+ All Categories
Home > Documents > A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope...

A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope...

Date post: 01-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
20
A Venus-like atmosphere on the early Earth from magma ocean outgassing Paolo A. Sossi 1,2* Antony D. Burnham 3 , James Badro 2 , Antonio Lanzirotti 4 , Matt Newville 4 Hugh St.C. O’Neill 3 1 2 3 4 © The authors. All rights reserved *corresponding author. Email address: [email protected]
Transcript
Page 1: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

A Venus-like atmosphere on the early Earth from magma ocean outgassing

Paolo A. Sossi1,2*

Antony D. Burnham3, James Badro2, Antonio Lanzirotti4, Matt Newville4

Hugh St.C. O’Neill3

1 2 3 4

© The authors. All rights reserved

*corresponding author. Email address: [email protected]

Page 2: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Planetary atmospheres

Venus Earth Mars

CO2/N2 Initial

atmosphere

? ???? ?

CO2/N2 Present

atmosphere

43.3 7.8 × 10-4 55

Total bars 92 1.013 0.0061

What did Earth’s first atmosphere look like?

Page 3: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Warm, little ponds

Miller-Urey experiment (1952)

Reducing atmosphere (CH4-NH3) on

early Earth

Spark discharge in presence of H2O

Produced ~23 amino-acids, some

necessary for life

Did such an atmosphere exist?

Page 4: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

A primary atmosphere?

Aston (1924) Fegley and Schaefer (2014)

Noble gases are depleted by orders of magnitude relative to major volatiles

Page 5: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Secondary atmosphere

Earth has a secondary (i.e., post-nebular) atmosphere

Formed by magma ocean outgassing

Uncertainty as to the redox state of the early atmosphere

At equilibrium

fO2 of mantle = fO2 of atmosphere

Neutral

Page 6: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Magma ocean – atmosphere link

𝐹𝑒2+𝑂 𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒 +1

4𝑂2(𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒) = 𝐹𝑒3+𝑂1.5(𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒)

𝐾 =𝑋(𝐹𝑒3+𝑂1.5). γ(𝐹𝑒

3+𝑂1.5)

𝑋 𝐹𝑒2+𝑂 . γ 𝐹𝑒2+𝑂 . 𝑓(𝑂2)0.25

At equilibrium between the magma ocean and the atmosphere,

Activity coefficients 𝐾 = exp−∆𝐺 𝑟

𝑅𝑇

Fe3+/Fe2+ ratio of magma ocean at its surface at a given fO2 depends on:

1) Composition

2) Temperature

Well known for basalts; unknown for peridotites

Page 7: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Experimental approach

Experiments

Isothermal

Constant fO2

Natural processes

Adiabatic

Constant amount of O

Fe dominant redox-sensitive species in planetary compositions

Approach: Use Fe3+/Fe2+ ratio as a proxy for oxygen content

Page 8: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Experimental Set-up

• Synthetic peridotite composition

(~KLB-1) ≈ Earth’s mantle

• Melted by aerodynamic levitation

with 125 W CO2 laser at 1900±50

°C for ~ 30 s

• logfO2 varied by changing gas

mixture (O2, Ar-CO2-H2) between

ΔIW-1.5 and ΔIW+6.5

• Quenched to glass by cutting power

to laser

SiO2 Al2O3 MgO CaO FeO(T)

46.53 4.37 38.05 2.06 8.44

Aerodynamic laser levitation furnace, IPG, Paris

Molten silicate Earth in a controlled atmosphere

Page 9: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Fe3+/Fe2+ in peridotite glasses

• Fe K-edge at beamline 13 IDE,

APS, Chicago

• Position of pre-edge centroid and

0.8 edge energy correlate with

Fe3+/Fe2+

• Calibrated by Fe3+/Fe2+ in synthetic

MORB glasses determined by

Mössbauer spectroscopy

• Uncertainty ~±0.015 relative on

Fe3+/∑Fe

Oxid

ised

Reduced

X-Ray Absorption Near-Edge Structure

Centroid

Edge

Page 10: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Oxidation state of Fe in peridotite

• Slope reflects the reaction

stoichiometry (0.25 = ideal)

• Equilibrium constant of reaction is

given by the intercept

• Reaction should tend towards

ideality at high temperatures

𝐹𝑒2+𝑂 𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒 +1

4𝑂2 = 𝐹𝑒3+𝑂1.5 (𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒)

Use of calibration requires estimation of Bulk Silicate Earth Fe3+/Fe2+

Intercept = logK

Page 11: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Fe3+/Fe2+ in peridotites

Canil et al., 1994; Canil and O’Neill, 1996

• Fe3+/Fe2+ correlated inversely

with MgO (also other indices

of melt depletion)

• Due to greater incompatibility

of Fe3+ compared to Fe2+

during partial melting

• At the MgO content of the

primitive mantle (36.77 wt. %),

Fe3+/∑Fe = 0.037 ± 0.005

Page 12: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Oxidation state of Fe in peridotite

• Presume present-day bulk silicate

Earth (BSE) = magma ocean

• Fe3+/∑Fe of 0.037 (Canil et al.

1994) yields an fO2 depending on

calibration for molten peridotite at

liquidus temperature

• Fixes CO2/CO and H2O/H2 ratios in

atmosphere

𝐹𝑒2+𝑂 𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒 +1

4𝑂2 = 𝐹𝑒3+𝑂1.5 (𝑠𝑖𝑙𝑖𝑐𝑎𝑡𝑒)

Intercept = logK

BSE

Used to calculate composition of earliest atmosphere

Page 13: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Composition of early Earth atmosphere

To solve for speciation in an H-C-N-O atmosphere

requires 3 constraints

1) fO2Given by Fe3+/Fe2+ in peridotite liquid

2) H/C

3) H/NComputed by

i) Bulk Silicate Earth abundances (Hirschmann 2018)

ii) Solubility laws in peridotite (e.g. Moore et al. 1998)

Page 14: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Composition of early Earth atmosphere

Atmospheric speciation calculated during closed-system cooling

We find composition of terrestrial atmosphere was ~Venus today

Atmosphere High T Low T

<IW (H/C = 5) H2, CO, H2O CH4, N2

>IW (H/C = 5) H2O, CO, H2,

CO2

CO2, N2

H/C < 5 (~IW) CO, CO2 CO2, N2

H/C > 5 (~IW) H2O, H2 CH4, N2, (NH3)

Major volatile species at these conditions

BSE molar H/C ~ 5

But likely lower as H solubility >> C solubility in magma ocean

Page 15: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Planetary atmospheres

Venus Earth Mars

CO2/N2 Initial

atmosphere

? ~35 ?

CO2/N2 Present

atmosphere

43.3 7.8 × 10-4 55

Total bars 92 1.013 0.0061

Page 16: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Atmospheric Loss

𝜆𝑒𝑠𝑐 =𝑚𝑣𝑒𝑠𝑐

2

2𝑘𝐵𝑇

“Escape parameter”

Velocity required for escape

Mean thermal velocity of gas

Mass of gas species

Loss is most efficient for:

1. Lighter masses (H)

2. Smaller bodies (low vesc)

3. Hotter atmospheres (high Texobase)

𝑇𝑒𝑥𝑜𝑏𝑎𝑠𝑒 = 𝐶𝐹𝑋𝑈𝑉𝑔

+ 𝑇𝑚𝑖𝑛 Lammer et al. (2003)

0.0

1.0

2.0

3.0

4.0

5.0

0.5 1 1.5 2

UV

Flu

x r

elat

ive

to E

arth

Semi-Major Axis (AU)

Page 17: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Hydrogen Isotope FractionationJeans Escape (λ >> 1)

𝑑𝑚𝐻

𝑑𝑡𝐽

= 𝑛2𝑘𝐵𝑇

𝜋𝑚𝐻

12

1 + 𝜆𝑒𝑠𝑐 𝑒−𝜆𝑒𝑠𝑐

Earth retains liquid H2O on its surface over geological timescales

𝑑𝑚𝐷

𝑑𝑡𝐽

= 𝑛2𝑘𝐵𝑇

𝜋𝑚𝐷

12

1 + 𝜆𝑒𝑠𝑐 𝑒−𝜆𝑒𝑠𝑐

𝑑𝑚𝐻𝑑𝑡𝑑𝑚𝐷𝑑𝑡

=𝑚𝐷

𝑚𝐻

1.0

10.0

100.0

-8 -7 -6 -5 -4 -3 -2 -1 0

(D/H

) Pla

net/(

D/H

) Ear

th

log([H]Planet/[H]Earth)

Venus = 1/30 million

Mars = 0.2%

Use D/H ratio to constrain hydrogen loss fraction

Page 18: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Why H2O counts - the Urey Reaction

𝐶𝑎𝑆𝑖𝑂3 + 𝐶𝑂2 = 𝐶𝑎𝐶𝑂3 + 𝑆𝑖𝑂2

Reaction catalysed by the dissolution

of CO2 in water (Urey, 1952)

Global crustal recycling process on

Earth helped C burial

Effective mechanism for drawing

down atmospheric CO2 levels

May occur over 100 Myr

Sleep et al. 2001

CO2 stable

Page 19: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Development of life?

AAs produced in presence of pH-

buffered H2O at ~7 with CaCO3

(Cleaves et al. 2008)

Yields are halved compared with

reducing atmospheres

Cleaves et al. 2008

CO2-N2 atmospheres inefficient in synthesising amino-acids

(glycine only; Schlesinger and Miller 1983)

Warm, little ponds?

Page 20: A Venus-like atmosphere on the early Earth from magma ocean … · 2020. 5. 2. · Hydrogen Isotope Fractionation Jeans Escape (λ>> 1) I𝐻 𝐽 = J 2 G𝐵 𝜋 I𝐻 1 2 1+𝜆𝑒

Conclusions

• Calibrated dependence of Fe2+/Fe3+ on fO2 in peridotite liquids

relevant to planetary magma oceans

• Earth had a neutral, Venus-like atmosphere produced by

magma ocean outgassing

• Earth is bracketed heliocentrically by planets with CO2-N2

(97:3) atmospheres

• Large mass and distance from Sun minimised H-loss on Earth

compared to Venus and Mars

• Atmosphere underwent significant CO2 draw-down post

magma-ocean on Earth


Recommended