+ All Categories
Home > Documents > Addressing groundwaterAddressing groundwater ... groundwaterAddressing groundwater overexploitation...

Addressing groundwaterAddressing groundwater ... groundwaterAddressing groundwater overexploitation...

Date post: 03-Apr-2018
Category:
Upload: duongnguyet
View: 228 times
Download: 2 times
Share this document with a friend
21
Addressing groundwater Addressing groundwater overexploitation with MAR: a review of experiences from the Ai dP ifi i Asia and Pacific regions Paul Pavelic IWMI H d bdIdi IWMI, Hyderabad, India APWF Regional Water KnowledgeHub for Groundwater Management Launch Meeting Groundwater Management Launch Meeting Bangkok, Thailand, 2-3 June 2011 Global Groundwater Overexploitation Global Groundwater Overexploitation Global map of groundwater depletion, where 1000 on the legend is equal to one cubic kilometer of depletion per year. Source: Wada et al (2010)
Transcript

Addressing groundwaterAddressing groundwater overexploitation with MAR: a p

review of experiences from the A i d P ifi iAsia and Pacific regions

Paul PavelicIWMI H d b d I diIWMI, Hyderabad, India

APWF Regional Water KnowledgeHub for Groundwater Management Launch MeetingGroundwater Management Launch MeetingBangkok, Thailand, 2-3 June 2011

Global Groundwater OverexploitationGlobal Groundwater Overexploitation

Global map of groundwater depletion, where 1000 on the legend is equal to one cubic kilometer of depletion per year. Source: Wada et al (2010)

GW Response in Relation to Development & Production - 1Development & Production 1

depth

ground level

depthto

GWlevellevel

agricultural

dryland agricultural production

agricultural production

time

GW Response in Relation to Development & Production - 2Development & Production 2

depth

ground level

depthto

GWlevel shallowlevel shallow 

wells dry up

deeper wells dry

mediumirrigation

production

agriculturaldeep wells

medium depth wells

shallow wells

dryland agricultural production

agricultural production

wellswells

time

GW Response in Relation to Development & Production - 3Development & Production 3

depth IntroduceDo Nothing

ground level

depthto

GWlevel

IntroduceMAR

Do NothingDifferent

shallow

major

level shallow wells dry up

moderate

deeper wells dry

mediumirrigation

production

agriculturaldeep wells

medium depth wells

shallow wells

timedryland agricultural production

agricultural production

wellswells

Tools for Sustainable GW M t

1 Direct approaches (eg groundwater regulation limits on

Management

1. Direct approaches (eg. groundwater regulation, limits on extraction etc)

2 I di t h ( i lt l b idi i i2. Indirect approaches (eg. agricultural subsidies, energy pricing food procurement policies, rural employment policies, agricultural trade and tariff policies etc)agricultural trade and tariff policies etc)

3. Technical approachesincluding supplyincluding supply augmentation (eg. MAR, RWH) and demandRWH) and demand management (drip irrigation, crop types)

4. Awareness and education- basededucation based approaches (eg. community participation)

Balancing the GW Budgetg g

Demand-

city

sideDecrease use

Cap

ac

Sustainable target level

tora

ge target level

I

uife

r S

t

Supply-

Increase recharge

Aqu side

Methods to store and recover water via Managed Aquiferwater via Managed Aquifer

Recharge (MAR)

“ f l h“ A process of replenishment of ground water reservoir by h ti iti i l dhuman activities in a planned manner – by spreading b i t h ll tbasins, trenches, wells etc. for replenishing the aquifer ”

Source: Dillon, (2005)

Reasons for MARReasons for MAR

O i GW d l ti• Overcoming GW resource depletion

• Increasing water securityg y

• Livelihood enhancement through supplemental wet season irrigation/drysupplemental wet season irrigation/dry season irrigation

• Conjunctive resource management tool

• Wastewater to water supplyWastewater to water supply

• Restoration or creation of resource

• Enhancing environmental values

Technical, Environmental and Economic Iss esEconomic Issues

• Clogging of recharge structures

P ll ti f if• Pollution of aquifer

• Geochemical changesGeochemical changes

• Recovered water quality

• Stability of wells

• Storage capacity limiting pressures• Storage capacity, limiting pressures

• Surface detention storageg

• Monitoring requirements

• Economic viability

Buffering capacity of GW tsystems

1.5

ora

ge 1.5 surface water

in s

to

1

han

ge 1

0 5on

al c

h

0 5

groundwater0.5

Fra

ctio 0.5

00019971998 199920002001 2002 20032004 2005 20062007 2008

0

Climate Change and Water Storage Alt tiAlternatives

Source: Shah, 2009

Conjunctive Use –Wet Year (2004-05)Wet Year (2004 05)

Conjunctive Use –Dry Year (2002-03)Dry Year (2002 03)

Sources of Water for Irrigationi I diin India

The Groundwater Development “B ”“Boom”

Pune District Statistics

4000

5000 150000Deep TubewellShallow TubewellDug Well

ber

mber

3000100000

bew

ell N

um

b

Dugw

ell N

um

1000

200050000T

ub D

0to1993-94 1994-95 1995-96 1996-97 1997-98 1998-99 1999-2000 2000-2001

0

Over-exploitation f GW Rof GW Resources

Admin Unit Classifications:Admin Unit Classifications:

overexploited: 839 (15%)

semi-critical: 550 (10%)

critical: 226 (4%)critical: 226 (4%)

safe: 4078 (71%)

saline: 30 (<1%)

Source: CGWB 2006

WSD: Ridge to Valley treatmentValley treatment

1. Bench terracing2. Contour Trenches3. Gully Controlsy4. Brush wood dams5. Rock fill dams.6. Check Dams7. Percolation Tanks

Karnampettai Watershed, T il N dTamil Nadu

Coimbatoretore

St

Catchment boundaryPond/Recharge structureNBW 1-9 observation bore holes

Streams

Hand pump (HP)

105

100 pond

95

(mas

l)

G d t (NW4)

90

ater

leve

l Groundwater (NW4)

85

Wa

200

400

all (

mm

)

80

4/04

4/04

4/04

4/05

4/05

4/05

4/05

4/06

4/06

4/06

4/06

4/07

4/07

4/07

4/07

4/08

4/08

4/08

4/08

0

200

Rai

nfa

5/14

8/14

11/1

4

2/14

5/14

8/14

11/1

4

2/14

5/14

8/14

11/1

4

2/14

5/14

8/14

11/1

4

2/14

5/14

8/14

11/1

4

Waterbalance: Karnampettai Watershed, p ,

Parameters

Years

2005 2006 2007 2008Parameters 2005 2006 2007 2008

Rainfall, P (mm) 691.4 480.9 626.3 287

Runoff volume, (m3) 22,632 7692 16530 11938, ( ) ,

Outflow volume, Qout (m3) 3,210 - 4958 -

V l t d V ( 3) 19 422 7692 11572 11938Volume stored, Vro (m3) 19,422 7692 11572 11938

Evaporation volume, E (m3) 2221 1431 3336 3316

Recharge volume, Vrc (m3) 17,201 6,307 8,236 7,670

REro (%) 89 82 71 64REro (%) 89 82 71 64

Socio-economic impacts of watershed development activitiesdevelopment activities

Before After

On farm employment (days) 147 160On farm employment (days) 147 160

Off farm employment (days) 65 90

Well failure (%) 12.5 5

Pumping (hours/day) < 2 3

100 % of the respondents accepted the importance of water harvesting structures

u p g ( ou s/day) 3

Micro irrigation structures (10.00 %)

Water conservation methods were adapted by 27.50 %

Minimise risk by practising a number of different livelihood options at a same timey p g p

Employment generation - more employment directly and indirectly

Change in cropping pattern towards less water consuming crops

The irrigation intensity of the farmers increased considerably, but not the cropping g y y, pp g

intensity as much

Farm Diversification - Power loom sector seems to be more lucrative

Periodic desilting of basins required!

Improving Command Irrigation AreaP f i MAR/CUPerformance via MAR/CU

Source: IWMI Water Policy Briefing No.1

Groundwater Balance at Chikalgaon Kolwan ValleyChikalgaon, Kolwan Valley

• Annual rainfall = 1900 mmAnnual rainfall 1900 mm

• Proportion rainfall infiltrated: 6%

• Small part of infiltration converted to effective

hrecharge

• Significant (seasonal) base flowbase-flow

Source: AGRAR Study

Effect of MAR and DM on groundwater deficit in Indian watershedsdeficit in Indian watersheds

Site Rainfall

GW irrigation

Naturalrecharge

Deficit(mm/yr)

Deficit as % of

% Deficit

% Deficit met by

(mm/yr) (mm/yr) (mm/yr) irrigation met byMAR

DM

Satlasana, GUJ

440 500 30-60 450 90% 60% 0%

Kodangip-alayam, TN

728 500 41-47 460 92% 2% 0%

Mahesh-waram, AP

750 190 170 20 11% 33 % 0%

* MAR = managed aquifer recharge; DM = demand management

Scale-Effect of WSD on Groundwater ResourcesGroundwater Resources

Basin-scale

Meso-scale

Micro-scale

RiverRiver

Hydrologic Changes in Watershedsy g g

pre-1900

Source: Batcherlor et al, (2002)

Hydrologic Changes in Watershedsy g g

pre-1900

2002

Source: Batcherlor et al, (2002)

Reservoir inflowd ti

500Inflow (MCM)5Y M i Areduction

300

400

M

5 Year Moving Average

Himayath Sagar

200

300

In M

CM

• Long term and continuous declines in reservoir inflows

0

100

dec es ese o o s

0

1960 1967 1974 1981 1988 1995 2002

250HYD

200

Inflow (MCM)

5-Year Moving Average

Osman Sagar

100

150fl

ow (

MC

M) Osman Sagar

50

100

Inf

01956 1961 1966 1971 1976 1981 1986 1991 1996 2001

WSD Structure Constructions within the two sub-catchments, 200-2003,

Rock-filled damCheck-dam

Hydrological changes in the Krishna River basinbasin

• Area: 259,948 km2

• Population: 73 million

• Three riparian statesUjjaniKhadakwasla

Ghod

Sina

Nira

B

Kris

Bhima

M

M h h t

31%

22%

Maharashtra

Arabia Bay of

Koyna

Warna

Kris

MusiHimayatsagar

Ara

bia

n S

ea Bhima

Musi

Akeru

Paleru

Halia

Krishna

KagnaKoyna

Vyr

aM

unne

ru

Bennithora

anga

Panchganga

rishna

Bhi

Krishn

Krishna

Munneru

M a h a r a s h t r aM a h a r a s h t r a %

40%

7%Arabian sea

Bay of Bengal Almatti

Ghataprabha

Malaprabha

Dudhganga

Tungabhadra

Srisailam

shnaNagarjuna Sagar KrishnaKrishna

Prakasam Barrage

Narayanpur

Jurala

Bay of Bengal

A

na G

hats

r i

Ghataprabha

K

Hundri

MalaprabhaTungabhadra

Vedgang hima

Krishna

hna

K a r n a t a k aK a r n a t a k aA n d h r a P r a d e s hA n d h r a P r a d e s h

Wes

tern

thi

Ha

gar

ga

Varada

Chikka

haga

ri

Haridra

Varada

100

120

140ity

(BC

M)

No discharge into the sea

Runoff at Vijawada

BhadraVedava

thi

Tung

a

40

60

80

100

r Liv

e C

apac

i into the sea

0

20

40

600

902

909

916

923

930

937

944

951

958

965

972

979

986

993

000

Res

ervo

ir

160

190

190

191

192

193

193

194

195

195

196

197

197

198

199

200

Year

Cum. Live Storage Obs. runoff

Lower Jordan River: Original Hydrology and year 2000g y gy y

Source: Courcier, Venot & Molle 2006 (CA RR 9)

The role of MAR in IWRM -Syrdarya River Basin CASyrdarya River Basin, CA

Ratio of summer to winter flow

Syrdarya River Basin

Irrigation & Hydropower Nexus

Fergana Valley AquifersSource: A Karimov, IWMI

Potential of aquifers of Fergana Valley as storage and source of wateras storage and source of water

Free storages of aquifers of Fergana ValleyFree storages of aquifers of Fergana Valley

Enhancing natural recharge from river floodplain in Sokh

River Basin

Groundwater recharge from the floodplain of the Sokh River

River flow discharge (Q) and losses

100

Qlos % = f(Qm3/s)150

180

g ( )(Qlos) , m³/s

y = 99.581x-0.297

R² = 0.7171

40

60

80

60

90

120

Q (m3/s)

Ql ( 3/ )

0

20

0 30 60 90 120 1500

30

/10

/10

/10

/10

/10

/10

/10

/10

Qlos (m3/s)

H m = f(Qm3/s) Qlos %= f(Hm)

7/30

/

8/6/

8/13

/

8/20

/

8/27

/

9/3/

9/10

/

9/17

/

1.5

2

( )

y = 40 294x2 97 683x + 82 47780

100

120

( )

0.5

1y = 40.294x2 - 97.683x + 82.477

R² = 0.6142

20

40

60

0

0 50 100 150 200

0

0 0.5 1 1.5 2

Managed aquifer recharge in the Isfara River basinRiver basin

Groundwater recharge i N Ri i t flusing Naryn River winter flow

6 0

V,m/dInfiltration rate

4.0

5.0

6.0

1 0

2.0

3.0

0.0

1.0

1.04.10 4.04.10 7.04.10 10.04.10 13.04.1035,000 m3 of  Naryn water was 

infiltrated underground during 14 days

Conclusions

• MAR is not a panacea for water quantity/quality issuesquantity/quality issues

• MAR can be an effective strategy in a diverse range of settingsdiverse range of settings

• To harness it effectively, local benefits need t b d i t i l i tto be assessed against regional impacts

• Opens the way for more sustainable and p yeconomic conjunctive use of surface and groundwater resourcesg

Further Reading

AcknowledgementsAcknowledgements

• Tushaar Shah IWMI IndiaTushaar Shah, IWMI, India

• Akmal Karimov, IWMI, Uzbekistan

• Peter Dillon, CSIRO, Australia

K P li i i IWMI ITP I di• K. Palinisami, IWMI-ITP, India

• A. Raviraj, Tamil Nadu Agricultural Uni., Indiaj, g ,

• Andrew Noble, IMWI, Laos

• Kriengsak Srisuk, Khon Kaen Uni, Thailand

Thankyou & QuestionsThankyou & Questions…….

“ “ Let not a single drop of water received from rains go waste Let not a single drop of water received from rains go waste i t th ith t b fiti th d th b ti t th ith t b fiti th d th b t ””into the sea without benefiting the man and the beast into the sea without benefiting the man and the beast ””

King Parakramabahu (1153King Parakramabahu (1153--1186 AD) 1186 AD)


Recommended