+ All Categories
Home > Documents > A Uniform PV Framework for Balanced Dynamics

A Uniform PV Framework for Balanced Dynamics

Date post: 17-Feb-2022
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
13
A Uniform PV Framework for Balanced Dynamics vertical structure of the troposphere surface quasigeostrophic models Dave Muraki Simon Fraser University Greg Hakim University of Washington Chris Snyder NCAR Boulder http://grads.iges.org 1
Transcript
Page 1: A Uniform PV Framework for Balanced Dynamics

A Uniform PV Framework for Balanced Dynamics

. vertical structure of the troposphere

. surface quasigeostrophic models

. Dave Muraki

Simon Fraser University

. Greg Hakim

University of Washington

. Chris Snyder

NCAR Boulder

htt

p:/

/gra

ds.ig

es.o

rg

1

Page 2: A Uniform PV Framework for Balanced Dynamics

Dynamical Structures of the Troposphere

Two-Dimensional Idealizations

. 2D barotropic vorticity: rotating dynamics

. shallow water: balanced and gravity wave dynamics & vertical displacement

. surface QG: balanced dynamics & uniform PV with vertical structure

. surface pressure & thickness vis-a-vis 500 hPa vorticity & geopotential

htt

p:/

/gra

ds.ig

es.o

rg

2

Page 3: A Uniform PV Framework for Balanced Dynamics

PV Structure of the Lower Atmosphere

Well-Mixed Troposphere

. PV gradients are relatively weak in troposphere

. dominant PV influence from tropopause displacement

. PV on 330K & 310K surfaces, mean PV gradient

mor

gan

&nie

lsen

-gam

mon

(199

9)

htt

p:/

ww

w.a

tmos

.was

hin

gton

.edu/∼

hak

im

3

Page 4: A Uniform PV Framework for Balanced Dynamics

Vertical Structure of the Lower Atmosphere

Upper-Level Disturbances

. disturbance amplitudes peaked at tropopause level, decrease in troposphere

. vertical structure of geopotential (zonal fourier amplitudes) at 40◦N

. tropopause map of potential temperature

0 0.2 0.4 0.6 0.81000925850700600500

400

300250

200

150

100

70

50

30

Amplitude

Pre

ssu

re

REAN Geopotential EOF 10/95--3/96 (40N)

k = 0: 99.9979%k = 1: 93.0974%k = 5: 96.7242%k = 10: 95.4953%k = 20: 87.0621%

htt

p:/

ww

w.a

tmos

.was

hin

gton

.edu/∼

hak

im

. tropopause potential temperature as key dynamical variable for simple tropospheric model

4

Page 5: A Uniform PV Framework for Balanced Dynamics

Vertical Structure of the Lower Atmosphere II

Upper-Level Disturbances

. disturbance amplitudes peaked at tropopause level, decrease in troposphere

. vertical structure of winds (zonal fourier amplitudes) at 40◦N

0 0.2 0.4 0.61000925850700600500

400

300250

200

150

100

70

50

30

Amplitude

Pre

ssu

re

REAN U EOF 10/95--3/96 (40N)

k = 0: 99.0392%k = 1: 91.07%k = 5: 92.769%k = 10: 88.9822%k = 20: 83.4804%

0 0.2 0.4 0.61000925850700600500

400

300250

200

150

100

70

50

30

Amplitude

Pre

ssu

re

REAN V EOF 10/95--3/96 (40N)

k = 0: 82.7959%k = 1: 89.3682%k = 5: 95.5604%k = 10: 95.1176%k = 20: 87.9461%

htt

p:/

ww

w.a

tmos

.was

hin

gton

.edu/∼

hak

im

5

Page 6: A Uniform PV Framework for Balanced Dynamics

Zero PV Quasigeostrophic Dynamics

Well-Mixed Troposphere⇒ q ≡ 0

. dynamically active, rigid tropopause (z = H) & passive, topographic lower surface (z = 0)

0

H

DDt

tθ= 0 Φ θ

�����������z

=;

∇ Φ2

t

Φ z=

= 0

-b (x , )y

Surface QG for a Finite Depth Troposphere (HsQG)

. 3D PV inversion from tropopause & topographic BCs:

∇2Φ = 0 ; Φz(z = H) = θt(x, y, t) ; Φz(z = 0) = −b(x, y)

. 2D advection of tropopause potential temperature, θt:

Dθt

Dt= θ

tt + u

tθtx + v

tθty = 0 ; u

t= −Φy(z = H) ; v

t= Φx(z = H)

. sQG interface as model for tropopause: Rivest, et.al. (1992); Juckes (1994)

6

Page 7: A Uniform PV Framework for Balanced Dynamics

PV Inversion & Baroclinic/Barotropic Dynamics

Zero PV Fourier Inversion

. fourier transform of streamfunction (m =√

k2 + l2 )

Φ(k.l; z, t) =

{cosh mz

m sinh mH

}ˆθt(k, l; t) +

{cosh m(z −H)

m sinh mH

}b(k, l)

. vertical decay away from boundaries

→ small scales are more localized to tropopause/surface (mH � 1 )

→ larger scales extend deeper into troposphere (mH � 1)

Small & Large-Scale Dynamics

. fourier transform of tropopause-level streamfunction (w/o topography)

ˆΦt(x, y; H, t) =

{coth mH

m

}ˆθt(k, l; t) ∼

ˆθt

mmH � 1

ˆθt/H

m2mH � 1

→ small horizontal scales (relative to depth) invert as sQG (mH � 1)

→ larger horizontal scales large invert as barotropic vorticity (mH � 1)

. on the large scales, potential temperature gradient (−θt/H) evolves as barotropic vorticity ζ

7

Page 8: A Uniform PV Framework for Balanced Dynamics

Topographic Flows

Sloping Bottom Topography (b = σy)

. illustration of dynamic similarity between horizontal PV gradient & sloping bottom

. streamfunction: Eady shear with simple travelling fourier mode (m =√

k2 + l2 )

Φ(x, y, z, t) = −σyz + A

{cosh mz

m sinh mH

}cos k(x− ct) cos ly

. topographic Rossby wave dispersion relation, analogous to Rhines (1970)

c = σH

{1−

coth mH

mH

}

Flow over Bottom Topography

. tropopause streamfunction for gaussian topography, b = e−αr2

Φ(x, y, H, t) = −U∞

y −∫ ∞

0

J0(mr)

sinh mH

e−m2/4α

2αdm

8

Page 9: A Uniform PV Framework for Balanced Dynamics

Two-Surface Edge Wave

Finite Rossby Number Corrections

. nonlinear edge wave solution with simple Eady shear, correct to O(R)

. square wave k = l = 1, vertical mode number m =√

k2 + l2 = 2.5

. beyond short-wave stability criterion: m > mc ≈ 2.399

. upper-level cyclone asymmetry for R = 0.1

. nonlinear wavespeed same as neutral linear edge waves

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Upper boundary potential temperature

−4

−3

−2

−1

0

1

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Lower boundary potential temperature

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

9

Page 10: A Uniform PV Framework for Balanced Dynamics

Free-Surface Dynamics

Uniform PV Inversion (in progress, R Tulloch)

. moving free-surface at z = Rh(x, y; t)

. total surface potential temperature, θs(x, y; t) = h(x, y; t) + θ(x, y,Rh(x, t; t), t)

. surface BCs: kinematic conditions with continuity of potential temperature and pressure

. Fourier solution of the 3D streamfunction (m =√

k2 + l2 )

Φ(x, y, z; t) =

∫ +∞

−∞θ

s(k, l; t)

{1

m + σ−1

}ei(kx+ly)

dk dl

→ surface value of potential temperature is −σ

. freely decaying vortex organizations

sQG+1 ← ← random IVs→ → fsQG+1

10

Page 11: A Uniform PV Framework for Balanced Dynamics

Baroclinic Instability

2sQG+1: Downstream Development

. tropopause baroclinic wave

11

Page 12: A Uniform PV Framework for Balanced Dynamics

Uniform PV Thinking

Dynamics of Uniform PV Layers

. significant part of tropospheric dynamics are strongly influenced by tropopause & ground

. simple formulation for understanding rotating, stratified flows dominated by surfaces/boundaries

. surface dynamics embeds large & small-scale limits:

→ large-scale barotropic vorticity dynamics

→ small-scale surface-trapped dynamics

. moving interface formulations:

→ free-surface dynamics, as a continuously-stratified shallow-water analog

→ tropopause dynamics

Computational Efficiency of sQG Fourier Inversion

. resolution of vertical structure is exact for given horizontal discretization

. only 2D FFTs required to evolve 3D tropospheric flow

. finite Rossby number corrections also computed with 2D efficiencies

12

Page 13: A Uniform PV Framework for Balanced Dynamics

QG+ Reformulation

Exact Reformulation of PE

. three-potential representation: Φ, F, G

v = Φx − Gz

−u = Φy + F z

θ = Φz + Gx − F y

R w = F x + Gy

. potential inversions

∇2 Φ = q − R{∇ ·

[θ (∇× ~uH)

]}

∇2 F = R{−

(Dθ

Dt

)x

+

(Dv

Dt

)z

}

∇2 G = R{−

(Dθ

Dt

)y−

(Du

Dt

)z

}. surface boundary conditions

R ws

= (F x + Gy)s

; θt = (Φz + Gx − F y)s

. advection dynamics (interior & surface)

Dq

Dt= 0 ;

Dθt

Dt+ w

s= 0

13


Recommended