+ All Categories
Home > Documents > AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance....

AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance....

Date post: 17-May-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
21
UNCLASSIFIED AD 282 233 (lepAaduced by ike ARMED SERVICES TECHNICAL INFORMATION AGENCT ARLINGTON HALL STATION ARLINGTON 12. VIRGINIA UNCLASSIFIED
Transcript
Page 1: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

UNCLASSIFIED

AD 282 233 (lepAaduced

by ike

ARMED SERVICES TECHNICAL INFORMATION AGENCT ARLINGTON HALL STATION ARLINGTON 12. VIRGINIA

UNCLASSIFIED

Page 2: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

NOTICE: When goverrment or other drawings, speci- fications or other data are used for any purpose other than In connection with a definitely related government procurement operation, the U. S. Government thereby Incurs no responslhlllty, nor any obligation whatsoever; and the fact that the Govern- ment may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data la not tu be regarded by implication or other- wise as in any manner licensing the holder or any other person or corprratlon, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Page 3: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

/I -Crfl -

C^ l CO CJ CM GO

WATERTOWN ARSENAL LABORATORIES

I I

CO cr> LxJ c ~ — CD c : ; Q

fe. CO CJ:

^ASSESSMENT OF 9310 STEEL FOR CARBURIZED COMPONENTS IN MIU RIFLES

TECHNICAL REPORT WAL TR 739.1/4

«: >

CO CO

BY

PAUL V. RIFFIN •

AND

JOSEPH L. SLINEY

A S T i A

AUG G ICP.9

DATE OF ISSUE - JULY 1962

OHS CODE 4010.25.0005.2.28 MH RIFLE

WATERTOWN ARSENAL WATERTOWN 72, MASS.

Page 4: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

The findings in this report are not to be construed as an official Department of the Army position.

AVm AVAILAfllLITY NOTICE

Qualified requesters may obtain copies of this report from ASTIA

DISPOSITION INSTRl'CTICOS

Destroy; do not return

Page 5: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

Shiall arms, rifle M14

Ajj Materials evaluation

Carburixed steel, 9310 and 6620

ASSBSSMBfT OF 9310 STEEL FOR CARBUR17ED COMPONENTS IN M14 RIFLES

Technical Report WAL TR 73&,l/4

By

Paul V. Riffln

and

Joseph L. Sliney

Date of Issue - July 1962

OMS Code 4010.25.0005.2.28 M14 Rifle

WATERTOW ARSENAL WATCRTOW 72. MASS.

Page 6: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

WATERTOWN ARSKNUI, URORATORTRS

TITLE

3E3SMENT OF 9310 STEEL FOR CARBURIZED COMPONENTS IN mh RIFLES

ABSTRACT

In a recent study on the evaluation of SAE 8620 steel used in car- burized components of Mlh rifles, it was suggested that an investigation be conducted on the heat treatment, characteristics, and toughness of a lower carbon, higher alloy steel.

In the current Investigation, the hardenability, microstructure and V-notch Charpy impact properties of SAE 9310 steel vare evaluated. The results have been compared with those of 6620 steel, and recommendations are made regarding the use of the 9310 steel for carburized components for critical service applications.

IT. V. RTffüTM^ PAUL V. RIFFTN' Supervisory Physical Metallurgist

^JOSErtl L. SLINEY // MA ^« V\ «k v\ 4 «^ *• I Ii*m tmA «^^ >K -m ^/

Mechanical Engineer

APPROVED:

#. *&Jl< F. SUUIVAN

rector tertown Arsenal Laboratories

Page 7: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

CONTENTS

Page

ABSTRACT

INTRODUCTION 3

TEST PROCEDURE - 3

DATA AND DISCUSSION

Chemical Composition 3

Hardenability Tests U

Metallographic Examination . . = 5

Impact Properties 6

GENEPAL CONSIDERATIONS 11

CONCLUSIONS 11

RECOMMENDATIONS 12

Page 8: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

INTRODUCTION

A recent study-:;- Was conducted to determine tl 2 applicability of car-bur i zed SAE 862OH steel in HI it rifle bolts and I'eceivers. The study revealed that such a material possessed a borderline hardenability for the section size involved, and its heat treatment required very close control in orde- for the material to meet the minimum toughness and fatigue properties required for carburized components. Watertown Arsenal recommended that an alternate steel of lower carbon content and higher hardenability be considered. Consequently, it was decided to investigate SAE 9310 steel which is employed for carburized components used in other severe service applications. It was expected that the 9310 steel would aid in providing improved touglines>c and in permitting a wide latitude in heat treatment.

TEST PROCEDURE

Jominy end quench hardenability tests were conducted on samples of both 8620H and 9310 steels. Carburized V-notch Charpy impact specimens were machined to final dimensions before the carburizing heat treatment, which was accomplished at Springfield Armory using liquid salt carbu-risiiig. Similar specimens (not carburized) were heat treated at Watertown Arsenal using neutral salt in place of carburizing salt. Uncarburized specimens were rough machined before heat treatment and finish machined and notched after heat treatment. The effect of tempering temperature was investigated by impact testing conducted at -I4O F. In addition, tem-perature,' transition carves anu the effect of precracking on impact proper-ties were ascertained for selected heat treatments. Since bar stock was employed, the impact tests were conducted in the longitudinal direction only. (The microstructures resulting from various heat treatments were determined on broken impact bars.)

DATA AND DISCUSSION

Chemical Composition

The SAE 9310 steel and the resulfurized SAE 862OH steel, with which it i3 compared, were obtained in the form of bar stock from Springfield Armory. The chemical analyses obtained at this Arsenal on the two mate-rials are presented in Tab e I.

•fcSLINEY, JOSEPH L., Mechanical and Metallurgical Properties of Carburized 862OH Steel for M1U Rifle Components, Watertown Arsenal Laboratories, WAL TR 739.1/3, November 1961.

-3-

Page 9: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

TABLE I

C HEMICAL ANALYSES

C Mn Si Mi Cr Mo P S SAE 9310 SAE 8620

0 . 1 1

0 .20

O.oO

0 .33 0 .32

0 . 3 1 3 . 2 1

0 .50 1.21*

0 .52

0 .11

0 .22 0 .010

3 . Oil* 0.009

0.01*5

Several differences in these twc alloy steels are of particular im-portance. The lew carbon content of 9310 limits the maximum as-quenched hardness to about 1*2 Rockwell C as compared to 1*8 Rockwell C for the 8620 steel. However, the higher alloy content (particularly the nickel) also results in a high percentage of retained a stenite in the carburized case. The sulfur content of the 3620 steel is relatively high because of resui-funzation. The advantage of small additions of sulfur can only be deter-mined by conducting macninability tests, preferably by machining of parts. Although resulfurized 862O steel is generally considered to have better macninability than 9310 steel, the relative difference must be assessed on the basis of all the machining required on the complex components involved. Based on limited experience in machining specimens for this study it is expected that the 9310 steel will, in fact, be superior to the 8620 steel.

Hardenability Tests

the The Jominy end quench hardenability tests were conducted according to :tar.dard ASTM procedure on both 9310 and 8620 steel, and the results

are plotted in Figure 1. The samples of bar stock examined fell within the ASTM H-bands for the respective steel types. The marked differences in these two steels are apparent from the curves of Figure 1. The maximum as-quenched hardness of 8620 at the water-quenched end of the test bar is over 1*5 Rockwell C. As the distance from this end increases and the cooling rate correspondingly decreases, there is a sharp drop in hardness. Since the cooling rates in the Mil* rifle bolts and receivers are equivalent to distances of from 2/16 to 6/16 inch on the end quench bar, marked differences jn the core

JTFCL

8 6 2 0 STEEL

_ l _ - L . _1_ _L_. S I 1 T C U T » S o r M laCft

U I I M I l i n g

O l t T U C I O u t . en I D (HO.

1*1 C M t l t l Cf 9)10 o . l l o . t o 0 . 3 } 3* 21 1. >« O . u • HO 0. JO 0. §3 0 .31 0. *0 0.52 0 .7?

n—f 1. tao 9* CI CM M t f O U t t l U T V CMVM or SAC 9)10 ABO 0420 STCfLS

J—p. 1600 1319

— ^ y uiii ci ciiucs J 1 une cor< Hardness can be expected in production parts made from low hardenability steels. The maximum as-quenched hardness of the 9310 steel is 1*1 Rockwell C, and the hardenability curve is almost flat to at least 6/16 inch. As a result, when this steel is employed, the maximum core hardness of the lugs or other thin sections cannot exceed 1*1 Rockwell Cj yet the heavier section will be quenched to a tough, martensitic microstructure at essen-tially the same hardness level.

-1*-

Page 10: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

Metallographic Examination

A metallographlc investigation was conducted -m selected Charpy im- pact specimens from both materials to determine ttie depth of carburization and microstrueture of the case and core. Typical microatructures re- sulting from the heat treatments employed on the two materials are pre- sented in Table H. Because of the low hardenabilit/ and high carbon

TABLE II

METALIDGPAPHTr RESULTS

1 Steel Heat

Treatment

Rockwell C Haruness

Case Depth (inch)

Microcon8tituents( %) \ Case Gore Case Core j

9310 A. Carburi^a 1-2/3 hr at l600 Fj quench in agitated oil (150 F); temper 1 hr at ÜOO F

56.0 39.5 O.OlU 75A 25M

100M |

8620 B. Carburize 1-2/3 hr at 1575 Fj quench in agitated oil (150 F)} temper 1 hr at 375 F

57.0 ho.S Ü.015 5A 95M

5F 80HB 15M

8620 C. Carburize 1-2/3 hr at 1575 Fj quench in warm water; temper 1 hr at 375 F

59.5 kl 0 0.013 5A 95M

100M

NOTE: F - Free Ferrite HB - High Temperature Bainite

N - Tempered Martenaite A - Austenite (Retained)

content of the 8620 steel, it was not possible to heat treat specimens to both the desired core hardness (U0 Rockwell C) and micro structure {100% tempered mortensite) simultaneously when using the required draw tempera- ture (375 to UOO F). Comparisons were madt* with specimens of 662O steel heat treated to 100 percent martenaite with a core hardness of kl Rockwell C and others heat treated with a core hardness of U0 Rockwell C having a high percentage of nonmartensitic constituents. The 9310 steel was readily heat treated to the desired hardness of 1(0 Rockwell C and 100 percent tempered martenaite using a low temperature draw.

The high nickel content of the 9310 steel results in the high percentage of retained austenite at the outer surface of the carburized case. Although equally high percentages of retained austenite have oc- casionally been observed in the 862O steel, it is normally quite low (below 10%). The retained austenite lowera the hardness for a depth of about 0.005 inch from the surface; therefore, the fatigue and wear prop- erties may be adversely affected. Most of this retained austenite, how- ever, can be transformed to martensite by a "deep freeze" treatment.

Page 11: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

see Figure 2• The efiect of "this treatment on the surface haT'dnp R of* *t.bp impact specimens as measured by superficial Rockwell tests using the 1$N seals is as follows:

Converted to Treatment IgN Readings Rockwell C

a- None 85.0, 85.3, 86.3, 85-3 U9 to ci Cooled 2 hr at -110 F 91.8, ?1.3, 92.G, 91.3 62 to 65

SURFACE

0.00»* 8EL0W SURFACE

" b 711 RETAINED AU3TEN iTE (.£33 7HA* 10* SETAiiiEC AUSTEjliTE

Figure 2. RETAINED AUSTEN ITc IN CAR8URIZED SURFACE OF 9310 STEEL

The subzero treatment increased the surface hardness of the 9310 s t ee l to an acceptable l eve l fo r good fa t igue and wear r e s i s t ance . Al-though no fa t igue t e s t s ware conducted, 9310 s t ee l would be expected to exhibi t endurance l imi ts equal to those reported previously fo r the 8620 s t e e l , and superior fa t igue proper t ies at high s t r e s s levels ( f i n i t e l i f e port ion of fa t igue curve) because of superior core toughness.

Impact Properties

The results of V-notch Charpy impact tests at -1*0 F on 93? 0 steel at various tempering temperatures are presented in Table III. The energy ab-sorbed, fracture appearance and hardness of case and core are listed. Results of similar tests obtained on 8620 steel are presented in Table IV. The results are also plotted in Figures 3 and h to show a comparison of the two steels in the uncarburized and carburized conditions respectively. It can be observed that the carburizing treatment which produces a hard nondeforming surface resulted in a marked decrease in the energy absorbed

-6-

Page 12: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

TABLE III

TEMPER!f.\} CHARACTERISTICS OF 9310 STEEL

Tempering Temperature1

(deg F)

linear butized Carburized Tempering

Temperature1

(deg F)

Energy Absorbed® (ft -IV)

Fracture Fibrosity

(%) Rockwell C Hardness

Energy Absorbed3

(ft-lb)

Fracture Fibrosity

(2)

Rockwell C Hardness

Tempering Temperature1

(deg F)

Energy Absorbed® (ft -IV)

Fracture Fibrosity

(%) Rockwell C Hardness

Energy Absorbed3

(ft-lb)

Fracture Fibrosity

(2) Core Case

A:: quenched 100 38.5 22.2 10c 39.8 60.8 200 1*1*. 1* 100 38.6 20.1 100 38.5 60.9 300 i*6.1 100 38.8 21.5 100 1*0.0 59.0 uOO 50.9 100 39.0 21.1 100 39.6 55.7 500 1*7.1* 100 38.8 25.1 35 38.3 53.8 600 1*7.8 85 38.6 9.2 10 39.5 52.5 700 30.5 55 37.3 7.5 0 38.3 1*9.8 800 1*5.7 75 36.0 6.1* 0 33.8 1*7.5 900 58.7 85 31*.1 21.5

5 33-i* 1*1*.6

NOTE: 1All specimens quenched from l600 F into agitated oil. aAll specimens tested at -)i0 F.

TABLE IV

TEMPERING CHARACTERISTICS OF 862OH STEEL

lempering Temperature1

(deg F)

Uncarburized Carburized lempering

Temperature1

(deg F)

Energy Absorbed3

(ft -lb)

Fracture Fibrosity

{%) Rockwell C Hardness

Energy Absorbed3

(ft-lb)

Fracture Fibrosity

(*)

Rockwell C Hardness

lempering Temperature1

(deg F)

Energy Absorbed3

(ft -lb)

Fracture Fibrosity

{%) Rockwell C Hardness

Energy Absorbed3

(ft-lb)

Fracture Fibrosity

(*) Core Case As quenched 17.5 20 1*7.0 2.5 0 1*6.6 6U.8

200 15.8 15 1*7.1* 2.5 0 1*5.6 61*.1* 300 18.1 25 1*7.0 3.1* 0 1*5.6 61.7 1»00 18.8 35 1*5.9 3.1* 0 1*5.9 58.6 500 15.5 20 1*3-7 1.8 0 1*2.6 55.6 600 9.5 LJ 1*2.0 1.3 0 1*1.0 53.1* 700 15.8 15 1*0.7 2.3 0 1*1.8 50.6 800 31.1* 75 38.2 9.7 0 38.8 U6.7 900 1*7.8 100 33-8 30.2 100 3l*.6 1*3.9

NOTE: Mil specimens quenched from 1580 F into warm water. SA11 specimens tested at -1*0 F.

-7-

Page 13: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

50 °- "^"^^-c^ o - 8620

Ui

g 3'-

rw^ * " 53IC

20

100

f 80

i 60 CD

Ü. no

£ 20

0

2 60

-_1

S o s

«0

J_. 1 . L

.1 . _i .1 _ 1.

200 «00 600 000

TEMPEMIM TEMPERATURE (0F)

1000

Ftgur« ). EFFECT OF TEMPER IMG TEIVERATURE 0« HARDNESS AW V-ROTCH CHARPY IMPACT

«TIES At -«0 . - jtttfJUtt: 'UNCARIURIZED) SAE 9310 ARD e«20 STEELS STEEI

60

SO

«0

30

1- '00

g 80

S «0

— «0

20

0

7 »

20 -

10 _

CORE

A L

^■^

J L

• •

200 «00 600 MO 1000

TEHPEIiNQ TEMPERATURE l0F)

Figur« «. EFFECT OF TEMPERIIM TEMPERATURE ON MAR0RE8S AMD V-NOTCN CHARPY IMPACT

PROPfcJiTlES AT -RO F - CARBURIgn SAE MIO ARO S620 Itlfir

in both materials over that obtained in the uncarburized condition. This comparison can be noted for the 9310 steel when tempered in the "blue brittle" temperature range (500 to 800 F) and for the 862O steel at all tempering temperatures less than 900 F. Of major significance is the fact thai the 9310 steel exhibited 100 percent fibrous fractures and ab- sorbed considjrable energy when tested in the carburized condition using the productiw» uempeiing cycle. The 8620 steel, on the other hand, absorbed very little energy and exhibited crystalline fractures after a similar heat treatment. The 9310 steel possessed a martensitic micro- structure and a core hardness of 38 to UO Rockwell C using an oil quench and a tempering temperature under 500 F. The 8620 steel, on the other hand, which was water quenched in order to obtain a martensitic micro- structure, possessed a core hardness of 1<5 to 1^7 Rockwell 0.

Carburized Charpy impact specimens of both steels wert te-rted as a 1'unction of test temperature to determine the transition temperature.

-8-

Page 14: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

Both steels were processed to essentially the: same core hardness level (,UC Rockwell C) and the same case depth (0.015 inch). However, in order to employ a constant tempering temperature of LOO 7, yet obtain the sama core hardness, it was necessary to quench the 8620 steel in oil resulting in d microstructure which was 80 percent high temperature balnite as com- pared to the 100 percent martensitic structure in the 9310 steel. The impact transitic. curves of both energy and fracture appearance are shown in Figure £• It is apparent that the 9310 steel maintains high toughness to a much lower test temperature than the 8620 steel. The transition temperature can be defined in a number of ways. It is defined here as the temperature at which a 50 percent fibrous fracture occurs. Under this criterion, the transition temperature is -100 C (-1U8 F) and +10 C (+50 F) for the 9310 and 862Ü steels respectively. This large difference in transition temperature accounts for the marked difference in the impact properties obtained in the teats conducted at -U0 C (-U0 F). (See Figures 3 and u.)

To investigate the conditions of the notch on the impact properties, some specimens were notched after carburizing and othera by fatigue cracking the carburized layer in the notch prior to testing. Precracking was accomplished by vibration fatiguing specimens as simple beams under

26

20

w 16 & a B

§ 10

6-

0~

-120

MNCT EREMV

— mam MTIM

\ UCNIO r coat immn

•a mo C0MNMMEM

•80 -HO 0 «0 TEST TINPIMTWK ("C)

0

10

20

SO

HO £

M

60 5

70

80

00

100

80 120

Figur« 5. IMPACT ENEMY AND FRACTURE VERSUS TEST TEMPERATURE SAE 8310 AND 8620 STEEL»

Page 15: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

controlled conditions to produce shallow cracks through the case at each specimen. The condition of the notch in trie impact test is of interest in predicting the effect of notch severity on the servic. performance of rifle Dolts which are frequently ground in the fillet area or which, during service, develop fatigue cranks in this area. These tests are also useful in assessing the effect of carburizing on the notch initi-ation energy in the Charpy impact test. The results (presented in Table V) revealea that there is very little difference between the energy ab-sorbed by the carburized and the carburized-and-precracked specimen3. This observation was made on material in both the tough (9310 steel) and brittle s^eel) conditions. However, notching the specimens after carburizing resulted in a significant increase in energy absorbed in both the tough and brittle conditions. It can be concluded that the carburizcd case under a notch absorbs little or no energy during impact loading to fracture. * "

TABLE V

EFFECT OF NOTCH CONDITION ON IMPACT PROPERTIES TESTED AT 0 C (+1U F)

Test Specimen

9310 Steel

Heat* Treatment

Rockwell C Hardness Case Core

Impact Energy (ft-lb)

8620 Steel

Heat* Treatment

T.cekwell C Hardness

Case Core

.LiUpClC u

Energy ( f t - l b )

Carburized 56.0 39.5

Carburized and

Precracked

Notched after

Carburizing

5 .0 39-5

56. C 39.5

2U. 7 59.5 U7.0 1*.0

57.0 1*0.5 7.5

23.6 29.8

59.5 1*7.0 I4.O 3.7

57.0 1*0.5 6.2 10.3

32.9 36.1

*Heat Treatments described in Table II. i

59.5 1*7.0 9.2 8.6

57.0 1*0.$ 15.8 16.5

Since Ordnance equipment (inc/.uding the Mil* rifle) is expectec to operate satisfactorily down to -65 F, it is important to employ m-^-ials which have sufficient toughness so that they will not exhibit catastrophic failure (brittle fracture) at subzero temperatures. For carburized rifle bolts and receivers, the 9310 steel can be heat treated in production to a tough condition. The 8620 steel, on the other hand, is either quenched to excessively high hardness in order to obtain a martensitic structure or slack quenched to a lower hardness at which a high percentage of upper

-10-

Page 16: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

bainite is obtained. In both instances, the core of the 8620 steel pos-sesses low toughness and is susceptible to brittle fracture, particularly at low temperatures and or in the presence of a hiwh stress concentration.

The studies conducted to date indicate that the V-r.otch Charpy impact test is effective in assessing the toughness of carburized and heat-treated parts ha.'ing approximately the same cross-sectional area. Con-sequent?. , this test is considered to be appropriate as a specification requirement for bolts and receivers of the Mill rifle in order to insure adequate toughness.

GENERAL CONSIDERATIONS

This limited study was conducted to assess the toughness of SAE 9310 steal as compared to SAE 8620 steel for application in carburized bolts •**nd revivers used in the MlU rifle. The results show that 9310 steel, which has a high hardenability and low carbon content, can readily be carburized and heat treated to provide parts having a martensitic core microstructure with high toughness. Parts having large variations in thickness will possess a uniform core microstructure of tempered marten-site and hardness of 38 to it2 Rockwell C, even with the fairly wide variations in quenching practice which are encountered in manufacturing plants. The use of high toughness steel such as 9310 in severely stressed carburized parts will provide very good reliability in service and reduce to a minimum any risk of premature catastrophic failure under service conditions of low temperat'-re and/or high strain rates.

The high alloy content of 9310 steel results in a high percentage of retained austenite in the carburized case, a condition which results in low surface hardness. Since low surfr.ee xiardness may lower the fatigue and wear resistance, it may be desirable to use a subzero conditioning treatment to transform the retained austenite. This subzero treatment is frequently employed on carburized components.

CONCLUSIONS

1. The core toughness of 9310 steel is markedly superior to that of 8620 steel in the carburized and heat-treated condition. The impact transition temperature of 9310 steel when carburized and heat treated to a core hardness of U0 Rock'ell C is 100 C lower than that of 8620 steel possessing the same hardness.

2. Uniform core hardness and toughness are readily obtainable in carburized 93IG steel components even with wide variations in quenching practice and changes in section thickness because of the high hardenability and low carbon content of this steel.

-11-

Page 17: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

3. Thfi hi.^h alloy content of the 93JQ steel results in a high per- centage cf retained austenite near the surface of the carburizid parts when a one-cycle quench-and-tamper heat treatment is employed. This con- dition can be alleviated by using a subzero conditioning treatment which transforms the retained austenite.

k< The V-notch Charpy Impact test can and should be employed as a specification control tast for small carburiied parts when high toughneba- is required.

RECOMMENDATIONS

In order to establish more conclusively the overall applicability of 9310 steel for bolts aH r3ceiver!j used in MII4 rifles, it is recommended that a limited number of components be manufactured for proof and service tests. During this pilot manufacture, the machinabllity of 9>10 steel can be determined in relation to the particular parts and then the disad- vantages, if any, can be assessed.

-12-

Page 18: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

ViATERTOVJN ARSENAL V.'ATERTOnH 72, MASSACHUSETTS

TECHNICAL REPORT DISTRIPUTI.N

Report No.: WAL TR 739-1/U July 1?62

Title: Assessment of 9310 Steel for Car-burized Components in Mil* Rifles

Distribution List approved by 1st Indorsement from Ordnance Weapons Corr.mand, ORDOW-IM, Hated 15 September 1959

2 Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio

Commander, Armed Services Tecnnical Information Agency, Arlington Hall Station, Arlington 12, Virginia

10 ATTN: TIPDR

1 Director, Army Research Office, Department of the Arny, Washington 25, D. C.

1 Commanding Officer, Army Research Office (Durham), Box CM, Duke Station, Durham, North Carolina

Chief of Ordnance, department of the Army, Washington 25» D. C. 1 ATTN: ORDIX 2 ORDIR, Weapons and Fire Control Branch 2 ORDTB, Research and Materials

Commanding Generax, Aberdeen Proving Ground, Aberdeen, Maryland 2 ATTN: ORDBG

2 Commanding General, Ordnance Tank-Automotive Command, 1501 Beard Street, Detroit 9, Michigan

Commanding General, Ordnance Weapons Co,.jiand, Rock Island, Illinois 1 ATTN: ORDOW-IX, Industrial Division 1 ORDOW-TX, Research Division 1 ORDOW-IM, Industrial Mobilization Branch 2 ORDOW-GU, St-urity Officer

Commanding General, U. S. Army Ordnance Missile Command, Redstone Arsenal, Alabama

2 ATTN: Documentation and Technical Information Branch 1 ORDXM-RRS, Mr. R. E. Ely 1 ORDXM-RKX, Mr. R. Fink 1 ORDXM, Mr. W. K. Thomas 1 ORDXM-RSM, Mr. 3. J. Wheelahan

No. of Copies TO

Page 19: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

IIo. o f Copies TO

1 Commanding General. U. S. Army~Ordnance Special Weapons Ammunition Command, Dover, Mew Jersey

2 Comm=mding Officer, Detroit Arsenr.l, Center Line, Michigan

2 Commanding Officer, Frankford Arsenal, Philadelphia 27, Pennsylvania

2 Commanding Officer, Ordnance Ammunition Command, Joliet, Illinois

Commanding Officer, Ordnance Materials Research Office, Watertown Arsenal, Watertown 72, Massachusetts

1 ATTN: RPD 1 Dr. R. Beeuwkes, Jr.

2 Commanding Officer, Picatinny Arsenal, Dover, New Jersey

Commanding Officer, Rock Island Arsenal, Rock Island, Illinois 1 ATTN: 9320, Research and Development Division 1 5100, Industrial Engineering Division

Commanding Officer, Springfield Armory, Springfield 1, Massachusetts 1 ATTN: ORDED-TX, Research and Development Division 1 ORDED-EG, Engineering Division

2 Commanding Officer, Watervliet Arsenal. Watervliet, New York

1 Chief, Bureau of Naval Weapons, Department of the Navy, Washington 25, D. C.

1 Chief, Bureau of Ships, Department of ihe Navy, Washington 25, D. C.

1 Chief, Office cf Naval Research, Department of the Navy, Washington 25, D. C.

1 Director, Naval Research Laboratory, Anacostia Station, Washington 25, D. C.

Commanding General, Wright Air Development Division, Wright-Patterson Air Force Base, Ohio

2 ATTN: WCRRL

Commanding Officer, Watertown Arsenal, Watertown 72, Massachusetts 5 ATTN: ORDBE-LXM, Technical Information Section 1 ORDBE-OE, Industrial Engineering Section 1 ORDBE-LT, WAL Coordinator, IPM 1 Chief, Engineering Division 2 Authors

68 TOTAL COPIES DISTRIBUTED

Page 20: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

t:z < •»* v. C •X.

- 1 u 4

V. "J

t / . .•j %«

»• 3 4 H • - 'J

a c x —

CJ >.c "• k «• »»•

cl

x f -«.•> 0

«•»

"t t . N O . 41 » - i »» a: v) «i f J O —

O * ^ »-5

. T3 a «i O a .5 r. i . o r ss^r u «3 U k U i ^ . - C o - * ' *

<0 «/3 .

N u. . -

C - ( J u

- • D O

«• t l TJ o •-« a o * : <i» *

. o 4» >. V • • « l f l

• r . 0 / ^ .« C. • r . * » > J i . < • i a. XJ ( I Co •1» ' «» -J i . . -

*3 — If, U •i.

1 1 k-£ U ** t i

I* a 4 * 4> 4> U » (•»

O r . I - O ft/ O •« «» - «

x i C«. </> •-' »* » < E « u <

O i > < a o n k i< o -r« «< a»

V A3 XI t». i> a u -

t j H • ( •»* a - M . - a

n >»

4- is TJ « x i 4 U.<_J •-•

•X « — XX o ». «J —' 4. ~ «c P- o * U G ft

t » 4

4> --• c »* « •0 «•- w

o ••« o — CI ft; • •* « « b uo a u

o a •* a —« u H t j 4 i

CO. O I * H i / l

ss5 i . «A Jfi * »» l / > * • <3 £ / . - •

28-o .«2

S i r m

f -m k« n < O 3 H o>*-« U

a 4 P i i « U U 4 k g 4 4/ «3 4> (1 r» U U k ' H l l * '

4 u 4 XJ t » « - 4

4> >5£ <ft X o cn 3 4» o

a H 0> E ^ C

a. •- «a X3 O

•• E 2

- o 4 4 TJ *J U 0 4.

2.E2

I .t * w

• c r j »

N -O • M ( -u «

.— —4 4 ••

U

J > . X J

u «; ••* M E°

• • N C . 4 »-4 4

# tJ o

« - < 13 a I A U a 0 4- -a

- M • - « £ * «. O a « C ^ H 1 * * I I ' . - J » < (J V« ' . i .«

< O a J a ; I x i M I « </> .

4- </. a> K * 1 X J '< J "

- « « O (A • / . * • 3 U

— TJ O U fl f

E~ , n fl n •< » o c s t « *4 c

•r< t- " t l U j ) k « < 4> XJ t Cm 4i O » « W * 4

6 s i * 9

< O u n « a o u 4) ^ V. -* •* M <0 •*,*** <t\ > ( I 4 « 4l 4> U. •< ••.

n M U O O ^

— O. v> w

• • i s s -c u a t . i . o -* m v

.2 £•, t - 0i x j

. «• u. u * o . 4 . • - «3 W 91 « « o o •« a -^^4

i 3 « • k • u v . « - ? « <0

S55-3 ' m *4 u

s^5 «• m v-a o s v

•-4

iS

«• «» 4*

4 o x\+* •*. O "

****•>•» •i a « a •

x- -»< i a " ^ § 0 • . 4 M A 4r U -O 4 W W •» • 4 4' b U

tss : s i • •a J ss»

i O x> o

H 7 fi 4i b : »<(/)«

— 1 .-O — - • • -**; »r

• M « » .-4 « a <«) o

»-» a «

• M U - e s

- 5 5 h m

S I • £ I I ? K t

c. fc * •> o Ui C — • •

»-« ^4 <t C/3 r-4 Oi 4 —

S ** B

t* 3

53 M T3 rt O w e

( j o t t c

ri *4

n k . x i 4> O.

- —• d <i> •< r% i t n

O

fit" c u> — c

? 2 -O

4)

M O

E — •• TJ •-• •• »« 4 «.» % ^4 t s ^ k

4 . * 4 <35 d r i

• • N

§**.*! (A) 2 2 B*Z

fi co

S f f i -x B « z a

t - x t o

s ! j s ° < U N f t

s s :

S ^ 3 • " C o « p o K - . H W • * »4 " 4 *-l%4 J k W « 4 n ° S4*

£> H < W3 ,

" S S

t HI » 4 •» « XI

O »r s« • r. 3D . T J 4.

K a. B H i i w j i < • - 4 U W W » « a a

ta o • « k fl*< o o _

• U TJ a a b X i 4

« u j a i , J •«•. 9 k «

ks a* a o « • * U £ — " • •

2 t 5 4 ; « • Ck « o • TJ k 4-

wi

4 O • A «

• 3 „ c u " t"

B ' H h o «P o *» %> ^

3*3

•* E •»

F ^ H D « C . U • Q. 4» - m k «

TJ O U s 5 ' t • «<

-* *> m 4> x : « i • « r *

« ( / I

S fc r . «i

S C J

SS £• •* at m

. « C3 o O > HU«-s

• • «« m

i i s * s

•2& . 35? M U +>

S «i . 4 * 4 u : r4 u - ac

w o a u ^ r - """ f O ' H 4 t 41 ^ <C -V

•as. a « «

n £• fcO |

I U J ( J j » : u . » l l / , H l * C ; CK i UJ I •« '> ^

n m </"-• , . « < : • " < * : cr. H

f.'g. • 4 )

• J T J OK

5 8-o , !/>««

c5 * * •

c • s O B r i o . - « W «) r-4 a

H k H H n a ' a .

A X I 4 a •4 w M c r a 4 P A • U T J 4 U y « « 4 i a •« %• o »4 - r . «

«» u 4 T J M M ^

<1 U 4 S a •> a c» o

H a « i i > H

k O t» < n u 4» !

• r« | J > 4 •

a 4, 41 U U 4>

a

» . « ft o :nr u

T? 0» 41 -tJ TJ U « 4>

- e £ a •> r>

—» rfi »y.

4i *-. U » O *5 .O

A k O • « O K ^ 4 4 M U T •J k

2.~ 4 C/5

U o

*3 a A 4

k C I

I - C/3 gar. M u..

2S;S k» J J UC 4* cal •* 7 i «

. <« Vi

- s ^ ci

• « • • •* 4 «

® . T J ft" <. ssa

• « » 4 " . H « O • « • a o v « - • M . M - 4 • * 4

n o M p* a u

o r. • 7 . o -

» M> * a * 5 3 -•C1

5 w m %

O w ™ m « TJ M XI

k 4 i a u u TJ H 4 ^4

k n 4 o a * * C-^4 o 4. «-• a

. i d 41 a »• ^ +* t o a to » *J t i V T J 4 k »» • •» <• « M *4 U U i4 .«« A ?• «• «• 4 T J • • • ; •

« Q*<4 * • ®i a • O

M o a « » 4

t S SjLrf C/3 •*« 4 • •--s-l • * ° • C ® ^

: : 2 r s -* • E -4 ^

^ » 0 • a « i< 4 u • S 2S.-SS* | e s , . s 5°": 95? M * m m !• • a S*H • s S f . S S -. - I 55 -8

a • . 0 - 4 * .se-,8.r « < 4 f t « l l k 4 « « • • u

+* 4 * 4 4 k f j a o i i o

ss -s .— • o • a »• a m m • o m •*

M k k a e « « « 4 o » e > »i c» &

f - s C B a a * u V k (1 T l 4

P •» 4- TJ T» • 4 k 4 V

X4 C 4 E "

" r s f . t •1 » • « o k a

8 P

S P a

Page 21: AD 282 233 - DTIC Login · steel to an acceptable level for good fatigue and wear resistance. Al-though no fatigue tests ware conducted, 9310 steel would be expected to exhibit endurance

('< MX i. >c a:

JT

I!

UJ . , O a; J

T J u t Or M t }

I . 3 1 •-* » - -J >•

i C

O c i A t .

u. tO a •0 J*. ac * v .

i— a - C/J

? 8 j

4* 4> ^ i r t

c »• »" i • - • TC V - > 2 C I

„ -rr > . • a V. O u r -« O * __ 4 a •

M »-i •« a t . O a © <0 C a-— . 0 4> «< v. • » © U as .-4 v . ^ . U U UJ^-. - . « -«; 0 u< c*- N

V" <T> • A , n o

t* t* •— •' 3 © t-

r-t •*.-« C

CSi * H W JffiS SEE b ( A d : 4 U J

# c / j ^ i t /< *-*

' . I f .

«• o » ) T ) X

26-D .</>.X

5 52

m »< 41 * . - . o I* K v . u n - v o V. U a ~ o o

• U T J a —• *s O C. •»

<c o a o * o a o c a -

rf, - - • r« »>

»• n 4 «n w a* t » r . ^

a »« i - O 4 , O ^ 4)

fc/lf H »x F <V O 4

0 > < n o u k- »• o . . * <C w

r - J J 3 41 a u u

1 5 N < •»«

• a v «A o 4

i . -J k- , 4; n. « - t flj <

w w V.

• • u o

I. fe-s - o 4. w . a i , • * fli

U tf< » it •' T i U

1 " I f : »

n o » ° £r . • • 4 T3 « . 0 4 . t » C J • *

P» 4> : <£> tr. 1 *J a <

i . x i 4 q • » i - • * E o 0 4 P X I 1 U T l < -

SO. 4» 4 0 ~ u

b 8 ) 4 o a H ftH U i n e

< T J 4 4 . C* 4 X

CS ;«! 3 a> O

t » 4 t-> » -• J T J 4 * a * w 4 U H a • 4> U h l l

a •* i " I f l I

4 3 %j i

- esi « eo

4» W t » K o a »x

X I • • u TJ 4*

» V. I ( T3 4)

L 4 i k-O * • 3 U 4 i i

* " a T' «> oo w i." - - •it

N tJ »4 t i • N o u : . ** i . M a >• p"*4a 8'!".

4> »-J u VJ ©

* ' a © U)

< / ) • - « ©

5 ^ © he ^ t l." i n >H 4 u : ft.

© U) < / ) • - « ©

5 ^ © f- *-* e l <*> M

Ct » - a : ' A

. 8 , » _ } O A

» - < 1 3 u </> O a O 4» 4

41 ^ • « «? ©

4> tf. « « •* »i St T> S • - V.

C C K >3 " • O tf« • -

X . - 3 4 « . -i> a

- 4 ' • ' • C M U U c/< v . a a

~ - O O * - . u a O O

• y - o a »- a o a: i '»

•«* J 3

a 1 . G i . m - o n ^ u o

n o < • r t <t> | H - 1 « '

* i, '. a r- I 4> O <r

U «3 - x « U b b l .

< O - i J O . x > t -a VJ .

— U3 •m *. U . 1 U J ^ I sat U ( • . QC 4< toJ +* I f , - *

M *J tfl ^

• o © t - ^ e >• a; <• o 1- a « 4<

T3 *

5 fir, 4*

, 7 j H o >•:»« ^ o-« « u « 3

« O a «> 4> a O w 4*

»-« 1. •»« • »

t» ti -) ifi -i» » 1* .« »».

a »« w O 11 O •*

- i t s " a u a i* w O « v

t 3 d i l K « a g M •o M 4 •** 9 " « > > a +* u ** *• « 9 m a •

« o » d E o a 4 P A

« I U « 4 b u 41 %> t 4< a •* w u

r -4 & . 4» »« 6

' TS © O * q •—.* 1 4 n k a» L » • » • «H « n

« j a

o a. -r4 V. . »< f j t j •fl 4> e*(-» ^

« U H * - « ss:

© M « * 4» -w m v. < D U

o a *• * 5 8

K - H p • - • !

I X3 CM •* «* 41 W « 1

a •) a 4» o

ss: , S !

J i b

- £ 2

•a « s?? 1st

62 « r

- 4 «•

&u

m o < +»

— <0 J- a 23 X u i

• I

w C n > a • "

x . © ^

!g n - ^ 3 c_> o k c c a >

4> R . a *

t t

r m .

O W» v . - c a - © ©

£ * 4 X

« o 4 »• — 4 U 3

5J * *

•* « •C3

3S r i

« W

5 ^ »K

•iSr: 5

2S^ U N f t * 2 * t a » n » § °

s|E» •» u p a m O & • ^ 4> » * U 4 N ) « 4 U W> M ~ «

o A H t w

I . » « 1 • . a.:

J Ob

a | » • « a .

• ft S*!*! v i a •»* a I A M 0

« f t . U2-> sss • # c **

o «

*f Ok -# "s 45

OD . T 3 4 . a 4 t a

M « • < « < - 4 U U ( / a * 4 a a

^ T J O

^ O "O a a O X «• 4 • < * i . H 4 O • a «> a o u v •as^rs t a 4 a

1 u o . ^ V 9-

-.r*

" S t S* a u

U -r. o w a •« v> • - n a E •- « c. %. o *

. o <k ^ 3 • « I x 4> a O 4 • < R i 3 4> * • ' <

S 5 . S - S - w > B • ft « I - 4 w « u 4 & 4 ! 4> • - 4 a o . w. • 4» o <n «

« k » < « o u u c±— a — - H

" - - " t »s 4 3 • » r -«

4 * • U O • «

8 . Z «/ U 1

u «> 4< 4 »• •a &. w £ 41

a b «

5 & . M O

© © l - T J X I

"3S"3 4 A.

4 C 4 "V

a O i

o S U^gt o a: u.

ss ( A * - |

i . t/« OB | l U) • * * /3 ^

O 4 «/• "

C. w a 4 e a H o.-« u

4 n c • * U N B r . a . 4 : H l . H f a 3 <e n .

A 4 i t i a * » u • « E O a 4 5 , 0 • U « 4 b U 4» «» 4 i > a • * 1 - u w -^ . X *-<

V U 4 f l M « 1

4> « 4 a a a a a» o M 3 / I 4 1 H

^ o > a : i

• M | O n » -

« " n •> "3 V »• « XI I C a o 4>

» a a

a i 4) w

U W 1 ' « V 4- " U T 3

t a »- I ^ a

4 1 U - es * . 4 <

a v > a H 4 s r . t - ,

a : u x 4 sr. u - 2 =

t - * c r x

BSJ O Q • - u a

S2S-•« a: a . 4 £ 3 o

C > a u » - s TT. ce.

• t s a «c <_> a O i 4

.w4 CG m w p a a O 5- .« 41 M V > C 4 « . U W . M < O w a •£ ^ 4 ; n . >

"SS-S a en 4

a y. iw a u - j o a: u-

H M c. ••« Si W

W. 3 a ®> w 4 £.

a C.-3

w ^ C - » H u C . 4 f / i n 4

t « » 4 • « Ki 4 > a a •* • •

o © * • a f i - o a a a Ob . T J 4»

m & a Ui t l — 41

O M W » . 9 a

-*-o o +* u a ** * S "O

o x « S •** A •» V . , n 4 o a <4 a a o w « —• a •»•.»« •• 4 »<»•»* a »- a 4 a V 4) te-x a»

e •** u o • o —

a u a ^ t . C <-• * t>

T I x t x l h 4 i J U U

. "O N 4 - n a ^ . x i " U M M tf) 3 4 a .

J A <> d ** u M fe O O <! O XJ 4> W TJ 4 U U 4> 4» 4 i > a *-x o u

• u 4 -« W*< 4) 4» «• 4 7

a a a 4i o

• u j a J , i ** o U « C/J •*« 4 • : ^ •; u o

VI a 4 •+> . O 4» -V U •« 4» a o « • a A u • 4» £ > " * 4» F H r < • " • B * ft

D U 4 4 4 1 4 1 a o. • o « 9 C f

5 * S £ S -

4 i w r u •

• 4 k

35t i i s

V 41 -~4 a »• 4

a *% .2 fr . • X 4 - d 4 4 1 01 H U 1

4 • » J i 3 a U H • * " » 4 » o i > a a 41

1 s » -

c * 3 >a 4< a a t - <u W r X a 4 . v O u «V

a •-4» • « to

< O

• f " «— JJ c »

• i b a 41

O a M S?S 4 1 4 O • * « a f t

»SS T) • ° 4- T 5 T J b 4 « 4 E H

1st U 4 AX

S P

s p s a


Recommended