+ All Categories
Home > Documents > A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December...

A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December...

Date post: 05-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
64
A Unified View of Sampled-Data Control Systems Jos´ e C. Geromel School of Electrical and Computer Engineering University of Campinas - Brazil Kyoto University Kyoto, December 9th, 2015 1 / 64
Transcript
Page 1: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

A Unified View of Sampled-Data Control Systems

Jose C. Geromel

School of Electrical and Computer EngineeringUniversity of Campinas - Brazil

Kyoto UniversityKyoto, December 9th, 2015

1 / 64

Page 2: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Contents

Main notation

Tutorial

MotivationPlantControlNetworkPerformance optimization

Sampled-data controlHybrid systemsSampled-data controlMarkov jump linear systems

Practical applicationsInverted pendulumMass-spring-damper system

Conclusion

2 / 64

Page 3: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Main notation

◮ Real (R), nonnegative real (R+) and natural numbers (N)

◮ K = {1, · · · ,N}

◮ The trace function is tr(·)

◮ For ξ(t) defined for all t ≥ 0 the value ξ(τ−) indicates thelimit of ξ(t) as t goes to τ ≥ 0 from the left

◮ Sampling of a real signal s[k] = s(tk) for all k ∈ N

◮ Sets of bounded signals in continuous-time (t ∈ R+) anddiscrete-time (k ∈ N) domains:

◮ L2 equipped with ‖w‖22 =∫∞

0‖w(t)‖22dt < ∞

◮ ℓ2 equipped with ‖w‖22 =∑

k∈N‖w [k ]‖22 < ∞

3 / 64

Page 4: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Tutorial

◮ LTI systems expressed through a state space realization

x(t) = Ax(t) + Ew(t), x(0) = x0

z(t) = Cx(t)

◮ x0 ∈ Rn is the initial condition

◮ x(t) : R+ → Rn is the state

◮ z(t) : R+ → Rq is the controlled output

◮ w(t) : R+ → Rp is the exogenous perturbation input

x(t) = eAtx0 +

∫ t

0eA(t−τ)Ew(τ)dτ, ∀t ≥ 0

4 / 64

Page 5: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Tutorial

◮ Stability: Matrix A ∈ Rn×n is said to be

◮ Hurwitz (asymptotically) stable if

Re{λi(A)} < 0, ∀i = 1, · · · , n

eigenvalues inside the left open half plane!◮ Schur (asymptotically) stable if

|λi (A)| < 1, ∀i = 1, · · · , n

eigenvalues inside the unit circle!

Simple and useful relationship holds for a given h > 0

A Hurwitz stable ↔ eAh Schur stable

5 / 64

Page 6: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Tutorial

◮ The celebrated Lyapunov Lemma states that:◮ A ∈ R

n×n is Hurwitz stable if and only if there exists P > 0satisfying the linear matrix inequality (LMI)

A′P + PA < 0

◮ A ∈ Rn×n is Schur stable if and only if there exists S > 0

satisfying the linear matrix inequality (LMI)

A′SA− S < 0

Simple and important fact that holds for a given h > 0

∃P > 0 s.t. A′P + PA < 0 → eA′hPeAh − P < 0

6 / 64

Page 7: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Tutorial

◮ Performance: To evaluate performance we need to be ableto calculate the quantity

‖z‖22 =

∫ ∞

0z(t)′z(t)dt

where z(t) is the output corresponding to w(t) = 0 andarbitrary initial condition x(0) = x0 ∈ R

n. Hence

‖z‖22 = x ′0

(∫ ∞

0eA

′tC ′CeAtdt

)

︸ ︷︷ ︸

A′P+PA+C ′C=0

x0

= infP>0

{x ′0Px0 : A

′P + PA+ C ′C < 0}

requires A Hurwitz stable!

7 / 64

Page 8: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Tutorial

◮ Let h > 0 be given, define the matrices

eAh = Ah ,

∫ h

0eA

′τC ′CeAτdτ = C ′hCh

Adopting the uniform sequence {tk = kh}k∈N it follows that

∫ ∞

0eA

′tC ′CeAtdt =∑

k∈N

∫ tk+1

tk

eA′tC ′CeAtdt

=∑

k∈N

(eA′h)k

∫ h

0eA

′τC ′CeAτdτ (eAh)k

⇓∫ ∞

0eA

′tC ′CeAtdt

︸ ︷︷ ︸

A′P+PA+C ′C=0

=∑

k∈N

A′kh C

′hCh Ak

h

︸ ︷︷ ︸

A′

hPAh−P+C ′

hCh=0

8 / 64

Page 9: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Tutorial

◮ Evolving from the same initial condition x(0) = x [0] = x0

x(t) = Ax(t)z(t) = Cx(t)

→x [k + 1] = Ahx [k]

z [k] = Chx [k]

⇓∫ ∞

0z(t)′z(t)dt =

k∈N

z [k]′z [k]

◮ No kind of approximations involved!◮ Both systems are said to be equivalent!

9 / 64

Page 10: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Tutorial

◮ Performance: Let us now calculate the quantity

‖z‖22 =

∫ ∞

0z(t)′z(t)dt

where z(t) is the output corresponding to w ∈ L2 andarbitrary initial condition x(0) = x0 ∈ R

n. Hence

x(t) = eA(t−tk )x [k] +

∫ t

tk

eA(t−τ)Ew(τ)dτ, t ∈ [tk , tk+1)

depends exclusively on (x [k],w [k]) for all t ∈ [tk , tk+1) if

w ∈ L2h ⊂ L2

a set composed by all signals w(t) = w [k], ∀t ∈ [tk , tk+1)such that w ∈ ℓ2.

10 / 64

Page 11: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Tutorial

◮ Defining the matrices of appropriate dimensions

F =

[A E

0 0

]

−→ eFh =

[Ah Eh

0 I

]

the fundamental formula[

x(t)w(t)

]

= eF (t−tk )

[x [k]w [k]

]

, ∀t ∈ [tk , tk+1)

holds and provides z(t) in the same time interval. As before,with matrices

G =[C 0

]−→

∫ h

0eF

′τG ′GeFτdτ =

[C ′h

D ′h

] [C ′h

D ′h

]′

the equivalent system follows.

11 / 64

Page 12: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Tutorial

◮ Evolving from the same initial condition x(0) = x [0] = x0

x(t) = Ax(t) + Ew(t)z(t) = Cx(t)

→x [k + 1] = Ahx [k] + Ehw [k]

z [k] = Chx [k] + Dhw [k]

⇓∫ ∞

0z(t)′z(t)dt =

k∈N

z [k]′z [k]

◮ No kind of approximations involved!◮ This is restricted to the class of inputs w ∈ L2h

◮ For w ∈ L2 it is not possible to obtain an equivalent system offinite dimension!

12 / 64

Page 13: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Tutorial

◮ Claim: Hybrid systems are well adapted to modelsampled-data control systems!

◮ Consider the LTI continuous-time system

x(t) = Ax(t) + Bu(t) + Ew(t), x(0) = x0

z(t) = Cx(t) + Du(t)

◮ u(t) : R+ → Rm is the control variable such that

u ∈ U ↔ u(t) = u(tk), t ∈ [tk , tk+1), ∀k ∈ N

13 / 64

Page 14: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Tutorial

◮ For instance, in the simplest case of state feedback

u ∈ U ↔ u(t) = Lx(tk), t ∈ [tk , tk+1), ∀k ∈ N

defining the state variable ξ(t)′ = [x(t)′ u(t)′] ∈ Rn+m, the

closed-loop sampled-data system can be rewritten as

ξ(t) =

[A B

0 0

]

︸ ︷︷ ︸

F

ξ(t) +

[E

0

]

︸ ︷︷ ︸

J

w(t)

z(t) =[C D

]

︸ ︷︷ ︸

G

ξ(t)

ξ(tk) =

[I 0L 0

]

︸ ︷︷ ︸

H

ξ(t−k ), k ∈ N

14 / 64

Page 15: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Tutorial

◮ This a special class of hybrid systems of the form

ξ(t) = F ξ(t) + Jw(t)

z(t) = Gξ(t)

ξ(tk) = Hξ(t−k )

◮ Necessary and sufficient condition for asymptotic stabilityfollows from the discrete-time process

ξ(tk ) → ξ(t−k+1) → ξ(tk+1), ∀k ∈ N

◮ Performance indexes of interest must be calculated (analysis)◮ In general, matrix H depends on the matrix variables to be

determined (synthesis)

15 / 64

Page 16: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Tutorial

◮ The celebrated Bellman’s principle of optimality◮ HJB equation (continuous-time) and dynamic programming

(discrete-time) are the most important theoretical devices fordynamic systems optimization

◮ Hard to solve due to generality!

Consider the general problem

supw∈W

∫ ∞

0f (x(t),w(t))dt

subject tox(t) = F (x(t),w(t)), x(0) = x0

16 / 64

Page 17: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Tutorial

◮ Consider the sequence {tk}k∈N. Bellman’s principle ofoptimality states that

V (x(tk), tk) = supw∈W

{∫ tk+1

tk

f (x ,w)dt + V (x(tk+1), tk+1)

}

where◮ The function V (x , t) : Rn × R+ → R is called cost-to-go!◮ Assuming (x∗,w∗ ∈ W ) is optimal, adding terms

supw∈W

∫∞

0

f (x(t),w(t))dt =∑

k∈N

∫ tk+1

tk

f (x(t)∗,w(t)∗)dt

= V (x0, 0)

17 / 64

Page 18: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Tutorial

◮ Upper bounds to the optimal cost are easily generated!

◮ If f (x ,w) > 0, ∀(x ,w) 6= 0 and f (0, 0) = 0 then◮ V (x , t) is positive definite◮ V (x(tk ), tk) > V (x(tk+1), tk+1) for all k ∈ N

◮ The discrete-time sequence {x(tk)}k∈N converges!

◮ The cost-to-go function satisfies the HJB equation

∂V

∂t+

∂V ′

∂xF (x ,w)

︸ ︷︷ ︸dVdt

≤ −f (x ,w), w ∈ W

for t ∈ [tk , tk+1), ∀k ∈ N.

◮ For time invariant systems and tk+1 − tk = h, ∀k ∈ N asolution satisfying some adequate initial and final boundaryconditions on the time interval t ∈ [0, h) suffices!

18 / 64

Page 19: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Motivation

◮ Sampled-data control in a general framework

◮ Digital implementation

◮ Remote control supported by internet facilities

19 / 64

Page 20: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Motivation

◮ From the very basic control structure ...

◮ Plant P → Modeling◮ Controller C → Control design

20 / 64

Page 21: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Motivation

21 / 64

◮ ... to networked control!

◮ Plant P → Modeling◮ Controller C → Control design◮ Network → Signal quality and limitations

Page 22: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Plant

◮ The plant P is linear time invariant - LTI

x(t) = Ax(t) + Bu(t) + Ew(t)

z(t) = Cx(t) + Du(t)

◮ x0 ∈ Rn is the initial condition

◮ x(t) : R+ → Rn is the state

◮ u(t) : R+ → Rm is the control

◮ z(t) : R+ → Rq is the controlled output

◮ w(t) : R+ → Rp is the exogenous perturbation input

22 / 64

Page 23: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Control

◮ Communication channel modeling! – Operator R

f (t)︸︷︷︸

trasmitted signal

→ Rf (t)︸ ︷︷ ︸

received signal

◮ Effective remote control applied to the plant

u(t) = RC(Rx)(t)

◮ The state x(t) is measured and the controller receives Rx(t)◮ The transmitted controller output C(Rx(t)) provides u(t)

23 / 64

Page 24: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Network

◮ Bandwidth limitation: Data transmission with maximumfrequency 1/h. Successive sampling instants satisfyhk = tk+1 − tk ≥ h,∀k ∈ N, (Matveev and Savkin, 2009)

Rf (t) = f (tk), ∀t ∈ [tk , tk+1), ∀k ∈ N

◮ Sampled-data control operator, (Chen and Francis, 1995),(Ichicawa and Katayama, 2001)

24 / 64

Page 25: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Network

◮ Packet dropout: Network information loss imposes

Rf (t) = Γθ(t)f (t)

where θ(t) ∈ K = {1, · · · ,N} are the states of a Markovchain, (Costa, Fragoso and Todorov, 2013)

◮ Control synthesis is merged in a stochastic framework!

25 / 64

Page 26: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Performance optimization

◮ H2 performance: From zero initial condition

J2(u) =

p∑

l=1

‖ zl︸︷︷︸

w(t)=el δ(t)

‖22

◮ H∞ performance: From zero initial condition

J∞(u) = infγ

{γ2 : ‖z‖22 ≤ γ2‖w‖22 , ∀w ∈ L2

}

worst case perturbation. It passes through the network?

26 / 64

Page 27: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Performance optimization

◮ The main goal is to solve

infu∈U

Jα(u)

where:◮ α ∈ {2,∞}◮ u ∈ U define feasible signals subject to the network limitations◮ Solution strategy → remove the constraint u ∈ U and

redefine an equivalent design problem

27 / 64

Page 28: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Sampled-data control

◮ Considering tk+1 − tk = h > 0, ∀k ∈ N and preparing data asbefore, that is

F =

[A B

0 0

]

−→ eFh =

[Ah Bh

0 I

]

and

G =[C D

]−→

∫ h

0eF

′τG ′GeFτdτ =

[C ′h

D ′h

] [C ′h

D ′h

]′

the associated equivalent discrete-time system is determined.

28 / 64

Page 29: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Sampled-data control

◮ Optimal solution of the H2 control problem

infu∈U

J2(u) = minL

∥∥∥(Ch + DhL) (zI − (Ah + BhL))

−1E∥∥∥

2

2

◮ The optimal matrix gain follows from the stabilizing solution ofa discrete time algebraic Riccati equation

◮ The optimal control is of the form

u(t) = Lx(tk), ∀t ∈ [tk , tk+1)

29 / 64

Page 30: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Sampled-data control

◮ Consider the class of not too severe external perturbations

w ∈ L2h ⊂ L2

and a new performance index

Jh(u) = infγ

{γ2 : ‖z‖22 ≤ γ2‖w‖22 , ∀w ∈ L2h

}

which satisfiesinfu∈U

J∞(u) ≥ infu∈U

Jh(u)

Is this lower bound useful in the context of H∞ control?

30 / 64

Page 31: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Sampled-data control

◮ (Sub)Optimal solution of the H∞ control problem

infu∈U

Jh(u) = minL

∥∥∥(Ch + DhL) (zI − (Ah + BhL))

−1 Eh

∥∥∥

2

◮ Matrix Eh is obtained as before by replacing B → [B E ]◮ The optimal matrix gain follows from the stabilizing solution of

a discrete time algebraic Riccati equation◮ The optimal control is of the form

u(t) = Lx(tk), ∀t ∈ [tk , tk+1)

31 / 64

Page 32: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Sampled-data control

◮ Sampled-data optimal control in a general framework

Hybrid Systems

+

32 / 64

Page 33: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Sampled-data control

◮ Sampled-data optimal control in a general framework

Hybrid Systems

+

Bellman’s Principle of Optimality

33 / 64

Page 34: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Hybrid systems

◮ Remember that in the case of state feedback

u ∈ U ↔ u(t) = Lx(tk), t ∈ [tk , tk+1), ∀k ∈ N

defining the state variable ξ(t)′ = [x(t)′ u(t)′] ∈ Rn+m, the

closed-loop sampled-data system can be rewritten as

ξ(t) =

[A B

0 0

]

︸ ︷︷ ︸

F

ξ(t) +

[E

0

]

︸ ︷︷ ︸

J

w(t)

z(t) =[C D

]

︸ ︷︷ ︸

G

ξ(t)

ξ(tk) =

[I 0L 0

]

︸ ︷︷ ︸

H

ξ(t−k ), k ∈ N

34 / 64

Page 35: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Hybrid systems

◮ Let us consider a generic hybrid system of the form

ξ(t) = F ξ(t) + Jw(t)

z(t) = Gξ(t)

ξ(tk) = Hξ(t−k )

◮ Necessary and sufficient condition for asymptotic stabilityfollows from the discrete-time process

ξ(tk) → ξ(t−k+1) → ξ(tk+1), ∀k ∈ N

◮ Performance indexes J2(u) and J∞(u) calculation

35 / 64

Page 36: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

H2 performance

◮ Theorem 1: If the matrix differential equation

P(t) + F ′P(t) + P(t)F = −G ′G

admits a solution in the time interval t ∈ [0, h] satisfying theboundary conditions

P(0) < S−1 , P(h) > H ′S−1H

for some symmetric matrix S > 0, then the hybrid system isasymptotically stable and satisfies

J2(u) < tr(J ′H ′S−1HJ)

36 / 64

Page 37: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

H2 performance

◮ Matrix S > 0 satisfies the Lyapunov inequality:

eF′hH ′S−1HeFh < S−1 −

∫ h

0eF

′tG ′GeFtdt

︸ ︷︷ ︸

≥0

which admits a solution if and only if HeFh is Schur stable.

◮ The optimal sampled-data H2 control follows from

infL,S>0

tr(J ′H ′S−1HJ) → CONVEX?

Notice that H depends on the state feedback gain L

37 / 64

Page 38: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

H∞ performance

◮ Theorem 2: If the matrix differential equation

P(t) + F ′P(t) + P(t)F + γ−2P(t)JJ ′P(t) = −G ′G

admits a solution in the time interval t ∈ [0, h] satisfying theboundary conditions

P(0) < S−1 , P(h) > H ′S−1H

for some symmetric matrix S > 0, then the hybrid system isasymptotically stable and satisfies

J∞(u) < γ2

38 / 64

Page 39: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

H∞ performance

◮ We have to solve a nonlinear differential equation!

◮ There exists a solution P(t),∀t ∈ [0, h] if and only if thealgebraic Riccati equation

FQ + QF ′ + γ−2JJ ′ + QG ′GQ = 0

admits a solution. Defining F = F + QG ′G◮ In general Q is sign indefinite◮ The following matrices can be readily calculated

Fh = e F h,

∫ h

0

e F′τG ′Ge Fτdτ = G ′

hGh

39 / 64

Page 40: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

H∞ performance

◮ Solution of the Riccati differential equation, (Geromel, 1978)

◮ Lemma 1: The H∞ two boundary value problem admits asolution if and only if there exist W , S such that S > Q and

[W WH ′

HW S

]

> 0

[W − Q 0

0 I

]

>

[FhGh

]

(S − Q)

[FhGh

]′

40 / 64

Page 41: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

H∞ performance

◮ Jointly convex problem in the matrix variables (W ,S)

◮ The limit caseγ → +∞ , Q = 0

provides a solution to the H2 two boundary value problem

◮ Including the matrix gain L, in the set of variables, theproblem remains CONVEX?

41 / 64

Page 42: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

H∞ performance

◮ Important: Continuous-time systems characterized by H = I◮ From the solution of the H∞ two boundary value problem

P(t) = P = S−1, ∀t ∈ [0, h]

where P > 0 is the stabilizing solution of the algebraic Riccatiequation

F ′P + PF + γ−2PJJ ′P = −G ′G

the classical results are recovered

J2 = ‖G(sI − F )−1J‖22

J∞ = ‖G(sI − F )−1J‖2∞

42 / 64

Page 43: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Sampled-data control

◮ Main property of the Riccati equation solution Q

F = F︸︷︷︸

A B

0 0

+ Q︸︷︷︸

Q 00 0

G ′︸︷︷︸

C ′

D ′

G =

[A B

0 0

]

matrices F and F have the same structure!

Fh =

[Ah Bh

0 I

]

, Gh =[Ch Dh

]

43 / 64

Page 44: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Sampled-data control

◮ The determination of the state feedback gain L requires theblock structure

S =

[X Y

Y ′ Z

]

◮ Lemma 2: The H∞ two boundary value problem admits asolution if and only if there exists S > 0 such that S > Q and

[X − Q 0

0 I

]

>

[Ah Bh

Ch Dh

] [X − Q Y

Y ′ Z

] [Ah Bh

Ch Dh

]′

(∗)

In the affirmative case L = Y ′X−1.

44 / 64

Page 45: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Sampled-data control

◮ H∞ optimal control

infS>0,S>Q,γ

{γ2 : (∗)}

◮ H2 optimal control

infS>0

{tr(E ′X−1E ) : (∗)}

adopting the limit case solution γ → +∞ , Q = 0

Both are convex problems expressed by LMIs

45 / 64

Page 46: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Example

◮ A second order system with state space realization

A =

[0 1

−6 1

]

, B =

[01

]

, E =

[11

]

C =

[1 00 0

]

, D =

[01

]

has been treated. Three problems have been solved:◮ H∞ optimal control◮ H∞ optimal control with w ∈ L2h ⊂ L2

◮ H∞ suboptimal control

46 / 64

Page 47: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Example

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

3.5

h [s]

log10

(

γ)

47 / 64

Page 48: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Nonuniform sampling

◮ Time distance between successive samplings is uncertain

tk+1 − tk = hk ∈ T , ∀k ∈ N

◮ H2 optimal control

infS>0

tr(E ′X−1E ) : (∗)︸︷︷︸

Ψ(S,h)>0

,∀h ∈ T

LMI =⇒ convex set whenever h ∈ T is fixed!

48 / 64

Page 49: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Nonuniform sampling

◮ Globally convergent algorithm!

Jℓ+1 ≥ Jℓ , ℓ ∈ {0, 1, · · · }

◮ Example

A =

[0 1

−16 4.8

]

, B =

[016

]

, E =

[016

]

C =

[1 00 0

]

, D =

[00.1

]

, T = (0, π/25]

◮ L = [ 0.8430 − 0.4781] → γ = 24.407, (Suplin et al., 2007)◮ L = [−2.0620 − 0.8793] → γ = 1.0401

49 / 64

Page 50: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Markov jump linear systems

◮ Consider a MJLS with state space realization

x(t) = Aθ(t)x(t) + Bθ(t)u(t) + Eθ(t)w(t)

z(t) = Cθ(t)x(t) + Dθ(t)u(t)

◮ θ(t) ∈ K is a Markovian process defined by

P(θ(t + h) = j |θ(t) = i) = δi−j + λijh + o(h)

◮ x(0) = 0◮ θ(0) = θ0 with probability P(θ0 = i) = πi0, ∀i ∈ K

◮ Performance indices are defined accordingly to

‖η‖22 =

∫∞

0

E{η(t)′η(t)}dt

50 / 64

Page 51: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Hybrid Markov jump linear systems

◮ Hybrid Markov jump linear system

ξ(t) = Fθ(t)ξ(t) + Jθ(t)w(t)

z(t) = Gθ(t)ξ(t)

ξ(tk) = Hθ(tk )ξ(t−k )

◮ Sampling instants h = tk+1 − tk > 0, ∀k ∈ N are independentof the Markov process

◮ Jumps may occur inside the sampling interval◮ State feedback control design of the form

u(t) = u(tk ) = Lθ(tk)x(tk), ∀t ∈ [tk , tk+1)

◮ Impossible to determine an equivalent discrete-time system!

51 / 64

Page 52: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

H2 performance

◮ Theorem 3: If the coupled matrix differential equations

Pi (t) + F ′i Pi(t) + Pi(t)Fi +

j∈K

λijPj(t) = −G ′iGi

for i ∈ K admit a solution in the time interval t ∈ [0, h]satisfying the boundary conditions

Pi(0) < Si−1 , Pi(h) > H ′

iSi−1Hi , i ∈ K

for some symmetric matrices Si > 0, then the hybrid Markovjump linear system is mean square stable and satisfies

J2(u) <∑

i∈K

πi0tr(J′iH

′iSi

−1HiJi)

52 / 64

Page 53: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

H2 performance

◮ The previous result characterizes the optimal solution

◮ As before, the following matrices are defined

Fi = Fi + (λii/2)I =⇒ Fhi = eFih, i ∈ K

G ′di Gdi=

∫ h

0eF

G ′iGi +

j 6=i∈K

λijPj(τ)

︸ ︷︷ ︸

≥0

eFi τdτ, i ∈ K

53 / 64

Page 54: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

H2 performance

◮ The determination of the state feedback gains Li , i ∈ K

requires the block structure

Si =

[Xi Yi

Y ′i Zi

]

> 0, i ∈ K

and to solveinfSi>0

i∈K

πi0tr(E′i X

−1i Ei )

[Xi 00 I

]

>

[Ahi Bhi

Chi Dhi

]

Si

[Ahi Bhi

Chi Dhi

]′

, i ∈ K

In the affirmative case Li = Y ′i X

−1i , i ∈ K

54 / 64

Page 55: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

H2 performance

◮ Important facts:

◮ N uncoupled subproblems◮ Matrices Ghi , i ∈ K are coupled through the dependence of

Pj , j 6= i ∈ K. For this reason a globally convergent algorithmhas been developed

Si(ℓ+1) ≥ Si(ℓ) ≥ 0 , ℓ ∈ {0, 1, · · · }

◮ There is no difficulty to treat H∞ control design problems

55 / 64

Page 56: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Inverted pendulum

◮ Inverted pendulum without friction

u

mg

ftr

φ

xh

whose vertical displacement θv = φ− π/2 follows from thelinear model. Data are given in (Geromel and Korogui, 2011)

(M +m)xh −mℓθv = u

ℓθv − xh − gθv = 0

56 / 64

Page 57: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Inverted pendulum

◮ Sampled-data H2 optimal - uniform sampling

h = 500 [ms]

L = [1.3023 3.3221 −159.1264 −46.8910] =⇒ J2(u) = 156.6714

◮ Sampled-data H2 guaranteed - nonuniform sampling

hk ∈ T = [300, 700] ms ∀k ∈ N

L = [0.6539 1.9751 −146.6085 −43.0491] =⇒ J2(u) = 370.4710

57 / 64

Page 58: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Inverted pendulum

◮ Time simulation - hk uniformly distributed inside T

0 2 4 6 8 10−50

0

50

0 2 4 6 8 10−100

0

100

200

t [s]

t [s]

θv[o]

u[N

]

58 / 64

Page 59: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Mass-spring-damper system

◮ Two masses without friction connected with a damper andtwo springs, (Lutz, 2014)

◮ The control signal is transmitted through a network:◮ Bandwidth limitation: 1/h = 2 [Hz]◮ Packet dropout: Two Markov modes K = {1, 2}

corresponding to package loss and transmission success definedby a transition rate matrix Λ such that

eΛh0 =

[0.85 0.150.10 0.90

]

, h0 = 20 [ms]

◮ Initial probability π0 = [0.4 0.6]′

59 / 64

Page 60: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Mass-spring-damper system

◮ Sampled-data H∞ optimal control - uniform sampling

h = 500 [ms]

J∞(u) = γ2opt , γopt = 1.5351

Considering γ = 1.6 we have calculated state feedback gains

[L1L2

]

=

[0.8653 1.0451 −0.6580 −3.12970.7204 0.7531 −0.5783 −2.7536

]

60 / 64

Page 61: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Mass-spring-damper system

◮ Algorithm evolution for γ = 1.6

0 10 20 300

20

40

60

80

‖Sℓ‖2

‖∆Sℓ‖2

61 / 64

Page 62: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Mass-spring-damper system

◮ Monte Carlo simulation of 500 runs provides the trajectoriesof the closed-loop system excited by the exogenousperturbation w(t) = sin(6.38t), for t ∈ [0, 2] [s] and w(t) = 0elsewhere, (Leon-Garcia, 2008)

0 2 4 6 8 10 12−0,1

0,3

0,7

1,0

t [s]

z(t)′z(t)

62 / 64

Page 63: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Conclusion

◮ Linear filtering: Optimal filtering in the context ofnetworked systems

◮ Dynamic output feedback control: Optimal control underpartial information taking into account bandwidth limitationand packet dropout occurrence

◮ Switched control: Optimal decision rule for thedetermination of hk ∈ T at each k ∈ N towards performanceoptimization.

63 / 64

Page 64: A Unified View of Sampled-Data Control Systemsgeromel/Kyoto_Presentation.pdf · Kyoto, December 9th, 2015 1/64. 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300

0 50 100 150 200 250 300 350 400 450 500 550

0

50

100

150

200

250

300

350

400

450

Conclusion

Thank you for your attention!!!

64 / 64


Recommended