+ All Categories
Home > Documents > Adductomics: validation and progress David H. Phillips George Preston King’s College London...

Adductomics: validation and progress David H. Phillips George Preston King’s College London...

Date post: 12-Jan-2016
Category:
Upload: norma-gaines
View: 217 times
Download: 0 times
Share this document with a friend
Popular Tags:
25
Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November 2014
Transcript
Page 1: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Adductomics: validation and progress

David H. PhillipsGeorge Preston

King’s College London

MRC-PHE Centre for Environment and Health, London

26 November 2014

Page 2: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Adductomics

What are adducts?

► Addition products; covalent addition of electrophilic species (reactive intermediates) of endogenous or exogenous origin to cellular macromolecules (DNA, protein)

What is an adductome?

► The totality of adducts in a defined cell type / tissue / etc.

Key questions

• Is the adduct profile characteristic of an exposure scenario or a disease state?

• Can adduct species be identified that may shed light on disease aetiology?

DNA adducts – limited amount of material available from biobanksProtein adducts – abundant quantities of albumin present in human serum

Page 3: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Serum albumin adducts as biomarkers of exposure

Rappaport, Williams et al., Toxicol. Lett., 2012, 213, 83-90

• Stephen Rappaport’s group (UC Berkeley) have been profiling adducts of human serum albumin.

Page 4: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Rationale for using HSA

► Present in circulating fluid; is a ‘systemic’ biomarker.

► High levels in serum (30 mg mL−1; ~ 0.5 mM).

► Long residence time (mean = 28 d)

► One major reactive locus (Cys-34) – simplifies analysis.

► Tryptic digest generates a 21-residue peptide (T3) containing the reactive locus (or an adduct thereof).

DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQ C PFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLF GDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL

Page 5: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Rationale for using HSA

► Present in circulating fluid; is a ‘systemic’ biomarker.

► High levels in serum (30 mg mL−1; ~ 0.5 mM).

► Long residence time (mean = 28 d)

► One major reactive locus (Cys-34) – simplifies analysis.

► Tryptic digest generates a 21-residue peptide (T3) containing the reactive locus (or an adduct thereof).

DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQ C PFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLF GDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL

Page 6: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

An adductomics workflow

Li, Rappaport et al., Mol. Cell Proteomics, 2011, 10, 3, M110.004606

Page 7: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Proteins

Concept

Albumin level

Peptide level

Amino acid level

Serum level

A V IAL L F Q LQA Y QCPFEDHV

K

SR

A V IAL L F Q LQA Y QCPFEDHV

K

SR

Metabolites

NH

O

N

O

OHN

O NH2

S

R What is the mass of R?

T3

Page 8: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Implementation

‘Uncoupled LC-MS’

Page 9: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Study design: Piscina-2

• 120 serum samples (60 pairs; pre and post)

• Each pair randomly assigned to one of 12 batches (five pairs per batch).

• Blinded processing order is achieved by switching pre/post pairs at random.

PRE

POST

PRE

POST

PRE

POST

1 2 1 2 1 2

PRE

POST

PRE

1 2 1

POST

2

097 029 034 049 035Batch of five random pairs

Switch pairs at random

Reassign with new labels

Albumin extraction

Quantitation; digestion

HPLC fractionation (serial)

Mass spectrometry (serial)

Data processing

QC spiked serum

Internal standard only

QC serum extract

(13 × 12 = 156 samples for MS analysis)

Page 10: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Albumin extraction

• Batch extraction (5 × pre/post pairs + 1 × QC = 11 samples)

• In our hands, enrichment procedure proved time consuming and displayed limited efficacy.

• For Piscina-2 (and Exposomics pilot), albumin processed without enrichment.

Page 11: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Protein quantitation

• Protein recovery (i.e., concentration × volume) is an interesting metric.

• Extract-to-extract variability =

1.7% (RSD for batch QCs; n =

12).

• Variability within unknowns =

8.5% (RSD; n = 120).

• Some correlation between

samples from same individual.3.50 4.00 4.50 5.00 5.50 6.00 6.50

3.50

4.00

4.50

5.00

5.50

6.00

6.50

Protein recovered from ‘first’ sample / mg

Pro

tein

re

co

ve

red

fro

m ‘s

ec

on

d’ s

am

ple

/ m

g

Page 12: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Pressure-assisted digestion

• Batch digestion using Barocycler NEP2320

• Twelve digests per cartridge (5 × pre/post pairs + 2 × QCs)

• Run time = 30 min

• Generates high hydrostatic pressures via compressed air.

• High pressure stabilises partially-folded protein structures.

Page 13: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Fractionation

• Serial fractionation using RP-HPLC

• Fraction start/end defined by peptide tracers (prepared

in-house)

• Run time = 9.5 min

• Carry-over = nil (by UV210)

• Important ‘check-point’ for monitoring sample composition prior to MS.

Page 14: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Fractionation

4.514.614.714.814.915.015.115.215.315.41

Retention time stability for Piscina-2

INTSTDDigest marker

Sample running order

Rete

ntion

tim

e /

min

Page 15: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Fractionation

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.0000.000

200.000400.000600.000800.000

1000.0001200.0001400.000

QCs introduced in digestion step (same extract, different digests)

BatchA_NormA210 BatchB_NormA210BatchC_NormA210 BatchD_NormA210BatchE_NormA210 BatchF*_NormA210BatchG_NormA210 BatchH_NormA210BatchI_NormA210 BatchJ_NormA210BatchK_NormA210 BatchL_NormA210BatchM_NormA210

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.0000.000

200.000400.000600.000800.000

1000.0001200.0001400.000

Fully-processed QCs (different extracts, different digests) BatchA_NormA210 BatchB_NormA210

BatchC_NormA210 BatchD_NormA210BatchE_NormA210 BatchF*_NormA210BatchG_NormA210 BatchH_NormA210BatchI_NormA210 BatchJ_NormA210BatchK_NormA210 BatchL_NormA210BatchM_NormA210

• UV chromatograms of QC samples are a qualitative indicator of consistency

Page 16: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Triple-quadrupole mass spectrometry

0 2 4 6 8 10 12 14Time (min)

0

50

100

Re

lativ

e A

bu

nd

an

ce

6.752.46 12.862.19 6.916.072.91 9.80 12.605.82 13.551.98

1.771.691.59

1.54

NL: 2.11E4TIC F: + c NSI SRM ms2 [email protected] [994.490-994.690] MS 25246

Page 17: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Strategy

• First round of analyses focused on a limited range of added masses (72–212 Da).

• This range avoids potential artefacts from sample prep (e.g., Cys oxidation products) and mass

spectrometry (e.g., metal adducts of unmodified T3).

• Preliminary profiles were acquired by filtering out responses below three times the mean

instrumental noise.

Page 18: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Example data [1]

72.176.6

81.185.6

90.194.6

99.1103.6

108.1112.6

117.1121.6

126.1130.6

135.1139.6

144.1148.6

153.1157.6

162.1166.6

171.1175.6

180.1184.6

189.1193.6

198.1202.6

207.1211.6

0.000.200.400.600.801.001.201.40

Group E

Transition added mass / Da

Ap

pa

ren

t q

ua

nti

ty /

pm

ol

Page 19: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Example data [1]

72.176.6

81.185.6

90.194.6

99.1103.6

108.1112.6

117.1121.6

126.1130.6

135.1139.6

144.1148.6

153.1157.6

162.1166.6

171.1175.6

180.1184.6

189.1193.6

198.1202.6

207.1211.6

0.000.200.400.600.801.001.201.40

Group E

Transition added mass / Da

Ap

pa

ren

t q

ua

nti

ty /

pm

ol

QC1QC2

Blank run (indicates no carry over)

Unknowns – 5 × pre/post pairs (still blinded)

~ 2 pmol of QC peptide

Page 20: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Example data [2]

72.176.6

81.185.6

90.194.6

99.1103.6

108.1112.6

117.1121.6

126.1130.6

135.1139.6

144.1148.6

153.1157.6

162.1166.6

171.1175.6

180.1184.6

189.1193.6

198.1202.6

207.1211.6

00.20.40.60.8

11.21.4

Group A

Transition added mass / Da

Ap

pa

ren

t q

ua

nti

ty /

pm

ol

Page 21: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Example data [3]

72.176.6

81.185.6

90.194.6

99.1103.6

108.1112.6

117.1121.6

126.1130.6

135.1139.6

144.1148.6

153.1157.6

162.1166.6

171.1175.6

180.1184.6

189.1193.6

198.1202.6

207.1211.6

0.000.200.400.600.801.001.201.40

Group D

Transition added mass / Da

Ap

pa

ren

t q

ua

nti

ty /

pm

ol

Page 22: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Observations

• Hits for certain added masses (e.g., 72, 108, 135 and 158 Da) were observed repeatedly.

• Most hits were of low intensity (i.e., approaching lower limit of detection). Further work

(ongoing) to accurately define dynamic range / extent of linearity / instrument precision for

low intensity adducts.

• Until validated, treatment of the data restricted to qualitative only.

• Blank runs confirm zero carry-over.

Page 23: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Summary and Conclusions

• By modifying elements of the original workflow, we have arrived at a robust method that is

adapted for higher throughput.

• The new workflow includes provision for QC.

• Sample quality and quantity can be checked at various stages of the workflow.

• Measurements made for Piscina-2 samples indicate a high level of consistency throughout

sample processing.

• Automated sample delivery for MS has been recently installed (July 2014) and optimised

(August 2014).

Page 24: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

Adductomics – progress to dateSamples/cohort

n= MTA Samples received

Albumin Extraction

Protein Quant

Digestion Prep for HPLC*

Preparative HPLC

Mass spec

Data processing

Berkeley 18 √ √ √ √ √ √ √ (√)

Maastricht 60 √ √ √ √ √ √ √

MCC 123+ √ √ (√)

Piscina-2 120 √ √ √ √ √ √ √ √ (√)

Tapas-2 120 √ √ √

Oxford St √

HuGeF 127 √ √

* Involves acidification, dissolution, addition of internal standard and filtration through 0.45 µm

Page 25: Adductomics: validation and progress David H. Phillips George Preston King’s College London MRC-PHE Centre for Environment and Health, London 26 November.

• Dr Osman SozeriEnvironmental Carcinogenesis Group, King’s College London

• Dr Anna CaldwellProf. John HalketMS facility, King’s College London

• Prof. Stephen Rappaport Dr Harry LiSamantha LuUniversity of California, Berkeley

• Equipment grant from the MRC-PHE Centre for Environment and Health

Acknowledgements


Recommended