+ All Categories
Home > Documents > A Top-Down Microsystems Design Methodology and Associated Challenges

A Top-Down Microsystems Design Methodology and Associated Challenges

Date post: 10-Jan-2016
Category:
Upload: wilbur
View: 32 times
Download: 2 times
Share this document with a friend
Description:
A Top-Down Microsystems Design Methodology and Associated Challenges. Lecturer Michael S. McCorquodale Authors Michael S. McCorquodale, Fadi H. Gebara, Keith L. Kraver, Eric D. Marsman, Robert M. Senger, and Richard B. Brown. Solid State Electronics Laboratory - PowerPoint PPT Presentation
23
Lecturer Michael S. McCorquodale Authors Michael S. McCorquodale, Fadi H. Gebara, Keith L. Kraver, Eric D. Marsman, Robert M. Senger, and Richard B. Brown A Top-Down Microsystems Design Methodology and Associated Challenges Solid State Electronics Laboratory Center for Wireless Integrated Microsystems Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor, MI USA 48109-2122 Design Automation and Test Europe Conference, Munich, Germany, March 2003
Transcript
Page 1: A Top-Down Microsystems Design Methodology and Associated Challenges

LecturerMichael S. McCorquodale

AuthorsMichael S. McCorquodale, Fadi H. Gebara, Keith L. Kraver, Eric D. Marsman, Robert M. Senger, and Richard B. Brown

A Top-Down Microsystems Design Methodology and Associated Challenges

Solid State Electronics LaboratoryCenter for Wireless Integrated MicrosystemsDepartment of Electrical Engineering and Computer ScienceUniversity of MichiganAnn Arbor, MI USA 48109-2122

Design Automation and Test Europe Conference, Munich, Germany, March 2003

Page 2: A Top-Down Microsystems Design Methodology and Associated Challenges

2

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Outline

• Motivation

• Microsystems: Anatomy

• Bottom-Up Design Methodology

• WIMS Microcontroller

• Design Framework

• Top-Down Design Methodology

• Gaps and Solutions

• Conclusions

Page 3: A Top-Down Microsystems Design Methodology and Associated Challenges

3

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Motivation• Discuss design trends and challenges in

microsystems technology• Leverage advances in mixed-signal SoC

design automation• Determine a design methodology and

framework appropriate for microsystems technology

• Implement methodology in a microsystem design

• Demonstrate increased design efficiency and verification

• Identify gaps in tool suite and promote development of required capabilities

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 4: A Top-Down Microsystems Design Methodology and Associated Challenges

4

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

The anatomy of a generalized wireless integrated microsystem (WIMS). Key technologies and associated development tools are shown

Microsystems: Anatomy

MEMS Analog Mixed-Signal Digital/VLSI

Antenna

MicroprocessorWirelessInterface

Clock

Sensor/Actuator Interface

Sensor

Actuator

BasebandModem

RFIC/RFMEMS

FE Tools

AHDLCustom IC Tools

VHDL Synthesis

Tools

AHDL Custom

RFIC Tools

DAC

ADC

MS-HDL Custom IC Tools

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 5: A Top-Down Microsystems Design Methodology and Associated Challenges

5

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

The anatomy of a generalized wireless integrated microsystem (WIMS). Key technologies and associated development tools are shown

Microsystems: Anatomy

MEMS Analog Mixed-Signal Digital/VLSI

Antenna

MicroprocessorWirelessInterface

Clock

Sensor/Actuator Interface

Sensor

Actuator

BasebandModem

RFIC/RFMEMS

FE Tools

AHDLCustom IC Tools

VHDL Synthesis

Tools

AHDL Custom

RFIC Tools

DAC

ADC

MS-HDL Custom IC Tools

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 6: A Top-Down Microsystems Design Methodology and Associated Challenges

6

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

The anatomy of a generalized wireless integrated microsystem (WIMS). Key technologies and associated development tools are shown

Microsystems: Anatomy

MEMS Analog Mixed-Signal Digital/VLSI

Antenna

MicroprocessorWirelessInterface

Clock

Sensor/Actuator Interface

Sensor

Actuator

BasebandModem

RFIC/RFMEMS

FE Tools

AHDLCustom IC Tools

VHDL Synthesis

Tools

AHDL Custom

RFIC Tools

DAC

ADC

MS-HDL Custom IC Tools

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 7: A Top-Down Microsystems Design Methodology and Associated Challenges

7

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

The anatomy of a generalized wireless integrated microsystem (WIMS). Key technologies and associated development tools are shown

Microsystems: Anatomy

MEMS Analog Mixed-Signal Digital/VLSI

Antenna

MicroprocessorWirelessInterface

Clock

Sensor/Actuator Interface

Sensor

Actuator

BasebandModem

RFIC/RFMEMS

FE Tools

AHDLCustom IC Tools

VHDL Synthesis

Tools

AHDL Custom

RFIC Tools

DAC

ADC

MS-HDL Custom IC Tools

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 8: A Top-Down Microsystems Design Methodology and Associated Challenges

8

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

The anatomy of a generalized wireless integrated microsystem (WIMS). Key technologies and associated development tools are shown

Microsystems: Anatomy

MEMS Analog Mixed-Signal Digital/VLSI

Antenna

MicroprocessorWirelessInterface

Clock

Sensor/Actuator Interface

Sensor

Actuator

BasebandModem

RFIC/RFMEMS

FE Tools

AHDLCustom IC Tools

VHDL Synthesis

Tools

AHDL Custom

RFIC Tools

DAC

ADC

MS-HDL Custom IC Tools

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 9: A Top-Down Microsystems Design Methodology and Associated Challenges

9

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Bottom-Up Design Methodology

Verification: DRC, LVS (Top Routing Only), Parasitic Extraction and Backannotation(IC Tool)

Digital Specification Analog Specification Mechanical Specification

Custom Analog Design(SPICE)

Custom Mechanical Design(FE)

Synthesis/APR/Timing(Synthesizer)

Analog Physical Design(IC Tool)

DigitalLibrary

Tapeout

ProcessLibrary

Digital Design(HDL)

Dig

ita

l D

om

ain

An

alo

g D

om

ain

Me

ch

an

ica

l D

om

ain

Analog Macro Mechanical MacroDigital Macro

System Specification and Design Partition

Macro Automatic Place and Route(APR and IC Tool)

Verification: DRC, LVS (Top Routing Only), Parasitic Extraction and Backannotation(IC Tool)

Digital Specification Analog Specification Mechanical Specification

Custom Analog Design(SPICE)

Custom Mechanical Design(FE)

Synthesis/APR/Timing(Synthesizer)

Analog Physical Design(IC Tool)

DigitalLibrary

Tapeout

ProcessLibrary

Digital Design(HDL)

Dig

ita

l D

om

ain

An

alo

g D

om

ain

Me

ch

an

ica

l D

om

ain

Analog Macro Mechanical MacroDigital Macro

System Specification and Design Partition

Macro Automatic Place and Route(APR and IC Tool)

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 10: A Top-Down Microsystems Design Methodology and Associated Challenges

10

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Bottom-Up Design Methodology

Verification: DRC, LVS (Top Routing Only), Parasitic Extraction and Backannotation(IC Tool)

Digital Specification Analog Specification Mechanical Specification

Custom Analog Design(SPICE)

Custom Mechanical Design(FE)

Synthesis/APR/Timing(Synthesizer)

Analog Physical Design(IC Tool)

DigitalLibrary

Tapeout

ProcessLibrary

Digital Design(HDL)

Dig

ita

l D

om

ain

An

alo

g D

om

ain

Me

ch

an

ica

l D

om

ain

Analog Macro Mechanical MacroDigital Macro

System Specification and Design Partition

Macro Automatic Place and Route(APR and IC Tool)

Verification: DRC, LVS (Top Routing Only), Parasitic Extraction and Backannotation(IC Tool)

Digital Specification Analog Specification Mechanical Specification

Custom Analog Design(SPICE)

Custom Mechanical Design(FE)

Synthesis/APR/Timing(Synthesizer)

Analog Physical Design(IC Tool)

DigitalLibrary

Tapeout

ProcessLibrary

Digital Design(HDL)

Dig

ita

l D

om

ain

An

alo

g D

om

ain

Me

ch

an

ica

l D

om

ain

Analog Macro Mechanical MacroDigital Macro

System Specification and Design Partition

Macro Automatic Place and Route(APR and IC Tool)

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 11: A Top-Down Microsystems Design Methodology and Associated Challenges

11

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Bottom-Up Design Methodology

Verification: DRC, LVS (Top Routing Only), Parasitic Extraction and Backannotation(IC Tool)

Digital Specification Analog Specification Mechanical Specification

Custom Analog Design(SPICE)

Custom Mechanical Design(FE)

Synthesis/APR/Timing(Synthesizer)

Analog Physical Design(IC Tool)

DigitalLibrary

Tapeout

ProcessLibrary

Digital Design(HDL)

Dig

ita

l D

om

ain

An

alo

g D

om

ain

Me

ch

an

ica

l D

om

ain

Analog Macro Mechanical MacroDigital Macro

System Specification and Design Partition

Macro Automatic Place and Route(APR and IC Tool)

Verification: DRC, LVS (Top Routing Only), Parasitic Extraction and Backannotation(IC Tool)

Digital Specification Analog Specification Mechanical Specification

Custom Analog Design(SPICE)

Custom Mechanical Design(FE)

Synthesis/APR/Timing(Synthesizer)

Analog Physical Design(IC Tool)

DigitalLibrary

Tapeout

ProcessLibrary

Digital Design(HDL)

Dig

ita

l D

om

ain

An

alo

g D

om

ain

Me

ch

an

ica

l D

om

ain

Analog Macro Mechanical MacroDigital Macro

System Specification and Design Partition

Macro Automatic Place and Route(APR and IC Tool)

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 12: A Top-Down Microsystems Design Methodology and Associated Challenges

12

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Bottom-Up Design Methodology

Verification: DRC, LVS (Top Routing Only), Parasitic Extraction and Backannotation(IC Tool)

Digital Specification Analog Specification Mechanical Specification

Custom Analog Design(SPICE)

Custom Mechanical Design(FE)

Synthesis/APR/Timing(Synthesizer)

Analog Physical Design(IC Tool)

DigitalLibrary

Tapeout

ProcessLibrary

Digital Design(HDL)

Dig

ita

l D

om

ain

An

alo

g D

om

ain

Me

ch

an

ica

l D

om

ain

Analog Macro Mechanical MacroDigital Macro

System Specification and Design Partition

Macro Automatic Place and Route(APR and IC Tool)

Verification: DRC, LVS (Top Routing Only), Parasitic Extraction and Backannotation(IC Tool)

Digital Specification Analog Specification Mechanical Specification

Custom Analog Design(SPICE)

Custom Mechanical Design(FE)

Synthesis/APR/Timing(Synthesizer)

Analog Physical Design(IC Tool)

DigitalLibrary

Tapeout

ProcessLibrary

Digital Design(HDL)

Dig

ita

l D

om

ain

An

alo

g D

om

ain

Me

ch

an

ica

l D

om

ain

Analog Macro Mechanical MacroDigital Macro

System Specification and Design Partition

Macro Automatic Place and Route(APR and IC Tool)

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 13: A Top-Down Microsystems Design Methodology and Associated Challenges

13

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Bottom-Up Design Methodology

Verification: DRC, LVS (Top Routing Only), Parasitic Extraction and Backannotation(IC Tool)

Digital Specification Analog Specification Mechanical Specification

Custom Analog Design(SPICE)

Custom Mechanical Design(FE)

Synthesis/APR/Timing(Synthesizer)

Analog Physical Design(IC Tool)

DigitalLibrary

Tapeout

ProcessLibrary

Digital Design(HDL)

Dig

ita

l D

om

ain

An

alo

g D

om

ain

Me

ch

an

ica

l D

om

ain

Analog Macro Mechanical MacroDigital Macro

System Specification and Design Partition

Macro Automatic Place and Route(APR and IC Tool)

Verification: DRC, LVS (Top Routing Only), Parasitic Extraction and Backannotation(IC Tool)

Digital Specification Analog Specification Mechanical Specification

Custom Analog Design(SPICE)

Custom Mechanical Design(FE)

Synthesis/APR/Timing(Synthesizer)

Analog Physical Design(IC Tool)

DigitalLibrary

Tapeout

ProcessLibrary

Digital Design(HDL)

Dig

ita

l D

om

ain

An

alo

g D

om

ain

Me

ch

an

ica

l D

om

ain

Analog Macro Mechanical MacroDigital Macro

System Specification and Design Partition

Macro Automatic Place and Route(APR and IC Tool)

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 14: A Top-Down Microsystems Design Methodology and Associated Challenges

14

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Bottom-Up Design Methodology

The Problems

• No opportunity for architectural studies

• Time-consuming design iteration

• Cross-domain verification at top level only

• Time-consuming system level simulation, if it is even possible

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 15: A Top-Down Microsystems Design Methodology and Associated Challenges

15

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

WIMS Microcontroller

• TSMC 0.18 micron mixed-mode

• 16-bit 3-stage pipeline core

• Analog front end (AFE)

• MEMS-based clock generator

• 64KB on-chip SRAM

• Timer and serial interfaces

• 1.5 million transistors

• 10.24mm2Die micrograph of the fabricated microsystem

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 16: A Top-Down Microsystems Design Methodology and Associated Challenges

16

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Design Framework: Requirements

• System level simulation support (HDL)

• Cross-domain verification at any level for MEMS, analog, and digital electronics

• Finite element simulation

• Active device and HDL simulation

• Parasitic extraction

• Co-simulation of primitives and HDL

• Timing verification

• HDL synthesis

• Automatic place and route

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 17: A Top-Down Microsystems Design Methodology and Associated Challenges

17

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Design Framework: Employed

• Cadence AMSSystem modeling, primitive/HDL co-simulation, and MEMS modeling

• SpectreAnalog device level simulation

• CoventorwareFinite element analysis

• SynopsysDigital synthesis

• Cadence Silicon EnsembleAutomatic place and route

• Mentor Graphics CalibreDRC, ERC, and LVS

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 18: A Top-Down Microsystems Design Methodology and Associated Challenges

18

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Top-Down Design Methodology

Cross- Domain Verification(Verilog with updated Verilog-A from achieved performance and/or Verilog and Verilog-A with Primitives)

Analog Model(Verilog-A)

Mechanical Model(Verilog-A)

Abstract System Model(Verilog-AMS: Verilog and Verilog-A)

DigitalLibrary

ProcessLibrary

Tapeout

Dig

ital

Do

mai

n

An

alo

g D

om

ain

Mec

han

ical

Do

mai

n

Cross - Domain Verification(Verilog with updated Verilog - A from parasitics and/or Verilog and Verilog-A with Primitives)

Cross-Domain Verification(Verilog with updated Verilog- A with interconnect parasitics )

Analog Macro

Parasitic Extraction(IC Tool)

Extraction, Timing(Timing Tool)

Digital Macro Mechanical Macro

Parasitic Extraction(IC Tool)

Custom Analog Design(SPICE)

Mechanical Design(Finite Element)

Macro Place and Route, Layout Verification: DRC, LVS(APR and IC Tool)

Layout Parasitic Extraction (LPE) and Backannotation(IC Tool)

Synthesis/APR/Timing(Synthesis Tool)

Physical Design/Verif.(IC Tool)

Physical Design/Verif.(IC Tool)

Digital Model(Verilog)

Behavioral Verification(Verilog)

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 19: A Top-Down Microsystems Design Methodology and Associated Challenges

19

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Top-Down Design Methodology

Cross- Domain Verification(Verilog with updated Verilog-A from achieved performance and/or Verilog and Verilog-A with Primitives)

Analog Model(Verilog-A)

Mechanical Model(Verilog-A)

Abstract System Model(Verilog-AMS: Verilog and Verilog-A)

DigitalLibrary

ProcessLibrary

Tapeout

Dig

ital

Do

mai

n

An

alo

g D

om

ain

Mec

han

ical

Do

mai

n

Cross - Domain Verification(Verilog with updated Verilog - A from parasitics and/or Verilog and Verilog-A with Primitives)

Cross-Domain Verification(Verilog with updated Verilog- A with interconnect parasitics )

Analog Macro

Parasitic Extraction(IC Tool)

Extraction, Timing(Timing Tool)

Digital Macro Mechanical Macro

Parasitic Extraction(IC Tool)

Custom Analog Design(SPICE)

Mechanical Design(Finite Element)

Macro Place and Route, Layout Verification: DRC, LVS(APR and IC Tool)

Layout Parasitic Extraction (LPE) and Backannotation(IC Tool)

Synthesis/APR/Timing(Synthesis Tool)

Physical Design/Verif.(IC Tool)

Physical Design/Verif.(IC Tool)

Digital Model(Verilog)

Behavioral Verification(Verilog)

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 20: A Top-Down Microsystems Design Methodology and Associated Challenges

20

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Top-Down Design Methodology

Cross- Domain Verification(Verilog with updated Verilog-A from achieved performance and/or Verilog and Verilog-A with Primitives)

Analog Model(Verilog-A)

Mechanical Model(Verilog-A)

Abstract System Model(Verilog-AMS: Verilog and Verilog-A)

DigitalLibrary

ProcessLibrary

Tapeout

Dig

ital

Do

mai

n

An

alo

g D

om

ain

Mec

han

ical

Do

mai

n

Cross - Domain Verification(Verilog with updated Verilog - A from parasitics and/or Verilog and Verilog-A with Primitives)

Cross-Domain Verification(Verilog with updated Verilog- A with interconnect parasitics )

Analog Macro

Parasitic Extraction(IC Tool)

Extraction, Timing(Timing Tool)

Digital Macro Mechanical Macro

Parasitic Extraction(IC Tool)

Custom Analog Design(SPICE)

Mechanical Design(Finite Element)

Macro Place and Route, Layout Verification: DRC, LVS(APR and IC Tool)

Layout Parasitic Extraction (LPE) and Backannotation(IC Tool)

Synthesis/APR/Timing(Synthesis Tool)

Physical Design/Verif.(IC Tool)

Physical Design/Verif.(IC Tool)

Digital Model(Verilog)

Behavioral Verification(Verilog)

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 21: A Top-Down Microsystems Design Methodology and Associated Challenges

21

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Top-Down Design Methodology

Cross- Domain Verification(Verilog with updated Verilog-A from achieved performance and/or Verilog and Verilog-A with Primitives)

Analog Model(Verilog-A)

Mechanical Model(Verilog-A)

Abstract System Model(Verilog-AMS: Verilog and Verilog-A)

DigitalLibrary

ProcessLibrary

Tapeout

Dig

ital

Do

mai

n

An

alo

g D

om

ain

Mec

han

ical

Do

mai

n

Cross - Domain Verification(Verilog with updated Verilog - A from parasitics and/or Verilog and Verilog-A with Primitives)

Cross-Domain Verification(Verilog with updated Verilog- A with interconnect parasitics )

Analog Macro

Parasitic Extraction(IC Tool)

Extraction, Timing(Timing Tool)

Digital Macro Mechanical Macro

Parasitic Extraction(IC Tool)

Custom Analog Design(SPICE)

Mechanical Design(Finite Element)

Macro Place and Route, Layout Verification: DRC, LVS(APR and IC Tool)

Layout Parasitic Extraction (LPE) and Backannotation(IC Tool)

Synthesis/APR/Timing(Synthesis Tool)

Physical Design/Verif.(IC Tool)

Physical Design/Verif.(IC Tool)

Digital Model(Verilog)

Behavioral Verification(Verilog)

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 22: A Top-Down Microsystems Design Methodology and Associated Challenges

22

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Gaps and Solutions

Gaps in the Tool Suite

MEMS and analog simulation results not automatically extracted to behavioral model

Lack of physical verification for MEMS components

No synthesis capabilities for MEMS and analog subsystems from topological or behavioral models

Inability to port designs between process technologies

Solutions: Future Direction

Custom and manual extraction: Requires design automation

Custom mod. of DRC/LVS decks: Requires support

No current solution: Requires design automation

No current solution: Requires design automation

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions

Page 23: A Top-Down Microsystems Design Methodology and Associated Challenges

23

Mic

hae

l S. M

cCo

rqu

od

ale

Un

iver

sity

of

Mic

hig

an

Conclusions

• Microsystem design methodologies are in their infancy

• Current methodologies have originated from the disparate nature of the technology

• The proposed top-down methodology leverages advances in mixed-signal design automation

• The proposed methodology is efficient and offers superior verification as compared to current methodologies

• Gaps in tool suites exist and must be addressed for future microsystems developments

• Tool suites are disparate and can be built into a single framework

Motivation Microsystems Bottom-Up Microcontroller Framework Top-Down Gaps & Solns. Conclusions


Recommended