+ All Categories
Home > Documents > Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System...

Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System...

Date post: 28-Apr-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
38
www.csiro.au Electromagnetics Team Achievements Dr Stuart G Hay | Research Team Leader November 2015
Transcript
Page 1: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

www.csiro.au

Electromagnetics TeamAchievements

Dr Stuart G Hay | Research Team Leader November 2015

Page 2: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Research Areas

• Reconfigurable antennas• Antennas that adapt to changing requirements by simple electronic switching of

radiation patterns or frequency

• Mm-wave and THz antennas• Antenna and packaging architectures enabling use of these frequencies for

communications and imaging

• Reflectors, lenses and feeds• High-gain multibeam and beam-scanning antennas for satellite communications,

radioastronomy and imaging

• Wideband phased arrays• Next-generation radio camera phased array feeds for radioastronomy and other

applications

Page 3: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Science Vision

ElectromagneticModeling

Array Design

Signaling MethodsEmbedded

Devices

Antennasand

Signal ProcessingAdaptiveSystems

DigitalProcessing

ImagingMethods

SKA Broadband Communications

Health Safety

Page 4: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Research Areas

• Reconfigurable antennas• Antennas that adapt to changing requirements by simple electronic switching of

radiation patterns or frequency

• Mm-wave and THz antennas• Antenna and packaging architectures enabling use of these frequencies for

communications and imaging

• Reflectors, lenses and feeds• High-gain multibeam and beam-scanning antennas for satellite communications,

radioastronomy and imaging

• Wideband phased arrays• Next-generation radio camera phased array feeds for radioastronomy and other

applications

Page 5: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Reconfigurable Antennas

• Frequency reconfigurable high gain low profile antenna (5.2-6GHz, 10-16dBi)• Partly reflecting surface above phase agile cells (varactor)

Weily, A.W., Bird, T.S. and Guo, Y.J.,. IEEE TAP 56, 11, Nov 2008.

Page 6: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Reconfigurable Antennas

• Frequency reconfigurable Quasi-Yagi antennas• Polarization and pattern reconfigurable U-slot antennas• Linear/LCP/RCP, pencil/conical beams

Qin, P., Weily, A.R., Guo, Y.J. et al. IEEE TAP, 58, 8, 2010 and IEEE TAP, 58,10, 2010.

Page 7: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Reconfigurable Antennas

(a)

(b)(a) A new microstrip dual-band polarization reconfigurable antenna at 2.4 GHz

and 5.8 GHz. Horizontal, vertical, or 45⁰ linear polarization in the two frequency bands.

(b) A high gain beam switching pattern reconfigurable quasi-Yagi dipole antenna at 5.2 GHz. Three states with the E-plane maximum beam direction towards 20⁰, -20⁰, and 0⁰, respectively.

P. Y. Qin, Y. J. Guo, C. Ding, IEEE T-AP Vol. 61, No. 11, Nov. 2013 and IEEE T-AP, Vol. 61, No. 10, Oct. 2013.

Page 8: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Research Areas

• Reconfigurable antennas• Antennas that adapt to changing requirements by simple electronic switching of

radiation patterns or frequency

• Mm-wave and THz antennas• Antenna and packaging architectures enabling use of these frequencies for

communications and imaging

• Reflectors, lenses and feeds• High-gain multibeam and beam-scanning antennas for satellite communications,

radioastronomy and imaging

• Wideband phased arrays• Next-generation radio camera phased array feeds for radioastronomy and other

applications

Page 9: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Mm-Wave Circularly Polarized Antennas

10mm

•Measured impedance bandwidth is from 50.25GHz to 74.5GHz, or 38.9%.

•The objective bandwidth of 57-66GHz is easily covered.

•Maximum measured gain is 15.6dBic at 60GHz.

•Slot elements generate circular polarization, hence the antennas don’t require polarization alignment in WiHD system.

•Patented approach

A.R. Weily, and Y.J. Guo, IEEE TAP, 57, 10, pp. 2862-2870, Oct. 2009.

Page 10: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Mm-Wave Array Antennas

Array Prototype Measured Radiation Patterns at 72GHz

θBeam angle

N. Nikolic and A.R. Weily, “E-band Planar Quasi-Yagi Antenna with Folded Dipole Driver,” Micro., Ant., Prop., IET , 4, 10, 2010.

Page 11: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Weily, A. And Nikolic, N., “Stacked Patch Antenna with Perpendicular Feed Substrate”, Asia Pacific Microwave Conf 2011.

Mm-Wave Receive Array System

Page 12: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

A. R. Weily and N. Nikolic, “Circularly Polarized Stacked Patch Antenna with Perpendicular Feed Substrate”, IEEE TAP, 2013.

Stacked circularly polarized patch with EM coupling to perpendicular feed substrate

• Bonding layer is used to reduce the sensitivity of the antenna to the gap between the perpendicular substrates.

• Vias are not used between the perpendicular substrates.

Unit cell

4x4 stacked patch array

perpendicularfeed substrate

Mm-Wave Circularly Polarized Arrays

Page 13: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Perpendicular transceiver substrate

“brick” construction for a 4x8 element planararray

LCP (εr =3.16, h = 100µm, t = 9µm)

Single stacked patch antenna element on a folded LCP substrate

N. Nikolic, A. R. Weily, “Millimeter-wave stacked patch antenna design on a folded LCP substrate ”, IEEE AP-S, 2014.

Advantage: Simpler fabrication compared to the design with EM coupling

Mm-Wave Circularly Polarized Arrays

Page 14: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Mm-Wave Antenna/MMIC Interface

• 71-86GHz low-cost antenna-MMIC interface and packaging

Stephanie L. Smith et al, “Design aspects of an antenna-MMIC interface using a stacked patch at 71-86GHz,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1591 – 1598, Apr. 2013.

Page 15: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Mm-Wave Antenna Measurements

• New 20-200GHz compact range • Shaped-beam horn illuminators• 600mm quiet zone• Amplitude and phase measurement capability

-50 -40 -30 -20 -10 0 10 20 30 40 50-40

-30

-20

-10

0

Ma

gn

itu

de

(dB

)

-50 -40 -30 -20 -10 0 10 20 30 40 50-200

-150

-100

-50

0

50

100

150

200

Ph

ase

()

-50 -40 -30 -20 -10 0 10 20 30 40 50-40

-30

-20

-10

0

-50 -40 -30 -20 -10 0 10 20 30 40 50-200

-150

-100

-50

0

50

100

150

200

Angle ()

Calculated PhaseMeasured PhaseCalculated MagnitudeMeasured Magnitude

Stephanie L Smith et al, IEEE TAP, 60, 4, April 2012

Page 16: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

THz Dielectric Rod Antennas

• 600GHz dielectric rod antenna with high efficiency ring-slot feed

Stephen Hanham and Trevor Bird, IEEE TAP 56, 6, June 2008.

Page 17: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

THz Superconducting Detector andIntegrated Antenna

• Superconducting detectors for detecting terahertz radiation with improved performance over room temperature detectors (NEP)

• Integrated substrate lens antennas operating from 200 to 600 GHz• Paper in top 10 most downloaded for the journal in 2009

J. Du, A. D. Hellicar, S. Hanham, L. Li, J. C. Macfarlane, K. E. Leslie, and C. P. Foley, Journal of Infrared, Millimeter, and Terahertz Wave.

J. Du, A. D. Hellicar, L. Li., S. M. Hanham, J. C. Macfarlane, K. E. Leslie, N. Nikolic, C. P. Foley and K. J. Greene, Supercond. Sci. Tech., vol. 22, no. 11, p. 114001, Oct. 2009.

J. Du, A. D. Hellicar, L. Li, S. M. Hanham, N. Nikolic, J. C. Macfarlane and K. E. Leslie, Supercond. Sci. Tech., vol. 21, no. 12, p. 125025, Nov. 2008.

Page 18: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

THz Imaging System

• Terahertz imaging system capable of imaging at 0.2 and 0.6 THz• Experiments in food contamination, skin burns and epithelial cancers

Andrew Hellicar, Stephen Hanham, Infrared Mm-wave THz 2009.

600 GHz source

600 GHz detector

Sample

200 GHz source 200 GHz detector Fig. 2. Razor blade inside a chocolate bar.

Fig. 3. Skin burn covered by bandages.

Fig. 1. Dual frequency terahertz system imaging a leaf.

Page 19: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Research Areas

• Reconfigurable antennas• Antennas that adapt to changing requirements by simple electronic switching of

radiation patterns or frequency

• Mm-wave and THz antennas• Antenna and packaging architectures enabling use of these frequencies for

communications and imaging

• Reflectors, lenses and feeds• High-gain multibeam and beam-scanning antennas for satellite communications,

radioastronomy and imaging

• Wideband phased arrays• Next-generation radio camera phased array feeds for radioastronomy and other

applications

Page 20: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Multibeam Reflector Antennas

• Patented shaped reflector approach• 40 degree coverage of geostationary arc per antenna• Approved for transmit and receive Ku band operation • 20Gb/s of data

Hay et al. IEEE APS 2001.

Page 21: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Beam Scanning Reflector Antennas

• Rapid scanning 3-reflector antennas for 200GHz imaging

Hay at al., IEEE TAP 53, 8, 2005 and IEEE TAP 59, 7, 2011.

Page 22: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Mm-Wave Imaging at 200GHz

Page 23: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

RR1

R2

R3

R4

ε1

ε2

ε3

ε4

• Rapid analysis and optimization of Luneburg lenses using spherical wave expansion technique

angle (deg)angle (deg)

Comparison of the E- and H-plane radiation patterns calculated using CST MWS and the SWE method

Lens Antennas

Nasiha Nikolic, “Realistic Source Modelling and Tolerance Analysis of a Luneburg Lens Antenna”, IEEE AP-S 2010

Page 24: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Port 2(H-pol)

1st Layer 2nd Layer (front) 3rd Layer (back)

Low Profile Lens for SOTM

TotalHeight Total

Height15º

90º

15º

90ºTotal

Height TotalHeight

15º

90º

15º

90ºTotal

Height TotalHeight

15º

90º

15º

90º

Feed for low-profile hemispherical lens antenna

Ku band dual polarization operation

Andrew Weily and Nasiha Nikolic, IEEE TAP, 60, 1, 2012.

Page 25: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Compact Limited-Scan Lens Quarter-sphere scanning lens

Radiation pattern of the antenna for the feed is rotated in the yz-plane

Radiation pattern of the antenna for the feed is rotated in the xz-plane

N. Nikolic, Graeme L. James, Andrew Hellicar, Kieran Greene, ANTEM, June 2012

N. Nikolic, Graeme L. James, Andrew Hellicar, Kieran Greene, ANTEM, June 2012.

Page 26: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Profiled Dielectric Rod Antennas

• Profile optimization for specified radiation characteristics• Analysis and synthesis by BoR-MoM and genetic algorithm • Reveals non-linear rod profiles with increased performance

Fig. 1. Rod optimised for low sidelobes. Fig. 2. Rod optimised for maximum boresight gain.

Fig. 3. 10 GHz dielectric rod optimised for maximum gain.

S. M. Hanham, T. S. Bird, A. D. Hellicar and R. A. Minasian, "Evolved profile dielectric rod antennas," IEEE TAP 2010.

Page 27: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Horn Array Feed Antennas

• Multibeam feeds for radio telescopes• Parkes• Arecibo• Jodrell Bank• FAST

• Accurate and rapid analysis of horn array antennas and feed systems

L. Staveley-Smith , W.E. Wilson, T.S. Bird et al, “The Parkes 21cm Multibeam Receiver”, Publications of the Astronomical Society of Australia, 13, 1996.Bird, Hellicar and Hanham, ICEAA 2010.

Page 28: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Research Areas

• Reconfigurable antennas• Antennas that adapt to changing requirements by simple electronic switching of

radiation patterns or frequency

• Mm-wave and THz antennas• Antenna and packaging architectures enabling use of these frequencies for

communications and imaging

• Reflectors, lenses and feeds• High-gain multibeam and beam-scanning antennas for satellite communications,

radioastronomy and imaging

• Wideband phased arrays• Next-generation radio camera phased array feeds for radioastronomy and other

applications

Page 29: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Connected Arrays and Future Directions

Connected Arrays

SKASKA Broadband Communications

Broadband Communications

HealthHealth

Page 30: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

CSIRO - ASKAP SST PI 9 November 2011

Phased Array Feeds (PAFs)

Australian SKA Pathfinder (ASKAP)

Page 31: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Connected Array PAF

Focal plane arrayField of view

Concentrator

Hay, S.G. and O’Sullivan, J.D., “Analysis of common-mode effects in a dual-polarized planar connected array antenna”, Radio Science, 43, RS6S04, 2008.

Low noise amplifiers

Digital beamformer

< λ/2Connected array

Page 32: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Connected Array PAF

• Dual polarized connected planar array• Array and low-noise amplifier matching (300ohm) • Wideband (>2.5:1)• Advantages in cost and integration

Patches Transmission lines

Ground plane

Digital beamformerLow-noiseamplification+ conversion+ filtering

Weighted sum of inputs

Currents

DifferentialCommon

Page 33: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

• 36 12m-diameter antennas• 188 element PAFs (0.7-1.8GHz, 300MHz digital beamforming)• 30 square degree FoV

Australian SKA Pathfinder

Hotan, A. W., Bunton, J. D., Harvey-Smith, L., et al., “The Australian Square Kilometre Array Pathfinder: System Architecture and Specifications of the Boolardy Engineering Test Array”, Publications of the Astronomical Society of Australia, 31, 2014.

Page 34: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Array Computational Electromagnetics

Core element Primary CBF

Secondary CBF

Tertiary CBF

Hay, S.G., O’Sullivan, J.D. and Mittra, R., IEEE TAP, 59,3,2011.

• Tertiary characteristic basis for connected arrays• 1000x decrease in computational complexity

Page 35: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

PAF Low Noise Amplifiers (LNAs)

ZSE ZSE

Vi+ Vi

-

Patch Patch

Beamformer

A (Vi+-Vi

-)

Groundplane

Differential single-ended (DSE)

Shaw, R.D. Hay, S.G. and Ranga, Y., “Development of a Low-Noise Active Balun for a Dual-Polarized Planar Connected-Array Antenna for ASKAP”, ICEAA 2012Shaw, R.D and Hay, S.G., “Transistor Noise Characterization for an SKA Low-Noise Amplifier”, EuCAP 2015.

Page 36: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

PAF Survey Speed Figure of Merit

PAF

)(SSFoMSNR 2 Sd

sys

eff

TA

S SNR

)(SNR 2 S

T

dt

Correlator

Digital beamformer Digital beamformer

T

dt T

dt T

dt

Combine simultaneous correlations

Combine correlations from different times

Images (Stokes parameters)(deg2 m4 / K2)

Hay, S.G., and Bird, T.S. “Applications of Phased Array Feeders in Reflector Antennas”, Handbook of Antenna Technologies, Springer, March , 2015.

Page 37: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

Thank youWe acknowledge the Wajarri Yamatji people asthe traditional owners of the Observatory site.Dr Stuart G Hay

Research Team Leader - Electromagnetics– t +61 2 9372 4288– E [email protected]– w www.csiro.au/projects/ASKAP

Page 38: Achievements Electromagnetics Data61 CSIRO November15 2015 · 2016. 3. 12. · THz Imaging System • Terahertz imaging system capable of imaging at 0.2 and 0.6 THz • Experiments

www.csiro.au

Dr Stuart G HayResearch Team Leader - Electromagneticst +61 2 9372 4288e [email protected] www.csiro.au

Thank you


Recommended