+ All Categories
Home > Documents > Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision:...

Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision:...

Date post: 31-Jan-2018
Category:
Upload: vuongkien
View: 215 times
Download: 0 times
Share this document with a friend
29
Abiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-step guidelines to make the so-called solubility pump runs for CO2 and C-14 according to the standard OCMIP-2 protocols. No biological effects are included. The ocean model carries only DIC and DIC14. We describe five types of abiotic simulations: (1) Equilibrium run, (2) Historical run for 1765-2000, (3) Future runs (IPCC S650 and CIS92A) for DIC only, (4) a 1000-yr Pulse Input run for DIC only, and (5) three Control runs needed for drift correction for the Abiotic transient runs (i.e., the Historical, Future, and Pulse simulations). Contents 1 Recuperation of OCMIP-2 files by ftp: 3 2 Model runs 4 2.1 Conservation equations .......................................... 4 2.2 Virtual flux (Fv) .............................................. 5 2.3 Air-sea gas exchange fluxes (F and F14) ................................. 5 2.4 The Piston Velocity Kw .......................................... 6 2.5 Oceanic and Atmospheric Components .................................. 7 2.5.1 Ocean ............................................... 8 2.5.2 Atmosphere ............................................ 8 3 Initialization and duration of simulations 9 4 Output type and frequency 11 5 Output Format 14 5.1 Output routines .............................................. 14 5.2 Downloading the output routines ..................................... 18 5.3 Compiling the output routines ...................................... 19 5.4 Using the output routines ......................................... 19 5.4.1 Equilibrium Output ........................................ 19 5.4.2 Historical Output ......................................... 20 5.4.3 Future Output ........................................... 22 5.4.4 Pulse Output ........................................... 23
Transcript
Page 1: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

Abiotic-HOWTOJ. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16,Date:2000/01/0818:46:21

This document provides step-by-step guidelines to make the so-called solubility pump runs for CO2 andC-14 according to the standard OCMIP-2 protocols. No biological effects are included. The ocean modelcarries only DIC and DIC14. We describe five types of abiotic simulations: (1) Equilibrium run, (2)Historical run for 1765-2000, (3) Futur e runs (IPCC S650 and CIS92A) for DIC only, (4) a 1000-yr PulseInput run for DIC only, and (5) three Control runs needed for drift correction for the Abiotic transient runs(i.e., the Historical , Futur e, and Pulsesimulations).

Contents

1 Recuperationof OCMIP-2 filesby ftp: 3

2 Model runs 4

2.1 Conservationequations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Virtual flux (Fv) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Air-seagasexchangefluxes(F andF14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 ThePistonVelocityKw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 OceanicandAtmosphericComponents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5.1 Ocean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5.2 Atmosphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Initialization and duration of simulations 9

4 Output type and fr equency 11

5 Output Format 14

5.1 Outputroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 Downloadingtheoutputroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 Compilingtheoutputroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.4 Usingtheoutputroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.4.1 EquilibriumOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.4.2 HistoricalOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.4.3 FutureOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.4.4 PulseOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Page 2: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

CONTENTS 2

5.4.5 ControlOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.4.6 Namesof Outputfiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.5 Needmoredetails? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Transfer of output 27

7 References 28

8 Contacts 29

9 Samedocument,another format? 29

Page 3: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

1. Recuperationof OCMIP-2 filesby ftp: 3

1 Recuperationof OCMIP-2 filesby ftp:

To complywith OCMIP-2guidelines,all modelersmustmakesimulationsaccordingto OCMIP-2standardboundaryconditions.To doso,onemustfirst recuperatethefollowing filesvia thisWebpage.(youcansavea file to diskbyclicking on its link while holdingdown theShift key)

� Filesconcerninggasexchange(samefor all OCMIP-2runs)

– rgasxocmip2.f

– gasxocmip2.nc.gz

– vgasxocmip2.jnl

� FilesconcerningatmosphericCO2andC-14,for transientsimulations

– splco2.dat

– stab.dat

– cis92a.dat

– c14nth.dat

– c14equ.dat

– c14sth.dat

– readco2atm.f

– readc14atm.f

– c interp.f

– try c interp.f

– locate.f

� Filesconcerningabioticmodel

– scco2.f

– co2flux.f

� Filesconcerningstandardcarbonatechemistry(samefor all OCMIP-2carbonruns)

– README.Cchem

– Makefile

– co2calc.f

– drtsafe.f

– ta iter 1.f

– test.r

– test.out.gz

Page 4: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

2. Model runs 4

After transferringthesefiles (in binarymode),modelersmustthenuncompress(gunzip)thefile containingthegasexchangeboundaryconditions(gasxocmip2.nc.gz):

gunzip gasx_ocmip2.nc

Otherfilesaretext andneednospecialtreatmentaftertransfer. Useof thesefiles is describedbelow.

2 Model runs

2.1 Conservation equations

For theinorganiccarbonandradiocarbon,bothpassive tracers,theconservationequationscarriedin themodelare

(1a) d[DIC]/dt = L([DIC]) + Jv + J

and

(1b) d[DIC14]/dt = L([DIC14]) - Lambda * [DIC14] + Jv14+ J14

where

� [DIC] is themodel’sconcentration(moles/mˆ3)of totaldissolvedinorganiccarbon;

� [DIC14] is themodel’sDIC-normalizedconcentration(alsoin moles/mˆ3)of total dissolvedinorganicC-14(seebelow);

� L is the3-D transportoperator, whichrepresentseffectsdueto advection,diffusion,andconvection;

� Lambda is theradioactivedecayconstantfor C-14(ln(2) / 5730year= 1.2097e-04yearˆ-1),convertedto sˆ-1usingthenumberof seconds/yearin yourparticularmodel;

� Jv is the”virtual” source-sinktermrepresentingthechangesin surface[DIC] dueto evaporationandprecipitation,whichmustbeaccountedfor becauseof therelatively highbackgroundconcentrationof [DIC] ;

� Jv14 is the”virtual” source-sinktermfor changesin surface[DIC14]dueto evaporationandprecipitation(E-Pchangesin backgroundconcentrationsareof thesameorderasobservedvariability);

� J is thethesource-sinktermdueto air-seaexchangeof CO2;and

� J14 is thesource-sinktermdueto air-seaexchangeof 14CO2.

Thesource-sinktermsJv, Jv14, J, andJ14 areaddedonly assurfaceboundaryconditions.Thatis they areequaltozeroin all subsurfacelayers.Thesesource-sinktermsareequivalentto thefluxes,describedbelow, dividedby thesurfacelayerthicknessdz1.

Jv = Fv/dz1

Jv14= Fv14/dz1

J = F/dz1

J14= F14/dz1

Page 5: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

2. Model runs 5

2.2 Virtual flux (Fv)

In modelswheresurfacesalinity is restoredto observedvalues,this resultsin a surfaceflux of salt,notasurfacefluxof waterasin therealworld. Suchsurfacesaltfluxesaretypically foundin modelswith a rigid lid, andevenin somemodelswith a freesurface(e.g.,theOGCMfrom Louvain-la-Neuve).For simplicity, wecategorizebothclassesofmodelsas”rigid-lid-lik e”. Conversely, non-rigid-lid-likemodelshavea freesurfaceandrestoresurfacesalinityby anequivalentflux of waterleadingto dilution or concentration(e.g.,theMPI LSGmodel).Salinity in thelattertypeoffree-surfacemodelis conserved;E-Pfluxesaretakeninto accountby thevelocityfieldsandthusdonotneedto beexplicitly formulatedin thetransportmodel.

Yet for all rigid-lid-lik emodels,wemustexplicitly take into accounttheconcentration-dilutioneffectof E-P(EvaporationminusPrecipitation),whichchangessurface[DIC] and[Alk] . Thusweaddthevirtual flux to thesurfacelayer, eachtimestepaccordingto

(2a) Fv = DICg * (E-P)

(2b) Fv14= DIC14g * (E-P)

whereDICg andDIC14garethemodel’sgloballyaveragedsurfaceconcentrationsof DIC andDIC14,respectively.Bothglobalaveragesmustbecomputedat leastonceperyear. For rigid-lid-lik emodelswith only salinity restoring,wesuggestthat(P - E) becomputedas

(3) P - E =����������� ���

* dz1 /Tau

whereS’ is theobservedlocalsalinity to whichmodeledlocalsalinityS is beingrestored,Sg is themodel’sgloballyaveragedsurfacesalinity, dz1 is thetop layerthickness,andTau is therestoringtimescalefor salinity. Forrigid-lid-lik emodelswhich in additionincludeexplicit P - E waterfluxes,thattermmustof coursealsobeaddedtoeq(3).

2.3 Air -seagasexchangefluxes(F and F14)

For simulationsof DIC andDIC14,OCMIP-2simulationswill directlymodelthefinite air-seafluxesF andF14,respectively. Modelersmustusetheformulationfor thestandardOCMIP-2air-to-seaflux,

(4a) F = Kw (Csat - Csurf)

(4b) F14= Kw (14Csat- 14Csurf)

with

(5a) Csat= alphaC * pCO2atm * P/Po

(5b) 14Csat= Csat * Ratm

where

� Kw is theCO2gastransfer(piston)velocity [m/s] ;

� Csurf is thesurfaceaqueous[CO2] concentration[mol/mˆ3], which is computedfrom themodel’ssurface[DIC], T, S,and[Alk] (seesection2.5);

� 14Csurf is thesurfaceocean[14CO2](seesection2.5);

Page 6: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

2. Model runs 6

� alphaC is theC solubility for water-vaporsaturatedair [mol/(mˆ3* uatm)];

� pCO2atm is thepartialpressureof CO2in dry air atoneatmospheretotalpressure[in microatm],which is thesameasthedry air mixing ratioof CO2multipliedby 10ˆ6;

� P is thetotal air pressureat sealevel [atm], locally;

� Po is 1 atm;and

� Ratm is thenormalizedatmosphericratioof C-14/C-12,which for ourpurposeswedivideby theanalogousratio for thestandardRstd

(6) Ratm = (1 + D14Catm/1000)

whereD14Catm is theatmosphericDeltaC-14,thefractionationcorrectedratioof C-14/C-12,givenin permil (seebelow).

Thosefamiliarwith C-14,maybesurprisedthatin equation(6) wedefineRatm, withoutmultiplying theright handtermby Rstd (1.176e-12).Instead,wepreferto beableto compare[DIC14] to [DIC] , directly, in orderto simplifyearlyinterpretationandcodeverification.With theaboveformulationfor theOCMIPequilibriumruns(wherepCO2atm=278ppmandD14Catm=0� ), if bothtracersareinitialized identically, theonly differencebetweenunitsfor the[DIC] and[DIC14] tracerswill bedueto radioactivedecay. For theanthropogenicruns,therewill alsobecontributionsdueto differencesbetweenatmosphericrecordsfor pCO2atm andD14Catm.

2.4 The PistonVelocity Kw

For simulationsof DIC andDIC14,modelersmustusethestandardOCMIP-2formulationfor thepistonvelocityKwfor CO2.Themonthlyclimatologyof Kw , to beinterpolatedlinearly in timeby eachmodelinggroup,is computedwith thefollowing equationadaptedfrom Wanninkhof(1992,eq.3):

(7) Kw = (1 - Fice) [Xconv * a *(u2 + v)] (Sc/660)**-1/2

where

� Fice is thefractionof theseasurfacecoveredwith ice,whichvariesfrom 0.0to 1.0,andis givenasmonthlyaveragesfrom theWalsh(1978)andZwally etal. (1983)climatology(OCMIP-2modelersmustresetFicevalueslessthan0.2to zero,afterinterpolationto theirmodelgrid)

� u2 is theinstantaneousSSMIwind speed,averagedfor eachmonth,thensquared,andsubsequentlyaveragedoverth esamemonthof all yearsto givethemonthlyclimatology. (seetheOCMIP-1README.satdatforfurtherdetails);

� v is thevarianceof theinstantaneousSSMIwind speedcomputedoveronemonthtemporalresolutionAnd 2.5degreespatialresolution,andsubsequentlyaveragedover thesamemonthof all yearsto give themonthlyclimatology. Again,seetheOCMIP-1README.satdatfor furtherdetails.

� a is thecoefficientof 0.337,consistentwith apistonvelocity in cm/hr. We adjustedthecoefficienta forOCMIP-2,in orderto obtainBroeckeretal.’s (1986)radiocarbon-calibrated,globalCO2gasexchangeof0.061mol CO2/(mˆ2* yr * uatm),whenusingthesatelliteSSMIwind information(u2 + v) from Boutinand

Page 7: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

2. Model runs 7

Etcheto(pers.comm.).Ourcomputedvaluefor a is similar to thatdeterminedby Wanninkhof(a = 0.31),whouseda differentwind speeddatasetandassumptionsaboutwind speedvariance;weusetheobservedvariance.

� Xconv = 1/3.6e+05,is a constantfactorto convert thepistonvelocity from [cm/hr] to [m/s]. Thisconversionfactoris alreadyincludedin theforcingfield xKw, providedbelow.

� Sc is theSchmidtnumberwhich is to becomputedusingmodeledSST, usingtheformulationfromWanninkhof(1992).Thefunctionscco2.fcomputestheSc(unit-less)for CO2.

Practicallyspeaking,to useequation(2) eachgroupwill interpolatetheOCMIP-2standardinformationto theirownmodelgrid. Thestandardinformationis providedby IPSL/LSCEasa monthlyclimatologyon the1 x 1 degreegridof Levitus (1982)in netCDFformat(in file gasxocmip2.nc).Griddedvariablesin thatfile include

� thevariableFice,

� thesecondterm,[Xconv * a * (u2 + v)], denotedasxKw [m/s]

� themaskTmask (1 if ocean;0 if land),

� thetotalatmosphericpressureat sealevel P [atm]

� thelongitudeLon at thecenterof each1 x 1 degreegrid box,

� thelatitudeLat at thecenterof each1 x 1 degreegrid box.

For thevariablesFiceandxKw , continentson the1 x 1 degreestandardgrid havebeenfloodedwith adjacentoceanvalues.Suchanapproachavoidsdiscontinuitiesat land-seaboundariesduringinterpolation.SeetheFortranprogramrgasxocmip2.ffor anexampleof how to readtheinformationin gasxocmip2.nc.gzinto your interpolationroutines.After compilation,to link andusergasxocmip2.f,onemusthavealreadyinstallednetCDF.

<http://www.unidata.ucar.edu/packag es/net cdf/>

Thefile gasx ocmip2.nc mayalsobeinspectedwith softwarethatusesnetCDFformat,suchasncdumporFerret.Ferretwill beusedfor someof theanalysisduringOCMIP-2.We encourageparticipantsto becomefamiliarwith Ferretnow

<http://ferret.wrc.noaa.gov/Ferret/ >

After installation,onecanvisualizemapsof thestandardinformationin gasxocmip2.nc,by usingtheFerretscriptvgasxocmip2.jnl.

After launchingFerret,simply issuethefollowing command(at Ferret’s ”yes?”prompt)

yes? go vgasx_ocmip2.jnl

2.5 Oceanicand Atmospheric Components

Apart from Kw, therearea total of four othertermsin equation(4a)and(4b)which requirefurtherdevelopment.

Page 8: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

2. Model runs 8

2.5.1 Ocean

TheoceanictermsCsurf and14Csurf [in mol/mˆ3]arenotcarriedastracers,sothey mustbecomputedeachtimestepto determinegasexchange

Csurf is thesurface[CO2] concentration[mol/mˆ3], which is computedfrom themodel’ssurface[DIC] , T, S, and[Alk] throughtheequationsandconstantsfoundin thesubroutineco2calc.f.As input,wemustprovidealkalinity,whichwedetermineasa normalizedlinearfunctionof salinity.

(8) [Alk] = Alkbar * S/Sbar

where[Alkbar] is 2310microeq/kgandSbar is themodel’sannualmeansurfacesalinity, integratedglobally(horizontally).Two otherinputarguments,bothnutrientconcentrations,areneededasinput. Althoughaccountingfor bothof theirequilibriamakesadifference,neithernutrientis includedin thesolubility pumprun. Hencewe takeconcentrationsof bothasbeingconstant,equalto theglobalmeanof surfaceobservations:0.5micromol/kgforphosphateand7.5micromol/kgfor silicate.Notethatfor thelaterOCMIP-2runwhich includesthebiologicalpump,wewill useobservedseasonaldistributionsof surfacephosphate.

IMPORTANT: Thecarbonatechemistrysubroutineco2calc.fwasoriginally designedto requiretracerinput ([DIC] ,[Alk] , [PO4], and[SiO2]) onapermassbasis(umol/kg);however, for OCMIP-2co2calc.fhasbeenmodifiedto passtracerconcentrationsonapervolumebasis(mol/mˆ3),ascarriedin oceanmodels.To doso,weusethemeansurfacedensityof theocean(1024.5kg/mˆ3)asa constantconversionfactor;wedoNOT usemodel-predicteddensities.Forexample,OCMIP-2modelersshouldusedSiO2= 7.7e-03mol/mˆ3andPO4= 5.1e-04mol/mˆ3asinputarguments;againbothareconstantfor theabioticsimulation.Theoutputargumentsco2star (Csurf) anddco2star (Csat - Csurf)arealsoreturnedin mol/mˆ3.

14Csurf is thesurfaceocean[14CO2],definedas

(9) 14Csurf = Csurf * Rocn,

where

(10) Rocn= [DIC14]/[DIC] .

Furthermore,for comparisonto oceanmeasurements,wecompute

(11) D14Cocn= 1000*(Rocn- 1).

Following equation(4), wedonot includeRstd whencalculatingD14Cocnin themodel.

2.5.2 Atmosphere

TheatmosphericcomponentsCsat and14Csatin equations(4a)and(4b)arespecifieda priori via four remainingterms:

1. alphaC: TheCO2solubility alphaC is to becomputedusingmodeledSSTandSSS,bothof whichvary intimeateachgrid point. For OCMIP-2weusethesolubility formulationof Weiss(1974),correctedfor thecontributionof watervaporto thetotalpressure(WeissandPrice,1980,TableIV for solubility in [mol/(l *atm)]). Thesolubility alphaC is calculatedwithin theroutineco2calc.f.

2. pCO2atm: For theEquilibrium run, pCO2atmis heldconstantat278ppm.For theanthropogenicperturbation,wedefinetheequilibriumstateasyear1765.0.Thenfor theHistorical run, themodelmustbe

Page 9: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

3. Initialization and duration of simulations 9

integrateduntil theendof 1999,following theobservedrecorduntil 1990.5(splco2.dat)andIPCCscenarioS650(stab.dat)until 2000.0(Enting,1994).Thatsamescenario,Future run S650, will becontinuedfrom2000.0to 2300.0.Similarly, a secondFuture run CIS92A (seealsocis92a.dat)will berun from 1990.0to2100.0,afterinitializing with modeloutputfrom theHistorical run in 1990.0.Additionally a Pulse run will bemade,wherepreindustrialatmosphericCO2is doubledandallowedto declinefor 1000years.Finally toeliminateeffectsdueto modeldrift, wewill makeessentiallytwo Control runs: (1) thefirst will beheldto thesameatmosphericboundaryconditionsastheEquilibrium run , carryingbothDIC andDIC14during1765-2000but only DIC from 2000-2300;(2) thesecondwill beanalogousto thePulserun,madein forwardmodefor 1000years,exceptthatatmosphericCO2will notbedoubledon thefirst timestep.

3. D14Catm: is atmosphericDeltaC-14[in permil]. For theEquilibrium run, D14Catmis heldconstantat0� .For theHistorical run, wedefinetheequilibriumstateasyear1765.0.Thenthemodelmustbeintegrateduntiltheendof year1999following theobservedrecord(Enting,1994).TheobservedatmosphericC-14recordisgivenfor threelatitudinalbands:

� 90S-20S� 20S-20N� 20N-90N

Therewill beNO futureor pulsesimulationsfor C-14.

4. P: Is thetotalatmosphericpressure[atm] from themonthlymeanclimatologyof EsbensenandKushnir(1981).Thelatter, givenoriginally ona4 x 5 degreegrid (latitudex longitude)in bars,is convertedto atmbymultiplying by (1/1.101325).Landandseaicevaluesin theoriginaldatasetwerefilled with averagevaluesfrom adjacentoceanpoints.Thesemonthlymeanarrayswerethenlinearly interpolatedto the1 x 1 degreegridof Levitus (seenetCDFfile gasxocmip2.nc).

Technicalnotes:

1. TheASCII file splco2.datprovidesvaluesof atmosphericpCO2[in microatm],everyhalf year, for theperiodfrom 1765.0to 1990.5.Thereafter, therearetwo filesusedfor futurescenarios:for scenario S650, theASCIIfile stab.datprovideshalf-yearvaluesof atmosphericpCO2[in microatm]for theperiodfrom 1990.5to 2300.5;for scenario CIS92A, theASCII file cis92a.datprovidesyearlyvaluesof atmosphericpCO2for theperiodfrom1990.5to 2100.5.Thesubroutinereadco2atm.freadsatmosphericCO2informationfrom all threefiles.

2. TheASCII filesc14nth.dat,c14equ.dat,andc14sth.datprovidemid-yearvaluesof atmosphericD14Catm[inpermil] for theperiodfrom 1764.5to 2000.0.Seethesubroutinereadc14atm.f

3. TheFortransubroutinec interp.f temporallyinterpolates(linearly)bothpCO2atm andD14Catmata giventimestep.Thatroutineis calledby thedemonstrationprogramtry c interp.f,whichspatiallyassignsD14Catmto thethreelatitudinalbandsfor C-14(seeabove). Thusbothroutinestogethereffect (1) temporalinterpolationfor bothpCO2atm andD14Catmand(2) spatial”interpolation” for D14Catmasa functionof latitude.

3 Initialization and duration of simulations

1. Equilibrium run :

Page 10: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

3. Initialization and duration of simulations 10

� Initial Conditions: Thesedon’t reallymatterfor theAbiotic Equilibriumrun. Thatis, thefinalsteady-statedistributionsfor DIC andDIC14donotdependon theinitial conditionsbecauseexchangewith theatmospherewill ultimatelydeterminetheir final steady-stateinventories.However, a judiciouschoiceof initial conditionscanreducetheintegrationtime requiredto reachsteady-state.Unfortunately,initial conditionsmustbequitecloseindeedto thesteady-statesolutionif thereis to bea significantreductionin computingtime. Thechoiceof initial conditionsis left to thediscretionof eachof themodelinggroups.For initial debugging,groupsmaypreferto initialize DIC14 to thesame3-D field asusedfor DIC. Thatway theonly differencebetweenthetwo tracersis drivenby radioactivedecay.

� Duration: TheEquilibriumrun for abioticDIC andDIC14shouldbecontinueduntil at leastboththefollowing criteriaarereached:

– For DIC, werecommendthattheglobally integratedair-seaflux shouldbelessthan0.01PgC/yr

– For C-14,we recommendthat98%of theoceanvolumeshouldhaveadrift of lessthan0.001� /year(Aumontetal., 1998,p. 105). In termsof C-14age,thisdrift is equivalentto a changeof 8.27yr per1000yearsof simulation.

For mostmodels,thesecriteriacanbereachedonly afterintegrationsof at leastfew thousandmodelyears.

2. Historical run :

� Initial Conditions: Thehistoricalabioticsimulationfor bothDIC andDIC14will beinitializedwith finaloutput(onDec.31) from theEquilibrium run or ”steady-state”simulation.

� Duration: Thehistoricalsimulationwill begin at thebeginningof 1765(Jan1, i.e.,1765.0).Theanthropogenicsimulationwill becontinueduntil theyear2000.0.

– CO2:Until 1990.5,pCO2atm will follow thesplco2.dat;thenfrom 1990.5to 2000.0,theatmospherewill follow IPCCscenarioS650in stab.dat.

– C-14:AtmosphericD14Catmwill follow valuesin c14nth.dat,c14equ.dat,andc14sth.dat(for90S-20S,20S-20N,and20N-90N,respectively) until 2000.0.For lackof data,atmosphericC-14between1995.5and2000.0is heldconstantat107� .

3. Futur eruns (DIC only):

� Future run CIS92A:

– Initial Conditions: 3-D DIC field, 2-D CumulativeFluxesand2-D CumulativeVirtual Flux fieldstobeinitializedwith outputfrom theHistoricalrunat1990.0

– Duration: to becontinuedusingatmosphericCO2from IPCCScenarioCIS92Auntil theyear2100.0� Future run S650:

– Initial Conditions: 3-D DIC field, 2-D CumulativeFluxesand2-D CumulativeVirtual Flux fieldstobeinitializedwith outputfrom theHistoricalrunat1990.0

– Duration: to becontinuedusingatmosphericCO2from IPCCScenarioS650until theyear2300.0

4. Pulseinput responsefunction (DIC only):

� Initial Conditions: OceanDIC is to beinitializedwith final outputfrom theEquilibriumrun;AtmosphericCO2is to bedoubled(556ppm,where1 ppm= 2.123PgC) at t=0, andthenbecontrolledonly via air-seafluxes.Thusthemodelis thento berun in forwardmode(atmosphericCO2iscalculated).TheInjectionHOWTO describesotherforwardsimulationsin moredetail.

Page 11: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

4. Output type and fr equency 11

� Duration: Thetotal integrationwill befor 1000years(1765.0- 2765.0).

5. Control Runs

� Historical Control (DIC andDIC14);andFuture Control (DIC only)/:

– Initial Conditions: OceanDIC is to beinitializedwith final outputfrom theEquilibriumrun;AtmosphericCO2andC-14areto beheldatpreindustrialconditions(278ppm,0� ) throughoutthedurationof thesimulation.

– Duration: Thetotal integrationfor DIC will befor 535years(1765.0- 2300.0).HowevertheintegrationincludingDIC14 is only necessaryfor thefirst 235years(Historical Control run1765.0-2000.0).

– Historical-Future transistion: If runseparately, theFuture Control runshouldbeinitializedwith the3-D DIC fieldsAND the2-D CumulativeFluxes(i.e.,bothair-seagascumulativeflux andvirtualcumulativeflux) from thelasttimestepof 1999(endof Historical Control run).

� Pulse Control (DIC only):

– Initial Conditions: OceanDIC is to beinitializedwith final outputfrom theEquilibriumrun;AtmosphericCO2is to beinitializedwith thequantityof CO2equivalentto 278ppm(1 ppm= 2.123PgC) at t=0, andthenbecontrolledonly via air-seafluxes.Thusthemodelis to berun in forwardmode(atmosphericCO2is calculated).TheInjectionHOWTO describesotherforwardsimulationsin moredetail.

– Duration: Thetotal integrationwill befor 1000years(theequivalentof 1765.0- 2765.0).

Thereareno Future or Pulse simulationsfor DIC14.

4 Output type and fr equency

1. Equilibrium Output : steady-state”natural” simulation

� Type: (N.B. Below, theterms3-D, 2-D, and0-D referto spatialdimensions;anotherdimensionmustbeaddedfor time).

3-D fields:

(a) Concentrationsfor bothpassive tracers[DIC] and[DIC14] (bothin mol/mˆ3);and

(b) Alk (in eq/mˆ3),asdeterminedfrom equation(8);

2-D fields

(a) pCO2surf = Csurf/alphaC (uatm);

(b) dpCO2 = (Csurf - Csat*P/Po) (uatm);

(c) Air-seaDIC gasexchangeflux F (mol/(mˆ2* s));

(d) Air-seaDIC14flux F14 (mol/(mˆ2* s));

(e) Virtual DIC flux Fv (mol/(mˆ2* s));

(f) Virtual DIC14flux Fv14 (mol/(mˆ2* s));� Frequency: Monthly meansandannualmeanfor thefinal yearof equilibriumsimulation.

Page 12: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

4. Output type and fr equency 12

2. Historical Output : for anthropogenicrun for CO2andC-14(1765.0-2000.0)

� Type: Sameasfor theEquilibriumrun (exceptAlk, which is thesame),plus

2-D fields

(a) SurfaceDIC concentration(mol/mˆ3);

(b) SurfaceDC14ocn(permil),seeequation(11);

(c) VerticalInventoryof DIC (mol/mˆ2),i.e., theverticalintegralof its concentrationwith depth,throughoutthewatercolumn.

(d) VerticalInventoryof DC14ocn(permil * m), i.e., theverticalintegralof its level with depth,throughoutthewatercolumn(permil*m arestrangebut usefulunits).

(e) End-of-the-yearcumulativeair-seagasexchangefluxesF andF14, accumulatedevery timestepsinceyear=1765.0(mol/mˆ2).

(f) End-of-the-yearcumulativevirtual fluxesFv andFv14, accumulatedevery timestepsinceyear=1765.0(mol/mˆ2).

0-D fields

(a) GloballyaveragedatmosphericpCO2atm (uatm)andDC14atm (permil);

(b) Globallyaveragedair-seafluxesF andF14 (mol/(mˆ2* s)

(c) Globallyaveragedvirtual fluxesFv andFv14 (mol/(mˆ2* s)

(d) GloballyaveragedDIC andDIC14 (mol/mˆ3),i.e.,aVolume integral

(e) GloballyaveragedsurfaceDIC andDIC14 (mol/mˆ3),i.e.,a Surface integral

(f) GloballyaveragedpCO2surf (uatm)

(g) GloballyaverageddpCO2 (uatm)

(h) GloballyaveragedsurfaceDC14ocn(permil),seeequation(11);

(i) GloballyaveragedDC14ocn(permil),seeequation(11);

(j) Globallyaveragedcumulativeair-seafluxes(end-of-month)for F andF14(mol/mˆ2);

(k) Globallyaveragedcumulativevirtual fluxes(end-of-month)for Fv andFv14(mol/mˆ2)� Frequency:

0-D fields:

(a) Monthly meansduringeveryyear(1765-1999,inclusive)

2-D fields:

(a) Monthly meansfor 1838,1839,1900,andeveryyearfrom 1948-1999(inclusive).

3-D fields:

(a) Monthly meansfor 1838,1953,1954,1957,1965,1972,1973,1974,1977,1978,1981,1982,1983,1985,1986,1987,1988,1989,1991,1993,1995,1997,1999.

(b) Annualmeansfor 1838,1839,1900,andeveryyearfrom 1953-1999(inclusive).

3. Futur eOutput : for futurerunsCIS92AandS650

� Type: SameastheHistoricalrun,but only for theDIC component,notDIC14� Frequency:

0-D fields:

Page 13: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

4. Output type and fr equency 13

(a) CIS92A: Monthly meansduringeveryyear(1990-2099,inclusive)

(b) S650: Monthly meansduringeveryyear(1990-2299,inclusive)

2-D and[3-D] fields:� CIS92A

(a) Monthly meansfor 2000and2099.

(b) Annualmeansfor 2000,2010,every20yearsfor 2020-2080,and2099.� S650

(a) Monthly meansfor 2000,2100,2200,and2299.

(b) Annualmeansfor 2000,2010,every20yearsfor 2020-2280,and2299.

4. PulseOutput : for OCMIPmodelsto beincludedin next IPCCanalysis

� Type: SameastheFuturerun for 0-D and2-D fields;No 3-D fields!� Frequency:

0-D fields� 0.0-10.0years:monthlymeans(12x 10= 120records)� 10.0-100.0years:annualmeans(i.e.,90records)� 100.0-1000.0years:annualmeansevery10years(i.e.,90 records)� Finalyear(999.0-1000.0):annualmean(i.e.,1 record)

2-D fields� 0.0-10.0years:annualmeanseachyear(11 records)� 10.0-100.0years:annualmeansevery10years(90records)� 100.0-1000.0years:annualmeansevery100years(90 records)� Finalyear(999.0-1000.0):annualmean(1 record)

5. Control Output :

� Type:

– Historical Control (1765.0- 2000.0)-¿Justlike Historicalrun

– Future Control (2000.0- 2300.0)-¿JustlikeFuturerun–onlyDIC component,notDIC14.

– Pulse Control (0.0- 1000.0)-¿JustlikePulserun–onlyDIC component.� Frequency:

0-D fields:

(a) Historical Control: Monthly meansduringeveryyear(1765-1999,inclusive)

(b) Future Control: Monthly meansduringeveryyear(2000-2300,inclusive)

(c) Pulse Control: just likePulserun� 0.0-10.0years:monthlymeans(12x 10= 120records)� 10.0-100.0years:annualmeans(i.e.,90records)� 100.0-1000.0years:annualmeansevery10years(i.e.,90 records)� Finalyear(999.0-1000.0):annualmean(i.e.,1 record)

2-D fields:

Page 14: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

5. Output Format 14

(a) Historical Control: Annualmeansfor 1838,1839,1900,andeveryyearfrom 1948-1999(inclusive).

(b) Future Control: Annualmeansfor 2000,2010,every20yearsfor 2020-2080,2099,every20yearsfor 2100-2280,and2299.

(c) Pulse Control: just likePulserun� 0.0-10.0years:annualmeanseachyear(11records)� 10.0-100.0years:annualmeansevery10years(90records)� 100.0-1000.0years:annualmeansevery100years(90 records)� Finalyear(999.0-1000.0):annualmean(1 record)

3-D fields:

(a) Historical Control: Annualmeansfor 1838,1839,andeveryyearfrom 1953-1999(inclusive)

(b) Future Control: Annualmeansfor 2000,2010,every20yearsfor 2020-2080,2099,every20yearsfor 2100-2280,and2299.

(c) Pulse Control: None!

5 Output Format

Eachmodelinggroupmustprovidetheiroutputin thestandardOCMIP-2format.Modeloutputthatdoesnot followtheseformattingconventionscannotbeincludedfor analysisduringOCMIP-2.Modelgroupsmustusethestandardroutinesthatwehavedevelopedspecificallyfor writing outputin standardform for OCMIP-2.

If this is thefirst OCMIP-2simulationyou havemade,you will needto recuperatetheroutinewrite nc MaskAreaBathy.f to write outcharacteristicsof yourmodelgrid, mask,andbathymetryusingthestandardOCMIP-2format.Useof this routineis detailedin theCFCHOWTO (section5.1).

Otherwiseif you havesubmittedOCMIP-2modeloutputpreviously, you will only needto resubmittheoutputfileproducedby write nc MaskAreaBathy.f undertwo conditions:

1. eitheryourmodel’sgrid, mask,or bathymetryhavechanged;or

2. youhavebeennotifiedby theOCMIP-2analysiscenterat IPSLthatyouroutputfile from thissubroutinedidnotpasstheroutineintegrity tests.

5.1 Output routines

Eachmodelinggroupmustusetheroutineslistedin thefollowing tableto storeresultsin standardOCMIP-2formatfor theEquilibriumOutput,HistoricalOutput,FutureOutput,PulseOutput,andControlOutput.

Input to theseroutinesconsistsof yourmodel’soutputandcharacteristics.Thefirst routinewrite nc Abiotic equil.f mustbecalledONLY once,at theendof modelspin-up.We definethefinal outputof thatrun to betheinitial conditions(at1765.0)for thetransientruns.TheHistoricalroutines(write nc Abiotic hist year 3D.f write nc Abiotic hist year 2D.f ) mustbecalledfor theappropriateoutput years of theHistoricalrun (seeprevioussectionOutputtypeandfrequency); converselythe

Page 15: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

5. Output Format 15

Historicalroutine(write nc Abiotic hist year 0D.f is calledonly once,afterbuiliding a1-D timeseriesofglobalmeaninformation.Thesamestrategy holdsfor theoutputroutinesfor theotherAbiotic transientruns:

� Futureruns(write nc Abiotic futr year 3D.f , write nc Abiotic futr year 2D.f , andwrite nc Abiotic futr year 0D.f );

� Pulserun (write nc Abiotic puls year 2D.f , andwrite nc Abiotic puls year 0D.f ); and

� Controlruns

– Historical Control: write nc Abiotic ctrlH year 3D.f ,write nc Abiotic ctrlH year 2D.f , andwrite nc Abiotic ctrlH year 0D.f ;

– Future Control: write nc Abiotic ctrlF year 3D.f ,write nc Abiotic ctrlF year 2D.f , andwrite nc Abiotic ctrlF year 0D.f ; and

– Pulse Control: write nc Abiotic ctrlP year 2D.f , andwrite nc Abiotic ctrlP year 0D.f ).

Theroutinewrite nc Abiotic TS year.f shouldbecalledonly oncefor offline models;for onlinemodels,itshouldalsobecalledasecondtime, in theyear1990.

----------------------------------- ------ ----- ----- ------ ----- ----- ------ ----- -

Routine Input Units Comments

----------------------------------- ------ ----- ----- ------ ----- ----- ------ ----- -

write_nc_Abiotic_equil.f 1) Conc. of DIC mol/mˆ3 (*)

2) Conc. of DIC14 mol/mˆ3

3) Alk from eq. (8) eq/mˆ3

4) Surf. ocean pCO2 uatm

5) Delta pCO2 (dpCO2) uatm

6) Gas Exch. Flux of DIC mol/(mˆ2*s)

7) Gas Exch. Flux of DIC14 mol/(mˆ2*s)

8) Virtual Flux of DIC mol/(mˆ2*s)

9) Virtual Flux of DIC14 mol/(mˆ2*s)

write_nc_Abiotic_hist_year_3D.f 1) Conc. of DIC mol/mˆ3

2) Conc. of DIC14 mol/mˆ3

write_nc_Abiotic_hist_year_2D.f 1) Surf. ocean pCO2 uatm

2) Delta pCO2 (dpCO2) uatm

3) Gas Exch. Flux of DIC mol/(mˆ2*s)

4) Gas Exch. Flux of DIC14 mol/(mˆ2*s)

5) Virtual Flux of DIC mol/(mˆ2*s)

6) Virtual Flux of DIC14 mol/(mˆ2*s)

7) Surface DIC mol/mˆ3

8) Surface Delta C-14 permil

Page 16: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

5. Output Format 16

9) Vert. Integral of DIC mol/mˆ2

10) Vert. Integral of DC-14ocn permil*m

11) Cum. Gas Flux of DIC mol/mˆ2 1765->

12) Cum. Gas Flux of DIC14 mol/mˆ2 1765->

13) Cum. Virt. Flux of DIC mol/mˆ2 1765->

14) Cum. Virt. Flux of DIC14 mol/mˆ2 1765->

write_nc_Abiotic_hist_year_0D.f 1) Glob_mean (Gm) pCO2atm uatm

2) Gm Delta C-14 atm permil

3) Gm Gas Ex. Flux of DIC mol/(mˆ2*s)

4) Gm Gas Ex. Flux of DIC14 mol/(mˆ2*s)

5) Gm Virtual Flux of DIC mol/(mˆ2*s)

6) Gm Virtual Flux of DIC14 mol/(mˆ2*s)

7) Gm DIC mol/mˆ3

8) Gm DIC14 mol/mˆ3

9) Gm Surface DIC mol/mˆ3

10) Gm Surface DIC-14 mol/mˆ3

11) Gm pCO2surf uatm

12) Gm Delta pCO2 (dpCO2) uatm

13) Gm Surface Delta C-14 permil

14) Gm Delta C-14 permil

15) Gm Cum. Gas Flux of DIC mol/mˆ2 1765->

16) Gm Cum. Gas Flux of DIC14 mol/mˆ2 1765->

17) Gm Cum. Virt. Flux of DIC mol/mˆ2 1765->

18) Gm Cum. Virt. Flux of DIC14 mol/mˆ2 1765->

write_nc_Abiotic_futr_year_3D.f 1) Conc. of DIC mol/mˆ3

write_nc_Abiotic_futr_year_2D.f 1) Surf. ocean pCO2 uatm

2) Delta pCO2 (dpCO2) uatm

3) Gas Exch. Flux of DIC mol/(mˆ2*s)

4) Virtual Flux of DIC mol/(mˆ2*s)

5) Surface DIC mol/mˆ3

6) Vert. Integral of DIC mol/mˆ2

7) Cum. Gas Flux of DIC mol/mˆ2 1765->

8) Cum. Virt. Flux of DIC mol/mˆ2 1765->

write_nc_Abiotic_futr_year_0D.f 1) Glob_mean (Gm) pCO2atm uatm

2) Gm Gas Ex. Flux of DIC mol/(mˆ2*s)

3) Gm Virtual Flux of DIC mol/(mˆ2*s)

4) Gm DIC mol/mˆ3

5) Gm Surface DIC mol/mˆ3

6) Gm pCO2surf uatm

7) Gm Delta pCO2 (dpCO2) uatm

Page 17: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

5. Output Format 17

8) Gm Cum. Gas Flux of DIC mol/mˆ2 1765->

9) Gm Cum. Virt. Flux of DIC mol/mˆ2 1765->

write_nc_Abiotic_puls_year_2D.f 1) Surf. ocean pCO2 uatm

2) Delta pCO2 (dpCO2) uatm

3) Gas Exch. Flux of DIC mol/(mˆ2*s)

4) Virtual Flux of DIC mol/(mˆ2*s)

5) Surface DIC mol/mˆ3

6) Vert. Integral of DIC mol/mˆ2

7) Cum. Gas Flux of DIC mol/mˆ2 1765->

8) Cum. Virt. Flux of DIC mol/mˆ2 1765->

write_nc_Abiotic_puls_year_0D.f 1) Glob_mean (Gm) pCO2atm uatm

2) Gm Gas Ex. Flux of DIC mol/(mˆ2*s)

3) Gm Virtual Flux of DIC mol/(mˆ2*s)

4) Gm DIC mol/mˆ3

5) Gm Surface DIC mol/mˆ3

6) Gm pCO2surf uatm

7) Gm Delta pCO2 (dpCO2) uatm

8) Gm Cum. Gas Flux of DIC mol/mˆ2 1765->

9) Gm Cum. Virt. Flux of DIC mol/mˆ2 1765->

write_nc_Abiotic_TS_year.f 1) Potential temperature degrees C (*)

2) Salinity psu

write_nc_Abiotic_ctrlE_year_3D.f -> Same args as "write_nc_Abiotic_hist_year_3D.f"

write_nc_Abiotic_ctrlE_year_2D.f -> Same args as "write_nc_Abiotic_hist_year_2D.f"

write_nc_Abiotic_ctrlE_year_0D.f -> Same args as "write_nc_Abiotic_hist_year_0D.f"

write_nc_Abiotic_ctrlL_year_3D.f -> Same args as "write_nc_Abiotic_futr_year_3D.f"

write_nc_Abiotic_ctrlL_year_2D.f -> Same args as "write_nc_Abiotic_futr_year_2D.f"

write_nc_Abiotic_ctrlL_year_0D.f -> Same args as "write_nc_Abiotic_futr_year_0D.f"

write_nc_Abiotic_ctrlP_year_2D.f -> Same args as "write_nc_Abiotic_puls_year_2D.f"

write_nc_Abiotic_ctrlP_year_0D.f -> Same args as "write_nc_Abiotic_puls_year_0D.f"

----------------------------------- ------ ----- ----- ------ ----- ----- ------ ----- -

(*) For the equilibrium run: for online models, all 2- and 3-D fields

should be averaged for each month over the last year of the

simulation.

Page 18: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

5. Output Format 18

5.2 Downloading the output routines

Theoutputroutinescanbetransferredto yourmachineby clicking on thelinks below, while holdingdown theShiftkey.

� write nc MaskAreaBathy.f (This routineis thesameaslinkedto theCFCHOWTO; thus,thereis noneedtorecuperateit if you havealreadycontributedOCMIP-2CFCresults).

� write nc Abiotic equil.f

� write nc Abiotic hist year3D.f

� write nc Abiotic hist year2D.f

� write nc Abiotic hist year0D.f

� write nc Abiotic futr year3D.f

� write nc Abiotic futr year2D.f

� write nc Abiotic futr year0D.f

� write nc Abiotic puls year2D.f

� write nc Abiotic puls year0D.f

� write nc Abiotic TS year.f

� write nc Abiotic ctrlH year3D.f

� write nc Abiotic ctrlH year2D.f

� write nc Abiotic ctrlH year0D.f

� write nc Abiotic ctrlF year3D.f

� write nc Abiotic ctrlF year2D.f

� write nc Abiotic ctrlF year0D.f

� write nc Abiotic ctrlP year2D.f

� write nc Abiotic ctrlP year0D.f

Youwill alsoneedto transferthesubroutinehandleerrors.fto properlydealwith possibleerrorswhile youarewriting yournetCDFfiles.

Page 19: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

5. Output Format 19

5.3 Compiling the output routines

Hereis a anexampleof how you wouldcompileoneof theoutputroutines:

f77 -c -O -L/usr/local/lib -lnetcdf -I/usr/local/include \

write_nc_Abiotic_equil.f

BecausewehavemadetheseroutinesF77compatible,youmayneeda functionlen trim.f (from F90),whichwealsoprovideandwhichreturnsthelengthof a characterstring(afterneglectingtrailing blanks).

5.4 Using the output routines

5.4.1 Equilibrium Output

TheAbiotic-runoutputroutinesstoreyourmodelresultsfollowing thenamingandoutputconventions(netCDF,GDT version1.2)chosenfor OCMIP-2.Theoutputfilenameis constructedautomaticallywithin eachroutinefromthreeof thearguments:thetracername,theyear, andthestandard model code<http://www.ipsl.jussieu.fr/OCMIP/p hase2/ #modgroups > usedduringOCMIP-2to identify yourgroup.

For example,aftercompilingandlinking theOCMIP-2outputroutines,weaddthefollowing codeto theIPSLroutinesto storeoutputin standardOCMIP-2form

call write_nc_Abiotic_equil("IPSL","NG L46_SI",

& imt, jmt, kmt,

& 60*60*24*365, 1200,

& MDIC, MDIC14, Alk,

& MpCO2surf, MdpCO2,

& MF, MF14,

& MFv, MFv14)

By line, theargumentsinclude

1. theOCMIP-2model code AND yourown model version indicator(in GDT 1.2terminology, these2 variablesreferto the institution andproduction, respectively);

2. dimensions;

3. thenumberof secondsperyear(in yourmodel),andthenumberof timestepsperyear;

4. the12monthlymeansfor the3-D tracerarraysfor DIC (mol/mˆ3)andDIC14(mol/mˆ3)andfor theAlkcomputedfrom eq.(8) (eq/mˆ3).

5. the12monthlymeansfor the2-D arraysfor surfaceoceanpCO2(pCO2surf,in uatm)andthesea-airpCO2difference(dpCO2,in uatm).

6. the12monthlymeansfor the2-D air-seaflux for F andF14(bothin mol/(mˆ2*s));and

Page 20: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

5. Output Format 20

7. the12monthlymeansfor the2-D arraysfor thesurface”virtual” fluxesFv andFv14(bothin mol/(mˆ2*s));

When do I call the aboveEquilibrium output routine? It shouldbecalledonly once,at theendof thesimulationafterbuilding monthlyarrays(12members)for eachof the2-D and3-D spatialfieldsgivenasarguments.

5.4.2 Historical Output

We needto useaslightly differentroutinesfor saving transientresultsfrom theHistoricalrun. Unlike theequilibriumrun,weseparatelystore3-D, 2-D, and0-D data.Thereasonis thatwestorethehigherdimensionaldatalessoften,tosavespace.

For your3-D modeloutputfor theAbiotic Historicalrun,use

call write_nc_Abiotic_hist_year_3D("IP SL"," NL46_SI",

& imt, jmt, kmt, nt,

& 1985, 60*60*24*365, 1200,

& MDIC, MDIC14)

Notethatwehavealsoaddedthedimensionnt on line 2. Youmustusent to signalif you arepassingannualmeans(nt=1)or monthlymeans(nt=12).Theargumentnt is usedin thesamefashionfor routinesthatfollow. The3-D inputarraysMDIC andMDIC14 areasdescribedfor theEquilibriumrun.

When do I call the above3-D Historical output routine? It shouldbecalledfor eachof thefollowing times:

� with nt=12 (monthlymeans,12 recordsperyear)for eachof theyears1838,1953,1954,1957,1965,1972,1973,1974,1977,1978,1981,1982,1983,1985,1986,1987,1988,1989,1991,1993,1995,1997,1999.

� with nt=1 (annualmeans,1 recordperyear)for eachof theyears1838,1839,1900,andeveryyearfor1953-1999(inclusive).

For your2-D Historicaloutput,use

call write_nc_Abiotic_hist_year_2D("IP SL"," NL46_SI",

& imt, jmt, nt,

& 1985, 60*60*24*365, 1200,

& MpCO2surf, MdpCO2,

& MF, MF14,

& MFv, MFv14,

& Ms_DIC, Ms_DC14ocn,

& Mi_DIC, Mi_DC14ocn,

& CF_F, CF_F14,

& CF_Fv, CF_Fv14)

For 2-D output,weno longerneedthedimensionkmt, formerly in line 2. Conversely, weneedsupplemental2-Dmodeloutputfor theHistoricalrunwhichwasnot includedin theequilibriumoutput.Thissupplemental2-D outputis neededto dueto theHistoricalrun’s transientnatureandourasynchronoussaving of its 2-D and3-D output.Supplemental2-D Historicaloutputincludes

Page 21: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

5. Output Format 21

� line 7: themeansurfaceDIC (mol/mˆ3)andDC14ocn(permil),seeeq.(11);

� line 8: themeanverticalinventoryof DIC (mol/mˆ2)andDC14ocn(permil * m);

� line 9: theend-of-year2-D cumulativeflux for F (mol/mˆ2)andF14(mol/mˆ2);

� line 10: theend-of-year2-D cumulativeflux for Fv andFv14(bothin mol/mˆ2)

Cumulativefluxes(lines9 and10above)mustbeinitialized to zeroandintegratedwith respectto time(i.e.,eachtimestep)from year=1765.0.Notethatthesevaluesshouldbeoutputonly at theendof eachyear, regardlessofwhethernt=12or nt=1.

When do I call the above2-D Historical output routine? It shouldbecalledwith nt=12 for eachof thefollowingyears:1838,1839,1900,andeveryyearfor 1948-1999(inclusive).

For 0-D (1-D with time)Historicaloutput,use

call write_nc_Abiotic_hist_year_0D("IP SL"," NL46_SI",

& nrec, times,

& G_pCO2atm, G_DC14atm

& G_F, G_F14,

& G_Fv, G_Fv14,

& Gv_DIC, Gv_DIC14,

& G_DIC, G_DIC14,

& G_pCO2surf, G_dpCO2,

& G_DC14ocn, Gv_DC14ocn,

& G_CF_F, G_CF_F14,

& G_CF_Fv, G_CF_Fv14)

By line, theargumentsinclude

1. theOCMIP-2model code AND yourown model version indicator(in GDT 1.2terminology, these2 variablesreferto the institution andproduction, respectively);

2. thenumberof recordssavedandthearrayof thetimes(in decimalyears)atwhich they weresaved–formonthlymeans,times shouldbesetto thecorrespondingtimeatmid-month(seebelow for exactvalues).

3. thecorrespondingarraysof thehistoryof theglobalmeanatmosphericCO2(modelinput, in uatm)andglobalmeanatmosphericC-14(in permil,calculatedfrom modelinputasanareaweightedmeanof youroceangridboxesthatyouhave identifiedasbeingin the90S-20S,20S-20N,and20N-90Nlatitudinalbands);

4. thecorrespondingarrayof thehistoryof theglobalmeanair-seaflux F (mol/mˆ2*s)andF14(mol/mˆ2*s);

5. thehistoryof theglobalmeanvirtual fluxesFv (mol/mˆ2*s)andFv14(mol/mˆ2*s);

6. thehistoryof theglobalmeanconcentrationsof DIC (mol/mˆ3)andDIC14(mol/mˆ3);

7. thehistoryof theglobalmeansurfaceconcentrationsof DIC (mol/mˆ3)andDIC14(mol/mˆ3);

Page 22: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

5. Output Format 22

8. thehistoryof globalmeansurfaceoceanpCO2(pCO2surf,in uatm),andtheglobalmeansea-airpCO2difference(dpCO2,in uatm);

9. thehistoryof globalmeansurfaceoceanDC14ocn(in permil),andthewhole-oceanglobalmeanDC14ocn(inpermil);

10. thehistoryof theglobalmeancumulativefluxesF andF14(in mol/mˆ2,integratedsince1765.0)at theendofeachmonth,with eachmonthindicatedby its mid-monthtimegivenin line 2; and

11. thehistoryof theglobalmeancumulativefluxesFv andFv14(in mol/mˆ2,integratedsince1765.0)at theendof eachmonth,with eachmonthindicatedby its mid-monthtimegivenin line 2.

When do I call the above0-D Historical output routine? It shouldbecalledonly once,afterconstructing1-D (intime)arraysfrom all of yourmodeloutput.Thetimestoragefrequency is regular:everymonththroughouttheentirerun(i.e.,all years1765-1999,inclusive). Thusmodelersmustusenrec = 2820,andfill the1-D temporalarraytimeswith theappropriatevalues(i.e.,1765.04167,1765.125,1765.2083,1765.29167,1765.375,... 1999.875,1999.9583).

5.4.3 Futur eOutput

Anothersimilarsetof 3 routinesis neededfor storingresultsfrom theFuturerunsCIS92AandS650.Herewehaveremovedargumentsrelatedto C-14andaddedanargumentfor indicatingwhich futurerun (CIS92Aor S650)isappropriate(seeline 2). Notethatthisargumentmustbegivenin UPPERcase.These3 routinesaregivenbelow(detailsof otherargumentsarethesameasgivenabove):

call write_nc_Abiotic_futr_year_3D("IP SL"," NL46_SI",

& "S650",

& imt, jmt, kmt, nt,

& 2000, 60*60*24*365, 1200,

& MDIC)

call write_nc_Abiotic_futr_year_2D("IP SL"," NL46_SI",

& "S650",

& imt, jmt, nt,

& 2000, 60*60*24*365, 1200,

& MpCO2surf, MdpCO2,

& MF,

& MFv,

& Ms_DIC,

& Mi_DIC,

& CF_F,

& CF_Fv)

When do I call the above2-D and 3-D Futur eoutput routines?They shouldbothbecalledfor eachof thefollowing times:

Page 23: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

5. Output Format 23

� For CIS92A

– with nt=12 for bothof thefollowing years:2000and2099

– with nt=1 for eachof thefollowing years:2000,2010,2020,2040,2060,2080,and2099.

� For S650

– with nt=12 for eachof thefollowing years:2000,2100,2200,2299

– with nt=1 for eachof thefollowing years:2000,2010,2020,2040,2060,2080,2100,2120,2140,2160,2180,2200,2220,2240,2260,2280,2299.

call write_nc_Abiotic_futr_year_0D("IP SL"," NL46_SI",

& "S650",

& nrec, times,

& G_pCO2atm,

& G_F,

& G_Fv,

& Gv_DIC,

& G_DIC,

& G_pCO2surf, G_dpCO2,

& G_CF_F,

& G_CF_Fv)

When do I call the above0-D Futur eoutput routine? It shouldbecalledonly once,afterconstructing1-D (intime)arraysfrom all of yourmodeloutput.Thetimestoragefrequency is regular:everymonththroughouttheentirerun(i.e.,all years1990-2299,inclusive). Thusmodelersmustusenrec = 3720,andthey mustfill the1-D temporalarraytimes) with appropriatecorrespondingvalues(i.e.,1990.04167,1990.125,1990.2083,1990.29167,1990.375,..., 2299.875,2299.9583).

5.4.4 PulseOutput

Anothersetof 2 routinesis neededfor storingthe2-D and0-D resultsfrom thePulserun; for thatrun thereis NO3-D output.Differencesrelative to thePulseoutputroutinesare

� thescenariospecificationhasbeenremoved(only 1 pulserun is to bemade);and

� thent termhasbeenremovedfrom the2-D routinesince2-D outputis to besavedonly for annualmeans,notmonthlymeans.

call write_nc_Abiotic_puls_year_2D("IP SL"," NL46_SI",

& imt, jmt,

& 1, 60*60*24*365, 1200,

& MpCO2surf, MdpCO2,

& MF,

& MFv,

Page 24: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

5. Output Format 24

& Ms_DIC,

& Mi_DIC,

& CF_F,

& CF_Fv)

When do I call the above2-D Pulseoutput routine? It shouldbecalledusingannualmeans,for eachof thefollowing years:0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,20,30,40,50,60,70,80,90,100,200,300,400,500,600,700,800,900,and999.Thesedetailsaregivenin astructuredway in theprevioussection(OutputtypeandFrequency).

call write_nc_Abiotic_puls_year_0D("IP SL"," NL46_SI",

& nrec, times,

& G_pCO2atm,

& G_F,

& G_Fv,

& Gv_DIC,

& G_DIC,

& G_pCO2surf, G_dpCO2,

& G_CF_F,

& G_CF_Fv)

When do I call the above0-D Pulseoutput routine? It shouldbecalledonly once,afterconstructing1-D (in time)arraysfrom all of yourmodeloutput.Thetimestoragefrequency (spacingbetweenindividualmembersof thearraytimes) is NOT regularlyspacedin time. For the0-D Pulse run,outputasspecifiedby times mustbegivenfor

� everymonthfrom years0.0to 10.0(i.e.,12x 10= 120records),with correspondingmonthlymeansprovidedatmid-month(i.e., for times = 0.04167,0.1250,0.2083,0.29167,0.3750,... 9.875,9.9583);

� everyyearfrom years10.0to 100.0(i.e.,90records),with correspondingannualmeansprovidedatmid-year(i.e., for times = 10.5,11.5,12.5,... 99.5);

� every10yearsfrom years100.0-991.0(i.e.,90 records),with correspondingannualmeansprovidedatmid-year(i.e., for times = 100.5,110.5,120.5,130.5,... 990.5);and

� thefinal year(i.e.,1 record),with its correspondingannualmeansprovidedatmid-year(i.e., for times = 999.5).

Thuswith this irregularspacing,modelsmustusenrec = 301(i.e.,120+ 90+ 90+ 1).

5.4.5 Control Output

Finally weneedto storeoutputfor thecontrolrun. Thecontrolrun is necessarybecause3-D tracerfieldsandassociatedfluxesin ourEquilibrium runnever reachperfectequilibrium.Theassociateddrift affectsresultsfor thetransientruns.Correctingfor drift maybeimportantwhencomparingmodeldifferences,particularlyintegratedquantities,over long timeperiods.Thecontrolrun is neededto drift-correctmodels,beforecomparison.It isdesirablethatall groupsmakeall threecontrolruns,but thismaynotbepossiblefor some,dueto CPUrequirements.Below area few guidelinesto helpyou decidewhentheControlrunsarenecessaryandwhatshortcutscanbetaken:

Page 25: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

5. Output Format 25

1. If youwill make thePulse run,youMUST alsomake theequivalentPulse Control run.

2. If youhaveNOT respectedtheEquilibriumdrift criteriayouMUST make theHistorical Control andFutureControl runs.

3. If youhaverespectedtherecommendedEquilibriumdrift criteria,you mayskip makingtheHistorical ControlandFuture Control runs.However, wedoHIGHLY RECOMMENDthatyou makethesesimulations,if youcanafford them,i.e., if they donot representa largeproportionof yourannualCPUbudget.Having thisoutputwill simplify analysisandeliminateguesswork.

4. If youhaverespectedtheEquilibriumdrift criteriaandchoosenot to submitHistorical Control andFutureControl output,youMUST still provideanindicationof thedrift of yourmodel.In otherwords,you mustusethethree*ctrlH* routines(seebelow) to provideyouroutputfor anotheryear. For instance,youcouldprovideoutputfrom the0-D, 2-D, and3-D *ctrlH* routinesfor theyear1775.We would thencomputeyourmodeldrift andtreatit asconstant.

Thosewhowill bemakingall theCO2Injectionsimulationscaneconomizea little. Thatis, with thoseruns,oneautomaticallymakesmakeboththeLate Control andthePulse Control runs,simultaneoulsy. Thefirst of thetenInjectiontracersis thecontroltracer. Unfortunately, theInjection runsdoNOT offer anopportunityto skip theHistorical Control run. For moredetails,seethefinal versionof theInjectionHOWTO.

Argumentsof theControl outputroutinesarethesameasthoseusedin theHistorical, Future, andPulse outputroutines,asdescribedbelow.

1. Historical Control output(for 1765-1999,inclusive): We saveboththeDIC andDIC14relatedcomponents.We use3 routines,with thesameargumentsasthe0-D, 2-D, and3-D Historical output routines.

� When do I call the above3-D Historical Control output routine (write nc Abiotic ctrlH 3D.f)? Itshouldbecalledwith Annual means (nt=1) for 1765,1838,1839,1900,andeveryyearfrom 1953-1999(inclusive).

� When do I call the above2-D Historical Control output routine (write nc Abiotic ctrlH 2D.f)? Itshouldbecalledwith Annual means (nt=1) for 1765,1838,1839,1900,andeveryyearfrom 1948-1999(inclusive).

� When do I call the above0-D Historical Control output routine (write nc Abiotic ctrlH 0D.f)? Itshouldbecalledonly once,afterconstructing1-D (in time)arraysfrom all of yourmodeloutput.Thetimestoragefrequency is regular:everymonththroughouttheentirerun (i.e.,all years1765-1999,inclusive). Thusmodelersmustusenrec = 2820,andfill thethe1-D temporalarraytimes with theappropriatevalues(i.e.,1765.04167,1765.125,1765.2083,1765.29167,1765.375,... 1999.875,1999.9583).TheHistorical Control Runusesthesamenrec andtimes arrayasdoestheHistorical run.

2. Future Control output(for 2000-2764,inclusive): We saveonly theDIC-relatedcomponent.We use3 routineswith thesameargumentsasthe0-D, 2-D, and3-D Future output routines.

� When do I call the above3-D Future Control output routine (write nc Abiotic ctrlF 3D.f)? It shouldbecalledwith Annual means (nt=1) for years2000,2010,2020,2040,2060,2080,2099,2100,2120,2140,2160,2180,2200,2220,2240,2260,2280,2299.

Page 26: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

5. Output Format 26

� When do I call the above2-D Future Control output routine (write nc Abiotic ctrlF 2D.f)? It shouldbecalledwith Annual means (nt=1) for years2000,2010,2020,2040,2060,2065,2080,2099,2100,2120,2140,2160,2165,2180,2200,2220,2240,2260,2265,2280,2299.

� When do I call the above0-D Future Control output routine (write nc Abiotic ctrlF 0D.f)? It shouldbecalledonly once,afterconstructing1-D (in time)arraysfrom all of yourmodeloutput.Thetimestoragefrequency is regular:everymonththroughouttheentirerun(i.e.,all years2000-2300,inclusive).Thusmodelersmustusenrec = 3600,andthey mustfill the1-D temporalarraytimes) with appropriatecorrespondingmid-monthvalues(i.e.,2000.04167,2000.125,2000.2083,2000.29167,2000.375,...,2299.875,2299.9583).Notethatnrec andtimes areNOT identicalto thoseusedwhencalling theanalogous0-D routineto saveFutureoutput(i.e.,nrec is smaller;times starts10yearslater).

3. Pulse Control output(for 2000-2764,inclusive): We save only theDIC-relatedcomponent.We use2 routineswith thesameargumentsasthe0-D and2-D Pulse output routines.

� When do I call the above2-D Pulse Control output routine (write nc Abiotic ctrlP 2D.f)? It shouldbecalledwith Annual means (nt=1) for years0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,20,30,40,50,60,70,80,90,100,200,300,400,500,600,700,800,900,and999.

� When do I call the above0-D Pulse Control output routine (write nc Abiotic ctrlP 0D.f)? It shouldbecalledonly once,afterconstructing1-D (in time)arraysfrom all of yourmodeloutput.Thetimestoragefrequency is NOT regularlyspacedin time. For the0-D Pulse Control run,outputasspecifiedbytimes mustbegivenfor

– everymonthfrom years0.0to 10.0(i.e.,12x 10= 120records),with correspondingmonthlymeansprovidedatmid-month(i.e., for times = 0.04167,0.1250,0.2083,0.29167,0.3750,... 9.875,9.9583);

– everyyearfrom years10.0to 100.0(i.e.,90records),with correspondingannualmeansprovidedatmid-year(i.e., for times = 10.5,11.5,12.5,... 99.5);

– every10yearsfrom years100.0-991.0(i.e.,90records),with correspondingannualmeansprovidedatmid-year(i.e., for times = 100.5,110.5,120.5,130.5,... 990.5);and

– thefinal year(i.e.,1 record),with its correspondingannualmeansprovidedatmid-year(i.e., fortimes = 999.5).

Thuswith this irregularspacing,modelsmustusenrec = 301(i.e.,120+ 90+ 90+ 1).

5.4.6 Namesof Output files

All argumentsof theAbiotic routinesareinput;noneareoutput.With theargumentsaslistedin thenineroutinesabove,ThecorrespondingoutputnetCDFfiles are

� "IPSL Abiotic equil.nc" ;

� "IPSL Abiotic hist 1985 3D.nc" , "IPSL Abiotic hist 1985 2D.nc" ,"IPSL Abiotic hist global 0D.nc" ;

� "IPSL Abiotic S650 2000 3D.nc" , "IPSL Abiotic S650 2000 2D.nc" ,"IPSL Abiotic S650 global 0D.nc" ;

� "IPSL Abiotic puls 0001 2D.nc" , "IPSL Abiotic puls global 0D.nc" .

Page 27: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

6. Transfer of output 27

� "IPSL Abiotic ctrlH 1985 3D.nc" , "IPSL Abiotic ctrlH 1985 2D.nc" ,"IPSL Abiotic ctrlH global 0D.nc" ;

� "IPSL Abiotic ctrlF 2000 3D.nc" , "IPSL Abiotic ctrlF 2000 2D.nc" ,"IPSL Abiotic ctrlF global 0D.nc" ;

� "IPSL Abiotic ctrlP 0001 2D.nc" , "IPSL Abiotic ctrlP global 0D.nc" .

Thesefilesalongwith all othersproducedby theAbiotic routinesshouldbetrasferredto IPSL(seesectionTransferof output).FilenamesshouldNOT bechanged.Subsequently, at IPSL,fileswill be(1) testedfor consistency, (2)includedin theOCMIP-2database,and(3) processedfor baseanalysis.

5.5 Needmoredetails?

See <http://www.ipsl.jussieu.fr/OCMIP/tec h>. for additionalinformationabouttheformatnetCDFandotherconventions(COARDS,GDT) chosenfor storingOCMIP-2modeloutput.

If youhaveotherquestions,[email protected] [email protected].

6 Transfer of output

We providedetailsonly for transferringEquilibriumOutput.Outputfrom theotherAbiotic simulations(HistoricalOutput,FutureOutput,PulseOutput,andControlOutput)shouldbetransferredin ananalogousfashion.

TheEquilibriumOutputfiles IPSL Abiotic equil.nc andIPSL Abiotic TS year.nc shouldfirst becompressed.

gzip IPSL_Abiotic_equil.nc IPSL_Abiotic_TS_year.nc

If gzip is notavailableonyourmachine,thealternative is to usecompress . After compression,youshouldftp yourfiles to LSCEfor processingandanalysis.Yourmodeloutputcouldbequitelargedependinguponmodelresolution.Fearnot though,becausewehave thediskspaceto accommodateoutputfrom all OCMIPmodels.Contactusif theftp transferrateis inadequate.In thatcase,you’ll needto write youroutputto tape(DDS,DDS2,Exabyte,or DLT)andmail it to

James ORR

LSCE, CEA Saclay

Unite mixte de recherche CEA-CNRS

Bat. 709, L’Orme des Merisiers

F-91191 Gif-sur-Yvette CEDEX

FRANCE

Herearethecommandsto transferyouroutputby ftp:

Page 28: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

7. References 28

ftp: ftp.cea.fr

user: anonymous

passwd: your full email

cd incoming2/y2k01/OCMIP

mkdir <your group name>

mkdir <your group name>/Abiotic

cd <your group name>/Abiotic

binary

prompt

mput <your group name>*nc*

Thene-mailus([email protected]@ipsl.jussieu.fr)thatyour transferis complete.

To avoid confusion,youcancreatefurthersubdirectories(Abiotic/equil,Abiotic/hist,Abiotic/futr, Abiotic/puls,andAbiotic/ctrl) to distinguishthefivedifferenttypesof runs.Theftp archiveis erasedautomaticallyevery8 days,sobesureto contactusassoonasyouhavecompletedtransfer, andsaveyouroutputfilesat leastuntil wehavenotifiedyou thatthey havebeentransferredto theOCMIP-2modeloutputarchive.

7 References

Aumont,O., J.C. Orr, D. Jamous,P. Monfray, O. Marti, andG. Madec,1998.A degradationapproachto acceleratesimulationsto steady-statein a 3-D tracertransportmodelof theglobalocean.ClimateDynamics,14,101-116.

Broecker, W.S.,J.R. Ledwell,T. Takahashi,R. Weiss,L. Merlivat,L. Memery, T.-H. Peng,B. Jahne,andK. O.Munnich,1986.IsotopicversusmicrometeorlogicoceanCO2fluxes,J.Geophys.Res.,91,10517-10527.

Enting,I.G., T. M. L. Wigley, M. Heimann,1994.FutureEmissionsandconcentrationsof carbondioxide:key ocean/ atmosphere/ landanalyses,CSIRO Aust. Div. Atmos.Res.Tech.Pap.No. 31,118pp.

Joos,F., M. Bruno,R. Fink, T. F. Stocker, U. Siegenthaler, C. Le � Quere� , andJ.L. Sarmiento,1996.An efficientandaccuraterepresentationof complex oceanicandbiosphericmodelsof anthropogeniccarbonuptake,Tellus,Ser.B, 48,397–417.

Levitus,S.,1982.Climatologicalatlasof theWorld Ocean,NOAA Prof. Pap.13,U.S.GPO.,Washington,D.C.,173pp.

Maier-Reimer, E. andK. Hasselmann,1987.Transportandstorageof CO2in theocean–aninorganicocean-circulationcarboncyclemodel,Clim. Dyn.,2, 63–90,1987.

Sarmiento,J.L., J.C. Orr, andU. Siegenthaler, 1992.A perturbationsimulationof CO2uptake in anoceangeneralcirculationmodel,J.Geophys.Res.,97,3621–3645.

Walsh,J.1978.A datasetonnorthernhemisphereseaiceextent,1953-1976.GlaciologicalData,World DataCenterfor Glaciology(Snow andIce),ReportGD-2,49-51.

Wanninkhof,R., 1992.Relationshipbetweenwind speedandgasexchangeover theocean,J.Geophys.Res.,97,7373-7382.

Page 29: Abiotic-HOWTO - · PDF fileAbiotic-HOWTO J. Orr, R. Najjar, C. Sabine, and F. Joos Revision: 1.16, Date: 2000/01/08 18:46:21 This document provides step-by-stepguidelines to make the

8. Contacts 29

Warner, M. J.andR. F. Weiss(1985)Solubilitiesof chlorofluorocarbons11and12 in waterandseawater, Deep-SeaRes.,32,1485-1497.

ZhengM., W. J.DeBruyn,andE. S.Saltzman,1998.Measurementsof thediffusioncoefficientsof CFC-11andCFC-12in purewaterandseawater, J.Geophys.Res.,103,1375-1379.

Zwally, H. J.,J.Comiso,C. Parkinson,W. Campbell,F. Carsey, andP. Gloerson,1983.AntarcticSeaIce,1973-1976:SatellitePassiveMicrowaveObservations,NASA, 206pp.

8 Contacts

[email protected], [email protected]

9 Samedocument,another format?

Thisdocumentis availablein otherformats:

� HTML ( <HOWTO-Abiotic.html> )

� Postscript( <HOWTO-Abiotic.ps> )

� ASCII ( <HOWTO-Abiotic.txt> )

� LaTeX ( <HOWTO-Abiotic.tex> )

� DVI ( <HOWTO-Abiotic.dvi> )


Recommended