+ All Categories
Home > Documents > A23DG0261 Construc)on*of*aMatched*Global*Cloud*and ......8 BT in 3.75um 3.75 um 3.75 um 3.9 um ! 9...

A23DG0261 Construc)on*of*aMatched*Global*Cloud*and ......8 BT in 3.75um 3.75 um 3.75 um 3.9 um ! 9...

Date post: 19-Mar-2021
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
1
Construc)on of a Matched Global Cloud and Radiance Product from LEO/GEO and EPIC Observa)ons to Es)mate Day)me Earth Radia)on Budget from DSCOVR A23D0261 David P. Duda, Konstan0n V. Khlopenkov, Mandana K. Thiemann, Rabindra Palikonda, Sunny SunMack SSAI (Science Systems and Applications, Inc, Hampton, VA 23666 Patrick Minnis, Wenying Su NASA Langley Research Center, Hampton, VA 23681 Contact: David Duda, [email protected] Introduc0on Acknowledgements References Global GEO/LEO Composites AVHRR Angles, Refl., BT, SW / LW Fluxes, Cloud properties SkinT, Rel.time... GAC @ 4km/pix Reproject MODIS Angles, Refl., BT, SW / LW Fluxes, Cloud properties SkinT, Rel.time... sampled @ 2km/pix Reproject GEOs Angles, Refl., BT, SW / LW Fluxes, Cloud properties SkinT, Rel.time... Reproject Compare Rating 8 km/pix -4 -2 0 2 4 0.0 0.2 0.4 0.6 0.8 1.0 Time Factor Time relative to EPIC, hr -60 -40 -20 0 20 40 60 0.0 0.2 0.4 0.6 0.8 1.0 VZA Factor VZA, deg -30 -20 -10 0 10 20 30 0.0 0.2 0.4 0.6 0.8 1.0 Sunglint Factor Scatter Angle, deg 30 60 90 120 150 0.4 0.6 0.8 1.0 SZA Factor SZA, deg Pixel in Global Composite 7920×3960 pixels @ 5 km/pix Factor SZA Factor Sunglint Factor VZA Factor Time GEOs MODIS AVHRR Rating × × × × = ) ( 210 ) ( 188 ) ( 164 EPICview Composites Satellite Radiances and Cloud Proper0es With the launch of the Deep Space Climate Observatory (DSCOVR), new estimates of the daytime Earth radiation budget can be computed from a combination of measurements from the two Earthobserving sensors onboard the spacecraft, the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). Although these instruments can provide accurate topofatmosphere (TOA) radiance measurements, they lack sufQicient resolution to provide details on smallscale surface and cloud properties. Previous studies (e.g. Loeb et al. 2000) have shown that these properties have a strong inQluence on the anisotropy of the radiation at the TOA, and ignoring such effects can result in large TOAQlux errors. To overcome these effects, highresolution scene identiQication is needed for accurate Earth radiation budget estimation. Cloud and radiance data from the LEO/GEO retrievals within the EPIC Qields of view (FOV) are convolved to the EPIC point spread function (PSF) in an analogous manner to the Clouds and the Earth’s Radiant Energy System (CERES) Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product, but with a modiQied procedure to optimize spatial matching between EPIC measurements and the highresolution composite cloud properties. Loeb, N. G., F. Parol, J.C. Buriez, and C. Vanbauce, 2000: Topof atmosphere albedo es)ma)on from angular distribu)on models using scene iden)fica)on from satellite cloud property retrievals. J. Climate, 13, 1269–1285. Selected radiance and cloud property data measured and derived from several low earth orbit (LEO, including NASA Terra and Aqua MODIS, NOAA AVHRR) and geosynchronous (GEO, including GOES (east and west), METEOSAT, INSAT3D, MTSAT2, and HIMAWARI8) satellite imagers were collected at the time of each EPIC image to create 5km resolution global composites of data necessary to compute angular distribution models (ADM) for reQlected shortwave (SW) and longwave (LW) radiation. Selec)on of satellite data for each 5km pixel based on numerical ra)ng system computed from five parameters: satellite type, rela)ve )me of observa)on, viewing zenith angle, solar zenith angle, and probability of sun glint. Example of selected satellite data for global composite at 0309 UT on 5 Sep 2015. Over 72 percent of satellite scan )mes in the composite are within 1 h of EPIC reference )me 92 percent of scan )mes are within 2 h of reference )me snow liq cld ice cld no ret clear bad Producing EPIC Composites Subpixel grid 4096×4096 at 3.9 km/pix 7920 × 3960 at 5 km/pix Convert a data layer in Global Composite from 2byte integer to 4byte float and Convert to Planck’s func)on, or cos(Angle), or Log(COD), etc. if applicable. Reprojection and Conversion Weigh)ng the remapped samples by masks Because the finer grid sampling is nearest-neighbor, does not lose spatial accuracy Fill Values Clear Sky Water Cloud Ice Cloud Weighted average value for each EPIC pixel is stored in the corresponding data subset: Clearsky Water cloud Ice cloud Total cloud No retrieval Apply inverse conversion if applicable The global satellite data composites provide an independent source of radiance measurements, cloud properties, and scene identiQication information necessary to construct ADMs that are used to determine the daytime Earth radiation budget. = 63 . 1 839 . 0 exp ) ( r r PSF PSF weights, % PSF weights, % Halfpixel weights, % Convert the original EPIC Lat/Lon grid 2048×2048 (at nadir 7.8 km/pix) to Subpixel Lat/Lon 4096×4096 (at nadir 3.9 km/pix) EPIC instrument PSF: 1. Halfpixel weights are more accurate; 2. Subpixel grid preserves spa)al resolu)on of the global composite. 3 2.25 1.5 0.75 0 0.75 1.5 2.25 3 0 0.17 0.33 0.5 0.67 0.83 1 0.5 w w 0 0 0.01 0.02 0.01 0 0 0 0.05 0.42 0.89 0.42 0.05 0 0.01 0.42 4.55 11.01 4.55 0.42 0.01 0.02 0.89 11.01 30.38 11.01 0.89 0.02 0.01 0.42 4.55 11.01 4.55 0.42 0.01 0 0.05 0.42 0.89 0.42 0.05 0 0 0 0.01 0.02 0.01 0 0 These data were provided to the authors by the NASA DSCOVR Science Team. Any opinions, Qindings, and conclusions or recommendations expressed in this material are those of the authors only. The following table summaries the satellite radiance, cloud property, and scene identiQication data available in the global and EPIC composite data Qiles. Both types of composite data Qiles are stored in standard netCDF4/HDF5 format. Testing of the composite data is expected to be completed soon, and fullscale production and documentation of the composite dataset will begin shortly. Sample days of global and EPICview composites are available for viewing at http://ceresiprod.larc.nasa.gov/CERESVis To op)mize PSF calcula)ons, global composite data are reprojected to EPICperspec)ve coordinates, and converted to proper physical units, if necessary (e.g. brightness temperature to radiance), to retain accuracy in the PSF averaging. To minimize under sampling of the global composite data and to improve overall accuracy, the resolu)on of the EPICperspec)ve coordinates is doubled, and nearest neighbor sampling is used to reproject the composite data to the EPIC perspec)ve coordinates. The PSFweighted average value of each radiance and cloud property parameter is computed for each cloudiness type within every EPIC footprint based the cloud mask parameter (cloud phase) from the global composite. The weighted values for each parameter are then stored (aier any appropriate inverse conversion) within the five available data subsets, as well as surface type frac)ons within each EPIC footprint. * GOES12,13, 14, 15 have 13.5 µm band instead of 12.0 µm The composite data Qiles provide wellcharacterized and consistent regional and global cloud and surface property datasets covering all time and space scales to match with EPIC. The composites are useful for many applications including intercalibration of nonUV EPIC channels provide highresolution independent scene ID for each EPIC pixel convolve with EPIC radiances and CERES ADMs to compute Qlux from NISTAR radiances serve as comparison source for EPIC cloud retrievals provide cloud mask for other retrievals based on EPIC radiances EPIC RGB Image 5 September 2015 0049 UT EPIC composite COD EPIC composite – Cld. eff. Height Global Composite Parameter AVHRR MODIS GEOs 1 Latitude Lat Lat Lat 1D 2 Longitude Lon Lon Lon 1D 3 Solar Zenith Angle gridded 4 View Zenith Angle gridded 5 Relative Azimuth Angle gridded 6 Reflectance in 0.63um 0.63 um 0.63 um 0.65 um 7 Reflectance in 0.86um 0.83 um 0.83 um 8 BT in 3.75um 3.75 um 3.75 um 3.9 um 9 BT in 6.75um 6.70 um 6.8 um 10 BT in 10.8um 10.8 um 10.8 um 10.8 um 11 BT in 12.0um 12.0 um 11.9 um 12.0* 12 SW Broadband Albedo 13 LW Broadband Flux 14 Cloud Phase 15 Cloud Optical Depth 16 Cloud Effective Particle Radius 17 Cloud Effective Height 18 Cloud Top Height 19 Cloud Effective Temperature 20 Cloud Effective Pressure 21 Skin Temperature (retrieved) 22 Snow Map from IGBP 23 Surface Type from IGBP 24 Time relative to EPIC ± 3.5 hours maximum 25 Satellite ID EPIC composite general Clear sky Ice Cloud Water Cloud Total Cloud No retrieval 2D 2D FOV fraction FOV fraction FOV fraction FOV fraction FOV fraction Log( COD ) Surface Types (4 predominant types per EPIC pixel) Surface Type Fraction (percent coverage) Precipitable Water ( from MOA ) Skin Temperature ( from MOA ) Vertical Temp. Change SkinTemp - MOA Temp @ 300mB above surface Surface Wind Speed (east-west) (from MOA) Surface Wind Speed (north-south) (from MOA)
Transcript
Page 1: A23DG0261 Construc)on*of*aMatched*Global*Cloud*and ......8 BT in 3.75um 3.75 um 3.75 um 3.9 um ! 9 BT in 6.75um — 6.70 um 6.8 um ! 10 BT in 10.8um 10.8 um 10.8 um 10.8 um ! 11 BT

Construc)on  of  a  Matched  Global  Cloud  and  Radiance  Product  from  LEO/GEO  and  EPIC  Observa)ons  to  Es)mate  Day)me  Earth  Radia)on  Budget  from  DSCOVR  

 

A23D-­‐0261  

David  P.  Duda,  Konstan0n  V.  Khlopenkov,  Mandana  K.  Thiemann,  Rabindra  Palikonda,  Sunny  Sun-­‐Mack  SSAI  (Science  Systems  and  Applications,  Inc,  Hampton,  VA  23666  

 

Patrick  Minnis,  Wenying  Su  NASA  Langley  Research  Center,  Hampton,  VA  23681  

 

 

Contact: David Duda, [email protected]

Introduc0on  

Acknowledgements  

References  

Global  GEO/LEO  Composites  

AVHRR  

Angles, Refl., BT,  SW / LW Fluxes,  Cloud properties  SkinT,  Rel.time...  

GAC @ 4km/pix  

Reproject  

MODIS  

Angles, Refl., BT,  SW / LW Fluxes,  Cloud properties  SkinT,  Rel.time...  

sampled @ 2km/pix  

Reproject  

GEOs  

Angles, Refl., BT,  SW / LW Fluxes,  Cloud properties  SkinT,  Rel.time...  

Reproject  

Compare Rating  

8 km/pix  -4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Tim

e Fa

ctor

Time relative to EPIC, hr

-60 -40 -20 0 20 40 600.0

0.2

0.4

0.6

0.8

1.0

VZA

Fac

tor

VZA, deg

-30 -20 -10 0 10 20 300.0

0.2

0.4

0.6

0.8

1.0

Sun

glin

t Fac

tor

Scatter Angle, deg

30 60 90 120 1500.4

0.6

0.8

1.0

SZA

Fac

tor

SZA, deg

Pixel in Global Composite 7920×3960 pixels @ 5 km/pix

FactorSZAFactorSunglintFactorVZAFactorTimeGEOsMODISAVHRR

Rating ××××

⎥⎥⎥

⎢⎢⎢

=

)(210)(188)(164

EPIC-­‐view  Composites  

Satellite  Radiances  and  Cloud  Proper0es  

         With  the  launch  of  the  Deep  Space  Climate  Observatory  (DSCOVR),  new  estimates  of   the  daytime  Earth  radiation  budget  can  be  computed  from  a  combination   of   measurements   from   the   two   Earth-­‐observing   sensors  onboard   the   spacecraft,   the   Earth   Polychromatic   Imaging   Camera   (EPIC)  and   the   National   Institute   of   Standards   and   Technology   Advanced  Radiometer   (NISTAR).    Although   these   instruments  can  provide  accurate  top-­‐of-­‐atmosphere   (TOA)   radiance   measurements,   they   lack   sufQicient  resolution   to  provide  details  on  small-­‐scale  surface  and  cloud  properties.    Previous  studies  (e.g.  Loeb  et  al.  2000)  have  shown  that  these  properties  have  a  strong  inQluence  on  the  anisotropy  of  the  radiation  at  the  TOA,  and  ignoring   such   effects   can   result   in   large   TOA-­‐Qlux   errors.     To   overcome  these   effects,   high-­‐resolution   scene   identiQication   is   needed   for   accurate  Earth  radiation  budget  estimation.  

         Cloud  and  radiance  data  from  the  LEO/GEO  retrievals  within  the  EPIC  Qields  of  view  (FOV)  are  convolved  to  the  EPIC  point  spread  function  (PSF)  in  an  analogous  manner  to  the  Clouds  and  the  Earth’s  Radiant  Energy  System  (CERES)  Single  Scanner  Footprint  TOA/Surface  Fluxes  and  Clouds  (SSF)  product,  but  with  a  modiQied  procedure   to   optimize   spatial   matching   between   EPIC   measurements   and   the   high-­‐resolution   composite  cloud  properties.  

Loeb,  N.  G.,  F.  Parol,  J.-­‐C.  Buriez,  and  C.  Vanbauce,  2000:  Top-­‐of-­‐  atmosphere  albedo  es)ma)on  from  angular  distribu)on  models  using  scene  iden)fica)on  from  satellite  cloud  property  retrievals.  J.  Climate,  13,  1269–1285.  

         Selected  radiance  and  cloud  property  data  measured  and  derived  from  several   low   earth   orbit   (LEO,   including   NASA   Terra   and   Aqua   MODIS,  NOAA  AVHRR)  and  geosynchronous  (GEO,  including  GOES  (east  and  west),  METEOSAT,   INSAT-­‐3D,   MTSAT-­‐2,   and   HIMAWARI-­‐8)   satellite   imagers  were   collected   at   the   time  of   each  EPIC   image   to   create   5-­‐km   resolution  global   composites   of   data   necessary   to   compute   angular   distribution  models  (ADM)  for  reQlected  shortwave  (SW)  and  longwave  (LW)  radiation.  

Selec)on  of  satellite  data  for  each  5-­‐km  pixel  based  on  numerical  ra)ng  system  computed  from  five  

parameters:    satellite  type,  rela)ve  )me  of  observa)on,  viewing  zenith  angle,  solar  zenith  angle,  and  probability  

of  sun  glint.    

Example  of  selected  satellite  data  for  global  composite  at  0309  UT  on  5  Sep  2015.  

Over  72  percent  of  satellite  scan  )mes  in  the  composite  are  within  1  h  of  EPIC  reference  )me    92  percent  of  scan  )mes  are  within  2  h  of  reference  )me    

     snow          liq  cld      ice  cld        no  ret          clear              bad  

Producing  EPIC  Composites  

Subpixel  grid  4096×4096  at  3.9  km/pix  7920  ×  3960  at  5  km/pix    

Convert  a  data  layer  in  Global  Composite  from  2-­‐byte  integer  to  4-­‐byte  float  and    Convert  to  Planck’s  func)on,  or  cos(Angle),  or  Log(COD),  etc.  if  applicable.  

Reprojection and Conversion

Weigh)ng  the  remapped  samples  by  masks  

Because the finer grid sampling is nearest-neighbor, does not lose spatial accuracy

Fill Values

Clear Sky

Water Cloud

Ice Cloud Weighted  average  value  for  each  EPIC  pixel  is  stored  in  the  corresponding  data  subset:  

Clear-­‐sky  

Water  cloud  

Ice  cloud  

Total  cloud  

No  retrieval  

Apply inverse conversion if applicable

          The  global   satellite  data   composites  provide   an   independent   source  of   radiance  measurements,   cloud  properties,  and  scene  identiQication  information  necessary  to  construct  ADMs  that  are  used  to  determine  the  daytime  Earth  radiation  budget.  

⎟⎟

⎜⎜

⎛⎟⎠

⎞⎜⎝

⎛−=63.1

839.0exp)( rrPSF

PSF  weights,  %  

PSF  weights,  %   Half-­‐pixel  weights,  %  Convert  the  original  EPIC  Lat/Lon  grid  

2048×2048  (at  nadir  7.8  km/pix)  

 

to    

Subpixel  Lat/Lon  4096×4096  

(at  nadir  3.9  km/pix)  

EPIC  instrument  PSF:  

1.  Half-­‐pixel  weights  are  more  accurate;  2.  Subpixel  grid  preserves  spa)al  resolu)on  of  the  global  composite.  

3 2.25 1.5 0.75 0 0.75 1.5 2.25 30

0.17

0.33

0.5

0.67

0.83

1

0.5

w w 0 0 0.01 0.02 0.01 0 0

0 0.05 0.42 0.89 0.42 0.05 0

0.01 0.42 4.55 11.01 4.55 0.42 0.01

0.02 0.89 11.01 30.38 11.01 0.89 0.02

0.01 0.42 4.55 11.01 4.55 0.42 0.01

0 0.05 0.42 0.89 0.42 0.05 0

0 0 0.01 0.02 0.01 0 0

These  data  were  provided  to   the  authors  by  the  NASA  DSCOVR  Science  Team.  Any  opinions,   Qindings,  and  conclusions  or  recommendations  expressed  in  this  material  are  those  of  the  authors  only.    

    The   following   table   summaries   the   satellite   radiance,   cloud   property,   and   scene  identiQication   data   available   in   the   global   and   EPIC   composite   data   Qiles.     Both   types   of  composite  data  Qiles  are  stored  in  standard  netCDF-­‐4/HDF-­‐5  format.    

         Testing  of  the  composite  data  is  expected  to  be  completed  soon,  and  full-­‐scale  production  and  documentation  of  the  composite  dataset  will  begin  shortly.    Sample  days  of  global  and  EPIC-­‐view  composites  are  available  for  viewing  at    

http://ceres-­‐iprod.larc.nasa.gov/CERESVis  

To   op)mize   PSF   calcula)ons,   global  composite   data   are   re-­‐projected   to  EPIC-­‐perspec)ve   coordinates,   and  converted   to   proper   physical   units,   if  necessary  (e.g.  brightness  temperature  to   radiance),   to   retain   accuracy   in   the  PSF   averaging.     To   minimize   under-­‐sampling  of   the  global   composite  data  and   to   improve   overall   accuracy,   the  resolu)on   of   the   EPIC-­‐perspec)ve  coordinates   is   doubled,   and   nearest-­‐neighbor  sampling  is  used  to  re-­‐project  the   composite   data   to   the   EPIC-­‐perspec)ve  coordinates.      

The   PSF-­‐weighted   average   value   of   each  radiance  and  cloud  property  parameter  is  computed  for  each  cloudiness  type  within  every   EPIC   footprint   based   the   cloud  mask  parameter   (cloud  phase)     from  the  global   composite.     The   weighted   values  for  each  parameter  are  then  stored  (aier  any   appropriate   inverse   conversion)  within   the  five  available  data   subsets,   as  well  as  surface  type  frac)ons  within  each  EPIC  footprint.      

*  GOES-­‐12,-­‐13,  -­‐14,  -­‐15  have  13.5  µm  band  instead  of  12.0  µm  

   The   composite  data   Qiles  provide  well-­‐characterized  and   consistent   regional   and  global  cloud  and  surface  property  datasets  covering  all  time  and  space  scales  to  match  with  EPIC.    The  composites  are  useful  for  many  applications  including  •  inter-­‐calibration  of  non-­‐UV  EPIC  channels  •  provide  high-­‐resolution  independent  scene  ID  for  each  EPIC  pixel  •  convolve  with  EPIC  radiances  and  CERES  ADMs  to  compute  Qlux  from  NISTAR  radiances  •  serve  as  comparison  source  for  EPIC  cloud  retrievals  •  provide  cloud  mask  for  other  retrievals  based  on  EPIC  radiances  

EPIC  RGB  Image  5  September  2015  0049  UT  

EPIC  composite  -­‐  COD   EPIC  composite  –  Cld.  eff.  Height  

Global Composite Parameter AVHRR MODIS GEOs

1 Latitude Lat Lat Lat 1D 2 Longitude Lon Lon Lon 1D 3 Solar Zenith Angle ü ü gridded ü

4 View Zenith Angle ü ü gridded ü

5 Relative Azimuth Angle ü ü gridded ü

6 Reflectance in 0.63um 0.63 um 0.63 um 0.65 um ü

7 Reflectance in 0.86um 0.83 um 0.83 um — ü

8 BT in 3.75um 3.75 um 3.75 um 3.9 um ü

9 BT in 6.75um — 6.70 um 6.8 um ü

10 BT in 10.8um 10.8 um 10.8 um 10.8 um ü

11 BT in 12.0um 12.0 um 11.9 um 12.0* ü

12 SW Broadband Albedo ü ü ü ü

13 LW Broadband Flux ü ü ü ü

14 Cloud Phase ü ü ü ü

15 Cloud Optical Depth ü ü ü ü

   

16 Cloud Effective Particle Radius ü ü ü ü

17 Cloud Effective Height ü ü ü ü

18 Cloud Top Height ü ü ü ü

19 Cloud Effective Temperature ü ü ü ü

20 Cloud Effective Pressure ü — ü ü

21 Skin Temperature (retrieved) ü — ü ü

22 Snow Map from IGBP ü

23 Surface Type from IGBP ü

 

24 Time relative to EPIC ± 3.5 hours maximum ü

25 Satellite ID ü

EPIC composite general Clear sky Ice Cloud Water Cloud Total Cloud No retrieval

2D 2D ü ü ü ü ü ü ü ü

ü ü ü ü ü

ü ü ü ü ü

ü ü ü ü ü

ü ü ü ü ü

ü ü ü ü ü

ü ü ü ü ü

ü ü ü ü ü FOV fraction FOV fraction FOV fraction FOV fraction FOV fraction ü ü ü

Log( COD ) ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü

Surface Types (4 predominant types per EPIC pixel) Surface Type Fraction (percent coverage)

ü ü

Precipitable Water ( from MOA ) Skin Temperature ( from MOA ) Vertical Temp. Change SkinTemp - MOA Temp @ 300mB above surface Surface Wind Speed (east-west) (from MOA) Surface Wind Speed (north-south) (from MOA)

Recommended