+ All Categories
Home > Documents > A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010...

A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010...

Date post: 15-Jan-2016
Category:
Upload: shawn-oliver
View: 213 times
Download: 0 times
Share this document with a friend
Popular Tags:
51
A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona
Transcript
Page 1: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

A Whole-Heliosphere View of the Solar Wind

Hale LectureAmerican Astronomical Society

5/24/2010

Marcia NeugebauerUniversity of Arizona

Page 2: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

A Better Title:

The Things that Happen to the Solar Wind After it Leaves the Sun

Page 3: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

The Complex Solar Atmosphere

Page 4: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

The Sun creates both slow and fast solar wind

Page 5: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

But, it’s a complicated process

Page 6: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Model of open and closed field lines

(Wang et al., 2007)

Page 7: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

The Source-Surface Model

(Cravens, 1997)

Page 8: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Major Processes in the Solar Wind

• Expansion• Collision• Reconnection• Pickup (mass loading)

• All of which leads to: – Turbulence– The interstellar medium

Page 9: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Expansion

Page 10: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

First Adiabatic Invariant(Conservation of Magnetic Moment )

= mw2/2B T/B = constant

As B , expect T , and T||/ T

Page 11: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Magnetic moment versus distance

(Tu, 1988)

Magnetic Moment versus Distance from Sun

Page 12: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Tperp/Tpar vs βpar for protons < 600 /V km s

Contours of max growth rate inωcp

Proton cyclotron

Parallelfirehose

Mirror instability

Obliquefirehose

(Hellinger et al., 2009)

Page 13: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Proton Distribution functions

(Marsch et al., 1981)

Dis

tanc

e fr

om S

un -

->

Solar wind speed -->

Page 14: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

The Strange Behavior of Alpha Particles

• Abundance highly variable• na/np = 0 - .03 in slow wind (~0 at HCS)• na/np = .04-.05 in fast wind• Greatly enhanced in CMEs (up to 0.40!)

• Hotter than protons• Ta/Tp = 4 to 6 in fast wind• Approaches isothermal in slow wind

• Faster than protons• Vap up to 100 km/s in fast wind • Vap -> 0 in dense, slow wind

• Anisotropic and double peaked

Page 15: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Vap vs Distance in Fast Wind

(Neugebauer et al., 1996)

Page 16: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Collision

Page 17: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Magnetized Plasmas Don’t Easily Mix

Page 18: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Note Boundaries Between Winds from Streamers & Coronal Holes

Page 19: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

(Gosling et al., 1978)

Some Stream Interfaces are Stable over Many AU

Page 20: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Tangential discontinuities between plasmas fromdifferent sources

Also called the heliospheric current sheet

Heliospheric Current Sheets, Embedded in the Slow Wind, are Also Stable

Solar Maximum Solar MinimumDeclining Activity

Page 21: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Result of the Solar Dipole Tilt(Ballerina Skirt)

(Jokipii & Thomas, 1981)

Page 22: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Solar Rotation Creates Corotating Interaction Regions

(Pizzo, 1978)

Page 23: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Signatures of a CIR at

~5 AU

(Lazarus et al., 1999)

SI at density drop

HCS on Day 138

Page 24: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Coronal Mass Ejections

Page 25: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Interplanetary CMEs

(Richardson, 1997)

Page 26: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Interaction Regions at Solar Max and Min

Page 27: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Evolution of Interaction

regions from

1 to 60 AU

Formation of MIRs

(Wang & Richardson, 2003)

Page 28: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Ecliptic plane view of pileup out to 100 AU

Page 29: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Effect of GMIRs on Cosmic Rays

(Burlaga et al., 2003)

Page 30: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Anti-Correlation of Sunspots and Cosmic Rays

Page 31: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Reconnection

Page 32: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Petschek Reconnection Mechanism

(Gosling, 2005)

Page 33: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Reconnection Exhaust Fans

(Gosling, 2010)

Bifurcated structure

Opposite V//B

Decreased B, Increased V, T

Observed even for small angle changes

Created by turbulence?

Page 34: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Pickup

Page 35: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Pick-up is sometimes associated with

Mass Loading

Page 36: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Non-Solar Sources of Solar Wind Ions

• Atoms and ions– Interstellar medium– Dust– Comets– Planets

• Dust– Comets and Asteroids– Interstellar medium– Jupiter

Page 37: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

The Pick-up Process

B

U

In solar-wind frame In inertial frame

Photoionization adds mass to wind.

Charge exchange creates fast neutral and slow ion.

Both processes provide drag on wind.

Page 38: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Proton Spectrum with Pickup Ions

(Gloeckler et al., 2001)

Page 39: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Inner Source of Pick-up Ions

(Gloeckler et al., 2001)

Page 40: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

High-Energy Tails of H and He

(Gloeckler, 2003)

Page 41: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Effect of Pickup Ions on the Wind

• Photoionization adds mass • Charge exchange may conserve mass

– Results in a fast neutral atom and a slow ion

• Both processes result in:– Acceleration of slow ions up to Vsw – Drag– Hot ions with Vth Vsw

Page 42: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Slow-Down of Solar Wind due to Pick-up Ions

Page 43: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Turbulence

Page 44: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

OGO 5Density fluctuations(Neugebauer, 1976)

f/fpg

Helios 2Field vector spectra

(Bruno & Carbone, 2005)

Power Spectra

Page 45: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

2-D Simulation of MHD Turbulence

(Greco et al., 2010)

Field lines + Current density (gray shade)

Current sheets generated locally

Reconnection heats plasma

Page 46: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

The End of the Road

(Approach to Alaska’s Bridge to Nowhere)

Page 47: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Interaction with the Interstellar Medium

Page 48: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Model of Outer Heliosphere

Page 49: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Anomalous Cosmic Rays at TS and in Heliosheath

(Courtesy A. Cummings, 2010)

Page 50: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

“The Ribbon”

Page 51: A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.

Summary

• A lot of interesting physics in the solar wind• Several unsolved issues

– Turbulent processes– Relaxation of anisotropic and multi-beams– Physics of high-energy tails– Acceleration of ACR– Prevalence of reconnection– Stability/sources of discontinuities

• Applications to many other astrophysical settings


Recommended