphy

Page 24: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Physical System Geometry

Total of 179740 nodes

Page 25: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Simulated vs. Observed Hydrograph

CalculatedObserved

Page 26: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Observed vs. Computed Drainage Network

Observed Drainage Network Computed Surface Water Depths

Page 27: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Duffins Creek Watershed286 km2 in areaHydro-eco concerns due to urban development

Page 28: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Geology and HydrogeologyBedrock shale: Whitby Formation (Late Ordovician)Quaternary sediments 0 m (absent) to 200 m thickEight hydrostratigraphic units including three aquifers

Page 29: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Discretization(700 000 nodes)

Page 30: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Calibration Results: Steady-State Subsurface Heads

Simulated hydraulic head (m)

Mea

sure

dhy

drau

liche

ad(m

)

50 100 150 200 250 300 35050

100

150

200

250

300

350 Oak Ridges MoraineThorncliffeScarborough

RMS error: 14 m

+

+ +++

+

++

+

+

+ +++

+

+

+

+ +

+

+ +

+

++

+

++ +

+++++

+

+++

++

++

+

+

+

+++

++++

+

+ ++

+

+

++

+++

+

+

+

+

++++++++++

+

+

+

++

+

+

+

+

+

+

++

+

+++++++

++

++

+

++ +++

++

+

++

++++

+

+

+++

+

+ +

+

++

+

+

+

+

+

+

+

+

+

+ +

+

+

+++

+

++

+

+ +

++

+

+

+

+

+++

++

+

+

+

++

++

+ +

+

+

+

++

+

+

+

++++

++

+++

++

+

+

+

++

+

+

++

+++

+++

+

+

++

++++

+

+

+

+

+++++

+

+

+

+

++

+

++

++++ ++

+++

+

+

+

+

+

+

++

++

++

+

++ ++

+++

+

++

++

+

++

+

+

++

+++

++

+

+

+

++

+ +

+

+

++

++ +++ ++ ++

++

+

+++

+

+

+ +

+

++ +

+

+

+

+

+

+++++++

++++

+

+

++++

+

+ ++

+

+

+

+

+

+

+

++

+

+

++

+

++

++++

+

++++

+

+

++

+

++ +

+

+

++

+

++

+

++++++++++++

+++

++

+++

+

++

+++

++

++++++++

++++

++++

+++

+++++++

++++

+++++

+++++++

+++

++

+++

+

+

+++++ +++++++++++++++

++

++++

+++

++++++++++++ ++

+++++++ +++ +++++++++++++++++++

+++++ +++ +

+++++++++++ +++ ++++++++++++++++++++

++

++ +++++++++++++

++++

++++

++ ++++++

+++++ ++

+

+

++

+

+

+

+

+

+

+++

+ +

+

+

++

+

+

+

++

+

++

+

+

+

+

+

+ + +

+

++

++

+++

+

+

+

+

+

++

++

+

+

+

+++

+

++

+

+

+

++

+

+

+

+

+

+

++++ ++

+++

+

+

+

+

++

++

+

+ +

+

+

+

++

++

+

++ +

+ +

+

+

+++++++ +++

+

+

+

+

+

+

++

+

++ ++

+

+

+ +++

++

++

++++

++

+

+

+

++

+

++

+ +

+++

+ ++++

++

+ ++

+

++

+

+

+

+++

+

+++

++++

++

++++++

+ ++++

+++++++

++

+

++

++

+++

+

+++++++

+

+++

+++

++

++++

++

+

+++

+

++

++++++++++

+

+

+++

++

+

+

+

++

+

*

*

**

**

*

**

**

**

*

*

*

*

***

*

*

***

*

*

*

***

*

*

*

*

*

*****

****

*

*

***

*

*

*

*

*

***

*

*

*

Easting (m)

Nor

thin

g(m

)

640000 645000 650000 655000 660000

4850

000

4860

000

4870

000

4880

000

Lake Ontario

+ Well Screens in ORMWell Screens in Thorncliffe Formation

* Well screens in Scarborough Formation

Page 31: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Calibration Results: Steady-State Streamflows

Simulated stream flow (m /s)M

easu

red

stre

amflo

w(m

/s)

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

F

CB

P

EA

3

3

D

JN

G,I,O

Mean error: 0.0024 m3/s

+

+++

+

++ + + ++

+

Easting (m)

Nor

thin

g(m

)

640000 645000 650000 655000 660000

4850

000

4860

000

4870

000

4880

000

Lake Ontario

G I J O N

F

D

C B

PA E

Page 32: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Surface Water Depths

Steady-state Surface Drainage Network & Surface/Subsurface Exchange Fluxes

Surface/Subsurface Exchange Fluxes

Page 33: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Transient Model: Hydrographs

Page 34: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Influence of Climate Change on Water Resources in Regional-Scale Watersheds: An example in the Grand River Watershed

Water Budget Parameter Value (mm/year)

Precipitation 930Evapotranspiration 605

Surface Flow Out of GRW 313.5Infiltration 465Exfiltration 170Recharge 186

Groundwater Flow Out of GRW ~ 0

Groundwater Pumping 11.5

6800 km2

Population:900 000

Layers

Wells

Page 35: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Calibration for Long-Term Averages

Surface Drainage NetworksSimulatedObserved

y = 1.0304xR2 = 0.9959

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Observed Flow (m3/s)

Cal

cula

ted

Flow

(m3 /s

)

Brantford

Galt

West Montrose

Stream Discharge

R² = 0.997

150

200

250

300

350

400

450

500

150 200 250 300 350 400 450 500Cal

cula

ted

Subs

urfa

ce H

ead

(m)

Observed Subsurface Head (m)

1:1 …

Subsurface Head

Page 36: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Synthetic Climate Change Scenarios

Scenario

Change in actual precipitation throughout

simulation, relative to 1960-1999 levels

1 -5%2 +5%3 +10%4 +15%5 +20%

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Dundalk

Marsville

Below Shand D

am

West M

ontrose

Galt

Brantford

Grand River Gauge Stations

Dis

char

ge (m

3 /s) Observed

1961 to 1999 average

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario Nodally-averaged change in depth-to-water table (m)

Base 0.01 +0.482 -0.363 -0.644 -0.885 -1.08

Scenario Recharge (mm/year)

Change relative to base case (mm/year)

Base 186 -1 176.5 -9.52 198 123 207 214 216.5 30.55 226 40

Page 37: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Scenario 1: Driest Scenario 5: Wettest

Depth to Water Table [m]: Driest vs. Wettest Scenarios

Page 38: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Drainage galleries

Meuse River

Geer River Basin

N

S

• Area = 465 km²

• Sub-catchment of the Meuse River

• Intensive agriculture (65% of the basin)

• Aquifer intensively exploited

→ Extraction of 30 millions m³/year for drinking water

(~600,000 people)

Impact of climate Change – Geer Basin (Goderniaux, PhD)

Page 39: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

(up to 20 m)

(locally)

(from a few meters up to 70 m)

Quaternary Loess

Sands

Chalk

Impermeable clays

Flint conglomerate

Geology

Page 40: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Water exchanges between nodes

at each time step

SUBSURFACE DOMAIN

3D variably-saturated flow

(Richards' equation)

(10 000 nodes)

SURFACE DOMAIN

2D surface water flow

(1000 nodes)

Precipitations Actual ET• ET = f (PET, soil moisture, root depth,

evaporative depth, LAI, Canopy storage)

• Computed at each time step and node

Discretization - Parameterization

Page 41: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

• Precipitation – PET

• Draining galeries – pumping wells

Surface parameters

• Soil map ↔ coupling coef.

• Land use map ↔ ET, friction coef.

• Hydrogeologic data

↔ Variably saturated properties

Subsurface parameters

Specified stresses

Discretization - Parameterization

Page 42: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Simulated and observed groundwater levels

Simulated and observed flow rates

Subsurface saturation

Water depth (Surface)

Calibration

Page 43: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Uncertainty related to the natural variability of the weather• Climate change scenarios from :

- 6 RCMs

- CO2 emission "Medium-High" (A2)

Monthly mean temperature change (°C) – 2070-2100

Mean monthly precipitation change (%) – 2070-2100

Weather

Generator

2010 2040 2070 2085

2010 2040 2070 2085

T

WL

Page 44: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

August temperatures (RCAO_E)

February temperatures (RCAO_E)

August precipitations (RCAO_E)

February precipitations (RCAO_E)

• For the Geer basin :

- 100 climate change scenarios for each RCM

Uncertainty related to the natural variability of the weather

Page 45: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

• Application of stochastic climate change scenarios as input of the Geer model

Evolution of groundwater levels

RCM :

Arpege_h

RCM :

RCAO_E

All 6 RCMs

Evolution of MEAN groundwater levels

Uncertainty related to the natural variability of the weather

Page 46: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

• For the Geer basin hydrological model :

- 95 % confidence intervals around absolute predicted variables and predicted

decreases

- Calculated over 4 years of HIRHAM_H (2071-2100)

Absolute groundwater levels and 95 % confidence intervals

Change in groundwater levels and 95 % confidence intervals

Uncertainty related to calibration of hydrological model

Page 47: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Calibration

uncertainty

(95% conf. interval)

February

August

'Quantile Mapping Bias Correction'

(2071-2100)

'Weather Generator'

Stochastic scenarios (2085)

(95% conf. intervals)

Surface flow rates (m³/s)

Groundwater levels (m)

Summary of all uncertainty

Page 48: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

(mm/yr)1002003004005006007008009001000150020003000

precipitation

Legend (m)< 2526 - 5051 - 100101 - 200201 - 300301 - 400401 - 500501 - 750751 - 1,0001,001 - 1,5001,501 - 2,0002,001 - 3,0003,001 - 5,0005,001 - 8,000> 8000

sediment thickness

Legendinland water bodiesAcrisolsCambisolsChernozemsPodzoluvisolsRendzinasFerralsolsGleysolsPhaeozemsLithosolsFluvisolsKastanozemsLuvisolsGreyzemsNitosolsHistosolsPodzolsArenosolsRegosolsSolonetzAndosolsRankersVertisolsPlanosolsXerosolsYermosolsSolonchaksMisc. Land Units

soil type

Legendinland water bodies> 75% crops> 75% forest> 75% pasture and browse> 75% barren and sparsely vegetated50 - 75% crops50 - 75% forest50 - 75% pasture and browse50 - 75% barren and sparsely vegetated> 50% artificial surfacemixed

land use

Legend (mm/yr)0 - 200201 - 400401 - 600601 - 800801 - 1,0001,001 - 1,2001,201 - 1,4001,401 - 1,6001,601 - 1,8001,801 - 2,0002,001 - 2,2002,201 - 2,4002,401 - 2,6002,601 - 2,8002,801 - 3,000

ETgeology

3D Simulations over the Canadian Landmass(10 000 000 km2, UWaterloo)

Page 49: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Continuous permafrostDiscontinuous permafrostUpper unconsolidated sediment

Lower unconsolidated sedimentSedimentary rockFractured basement rocksBasement rocks

HydroGeoSphere Model(ca. 1 800 000 elements,1 000 000 nodes)

Page 50: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Summary: Fully-integrated ModelSolves one system of discrete CFVE equations

Eliminates iteration between separate models or model components and need for “artificial” boundary conditions (e.g. seepage face BC)

Does not a priori assume rainfall-runoff generation mechanisms

Transport intimately linked to surface/subsurface hydrodynamics

Water and solutes not “lost” from system in fully-integrated modelling framework

Page 51: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Equations are highly nonlinear, computationally expensive

Variably-saturated flow : Saturation / relative permeability functions

Sub-timing (variable Δt for a single time step)

Uncertainties in process representation and quantification

Coupling surface / subsurface flow and transport

Important parameters (calibration)

Dealing with heterogeneity, spatio-temporal up-scaling issues (reach to catchment to basin scales)

Lumped approaches for small-scale features

Sub-gridding methods

Challenges

Page 52: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

It is inevitable to use relatively large grid sizes when simulating at these large scales given the current level of computing hardware performance.Two legitimate questions rise:

What does the coarse-grid simulation result really represent?

i.e. same as the average of fine-grid simulation?How to maximize the similarity between the coarse-grid result and the fine-grid result?

Challenges

Page 53: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

2

4

6

8

Spe

edup

(-)

2 4 6 8Number of CPU

Newton-RaphsonTotal

a)

Parallel HGS :   Integrated surface and subsurface flow

• Maximum speedup : 6.5 (newton‐Raphson) and 4.8 (total) 

• Parallel efficiency :  82 % (newton‐Raphson) and 60 %(total)

Page 54: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Multi-component reactive chemistry

Linking hydro(geo)logy and ecology with feedback

Linking with atmospheric models

Data issues

Management (amount)

Quality Assurance

Processing

Visualization

Applications : building a library of examples

Challenges

Page 55: A Three-dimensional Numerical Model Describing Fully ...nitrat.dk/xpdf/therrien_introduction_-to_hgs.pdf · Rene Therrien Laval University, Quebec, Canada NiCA Meeting May 31, 2011

Monthly Water Balance

Month

Vol

umet

ricra

te(m

/s)

4 5 6 7 8 9 10 11 12-10

-5

0

5

10

15

20

25PrecipitationRunoffSubsurface storage changeSurface storage changeET

1986

Apr

il

May

June

July

Aug

.

Sep

t.

Oct

.

Nov

.

Dec

.

3

Month

4 5 6 7 8 9 10 11 12-10

-5

0

5

10

15

20

25PrecipitationRunoffSubsurface storage changeSurface storage changeET

1987

Apr

il

May

June

July

Aug

.

Sep

t.

Oct

.

Nov

.

Dec

.


Recommended