+ All Categories
Home > Documents > A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation,...

A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation,...

Date post: 31-Aug-2019
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
35
A2.5cm ISOLATION, IDENTIFICATION AND CHARACTERIZATION OF 2,2-DICHLOROPROPIONIC ACID UTILIZING BACTERIA WONG WEN YONG UNIVERSITI TEKNOLOGI MALAYSIA A2.5cm
Transcript
Page 1: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

A2.5cm ISOLATION, IDENTIFICATION AND CHARACTERIZATION OF

2,2-DICHLOROPROPIONIC ACID UTILIZING BACTERIA

WONG WEN YONG

UNIVERSITI TEKNOLOGI MALAYSIA

A2.5cm

Page 2: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

i

A2.5cm ISOLATION, IDENTIFICATION AND CHARACTERIZATION OF

2,2-DICHLOROPROPIONIC ACID UTILIZING BACTERIA

WONG WEN YONG

A thesis submitted in fulfilment of the

requirement for the award of the degree of

Master of Science (Bioscience)

Faculty of Biosciences and Medical Engineering

Universiti Teknologi Malaysia

MARCH 2013

Page 3: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

iii

___________ You

____________ For

___________ Your

_______ Support

______ And

__ Care

To __

My ______

Beloved _______

Family _________

Advisor ________

And _______

My ___

_ Friend

______ Thank

___________ You

____________ For

___________ Your

_______ Support

______ And

__ Care

To __

My ______

Beloved _______

Family _________

Advisor ________

And ______

_

Page 4: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

iv

5cm ABSTRACT

2,2-dichloropropionic acid (2,2-DCP) is an artificial halogenated compound

used as herbicide. A bacterium able to utilize 2,2-DCP as sole carbon source was

isolated from soil in Melaka rubber estate. The bacterium was identified as Labrys sp.

strain Wy1 using bacterium’s 16S rRNA partial sequence. The cells doubling time

was 34.6 hours in liquid minimal media supplied with 20 mM 2,2-DCP as sole

carbon source. Utilization of 2,2-DCP was confirmed by detection of chloride ion

released at 0.27 mM. An endophytic bacterium isolated from Axonopus compressus

which was identified as Burkholderia cepacia strain Wy5 was also able to utilize 2,2-

DCP as sole carbon source. The bacterium has cells doubling time 2.7 hours and

chloride ion released was also detected at 47.28 ± 0.25 mM in minimal media

contained 20 mM 2,2-DCP. Cell free extract (CFE) of Burkholderia cepacia Wy5

was further characterized due to its higher activity towards 2,2-DCP compared to

Labrys sp. Wy1. Dehalogenase found in CFE of Burkholderia cepacia Wy5 has

optimal enzyme specific activity at pH8 (0.83 μmol [Cl-] min

-1 mg

-1) and 40

oC (0.78

μmol [Cl-] min

-1 mg

-1). The dehalogenase was also able to react with other α-

haloalkanoic acid including monochloroacetic acid, DL-2-chloropropionic acid and

DL-2-bromopropionic acid, but not 3-chloropropionic acid. “Group I” and “Group II”

dehalogenase primers were used to amplify dehalogenase gene from both strains

Wy1 and Wy5 but only Burkholderia cepacia Wy5 showed positive result. The

dehalogenase gene fragment amplified was designated “deh-wy5” and subsequent

analysis showed it belongs to Group I dehalogenase. Customized primers based on

D,L-dex gene were designed to amplify complete sequence of deh-wy5 due to high

similarity between partial sequence of deh-wy5 and D,L-dex. Complete sequence of

deh-wy5 was eventually amplified and found to be identical (100%) to D,L-dex.

Page 5: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

v

A2.5cm ABSTRAK

Asid 2,2-dikloropropionik (2,2-DCP) merupakan bahan buatan berhalogen yang

diguna sebagai racun lalang. Sejenis bakteria yang disaring dari sampel tanah ladang getah

Melaka didapati mampu menggunakan 2,2-DCP sebagai sumber karbon tunggal. Bakteria

tersebut dikenal pasti sebagai Labrys sp. strain Wy1 hasil daripada kajian penjujukan 16S

rRNA-nya. Bakteria tersebut membiak dalam medium minima yang mengandungi 20 mM

2,2-DCP sebagai sumber karbon tunggal dengan tercatatnya masa gandaan sebanyak 34.6

jam. Pembebasan ion klorida sebanyak 0.27 mM yang dikesan dalam medium minima

mengesahkan penggunaan 2,2-DCP oleh bakteria tersebut. Satu lagi bakteria endofit juga

disaring dari kandungan daun rumput parit dengan nama saintifiknya Axonopus compressus.

Bakteria yang dikenal pasti sebagai Burkholderia cepacia strain Wy5 juga mampu

mengguna 2,2-DCP sebagai sumber karbon tunggal. Bilangan sel bakteria tersebut berganda

dalam masa 2.7 jam dan pembebasan ion klorida sebanyak 47.28 ± 0.25 mM dalam medium

minima yang mengandungi 20 mM 2,2-DCP juga dapat dikesan. Ekstrak isi sel (CFE)

bakteria Burkholderia cepacia Wy5 telah diuji secara terperinci memandangkan bakteria

tersebut mempunyai kadar penggunaan 2,2-DCP yang lebih tinggi berbanding dengan

bakteria Labrys sp. Wy1. Dehalogenase yang terdapat dalam ekstrak isi sel bakteria

mempunyai aktiviti enzim spesifik optimal yang tercatat pada pH8 (0.83 μmol [Cl-] min

-1

mg-1

) dan suhu 40oC (0.78 μmol [Cl

-] min

-1 mg

-1). Dehalogenase tersebut juga dapat

bertindak balas dengan asid α-haloalkanoik yang lain termasuk asid monokloroasetik, asid

DL-2-kloropropionik dan asid DL-2-bromopropionik, tetapi tiada tindak balas dikesan dengan

asid 3-kloropropionik. Primer dehalogenase “Group I” dan “Group II” telah diguna untuk

amplifikasi gen dehalogenase dari kedua-dua strain bakteria Wy1 dan Wy5 tetapi hanya

Wy5 memberi hasil positif. Penjujukan separa dehalogenase “Group I” tersebut diberi nama

“deh-wy5”. Disebabkan persamaan yang tinggi antara urutan separa deh-wy5 dengan gen D,L-

dex, primer yang berasaskan gen D,L-dex telah direka untuk tujuan amplifikasi gen

dehalogenase yang lengkap daripada bakteria strain Wy5. Akhirnya jujukan, lengkap gen

dehalogenase deh-wy5 dapat diamplifikasi dan gen tersebut didapati mempunyai persamaan

setinggi 100% berbanding dengan gen D,L-dex.

Page 6: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

vi

A2.5cm TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ABSTRACT iv

ABSTRAK v

TABLE OF CONTENTS vi

LIST OF TABLES x

LIST OF FIGURES xiii

LIST OF SYMBOLS xvi

LIST OF APPENDICES xvii

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Rationale of Investigation 4

1.3 Objectives 5

2 LITERATURE REVIEWS 6

2.1 Xenobiotics: An Overview 6

2.2 Persistent Organic Pollutants (POPs) and Its Health

Effects

11

2.3 Persistent Organic Pollutants (POPs) Pesticide in

Malaysia

14

2.4 Bioaugmentation as a Soil Bioremediation

Approach

18

2.5 Properties of 2,2-Dichloropropionic Acid (2,2-DCP) 20

2.6 Chemistry of Halogenated Compound 22

Page 7: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

vii

2.7 Microbial Dehalogenation 25

2.8 Dehalogenation Mechanism 28

2.9 Dehalogenation of Halogenated Alkanoic Acid 31

2.10 Classification of 2-Haloalkanoic Acid Hydrolytic

Dehalogenases

33

2.11 Biochemistry of 2-Haloalkanoic Acid Hydrolytic

Dehalogenases

38

2.12 Genetics of Haloalkanoic Acid Dehalogenase 41

3 MATERIALS AND METHODOLOGY 45

3.1 Culturing Media Composition 45

3.1.1 Minimal Media 45

3.1.2 LB (Lysogeny Broth) 47

3.1.3 Glycerol Stock Culture 47

3.2 Bacterial Isolation and Purification 48

3.2.1 Isolation and Purification of Soil Bacteria 48

3.2.2 Isolation and Purification of Endophytic

Bacteria from Leaves

48

3.3 Measurement of Microbial Growth 49

3.4 Halide Ion Assay (HIA) 49

3.4.1 HIA Reagent 49

3.4.2 HIA Standard Curve and Sample Testing 50

3.5. Cell Free Extract Preparation 51

3.6 Protein Concentration Determination 52

3.7 Enzyme Activity Assay 53

3.8 SDS-PAGE 54

3.8.1 Chemicals and Preparation 54

3.8.2 SDS-PAGE Apparatus Assembling, Gel

Loading and Sample Loading

57

3.8.3 Gel Staining, Destain and Drying 59

3.9 Molecular Analysis 60

3.9.1 DNA Extraction 60

3.9.2 Measurement of DNA Concentration 61

Page 8: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

viii

3.9.3 Gel Electrophoresis 61

3.9.4 Polymerase Chain Reaction (PCR)

Amplification of 16S rRNA Gene

62

3.9.5 Dehalogenase Gene PCR Amplification 64

3.9.6 Phylogenetic Analysis 66

3.10 Biochemical Characterization 66

3.11 Cell Fixation for Scanning Electron Microscopy 67

4 ISOLATION AND CHARACTERIZATION OF

LABRYS SP. STRAIN WY1 ABLE TO UTILIZE 2,2-

DICHLOROPROPIONATE (2,2-DCP) AS SOLE

SOURCE OF CARBON

68

4.1 Introduction 68

4.2 Results 69

4.2.1 Isolation and Characterization of 2,2-DCP

Degrading Bacteria

69

4.2.2 Growth Profile 71

4.2.3 Halide Ion Assay 73

4.2.4 PCR Amplification of 16S rRNA gene 74

4.2.5 Sequencing and Analysis of 16S rRNA

Gene

75

4.2.6 Phylogenetic Study 79

4.2.7 Biochemical Tests 81

4.2.8 Amplification of Dehalogenase Gene 82

4.3 Discussion 83

5 ISOLATION AND CHARACTERIZATION OF

ENDOPHYTE FROM AXONOPUS COMPRESSUS

(RUMPUT PARIT) CAPABLE OF UTILIZE 2,2-DCP

AS SOLE CARBON SOURCE

86

5.1 Introduction 86

5.2 Results 87

5.2.1 Bacteria Characterization 87

Page 9: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

ix

5.2.2 Scanning Electron Microscopy (SEM) 89

5.2.3 Growth Profile 91

5.2.4 Halide Ion Assay 92

5.2.5 PCR Amplification of 16S rRNA Gene 93

5.2.6 Sequencing and Analysis of 16S rRNA

Gene

94

5.2.7 Phylogenetic Study 96

5.2.8 Biochemical Test (API®) 98

5.2.9 Cell Free Extract (CFE) Analysis 100

5.2.9.1 CFE Enzyme Activity in Different

Buffers

100

5.2.9.2 CFE Enzyme Activity in Different

pH and Temperature

101

5.2.9.3 CFE Enzyme Activity towards

Different Substrate

102

5.2.9.4 SDS-PAGE 103

5.2.10 Amplification of Dehalogenase Gene 104

5.2.10.1 Gel Electrophoresis of PCR Product 104

5.2.10.2 Sequencing and Analysis of

Dehalogenase Gene

105

5.2.11 Amplification of Complete deh-wy5 (D,L-

dex-alike) Gene

108

5.2.11.1 Primers Design based on D,L-dex

Gene

108

5.2.11.2 Gel Electrophoresis of PCR product 111

5.2.11.3 Sequencing and Analysis of

deh-wy5 (D,L-dex-alike) Gene

112

5.3 Discussion 116

6 CONCLUSION 121

6.1 General Conclusion 121

REFERENCES 123

Appendix 136

Page 10: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

x

A2.5cm LIST OF TABLES

TABLE TITLE PAGE

2.1 Estimated annual industrial production of chlorinated

hydrocarbons and major applications (Fetzner, 1998)

7~9

2.2 Some endocrine disrupting effects of pops and selected

other chemicals

13

2.3 Part of registered pesticide from October 2005 to

December 2011 listed by Ministry of Agriculture and

Agro-Based Industry Malaysia

15

2.4 Effect of number of chlorine on halogenated organic acid

to the pKa value

23

2.5 Effect of type of halogen on halogenated organic acid to

the pKa value

24

2.6 Effect of chlorine position on halogenated butanoic acid to

the pKa value

24

2.7 Haloalkanoate dehalogenases produced by miroorganisms

and their substrate specificity

35

2.8 Further characterization of 2-haloalkanoic acid hydrolytic

dehalogenase into discrete Class according to their

substrate specificity and product configuration (Slater et

al., 1995). Group categorizing system according to

Weightman et al. (1982) and Hardman (1991) were also

included.

36~37

3.1 Minimal media components 46

3.2 Example – Composition of minimal media 46

3.3 Preparation of chloride standard solution diluted with 50

Page 11: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

xi

minimal media

3.4 Standard solutions of BSA 52

3.5 Testing media contained 1 mM 2,2-DCP (1 unit) 53

3.6 Chemicals required for SDS-PAGE 54

3.7 Seperating gel preparation 58

3.8 Stacking gel preparation 58

3.9 Primers designed by Weisburg et al. (1991). Only fD1 and

rP1 were used in current investigation (Weisburg et al.,

1991)

63

3.10 PCR method for amplification of 16S rRNA gene 63

3.11 Touchdown PCR method for “Group I” dehalogenase gene 64

3.12 PCR method for “Group II” dehalogenase gene 64

3.13 “Group I” deh primer sequences, showing comparisons of

conserved binding sites from various sources (Hill et al.,

1999)

65

3.14 “Group II” deh primer sequences, showing comparisons of

conserved binding sites from various sources (Hill et al.,

1999)

65

3.15 General fixation schedule for animal cell 67

4.1 Bacterial colony morphology of isolate Wy1 found on 10

mM 2,2-DCP minimal media

70

4.2 Gram stain characteristics of bacteria Wy1 70

4.3 Summary of growth properties of bacteria Wy1 in different

concentration of 2,2-DCP

72

4.4 Sequences producing significant alignments with Wy1 in

descending order (BLASTn)

76

4.5 Comparison of biochemical test result of Wy1 with related

species

81

5.1 Bacterial colony morphology of isolate Wy5 found on 10

mM 2,2-DCP minimal media

87

5.2 Gram stain characteristics of isolate Wy5 88

5.3 Summary of growth properties of isolate Wy5 in different

concentration of 2,2-DCP

91

Page 12: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

xii

5.4 Summary of chloride ion released by isolate Wy5 92

5.5 List of sequences producing significant alignments with

Wy5 from BLASTn sorted by their “maximum identity” in

descending order

95

5.6 API® 20NE test result of isolate Wy5 99

5.7 Summary of CFE dehalogenase activity tested in different

buffers. Calculation and method as reported by Ng (2007)

100

5.8 CFE dehalogenase activity towards different substrate 102

5.9 Dehalogenase genes aligned with partial deh-wy5 sequence 105

5.10 Designed primers generated by Primer3 110

5.11 PCR method of designed primers 110

5.12 Amino acid composition of deh-wy5 115

5.13 Comparison of non-stereospecific dehalogenases’ optima

pH and temperature

120

Page 13: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

xiii

A2.5cm LIST OF FIGURES

FIGURE TITLE PAGE

2.1 Structure of 2,2-dichloropropionic acid (2,2-DCP) 20

2.2 Dehalogenation mechanisms (Fetzner and Lingens, 1994) 30

2.3 Basic mechanism of hydrolytic dehalogenation (Slater et

al., 1996)

32

2.4 2-haloalkanoic acid halidohydrolase dehalogenation

mechanism 1 resulting in inversion of product

configuration from L-isomer to D-isomer (Little and

Williams, 1971)

38

2.5 2-haloalkanoic acid halidohydrolase dehalogenation

mechanism 2 resulting in retention of product

configuration (Weightman et al., 1982)

40

2.6 Sequence alignment of L-haloacid dehalogenases by

Janssen et al. (1994)

42

2.7 Part of alignment of deduced amino acid sequences of the

Group I deh proteins by Hill et al. (1999)

44

3.1 SDS-PAGE - stock solutions 55

3.2 SDS-PAGE - working solutions 56

3.3 SDS-PAGE - sample buffers 57

4.1 Bacterial colonies on minimal media (Photo taken after 5

days of incubation)

69

4.2 Gram stained bacteria Wy1 under microscope (1000X) 70

4.3 Growth profile of strain Wy1 in triplicate of minimal

media contained four different concentration of 2,2-DCP

71

Page 14: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

xiv

4.4 Correlation between chloride ion (mM) released in

minimal medium containing 30 mM 2,2-DCP and growth

profile recorded at A600nm

73

4.5 Gel electrophoresis of PCR product - 16S rRNA gene

fragment of isolate Wy1

74

4.6 Partial 16S rRNA gene sequence of isolate Wy1 75

4.7 Alignment between Wy1 sequence (Query) with Labrys

neptuniae strain Liujia-146 16s rRNA sequence (Sbjct)

77

4.8 Information sheet of Labrys sp. Wy1 16S rRNA partial

gene sequence from NCBI database

(http://www.ncbi.nlm.nih.gov/nuccore/jf907580)

78

4.9 Phylogeny analysis using MEGA5 79

4.10 Neighbour-Joining phylogeny tree of Labrys sp. Wy1 80

4.11 Amplification of dehalogenase gene from Wy1 82

5.1 Gram staining reveals isolate Wy5 was Gram negative 88

5.2 SEM micrograph of isolate Wy5 visualized at 10,000X,

10kV accelerating voltage

89

5.3 SEM micrograph of isolate Wy5 showing bacterial binary

fission

90

5.4 Growth profile of isolate Wy5 in triplicate of minimal

media contained 10 mM, 20 mM and 40 mM of 2,2-DCP

91

5.5 Chloride ion released ([Cl-]) of isolate Wy5 in triplicate of

three different concentration of 2,2-DCP

92

5.6 Gel electrophoresis of PCR product - 16S rRNA gene

fragment of isolate Wy5

93

5.7 Partial 16S rRNA gene sequence of isolate Wy5 94

5.8 Neighbour-Joining phylogeny tree of isolate Wy5 97

5.9 Information sheet of API® test profile ID: 1047577 from

API-WEB

98

5.10 API® 20NE test strip of isolate Wy5 after 48 hours of

incubation at 30oC

99

5.11 Enzyme specific activity from pH5~pH10, 35oC; Buffer:

0.1 M Tris-acetate, 1 mM EDTA, 10% (w/v) glycerol

101

Page 15: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

xv

5.12 Enzyme specific activity from 25oC~50

oC, pH 7.2; Buffer:

0.1 M Tris-acetate, 1 mM EDTA, 10% (w/v) glycerol

101

5.13 SDS-PAGE of Wy5 CFE 103

5.14 PCR product of “Group I” dehalogenase 104

5.15 ClustalW alignments of 495 bp deh-wy5 with known

complete dehalogenase genes (partly shown)

106

5.16 Alignment of deh-wy5 with other dehalogenases displayed

in codon form.

107

5.17 Data sheet generated by Primer3 109

5.18 PCR products of deh-wy5 (DL-DEX-alike) genes 111

5.19 Partial DNA fragment amplified using designed primers

Dxf1 and Dxr1

112

5.20 Chromatogram of sequenced DNA fragment using

designed primers Dxf1 and Dxr1

113

5.21 Alignments between extended sequences amplified using

primers Dxf1+Dxr1 and D,L-dex displayed in codon form

using ClustalW (version 1.6)

114

Page 16: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

xvi

A2.5cm LIST OF SYMBOLS

(v/v) - Volume percentage per 100mL volume

(w/v) - Mass percentage per 100mL volume

2,4,5-T - 2,4,5-Trichlorophenoxyacetic acid

2,4-D - 2,4-Dichlorophenoxyacetic acid

A…nm - Absorption spectroscopy at …nm light source

BLASTn - Basic local alignment search tool – nucleotide

bp - Base pairs

CFE - Cell free extract

DDT - Dichlorodiphenyltrichloroethane

dH2O - Distilled water

HCH - Hexachlorocyclohexane

HIA - Halide ion assay

kb - Kilo bases

MWr - Relative molecular weight

OD - Optical density

PCB - Polychlorinated biphenyls

PCR - Polymerase chain reaction

rpm - Revolution per minute

RT - Room temperature

V - Volts

Page 17: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

xvii

A2.5cm LIST OF APPENDICES

APPENDIX TITLE PAGE

A Standard Graphs 136

B Growth Profile and Doubling Time Calculation of Labrys

sp. Wy1

138

C Growth Profile and Doubling Time Calculation of

Burkholderia cepacia Wy5

140

D HIA of Labrys sp. Wy1 in 20 mM 2,2-DCP 141

E HIA of Burkholderia cepacia Wy5 142

F Enzyme Assays of Burkholderia cepacia Wy5 CFE 143

G Acid Dilution Calculations 145

Page 18: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

1

A2.5cm CHAPTER 1

INTRODUCTION

1.1 Introduction

Halogenated compounds were used extensively as herbicide and as

intermediate chemicals in many industries. Due to their complexity, toxicity,

persistence and ubiquitous distribution of these xenobiotic compounds, they have

brought threat to the health and living quality of human and other organisms (Fetzner

and Lingens, 1994). Physiologists and biochemists have known since the beginning

of the 20th

century that halogenated compounds will affect metabolic processes as

halogenated analogues of intermediary metabolites are toxic (Slater et al., 1995).

Degradation of halogenated compound by microorganisms has been reported since

the early of 20th

century by Penfold (1913). These microorganisms are capable of

evolving new enzymes, pathways and regulatory mechanisms for the degradation of

almost all xenobiotic compounds due to their short life cycle. The evolution of

dehalogenase producing microorganisms using some of these halogenated

compounds is scientifically interesting and practically important (Penfold, 1913;

Timmis and Pieper, 1999).

2,2-dichloropropionic acid (2,2-DCP) or Dalapon is an odourless and

colourless 2-haloalkanoic acid herbicide used to control and regulate the growth of

certain weeds, such as quick grass, Bermuda grass and cattails. It effectively inhibits

panothenic acid production (Prasad and Blackman, 1965) and pyruvate utilization in

bacteria (Redemann and Meikle, 1955). One of the earliest event of degradation of

herbicide Dalapon was reported by Magee and Colmer (1959) after observation of

bacteria that produce dehalogenase enzyme (Magee and Colmer, 1959). Since then,

Page 19: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

2

studies on isolation of microbes that potentially produce dehalogenases have been

undertaken (Berry et al., 1979; Hardman and Slater, 1981; Motosugi et al., 1982;

Weightman et al., 1982; Allison et al., 1983; Liu et al., 1994; Schwarze et al., 1997;

Nardi-Dei et al., 1999; Huyop et al., 2004; Jing and Huyop, 2007; Huyop et al.,

2008). 2,2-DCP is readily removed from the soil by a variety of microorganisms

including species of Pseudomonas, Agrobacterium, Nocardia, Alcaligenes,

Arthrobacter and Bacillus (Foy, 1975).

The enzymes responsible for the degradation of halogenated compound were

known as dehalogenase, discovered and firstly named by Jensen (1957).

Dehalogenases catalyse the hydrolysis of halogen-substituted alkanoic acids yielding

either hydroxyalkanoic acids from mono-halogenated acids or oxo-alkanoic acids

from di-halogenated compounds products which may be readily metabolized

(Hardman and Slater, 1981). Culturing and enrichment of microorganism that can

produce dehalogenase in the presence of halogenated compound in the environment

was the most favourable method. Jensen (1957) used soil perfusion and enrichment

technique to isolate five strains of Pseudomonas sp. which able to degrade 2,2-DCP

and other α-halogenated substrate such as dichloroacetate and 2-chloropropionate

(Jensen, 1957). Several other dehalogenase producing bacteria isolated using this

method including Methylobacterium sp. HJ1 (Jing et al., 2008), Pseudomonas putida

PP3 (Senior et al., 1976), Xanthobacter autotrophicus GJ10 (Janssen et al., 1985),

Pseudomonas B6P (Mesri et al., 2009) and Rhizobium sp. (Berry et al., 1979).

Interest in biodegradation of α-substituted halogenated alkanoic acid was increased

due to the introduction of Dalapon as herbicide and lead to the isolation of many

microorganisms able to grow on 2,2-DCP as sole carbon source (Macgregor, 1963;

Burge, 1969; Berry et al., 1979; Kearney and Kellogg, 1985; Jing et al., 2008;

Huyop and Nemati, 2010).

Currently, technological applications of bacterial transformation of

halogenated compound can be considered in two major aspects: synthesis of

chemical intermediates and degradation of xenobiotic wastes. Dehalogenase can be

used as industrial biocatalysts to produce valuable intermediates for chemical

synthesis (Huyop and Cooper, 2003). Biotransformation of organic compounds with

microbial or enzyme biocatalysts offers new chemical routes for the synthesis of

Page 20: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

3

intermediates and novel products, since these biocatalysts possess chiral specificities

and can recognize specific area on a molecule, that are difficult and expensive to

achieve by conventional chemistry (Fetzner and Lingens, 1994). For example ICI

Biological Products (U.K.) uses Pseudomonas putida AJ1/23 to produce L-2-

monochloropropionate for use in herbicide manufacture from racemic 2-

monochloropropionate, which already reached commercial scale (Motosugi et al.,

1982). Similarly, the production of optically active 3-halolactate from 2,3-

dihalopropionate was also performed with 2-haloalkanoic acid halidohydrolase from

Pseudomonas putida (Fetzner and Lingens, 1994). In addition, dehalogenating

microorganisms were also proved to be useful in a bioremediation process and the

application of specialized strains as inocula for the bioremediation of polychlorinated

biphenyls (PCP) contaminated soil and groundwater was studied extensively. For

example, Hicky et al. (1993) used the chlorobenzoate utilizers Pseudomonas

aeruginosa JB2 and Pseudomonas putida Plll and the biphenyl utilizer Pseudomonas

sp. strain PB133 to mineralize polychlorinated biphenyls in soil (Hickey et al., 1993).

Page 21: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

4

1.2 Rationale of Investigation

Microorganisms with dehalogenating capabilities were proven to be useful in

both chemical manufacturing industry and in situ bioremediation of contaminated

soil, especially those related to chlorinated xenobiotics. In current investigation,

isolating new bacteria with higher reactivity towards chlorinated herbicide compared

to other previous research is the main goal. Degradation of chlorinated herbicide,

especially 2,2-DCP is chosen due to its more complex structure which resistance to

enzymatic attack compared to mono-substituted haloalkane, and also its well-known

environmental impact. The source of soil and Axonopus compressus (rumput parit)

used in current research was frequently exposed to various chlorinated herbicide

including Dalapon (2,2-DCP) and this could increase the chance of isolate

dehalogenating microorganisms. Agricultural soil is a common place to find

dehalogenating bacteria, however some endophytes also reported to show resistance

to heavy metals and able to degrade organic compounds in the plant, soil or water,

and thus also play an important role in pollution control (Germaine et al., 2006),

therefore the investigation of whether there is endophyte with dehalogenating

capabilities present in Axonopus compressus’ leaves, especially those possess cryptic

dehalogenase, can be a novel approach for isolation of new dehalogenating bacteria.

Moreover, these new isolated bacteria could be used in enzymatic production of

useful chemicals or as potential bioremediation agent.

The study of 2,2-DCP degradation can also be compared to that of

degradation of other chloro-substituted alkanoates, for example, 3-chloropropionic

acid, which is an analogue and isomer of 2,2-DCP (Allison et al., 1983). Further

interest in this subject was raised when it became apparent that α-chloroalkanoate-

degrading microorganisms were unable to utilize β-substituted haloalkanoates, which

differed only in chlorine substitution. Only few isolated microorganisms can degrade

β-halocarboxylic acid (β-HA) (Mesri et al., 2009; Yusn and Huyop, 2009). Some

previous studies have suggested the production of more than one dehalogenase in a

few bacterial strains (Goldman et al., 1968; Weightman et al., 1982) and the fungus

Trichoderma viride (Jensen, 1960). The only microorganism so far reported to

produce three forms of dehalogenases which degrade D-, L- and non-stereospecific

isomer of α-haloalkanoate is Rhizobium sp. (Leigh et al., 1988).

Page 22: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

5

A limited number of genetic studies which consider the evolutionary

mechanisms of dehalogenase have been reported. Isolation of many iso-enzymic

forms of dehalogenase from a vast variety of bacterial genera gave rise to the

question of their importance in the natural environment and the evolution-

relationship of their different forms (Murdiyatmo et al., 1992). The ubiquity of the

haloacid halidohydrolases in natural bacterial isolates has led to the suggestion that

their importance in being catabolic enzymes cleaving the halo- substituents of halo

metabolites as part of degradative pathways for the degradation of more complex

halo-organic compounds (Murdiyatmo et al., 1992). The adoption of molecular

method might provide an alternative in studying variety of dehalogenases possessed

by certain microorganism. Hill et al. (1999) described systematic approach to

amplify two different families of α-halocarboxylic acid (α-HA) dehalogenase genes

of group I and group II based on the knowledge of conserved residues among

different dehalogenases. Group I dehalogenases were non-stereospecific, whereas

group II showing stereospecificity tendency, dechlorinating only L- but not D-2-

chloropropionic acid. Current investigation adopted the molecular method described

by Hill et al. (1999) might allowed us to identify cryptic or silent, as well as active

dehalogenase genes presence in the bacteria.

1.3 Objectives

I. Isolate, identify and characterize soil and endophytic microorganisms capable

of utilizing 2,2-DCP as sole carbon source.

II. Characterization of 2-haloalkanoic acid dehalogenase from cell free extract

produced by isolates capable of utilize 2,2-DCP as sole carbon source.

III. Amplification and analysis of 2-haloalkanoic acid dehalogenase gene

sequence from isolated microorganisms using designed primers based on

conserved gene sequence of known dehalogenases.

Page 23: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

123

A2.5cm REFERENCES

Abdullah, A. R. (1995). Environmental pollution in Malaysia: trends and prospects.

TrAC Trends in Analytical Chemistry, 14(5), 191-198.

Alexander, M. (1981). Biodegradation of chemicals of environmental concern.

Science, 211(4478), 132.

Allison, N., Skinner, A. and Cooper, R. (1983). The dehalogenases of a 2, 2-

dichloropropionate-degrading bacterium. Journal of General Microbiology,

129(5), 1283.

Aneck-Hahn, N. H., Schulenburg, G. W., Bornman, M. S., Farias, P. and De Jager, C.

(2007). Impaired semen quality associated with environmental DDT exposure

in young men living in a malaria area in the Limpopo Province, South Africa.

Journal of Andrology, 28(3), 423.

Asmara, W., Murdiyatmo, U., Baines, A. J., Bull, A. T. and Hardman, D. J. (1993).

Protein engineering of the 2-haloacid halidohydrolase IVa from Pseudomonas

cepacia MBA4. Biochemical Journal, 292(Pt 1), 69.

Balandreau, J., Viallard, V., Cournoyer, B., Coenye, T., Laevens, S. and Vandamme,

P. (2001). Burkholderia cepacia genomovar III is a common plant-associated

bacterium. Applied and environmental microbiology, 67(2), 982-985.

Bergmann, J. and Sanik Jr, J. (1957). Determination of trace amounts of chlorine in

naphtha. Analytical Chemistry, 29(2), 241-243.

Berry, E. K. M., Allison, N., Skinner, A. and Cooper, R. (1979). Degradation of the

selective herbicide 2, 2-dichloropropionate (Dalapon) by a soil bacterium.

Journal of General Microbiology, 110(1), 39.

Bogdan, A. (1977). Tropical pasture and fodder plants. Longman.

Bollag, D. M., Edelstein, S. J. and Rozycki, M. D. (1996). Protein methods. Wiley-

Liss New York.

Page 24: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

124

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of

microgram quantities of protein utilizing the principle of protein-dye binding.

Analytical biochemistry, 72(1-2), 248-254.

Burge, W. D. (1969). Populations of dalapon-decomposing bacteria in soil as

influenced by additions of dalapon or other carbon sources. Applied

Microbiology, 17(4), 545-550.

Busto, M. D., Smith, P. P., Perez-Mateos, M. and Burns, R. G. (1992). Degradation

of aliphatic halogen-substituted pesticides by dehalogenase isolated from

Pseudomonas alcaligenes. Identification and properties of the enzyme. The

Science of the Total Environment, 123, 267-277.

Cairns, S. S., Cornish, A. and Cooper, R. A. (1996). Cloning, sequencing and

expression in Escherichia coli of two Rhizobium sp. genes encoding

haloalkanoate dehalogenases of opposite stereospecificity. European Journal

of Biochemistry, 235(3), 744-749.

Carvalho, M. F., De Marco, P., Duque, A. F., Pacheco, C. C., Janssen, D. B. and

Castro, P. M. L. (2008). Labrys portucalensis sp. nov., a fluorobenzene-

degrading bacterium isolated from an industrially contaminated sediment in

northern Portugal. International journal of systematic and evolutionary

microbiology, 58(3), 692-698.

Chaudhry, G. R. and Chapalamadugu, S. (1991). Biodegradation of halogenated

organic compounds. Microbiology and Molecular Biology Reviews, 55(1), 59.

Chou, Y. J., Elliott, G. N., James, E. K., Lin, K. Y., Chou, J. H., Sheu, S. Y., Sheu, D.

S., Sprent, J. I. and Chen, W. M. (2007). Labrys neptuniae sp. nov., isolated

from root nodules of the aquatic legume Neptunia oleracea. International

journal of systematic and evolutionary microbiology, 57(3), 577-581.

Coenye, T. and Vandamme, P. (2003). Diversity and significance of Burkholderia

species occupying diverse ecological niches. Environmental Microbiology,

5(9), 719-729.

Coenye, T. and Vandamme, P. (2003). Intragenomic heterogeneity between multiple

16S ribosomal RNA operons in sequenced bacterial genomes. FEMS

microbiology letters, 228(1), 45-49.

Page 25: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

125

Coleman, N. V., Mattes, T. E., Gossett, J. M. and Spain, J. C. (2002). Biodegradation

of cis-dichloroethene as the sole carbon source by a β-proteobacterium.

Applied and environmental microbiology, 68(6), 2726-2730.

Commandeur, L. and Parsons, J. (1990). Degradation of halogenated aromatic

compounds. Biodegradation, 1(2), 207-220.

Conway, G. R. (1972). Ecological aspects of pest control in Malaysia. Natural

History Press, New York, NY,

Cripps, D. J., Gocmen, A. and Peters, H. A. (1980). Porphyria turcica: twenty years

after hexachlorobenzene intoxication. Archives of Dermatology, 116(1), 46.

D.O.E, D. O. E. (2009). Contaminated Land Management and Control Guidelines No.

1: Malaysian Recommended Site Screening Levels for Contaminated Land.

IN Environment (Ed.

Doyle, R. (1984). Dalapon information sheet. Food and Drug Administration,

Bureau of Foods, HFF-420,

E.P.A., U. S. E. P. A. (1989). Drinking water health advisory: Pesticides. Dalapon,

sodium salt (CASRN 75-99-0). CRC.

Erdogan, E. E. and Karaca, A. (2011). Bioremediation of crude oil polluted soils.

Asian J. Biotechnol, 3, 206-213.

Extoxnet (1996). Pesticide Information Profile-Dalapon: A Pesticide Information

Project of Cooperative Extension. Oregon State University.

Fetzner, S. (1998). Bacterial dehalogenation. Applied microbiology and

biotechnology, 50(6), 633-657.

Fetzner, S. and Lingens, F. (1994). Bacterial dehalogenases: biochemistry, genetics,

and biotechnological applications. Microbiology and Molecular Biology

Reviews, 58(4), 641.

Foy, C. L. (1975). The chlorinated aliphatic acids. Herbicides: Chemistry,

Degradation and Mode of Action, 1

Germaine, K. J., Liu, X., Cabellos, G. G., Hogan, J. P., Ryan, D. and Dowling, D. N.

(2006). Bacterial endophyte ‐ enhanced phytoremediation of the

Page 26: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

126

organochlorine herbicide 2, 4 ‐ dichlorophenoxyacetic acid. FEMS

microbiology ecology, 57(2), 302-310.

Goldberg, E. D. (1991). Halogenated hydrocarbons: past, present and near-future

problems. The Science of the Total Environment, 100, 17-28.

Goldman, P. (1972). Enzymology of carbon-halogen bonds. Degradation of

Synthetic Organic Molecules in the Biosphere, 147-165.

Goldman, P., Milne, G. and Keister, D. B. (1968). Carbon-halogen bond cleavage.

Journal of Biological Chemistry, 243(2), 428.

Gyorkos, J., Denomme, M., Leece, B., Homonko, K., Valli, V. and Safe, S. (1985).

Reconstituted halogenated hydrocarbon pesticide and pollutant mixtures

found in human tissues: effects on the immature male Wistar rat after short-

term exposure. Canadian journal of physiology and pharmacology, 63(1), 36-

43.

Häggblom, M. M. and Bossert, I. D. (Eds.) (2003). Dehalogenation: microbial

processes and environmental applications, Springerlink.

Hardman, D. J. (1991). Biotransformation of halogenated compounds. Critical

reviews in biotechnology, 11(1), 1-40.

Hardman, D. J. and Slater, J. H. (1981). Dehalogenases in soil bacteria. Journal of

General Microbiology, 123(1), 117.

Hickey, W., Searles, D. and Focht, D. (1993). Enhanced mineralization of

polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading

bacteria. Applied and environmental microbiology, 59(4), 1194-1200.

Higgins, T. P., Hope, S. J., Effendi, A. J., Dawson, S. and Dancer, B. N. (2005).

Biochemical and molecular characterisation of the 2, 3-dichloro-1-propanol

dehalogenase and stereospecific haloalkanoic dehalogenases from a versatile

Agrobacterium sp. Biodegradation, 16(5), 485-492.

Hill, K. E., Marchesi, J. R. and Weightman, A. J. (1999). Investigation of two

evolutionarily unrelated halocarboxylic acid dehalogenase gene families.

Journal of bacteriology, 181(8), 2535.

Huber, H., Hohn, M. J., Rachel, R., Fuchs, T., Wimmer, V. C. and Stetter, K. O.

(2002). A new phylum of Archaea represented by a nanosized

hyperthermophilic symbiont. Nature, 417(6884), 63-67.

Page 27: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

127

Huyop, F., Jing, N. H. and Cooper, R. A. (2008). Overexpression, Purification and

Analysis of Dehalogenase D of Rhizobium sp. Can. J. Pure Applied Sci, 2,

389-392.

Huyop, F. and Nemati, M. (2010). Properties of dehalogenase from Rhizobium sp.

RC1. African Journal of Microbiology Research, 4(25), 2836-2847.

Huyop, F., Rashid, N. A., Wahab, R. a. B. and Cooper, R. A. (2010). Purification and

properties of Rhizobial DehL expressed in Escherichia coli. African Journal

of Biotechnology, 7(12)

Huyop, F. Z. and Cooper, R. A. (2003). A potential use of Dehalogenase D (DehD)

from Rhizobium sp. for Industrial Process. Jurnal Teknologi C, (38C), 69-75.

Huyop, F. Z., Yusn, T. Y., Ismail, M., Wahab, R. and Cooper, R. A. (2004).

Overexpression and characterisation of non-stereospecific haloacid

Dehalogenase E(DehE) of Rhizobium sp. Asia-Pacific Journal of Molecular

Biology and Biotechnology, 12(1-2), 15-20.

Ibrahim, M. (2007). Persistent Organic Pollutants in Malaysia. Developments in

Environmental Sciences, 7, 629-655.

Janssen, D. B., Gerritse, J., Brackman, J., Kalk, C., Jager, D. and Witholt, B. (1988).

Purification and characterization of a bacterial dehalogenase with activity

toward halogenated alkanes, alcohols and ethers. European Journal of

Biochemistry, 171(1‐2), 67-72.

Janssen, D. B., Pries, F., Van Der Ploeg, J., Kazemier, B., Terpstra, P. and Witholt, B.

(1989). Cloning of 1, 2-dichloroethane degradation genes of Xanthobacter

autotrophicus GJ10 and expression and sequencing of the dhlA gene. Journal

of bacteriology, 171(12), 6791.

Janssen, D. B., Pries, F. and Van Der Ploeg, J. R. (1994). Genetics and biochemistry

of dehalogenating enzymes. Annual Reviews in Microbiology, 48(1), 163-191.

Janssen, D. B., Scheper, A., Dijkhuizen, L. and Witholt, B. (1985). Degradation of

halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10.

Applied and environmental microbiology, 49(3), 673-677.

Jensen, H. (1957). Decomposition of chloro-substituted aliphatic acids by soil

bacteria. Canadian journal of microbiology, 3(2), 151-164.

Page 28: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

128

Jensen, H. (1960). Decomposition of chloroacetates and chloropropionates by

bacteria. Acta agriculturae scandinavica, 10(1), 83-103.

Jing, N. H., Fatin Hanani Sulaiman1, R. A., Wahab2 Jr, R. V. P., Rashid, N. a. A.

and Huyop, F. (2008). Purification and properties of a non-stereospecific

dehalogenase enzyme E (DehE) from Methylobacterium sp. HJ1. African

Journal of Microbiology Research, 2(7), 187-191.

Jing, N. H. and Huyop, F. (2007). Dehalogenation of chlorinated aliphatic acid by

Rhodococcus sp. Asia-Pacific Journal of Molecular Biology and

Biotechnology, 15(3), 147-151.

Jing, N. H., Taha, A. M., Pakingking Jr, R. V., Wahab, R. a. B. and Huyop, F. (2008).

Dehalogenase from Methylobacterium sp. HJ1 induced by the herbicide 2, 2-

dichloropropionate (Dalapon). African Journal of Microbiology Research 2:

32-36,

Jing, N. H., Wahab, R. A., Taha, A. M., Rashid, N. a. A. and Huyop, F. (2008). A

Further Characterization of 3-Chloropropionic Acid Dehalogenase from

Rhodococcus sp. HJ 1. Research Journal of Microbiology, 3(6), 482-488.

Jones, D. H. A., Barth, P. T., Byrom, D. and Thomas, C. M. (1992). Nucleotide

sequence of the structural gene encoding a 2-haloalkanoic acid dehalogenase

of Pseudomonas putida strain AJ1 and purification of the encoded protein.

Journal of General Microbiology, 138(4), 675.

Kado, C. I. (1992). Plant pathogenic bacteria. The prokaryotes, 1, 659-674.

Kawasaki, H., Toyama, T., Maeda, T., Nishino, H. and Tonomura, K. (1994).

Cloning and sequence analysis of a plasmid-encoded 2-haloacid

dehalogenase gene from Pseudomonas putida no. 109. Bioscience,

biotechnology, and biochemistry, 58(1), 160-163.

Kawasaki, H., Tsuda, K., Matsushita, I. and Tonomura, K. (1992). Lack of homology

between two haloacetate dehalogenase genes encoded on a plasmid from

Moraxella sp. strain B. Journal of General Microbiology, 138(7), 1317.

Kearney, P. and Kellogg, S. (1985). Microbial adaptation to pesticides. Pure and

Applied Chemistry, 57, 389-403.

Kennes, C., Pries, F., Krooshof, G. H., Bokma, E., Kingma, J. and Janssen, D. B.

(1995). Replacement of tryptophan residues in haloalkane dehalogenase

Page 29: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

129

reduces halide binding and catalytic activity. European Journal of

Biochemistry, 228(2), 403-407.

Kerr, L. M. and Marchesi, J. R. (2006). Isolation of novel bacteria able to degrade

[alpha]-halocarboxylic acids by enrichment from environmental samples.

chemosphere, 64(5), 848-855.

Kobayashi, D. and Palumbo, J. (2000). Bacterial endophytes and their effects on

plants and uses in agriculture. The Biology of Microbial Endophytes (Bacon

CW, White JF Jr, eds). New York: Marcel Dekker, 199-1233.

Kok, L. (1972). Toxicity of insecticides used for Asiatic rice borer control to tropical

fish in rice paddies.

Koonin, E. V., Makarova, K. S. and Aravind, L. (2001). Horizontal Gene Transfer in

Prokaryotes: Quantification and Classification 1. Annual Reviews in

Microbiology, 55(1), 709-742.

Lamar, R. T., Evans, J. W. and Glaser, J. A. (1993). Solid-phase treatment of a

pentachlorophenol-contaminated soil using lignin-degrading fungi.

Environmental science & technology, 27(12), 2566-2571.

Lamb, T. G., Tonkyn, D. W. and Kluepfel, D. A. (1996). Movement of Pseudomonas

aureofaciens from the rhizosphere to aerial plant tissue. Canadian journal of

microbiology, 42(11), 1112-1120.

Leigh, J., Skinner, A. and Cooper, R. (1988). Partial purification, stereospecificity

and stoichiometry of three dehalogenases from a Rhizobium species. FEMS

microbiology letters, 49(3), 353-356.

Li, R., Zheng, J. W., Ni, B., Chen, K., Yang, X. J., Li, S. P. and Jiang, J. D. (2011).

Biodegradation of Pentachloronitrobenzene by< i> Labrys portucalensis</i>

pcnb-21 Isolated from Polluted Soil. Pedosphere, 21(1), 31-36.

Little, M. and Williams, P. A. (1971). A bacterial halidohydrolase. European Journal

of Biochemistry, 21(1), 99-109.

Liu, J. Q., Kurihara, T., Hasan, A., Nardi-Dei, V., Koshikawa, H., Esaki, N. and

Soda, K. (1994). Purification and characterization of thermostable and

nonthermostable 2-haloacid dehalogenases with different stereospecificities

from Pseudomonas sp. strain YL. Applied and environmental microbiology,

60(7), 2389.

Page 30: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

130

Locher, H. H., Poolman, B., Cook, A. M. and Konings, W. N. (1993). Uptake of 4-

toluene sulfonate by Comamonas testosteroni T-2. Journal of bacteriology,

175(4), 1075.

Longnecker, M. P. and Rogan, W. J. (2001). Persistent Organic Pollutants in

Children: Commentary on the article by Karmaus et al. on page 331.

Pediatric research, 50(3), 322.

Macgregor, A. (1963). The decomposition of dichloropropionate by soil micro-

organisms. Journal of General Microbiology, 30(3), 497.

Magee, L. A. and Colmer, A. R. (1959). Decomposition of 2, 2-dichloropropionic

acid by soil bacteria. Canadian journal of microbiology, 5(3), 255-260.

Mcgowan, C., Fulthorpe, R., Wright, A. and Tiedje, J. (1998). Evidence for

interspecies gene transfer in the evolution of 2, 4-dichlorophenoxyacetic acid

degraders. Applied and environmental microbiology, 64(10), 4089-4092.

Mesri, S., Wahab, R. A. and Huyop, F. (2009). Degradation of 3-chloropropionic

acid (3CP) by Pseudomonas sp. B6P isolated from a rice paddy field. Annals

of microbiology, 59(3), 447-451.

Miller, J. A., Kalyuzhnaya, M. G., Noyes, E., Lara, J. C., Lidstrom, M. E. and

Chistoserdova, L. (2005). Labrys methylaminiphilus sp. nov., a novel

facultatively methylotrophic bacterium from a freshwater lake sediment.

International journal of systematic and evolutionary microbiology, 55(3),

1247-1253.

Motosugi, K., Esaki, N. and Soda, K. (1982). Bacterial assimilation of D-and L-2-

chloropropionates and occurrence of a new dehalogenase. Archives of

microbiology, 131(3), 179-183.

Motosugi, K., Esaki, N. and Soda, K. (1982). Purification and properties of a new

enzyme, DL-2-haloacid dehalogenase, from Pseudomonas sp. Journal of

bacteriology, 150(2), 522.

Muhammad, S. A. (2006). Analysis of persistent organic pollutants in fish: health

risk assessment through dietary intake (Thesis). Universiti Sains Malaysia.

Murdiyatmo, U., Asmara, W., Tsang, J., Baines, A. J., Bull, A. T. and Hardman, D. J.

(1992). Molecular biology of the 2-haloacid halidohydrolase IVa from

Pseudomonas cepacia MBA4. Biochemical Journal, 284(Pt 1), 87.

Page 31: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

131

Nardi-Dei, V., Kurihara, T., Okamura, T., Liu, J. Q., Koshikawa, H., Ozaki, H.,

Terashima, Y., Esaki, N. and Soda, K. (1994). Comparative studies of genes

encoding thermostable L-2-halo acid dehalogenase from Pseudomonas sp.

strain YL, other dehalogenases, and two related hypothetical proteins from

Escherichia coli. Applied and environmental microbiology, 60(9), 3375.

Nardi-Dei, V., Kurihara, T., Park, C., Esaki, N. and Soda, K. (1997). Bacterial DL-2-

haloacid dehalogenase from Pseudomonas sp. strain 113: gene cloning and

structural comparison with D-and L-2-haloacid dehalogenases. Journal of

bacteriology, 179(13), 4232.

Nardi-Dei, V., Kurihara, T., Park, C., Miyagi, M., Tsunasawa, S., Soda, K. and Esaki,

N. (1999). dl-2-Haloacid Dehalogenase from Pseudomonas sp. 113 Is a New

Class of Dehalogenase Catalyzing Hydrolytic Dehalogenation Not Involving

Enzyme-Substrate Ester Intermediate. Journal of Biological Chemistry,

274(30), 20977.

Neilson, A. H. (1996). An environmental perspective on the biodegradation of

organochlorine xenobiotics. International biodeterioration & biodegradation,

37(1-2), 3-21.

Ng, H. J. (2007). Isolation of Local Bacteria Capable of Degrading Halogenated

Compounds and Analysis of Putative Haloacid Permease Gene (Thesis).

Universiti Teknologi Malaysia.

Ng, H. J. (2007). Isolation of local bacterial capable of degrading halogenated

compounds and analysis of putative haloacid permease gene (Thesis).

Universiti Teknologi Malaysia.

Olaniran, A., Pillay, D. and Pillay, B. (2004). Haloalkane and haloacid

dehalogenases from aerobic bacterial isolates indigenous to contaminated

sites in Africa demonstrate diverse substrate specificities. chemosphere, 55(1),

27-33.

Penfold, W. (1913). The inhibitory selective action on bacteria of bodies related to

monochloroacetic acid. J. Hyg., Camb, 13, 35-48.

Peters, R., Wakelin, R. and Buffa, P. (1953). Biochemistry of fluoroacetate poisoning

the isolation and some properties of the fluorotricarboxylic acid inhibitor of

citrate metabolism. Proceedings of the Royal Society of London. Series B-

Biological Sciences, 140(901), 497-506.

Page 32: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

132

Prasad, R. and Blackman, G. (1965). Studies in the Physiological Action of 2, 2-

Dichloropropionic Acid. Journal of Experimental Botany, 16(3), 545-568.

Redemann, C. T. and Meikle, R. W. (1955). The inhibition of several enzyme

systems by 2, 2-dichloropropionate. Archives of biochemistry and biophysics,

59(1), 106-112.

Rieger, P. G., Meier, H. M., Gerle, M., Vogt, U., Groth, T. and Knackmuss, H. J.

(2002). Xenobiotics in the environment: present and future strategies to

obviate the problem of biological persistence. Journal of biotechnology, 94(1),

101-123.

Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Molecular biology and evolution, 4(4),

406-425.

Schneider, B., Muller, R., Frank, R. and Lingens, F. (1991). Complete nucleotide

sequences and comparison of the structural genes of two 2-haloalkanoic acid

dehalogenases from Pseudomonas sp. strain CBS3. Journal of bacteriology,

173(4), 1530.

Schwarze, R., Brokamp, A. and Schmidt, F. R. J. (1997). Isolation and

characterization of dehalogenases from 2, 2-dichloropropionate-degrading

soil bacteria. Current microbiology, 34(2), 103-109.

Senior, E., Bull, A. and Slater, J. (1976). Enzyme evolution in a microbial

community growing on the herbicide Dalapon. Nature, 263(5577), 476.

Slater, J., Bull, A. and Kuenen, J. (1982). Environmental Microbiology:

Biodegradation [and Discussion]. Philosophical Transactions of the Royal

Society of London. B, Biological Sciences, 297(1088), 575-597.

Slater, J. H., Bull, A. T. and Hardman, D. J. (1995). Microbial dehalogenation.

Biodegradation, 6(3), 181-189.

Slater, J. H., Bull, A. T. and Hardman, D. J. (1996). Microbial dehalogenation of

halogenated alkanoic acids, alcohols and alkanes. Advances in Microbial

Physiology, 38, 133-176.

Slater, J. H., Lovatt, D., Weightman, A. J., Senior, E. and Bull, A. T. (1979). The

growth of Pseudomonas putida on chlorinated aliphatic acids and its

dehalogenase activity. Journal of General Microbiology, 114(1), 125.

Page 33: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

133

Smith, J. M., Harrison, K. and Colby, J. (1990). Purification and characterization of

D-2-haloacid dehalogenase from Pseudomonas putida strain AJ1/23. Journal

of General Microbiology, 136(5), 881.

Stoyanova, M., Pavlina, I., Moncheva, P. and Bogatzevska, N. (2007). Biodiversity

and incidence of Burkholderia species. Biotechnology and Biotechnological

Equipment, 21(3), 306.

Stringfellow, J. M., Cairns, S. S., Cornish, A. and Cooper, R. A. (1997).

Haloalkanoate dehalogenase II (DehE) of a Rhizobium sp.—molecular

analysis of the gene and formation of carbon monoxide from trihaloacetate by

the enzyme. European Journal of Biochemistry, 250(3), 789-793.

Struthers, J., Jayachandran, K. and Moorman, T. (1998). Biodegradation of atrazine

by Agrobacterium radiobacter J14a and use of this strain in bioremediation of

contaminated soil. Applied and environmental microbiology, 64(9), 3368-

3375.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011).

MEGA5: molecular evolutionary genetics analysis using maximum

likelihood, evolutionary distance, and maximum parsimony methods.

Molecular biology and evolution, 28(10), 2731-2739.

Timmis, K., Rojo, F. and Ramos, J. (1988). Prospects for laboratory engineering of

bacteria to degrade pollutants. Basic life sciences, 45, 61.

Timmis, K. N. and Pieper, D. H. (1999). Bacteria designed for bioremediation.

Trends in biotechnology, 17(5), 200-204.

Topping, A. (1992). An investigation into the transposition and dehalogenase

functions of DEH, a mobile genetic element from Pseudomonas putida strain

PP3 (Thesis). Ph. D. thesis. University of Wales, Cardiff, United Kingdom.

Tsang, J. S. H., Sallis, P. J., Bull, A. T. and Hardman, D. J. (1988). A

monobromoacetate dehalogenase from Pseudomonas cepacia MBA4.

Archives of microbiology, 150(5), 441-446.

Tsang, J. S. H. and Sam, L. (1999). Cloning and characterization of a cryptic

haloacid dehalogenase from Burkholderia cepacia MBA4. Journal of

bacteriology, 181(19), 6003.

Page 34: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

134

U.N.E.P., U. N. E. P. (2005). Ridding the World of POPs: A Guide to The

Stockholm Convention on Persistent Organic Pollutants

http://www.pops.int/documents/guidance/begguide.pdf.

Umland, J. B. and Bellama, J. M. (1999). General chemistry. Brooks/Cole Publishing

Company.

Van Der Meer, J. R., Roelofsen, W., Schraa, G. and Zehnder, A. J. B. (1987).

Degradation of low concentrations of dichlorobenzenes and 1, 2, 4-

trichlorobenzene by< i> Pseudomonas</i> sp. strain P51 in nonsterile soil

columns. FEMS microbiology letters, 45(6), 333-341.

Van Der Ploeg, J., Van Hall, G. and Janssen, D. B. (1991). Characterization of the

haloacid dehalogenase from Xanthobacter autotrophicus GJ10 and

sequencing of the dhlB gene. Journal of bacteriology, 173(24), 7925.

Van Hylckama Vlieg, J. E. T., Poelarends, G. J., Mars, A. E. and Janssen, D. (2000).

Detoxification of reactive intermediates during microbial metabolism of

halogenated compounds. Current opinion in microbiology, 3(3), 257-262.

Vogel, T. M. (1996). Bioaugmentation as a soil bioremediation approach. Current

opinion in biotechnology, 7(3), 311-316.

W.H.O., W. H. O. (2010). Persistent Organic Pollutants: Impact on Child Health.

Geneva, Switzerland, WHO Document Production Service.

Wade, L. G. (2009). Organic Chemistry, 7/E. Prentice Hall.

Weightman, A. J., Weightman, A. L. and Slater, J. H. (1982). Stereospecificity of 2-

monochloropropionate dehalogenation by the two dehalogenases of

Pseudomonas putida PP3: evidence for two different dehalogenation

mechanisms. Journal of General Microbiology, 128(8), 1755.

Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. (1991). 16S

ribosomal DNA amplification for phylogenetic study. Journal of bacteriology,

173(2), 697-703.

Wong, C. (1991). Shade tolerance of tropical forages: a review. Proc. ACIAR, (32),

64-69.

Page 35: A2 - eprints.utm.myeprints.utm.my/id/eprint/36832/5/WongWenYongMFBSK2013.pdfa2.5cm isolation, identification and characterization of 2,2-dichloropropionic acid utilizing bacteria wong

135

Yang, C. J., Zhang, X. G., Shi, G. Y., Zhao, H. Y., Chen, L., Tao, K. and Hou, T. P.

(2011). Isolation and identification of endophytic bacterium W4 against

tomato Botrytis cinerea and antagonistic activity stability. African Journal of

Microbiology Research, 5(2), 131-136.

Young, R. and Gossett, J. (1997). Effect of environmental parameters and

concentration on dechlorination of chloroethenes.

Yusn, T. Y. and Huyop, F. (2009). Degradation of 3-Chloropropionic Acid by

Escherichia coli JM 109 Expressing Dehalogenase(deh) Gene used as

Selection Marker. Biotechnology, 8(3), 385-388.

Zinniel, D. K., Lambrecht, P., Harris, N. B., Feng, Z., Kuczmarski, D., Higley, P.,

Ishimaru, C. A., Arunakumari, A., Barletta, R. G. and Vidaver, A. K. (2002).

Isolation and characterization of endophytic colonizing bacteria from

agronomic crops and prairie plants. Applied and environmental microbiology,

68(5), 2198-2208.


Recommended