+ All Categories
Home > Documents > Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD,...

Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD,...

Date post: 29-Mar-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
80
1 Summer School on AD, Bommerholz, August 14-18,2006 Adjoint Computation for Aerodynamic Shape Optimization in MDO context Nicolas Gauger 1), 2) 1) DLR Braunschweig Institute of Aerodynamics and Flow Technology Numerical Methods Branch 2) Humboldt University Berlin Department of Mathematics Summer School on Automatic Differentiation Universitätskolleg Bommerholz, August 14-18, 2006
Transcript
Page 1: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

1Summer School on AD, Bommerholz, August 14-18,2006

Adjoint Computationfor Aerodynamic Shape Optimization in MDO context

Nicolas Gauger 1), 2)

1) DLR BraunschweigInstitute of Aerodynamics and Flow Technology

Numerical Methods Branch2) Humboldt University Berlin

Department of Mathematics

Summer School on Automatic DifferentiationUniversitätskolleg Bommerholz, August 14-18, 2006

Page 2: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

2Summer School on AD, Bommerholz, August 14-18,2006

CollaboratorsWith contributions to this lecture:

• DLR: J. Brezillon, A. Fazzolari, M. Widhalm,

R. Dwight, R. Heinrich, N. Kroll

• Fastopt: R. Giering, Th. Kaminski

• TU Dresden: A. Walther, S. Schlenkrich, C. Moldenhauer

• Uni Trier: V. Schulz, S. Hazra

University of Trier

FastOpt

Page 3: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

3Summer School on AD, Bommerholz, August 14-18,2006

Content of Lecture

Why adjoint approaches?

What is an adjoint approach?

Continuous and discrete adjoint approaches / solvers

Validation and Application in 2D and 3D

Algorithmic / Automated Differentiation (AD)

Coupled aero-structure adjoint approach

Validation and application in MDO context

One shot approaches

Page 4: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

4Summer School on AD, Bommerholz, August 14-18,2006

Requirements on CFD• high level of physical modeling

– compressible flow– transonic flow– laminar - turbulent flow – high Reynolds numbers (60 million)– large flow regions with flow separation – steady / unsteady flows

• complex geometries• short turn around time

Use of CFD in Aerodynamic Aircraft Design

Page 5: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

5Summer School on AD, Bommerholz, August 14-18,2006

Consequencessolution of 3D compressible Reynolds averaged Navier-Stokes equations turbulence models based on transport equations (2 – 6 eqn)models for predicting laminar-turbulent transition flexible grid generation techniques with high level of automation(block structured grids, overset grids, unstructured/hybrid grids)link to CAD-systemsefficient algorithms (multigrid, grid adaptation, parallel algorithms...)large scale computations ( ~ 10 - 60 million grid points)…

Use of CFD in Aerodynamic Aircraft Design

Page 6: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

6Summer School on AD, Bommerholz, August 14-18,2006

MEGAFLOW Software

Structured RANS solver FLOWer

block-structured grids moderate complex configurationsfast algorithms (unsteady flows)design optionadjoint option

Unstructured RANS solver TAU

hybrid grids very complex configurationsgrid adaptation fully parallel softwareadjoint option

Page 7: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

7Summer School on AD, Bommerholz, August 14-18,2006

• M∞=0.85, Re=32.5x106

• coupled CFD/structural analysis for wing deformation at α ≈ 1.5°• FLOWer, kω turbulence model, fully turbulent

ValidationHiReTT Wing/Body Configuration

3.5 million grid points

Page 8: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

8Summer School on AD, Bommerholz, August 14-18,2006

• M∞=0.85, Re=32.5x106

• coupled CFD/structural analysis for wing deformation at α ≈ 1.5°• FLOWer, kω turbulence model, fully turbulent

ValidationHiReTT Wing/Body Configuration

3.5 million grid points

Page 9: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

9Summer School on AD, Bommerholz, August 14-18,2006

Requirementscomplex configurations

compressible Navier-Stokes equationswith accurate models for turbulence and transition

validated and efficient CFD codes

multi-point design, multi-objective optimization, MDO

large number of design variables

physical and geometrical constraintsmeshing & mesh deformation techniques ensuring grid qualityefficient optimization algorithms

automatic framework

parameterization based on CAD model

Aerodynamic Shape Optimization

Page 10: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

10Summer School on AD, Bommerholz, August 14-18,2006

Requirementscomplex configurations

compressible Navier-Stokes equationswith accurate models for turbulence and transition

validated and efficient CFD codes

multi-point design, multi-objective optimization, MDO

large number of design variables

physical and geometrical constraintsmeshing & mesh deformation techniques ensuring grid qualityefficient optimization algorithms

automatic framework

parameterization based on CAD model

Aerodynamic Shape Optimization

⇒ Sensitivity baseddeterministic optimizationstrategies !!!

Page 11: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

11Summer School on AD, Bommerholz, August 14-18,2006

Parametrizedairfoil

Design space

I cost

T

niiPII

,...,1

,......,=

⎟⎟⎠

⎞⎜⎜⎝

⎛−=∇−

δδ

“ “ :

Search direction

Line search

Aerodynamic Shape Optimization

Page 12: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

12Summer School on AD, Bommerholz, August 14-18,2006

0=∂∂

+∂∂

+∂∂

yg

xf

tw

∞∞

∞−=

pMppCp 2

)(2γ

∫ +=C

yxpref

D dlnnCC

C )sincos(1 αα

∫ −=C

xypref

L dlnnCC

C )sincos(1 αα

∫ −−−=C

mxmypref

m dlyynxxnCC

C ))()((12

Compressible 2D Euler-Equations

while

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

+=

uHuv

puu

f

ρρρ

ρ2

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

+=

vHpv

vuv

g

ρρ

ρρ

2

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

=

Evu

w

ρρρρ

, ,

Dimensionless pressure

Drag, lift, pitching moment coefficients

Pressure (ideal gas)

)21()1( 2vEp r

−−= ργ

Governing Equations and Aerodynamic Coefficients

Page 13: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

13Summer School on AD, Bommerholz, August 14-18,2006

• Finite Differences n design variables requiren+1 flow calculations

Metric sensitivities → pressure variation → aerodynamic sensitivity

∫∞∞

=Cref

D pCpM

C δγ

δ 22 dlnn yx )sincos( αα +

dlnnCC y

Cxp

ref

)sincos(1 αδαδ∫ ++ ,

i-th component of cost function‘s gradient

i-loopi=1,...,n

Finite Differences

Variation of i-th design variable

Page 14: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

14Summer School on AD, Bommerholz, August 14-18,2006

High number of design variables

• Finite Differences n design variables require n+1 flow calculations

• Adjoint Approach n design variables require 1 flow and1 adjoint flow calculation

Independent of number of design variables

High accuracy

Motivation of Adjoint Approach

Page 15: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

15Summer School on AD, Bommerholz, August 14-18,2006

Page 16: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

16Summer School on AD, Bommerholz, August 14-18,2006

Page 17: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

17Summer School on AD, Bommerholz, August 14-18,2006

Page 18: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

18Summer School on AD, Bommerholz, August 14-18,2006

Convection Eq.

Page 19: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

19Summer School on AD, Bommerholz, August 14-18,2006

How to get the gradient using adjoint theory

Let the optimization problem be stated as

and with the governing equations

with W the flow variables, X the mesh and D the design variables.

We introduce the Lagrangian multiplyer Λ and define the Lagrangian L as

( ) 0,, =DXWR

( ),,, min D

DXWI

RIL TΛ+=

Page 20: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

20Summer School on AD, Bommerholz, August 14-18,2006

The derivatives of L with respect to the design variables D are:

( ) ( )( )Λ+= DXWRDXWIdDd

dDdL T ,,,,

How to get the gradient using adjoint theory

Page 21: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

21Summer School on AD, Bommerholz, August 14-18,2006

( ) ( )( )

⎭⎬⎫

⎩⎨⎧

∂∂

+∂∂

+∂∂

Λ+⎭⎬⎫

⎩⎨⎧

∂∂

+∂∂

+∂∂

=

Λ+=

DR

dDdX

XR

dDdW

WRT

DI

dDdX

XI

dDdW

WI

DXWRDXWIdDd

dDdL T

,,,,

The derivatives of L with respect to the design variables D are:

How to get the gradient using adjoint theory

Page 22: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

22Summer School on AD, Bommerholz, August 14-18,2006

( ) ( )( )

⎭⎬⎫

⎩⎨⎧

∂∂

Λ+∂∂

+⎭⎬⎫

⎩⎨⎧

∂∂

Λ+∂∂

+⎭⎬⎫

⎩⎨⎧

∂∂

Λ+∂∂

=

⎭⎬⎫

⎩⎨⎧

∂∂

+∂∂

+∂∂

Λ+⎭⎬⎫

⎩⎨⎧

∂∂

+∂∂

+∂∂

=

Λ+=

DRT

DI

dDdX

XRT

XI

dDdW

WRT

WI

DR

dDdX

XR

dDdW

WRT

DI

dDdX

XI

dDdW

WI

DXWRDXWIdDd

dDdL T

,,,,

The derivatives of L with respect to the design variables D are:

How to get the gradient using adjoint theory

Page 23: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

23Summer School on AD, Bommerholz, August 14-18,2006

=0

The derivatives of L with respect to D are:

}

}}

The expensive component can be canceled by solving the adjoint

equation

dDdW

WRT

WI

DRT

DI

dDdX

XRT

XI

dDdL

⎭⎬⎫

⎩⎨⎧

∂∂

Λ+∂∂

+⎭⎬⎫

⎩⎨⎧

∂∂

Λ+∂∂

+⎭⎬⎫

⎩⎨⎧

∂∂

Λ+∂∂

=

Variations w. r. t. the flow variables

expensive to evaluate

Partial variations according to the design variables

relatively inexpensive

Metric sensitivities

relatively inexpensive with finite differences

How to get the gradient using adjoint theory

Page 24: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

24Summer School on AD, Bommerholz, August 14-18,2006

After solving the adjoint equation,

the derivatives of L with respect to D are evaluated according to

⎭⎬⎫

⎩⎨⎧

∂∂

Λ+∂∂

+⎭⎬⎫

⎩⎨⎧

∂∂

Λ+∂∂

=DRT

DI

dDdX

XRT

XI

dDdL

0=∂∂

Λ+∂∂

WRT

WI

How to get the gradient using adjoint theory

Page 25: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

25Summer School on AD, Bommerholz, August 14-18,2006

• Continuous Adjoint- optimize then discretize- hand coded adjoint solvers- time consuming in implementation- efficient in run and memory

• Discrete Adjoint / Algorithmic Differentiation (AD)- discretize then optimize- hand coding of adjoint solvers or …- … more or less automated generation- memory effort increases (way out e.g. check-pointing)

• Hybrid Adjoint- use source to source AD tools - optimize differentiated code- merge “continuous and discrete” routines

Different Adjoint Approaches

Page 26: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

26Summer School on AD, Bommerholz, August 14-18,2006

Nomenclature

Page 27: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

27Summer School on AD, Bommerholz, August 14-18,2006

Page 28: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

28Summer School on AD, Bommerholz, August 14-18,2006

Page 29: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

29Summer School on AD, Bommerholz, August 14-18,2006

Page 30: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

30Summer School on AD, Bommerholz, August 14-18,2006

Page 31: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

31Summer School on AD, Bommerholz, August 14-18,2006

Page 32: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

32Summer School on AD, Bommerholz, August 14-18,2006

Page 33: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

33Summer School on AD, Bommerholz, August 14-18,2006

0=∂∂

⎟⎠⎞

⎜⎝⎛

∂∂

−∂∂

⎟⎠⎞

⎜⎝⎛

∂∂

−∂

∂−

ywg

xwf

t

TT ψψψAdjointEuler-Equations:

Boundary conditions:

∫ ++−−=C

IKdlxypI )()( 32 ξξ δψδψδ

∫ +−+−−D

TT dAgxfygxfy )()( ξξηηηξ δδψδδψ

Adjoint volume formulation of cost function’s gradient:

Ψ: Vector of adjoint variables

)(32 Idnn yx −=+ ψψ

0=wδ,0,..., =ηξ δδ yxWall:Farfield:

Continuous Adjoint Approach

Page 34: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

34Summer School on AD, Bommerholz, August 14-18,2006

)sincos(2)( 2 ααγ yx

refD nn

CpMCd +=

∞∞

dlnnCC

CK yC

xpref

D )sincos(1)( αδαδ∫ +=

)sincos(2)( 2 ααγ xy

refL nn

CpMCd −=

∞∞

dlnnCC

CK xC

ypref

L )sincos(1)( αδαδ∫ −=

))()((2

)(22 mxmyref

m yynxxnCpM

Cd −−−=∞∞γ

dlyynxxnCC

CKC

mxmypref

m ))()((1)( 2 ∫ −−−= δ

Drag

Pitching moment

Lift

Continuous Adjoint Approach

Page 35: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

35Summer School on AD, Bommerholz, August 14-18,2006

Continuous adjoint• Euler implemented in FLOWer & TAU• surface formulation for gradient evaluation• one shot method (FLOWer)• coupled aero-structure adjoint (FLOWer) • Navier-Stokes (frozen μ) implemented

in FLOWer, robustness problems

Discrete adjoint• implemented in TAU • Euler & RANS with several turbulence

models• currently high memory requirements• experience with automatic differentiation

(FLOWer and TAUij) moment

pressure drag

comparison of gradients (airfoil, inviscid)

TAU-Code

Adjoint solvers

Page 36: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

36Summer School on AD, Bommerholz, August 14-18,2006

Continuous adjoint solver FLOWer

Adjoint solver on block-structured grids

• continuous adjoint approach• implemented in FLOWer• cost functions: lift, drag & moment

and combinations • adjoint solver based on multigrid• Euler & Navier-Stokes (frozen μ)

convergence history, FLOWer

-12.4408 -9.55489 -6.66898 -3.78306 -0.897145 1.98877 4.87468 7.7606

ψ1

Page 37: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

37Summer School on AD, Bommerholz, August 14-18,2006n-th Design Variable

-∇C

m

0 10 20 30 40 50-5

-4

-3

-2

-1

0

1

2

AdjointFinite Differences

n-th Design Variable

-∇C

L

0 10 20 30 40 50-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

AdjointFinite Differences

n-th Design Variable

-∇C

D

0 10 20 30 40 50-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

AdjointFinite Differences

RAE2822M∞=0.73, α = 2.0°50 design variables(B-spline)

Validation of continuous adjoint solver in FLOWerAdjoint approach vs. finite differences‘ gradient

drag

lift

moment

finite differences: 51 calls of FLOWer MAINadjoint approach:1 call of FLOWer MAIN3 calls of FLOWer ADJOINT

Page 38: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

38Summer School on AD, Bommerholz, August 14-18,2006

Validation of adjoint gradient based optimization

Objective function

4 Drag reduction for RAE 2822 airfoil

4 M∞ =0.73, α=2.00°

Constraints

4 Constant thickness

Approach

4 FLOWer Euler Adjoint

4 Deformation of camberline(20 Hicks-Henne functions)

Optimizer

4 Steepest Descent

4 Conjugate Gradient

4 Quasi Newton Trust Region

Page 39: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

39Summer School on AD, Bommerholz, August 14-18,2006

Validation of adjoint gradient based optimization

Objective function

4 Drag reduction for RAE 2822 airfoil

4 M∞ =0.73, α=2.00°

Constraints

4 Constant thickness

Approach

4 FLOWer Euler Adjoint

4 Deformation of camberline(20 Hicks-Henne functions)

Optimizer

4 Steepest Descent

4 Conjugate Gradient

4 Quasi Newton Trust Region

Page 40: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

40Summer School on AD, Bommerholz, August 14-18,2006

Orthogonalprojection

ii i

DTi

D bb

CbCb ∑=

∇+−∇=

2

123

03 =ba Ti , 2,1=i

⎪⎪⎪

⎪⎪⎪

=−=

=

∑=

+++ . 2,1

,

12

111

11

lbbabab

ab

i

l

i i

lTi

ll

},,{},,{ 321 DmL CCCaaa −∇∇∇=

)()( )(kLL XCrC ≈

0)()()(

)(

)(

)(

)( =∇=k

kT

LXk

kL

rrC

drXdC

k

},,{ 321 bbb

Schmidt - orthogonalization

:

In direction b3 the drag is reduced while thelift and pitching moment are held constant

it holdsIn direction r(k) the drag is reduced whilethe lift is held constant

.

X(k)

LC∇ DC∇−

r(k)

r

Treatment of Constraints

Page 41: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

41Summer School on AD, Bommerholz, August 14-18,2006

Orthogonalprojection

ii i

DTi

D bb

CbCb ∑=

∇+−∇=

2

123

03 =ba Ti , 2,1=i

⎪⎪⎪

⎪⎪⎪

=−=

=

∑=

+++ . 2,1

,

12

111

11

lbbabab

ab

i

l

i i

lTi

ll

},,{},,{ 321 DmL CCCaaa −∇∇∇=

)()( )(kLL XCrC ≈

0)()()(

)(

)(

)(

)( =∇=k

kT

LXk

kL

rrC

drXdC

k

},,{ 321 bbb

Schmidt - orthogonalization

:

In direction b3 the drag is reduced while thelift and pitching moment are held constant

it holdsIn direction r(k) the drag is reduced whilethe lift is held constant

.

X(k)

LC∇ DC∇−

r(k)

r

Treatment of Constraints

A lot of other strategies andcommercial packages areavailable !!!

Page 42: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

42Summer School on AD, Bommerholz, August 14-18,2006

Objective function

4 Drag reduction for RAE 2822 airfoil

4 M∞ =0.73, α=2.0°

Constraints

4 Lift, pitching moment and angle of attack held constant

4 Constant thickness

Approach

4 FLOWer Euler Adjoint

4 Constraints handled byfeasible direction

4 Deformation of camberline

Multi-constraint airfoil optimization RAE2822

Page 43: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

43Summer School on AD, Bommerholz, August 14-18,2006

Objective function

4 Drag reduction for RAE 2822 airfoil

4 M∞ =0.73, α=2.0°

Constraints

4 Lift, pitching moment and angle of attack held constant

4 Constant thickness

Approach

4 FLOWer Euler Adjoint

4 Constraints handled byfeasible direction

4 Deformation of camberline

Multi-constraint airfoil optimization RAE2822

surface pressure distribution

Page 44: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

44Summer School on AD, Bommerholz, August 14-18,2006

Objective function

4 Reduction of drag in 2 design points

Design points

4 1 : M∞=0.734, CL = 0.80 , α = 2.8°, Re=6.5x106, xtrans=3%, W1=2

4 2 : M∞=0.754, CL = 0.74 , α = 2.8°, Re=6.2x106, xtrans=3%, W2=1

Constraints

4 No lift decrease, no change in angle of incidence

4 Variation in pitching moment less than 2% in each point

4 Maximal thickness constant and at 5% chord more than 96% of initial

4 Leading edge radius more than 90% of initial

4 Trailing edge angle more than 80% of initial

Multipoint airfoil optimization RAE2822

),(2

1iid

ii MCWI α∑

=

=

Page 45: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

45Summer School on AD, Bommerholz, August 14-18,2006

Parameterization4 20 design variables changing camberline, Hicks-Henne functions

Optimization strategy4 Constrained SQP

4 Navier-Stokes solver FLOWer, Baldwin/Lomax turbulence model

4 Gradients provided by FLOWer Adjoint, based on Euler equations

Results

Pt α Mi Clt Cdt (.10-4) Cl Cdt (.10-4) ΔCd/Cdt ΔCl/Clt ΔCm/Cmt

1 2.8 0.734 0.811 197.1 0.811 135.5 -31.2% 0% +1.6%

2 2.8 0.754 0.806 300.8 0.828 215.0 -27.4% +2.7% +2.0%

Multipoint airfoil optimization RAE2822

Page 46: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

46Summer School on AD, Bommerholz, August 14-18,2006

1. design point 2. design point

shape geometry

Multipoint airfoil optimization RAE2822

Page 47: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

47Summer School on AD, Bommerholz, August 14-18,2006

Objective function

4 drag reduction by constant lift

Design point

4 Mach number = 2.0

4 lift coefficient = 0.12

Constraints

4 fuselage incidence

4 minimum fuselage radius

4 wing planform unchanged

4 minimum wing thickness distribution in spanwise direction

Optimization of SCT Configuration (SCT – Supersonic Cruise Transporter)

Page 48: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

48Summer School on AD, Bommerholz, August 14-18,2006

Approach

4 FLOWer code in Euler mode with target lift option

4 Lift kept constant by adjusting angle of attack

4 FLOWer code in Euler adjoint mode

4 Adjoint gradient formulation

4 Structured mono-block grid (MegaCads), 230.000 grid points

Optimization strategy

4 Quasi-Newton Method (BFGS algorithm)

Optimization of SCT Configuration

Page 49: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

49Summer School on AD, Bommerholz, August 14-18,2006

Fuselage

10 sections controlled by Bezier nodes

Design variables h fuselage: 10 parametersh twist deformation: 10 parametersh camberline (8 sections): 32 parametersh thickness (8 sections): 32 parametersh angle of attack: 1 parameter .

85 parameters

Optimization of SCT Configuration

Page 50: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

50Summer School on AD, Bommerholz, August 14-18,2006

Camberline Thickness

Deformation in8 sections

Deformation in 8 sections

Design variables h fuselage: 10 parametersh twist deformation: 10 parametersh camberline (8 sections): 32 parametersh thickness (8 sections): 32 parametersh angle of attack: 1 parameter .

85 parameters

Optimization of SCT Configuration

Page 51: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

51Summer School on AD, Bommerholz, August 14-18,2006

Design variables h fuselage: 10 parametersh twist deformation: 10 parametersh camberline (8 sections): 32 parametersh thickness (8 sections): 32 parametersh angle of attack: 1 parameter .

85 parametersThickness and camberline

Normalised airfoil

Optimization of SCT Configuration

Page 52: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

52Summer School on AD, Bommerholz, August 14-18,2006

11 times faster than classical approach

14.6 Drag Counts

optimized geometry

baseline geometry

Optimization of SCT Configuration

Page 53: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

53Summer School on AD, Bommerholz, August 14-18,2006

11 times faster than classical approach

14.6 Drag Counts

optimized geometry

baseline geometry

Optimization of SCT Configuration

Page 54: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

54Summer School on AD, Bommerholz, August 14-18,2006

and Area RuleRadius of the fuselage in freestream direction

Optimization of SCT Configuration

Page 55: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

55Summer School on AD, Bommerholz, August 14-18,2006

Wing section and pressure distribution

η=0.24

η=0.49

η=0.92

Optimization of SCT Configuration

Page 56: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

56Summer School on AD, Bommerholz, August 14-18,2006

Algorithmic Differentiation (AD)

Work in progress and results

• ADFLOWer generated with TAF (3D Navier-Stokes, k-w),first verifications and validation

• Adjoint version of TAUij (2D Euler) + mesh deformationand parameterization with ADOL-C, validated and tested

• First and second derivatives of a “FLOWer-Derivate”(2D Euler) + mesh deformation and parameterizationgenerated with TAPENADE, used for All-at-Once (Piggy-Back)→ See lecture of Andreas Griewank!

Page 57: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

57Summer School on AD, Bommerholz, August 14-18,2006

FastOpt

Test configuration2d NACA0012k-omega (Wilcox) turbulence modelcell-centred metric2000 time steps on fine gridtarget sensitivity: d lift/ d alpha

StepsModifications of FLOWer code (TAF Directives, slight recoding, etc...)tangent-linear code (verification) adjoint codeefficient adjoint code

Major challengememory management (all variables in one big field 'variab')complicates detailed analysis and handling of deallocation

ADFLOWer by TAF( )

Page 58: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

58Summer School on AD, Bommerholz, August 14-18,2006

TAF CPUs Code lines solve rel CPU solve memoryNominal 166000 1.0 57tangent 293 268000 3.3 75adjoint 253 310000 6.3 489

Usually better for larger configurations

Ma = 0.734α = 2.8°Re = 6x10^6kw turbulence model

ADFLOWer

Page 59: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

59Summer School on AD, Bommerholz, August 14-18,2006

Ma = 0.734α = 2.8°Re = 6x10^6kw turbulence model

Demonstrates convergence of discrete sensitivities including turbulence

Same sensitivity for Navier-Stokes adjoint (Wilcox kw) and tangent linear model

ADFLOWer

Page 60: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

60Summer School on AD, Bommerholz, August 14-18,2006

Demonstrates convergence of discrete sensitivities including turbulence

Same sensitivity for Navier-Stokes adjoint (Wilcox kw) and tangent linear model

Ma = 0.734α = 2.8°Re = 6x10^6kw turbulence model

ADFLOWer

Page 61: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

61Summer School on AD, Bommerholz, August 14-18,2006

• Adjoint version of entire design chain by ADOL-C (TU-Dresden)• TAUij (2D Euler) + mesh deformation + parameterization

Px

xdx

dxm

mC

dPdC new

new

DD

∂∂

⋅∂∂

⋅∂∂

⋅∂

∂=

)()(

and

TAUij_AD meshdefo_AD defgeo_AD

Automatic Differentiation of Entire Design Chain

Idx

xxxdx

new

oldnew

new

=∂

−∂=

∂∂ )()(

design vector (P) → defgeo → difgeo → meshdefo → flow solver → CD

xnew dx m

surface grid grid

Page 62: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

62Summer School on AD, Bommerholz, August 14-18,2006

• Run time (2000 fixed-point iterations)- primal: 2 minutes- adjoint: 16 minutes

• Tape size: 340 MB (reverse accumulation approach!)[Christianson in 94]

• Run time memory- primal: 8 MB- adjoint: 45 MB

Automatic Differentiation of Entire Design Chain

Page 63: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

63Summer School on AD, Bommerholz, August 14-18,2006

Drag reduction • RAE 2822, M = 0.73, α = 2.0°• inviscid flow, mesh 161x33 cells• 20 design variables (Hicks-Henne)• steepest descent

First Application / Validation:

Automatic Differentiation of Entire Design Chain

Page 64: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

64Summer School on AD, Bommerholz, August 14-18,2006

Coupled Aero-Structure Adjoint

Motivation

Wing deflection up to 7% of wing span!

Deflected aerodynamicoptimal shape can beworse than the initial …

Boeing 737Boeing 737--800 at ground and in cruise (Ma = 0.76)800 at ground and in cruise (Ma = 0.76)

Page 65: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

65Summer School on AD, Bommerholz, August 14-18,2006

Coupled Aero-Structure Adjoint

AMP wing

15 design variables(shape bumping functions based on Bernstein polynomials)

Ma=0.78alpha=2.83

Drag reduction byconstant lift

Taking into accountstatic deformation

NASTRANshell/beam model126 nodes

FLOWer MAIN/ADJOINT15 design variablesMa=0.78alpha=2.83(300.000 cells)

Page 66: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

66Summer School on AD, Bommerholz, August 14-18,2006

A

TAD

S

TS

dR

dC

dR ψψ ~⎟

⎠⎞

⎜⎝⎛

∂∂

−∂

∂=⎟

⎠⎞

⎜⎝⎛

∂∂

Pd

dC

Pw

wC

PC

dPdC DDDD

∂∂

∂∂

+∂∂

∂∂

+∂

∂=

PR

PR

PC

dPdC ST

SAT

ADD

∂∂

−∂∂

−∂

∂= ψψ

S

TSD

A

TA

wR

wC

wR ψψ ~⎟

⎠⎞

⎜⎝⎛

∂∂

−∂

∂=⎟

⎠⎞

⎜⎝⎛

∂∂

0=AR

0=−= aKdRS

Aerodynamics, e.g Euler Eqn.:

Structure:

K: Symmetric stiffness matrixa: Aerodynamic forced: Displacement vectorP: Vector of Design variables

Coupled Aero-Structure Adjoint

Adjoint Gradient:

Aero/Structure Adjoint System:

Conventional Gradient:

::

S

A

ψψ Aerodynamic Adjoint

Structure Adjoint~: Lagged ...

Page 67: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

67Summer School on AD, Bommerholz, August 14-18,2006

Coupled Aero-Structure Adjoint

Pad

PK

PaKd

PR

KKd

aKddR

wa

waKd

wR

wC

PC

dC

PR

dR

S

TS

S

D

DD

AA

∂∂

−∂∂

=∂

−∂=

∂∂

==∂

−∂=

∂∂

∂∂

−=∂

−∂=

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

)(

)(

)(

,

, : perturb shape by d,P → calculate change in CFD residual

: perturb shape by d,P → calculate change in drag coefficient

: treat → boundary condition∫ +∂∂

Cyx nn

wp )...sincos(... αα

: treat → boundary condition∫ ∂∂

C wp ......

… has been derived before!

Page 68: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

68Summer School on AD, Bommerholz, August 14-18,2006

Coupled Aero-Structure Adjoint

Finite Differences:Perturb the shape by each designvariable and converge the aero-elastic loop until stationary behavior

Coupled Aero-Structure Adjoint:Each 100 iterations the laggedis updated ...

Sψ~

AMP wing

Page 69: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

69Summer School on AD, Bommerholz, August 14-18,2006

PR

PR

PC

dPdC ST

SAT

ADD

∂∂

−∂∂

−∂

∂= ψψ

Validation of Adjoint Gradient

Coupled Aero-Structure Adjoint

NASTRANshell/beam model126 nodes

15 design variablesMa=0.78alpha=2.83(300.000 cells)

AMP wing

Page 70: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

70Summer School on AD, Bommerholz, August 14-18,2006

PR

PR

PC

dPdC ST

SAT

ALL

∂∂

−∂∂

−∂

∂= ψψ

Validation of Adjoint Gradient

Coupled Aero-Structure Adjoint

NASTRANshell/beam model126 nodes

15 design variablesMa=0.78alpha=2.83(300.000 cells)

AMP wing

Page 71: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

71Summer School on AD, Bommerholz, August 14-18,2006

Coupled Aero-Structure Adjoint

AMP wing

240 design variables(control points free form deformation)

Ma=0.78alpha=2.83

Drag reduction byconstant lift ΔCD= 24.9 %

ΔCL= 0.1%

feasible direction method

Page 72: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

72Summer School on AD, Bommerholz, August 14-18,2006

Coupled Aero-Structure Adjoint

AMP wing

240 design variables(control points free form deformation)

Ma=0.78alpha=2.83

Drag reduction byconstant lift

baseline

optimized

Page 73: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

73Summer School on AD, Bommerholz, August 14-18,2006

Coupled Aero-Structure Adjoint

Comparison of numerical effort:(PC Pentium IV, 2.6 GHz, 2GB RAM)

• Coupled adjoint: 15 days(11 gradient and 91 state evaluations)

• Finite differences: 227 days

AMP wing

240 design variables(control points free form deformation)

Ma=0.78alpha=2.83

Drag reduction byconstant lift

Page 74: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

74Summer School on AD, Bommerholz, August 14-18,2006

Aero-Structure MDO

FWW

CCR

D

L

−∝ ln

)1(0 ksWW λ+=

∑ −=

n

nks ))exp(ln(1

0

0

σσσβ

βλ=0.2 , σ0 =30.000 and β=40

Range R:

Weight W:

Fuel Weight F

⎟⎟⎟⎟

⎜⎜⎜⎜

−+

+=

0

1

1ln

WFks

ksCC

D

L

λ

λ

Kreisselmeier-Steinhauser:PR

Pks

dPdks AT

∂∂

+∂∂

= ψ

pksnnn zyx ∂

∂−=++ 432 ψψψ

adjoint b.c.

Page 75: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

75Summer School on AD, Bommerholz, August 14-18,2006

AMP wing

240 design variables(control points free form deformation)

Ma=0.78alpha=2.83

Range maximization byconstant lift

Aero-Structure MDO

ΔCD = -25 %

Δks = -10 %

ΔR = +37 %

feasible direction method

Page 76: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

76Summer School on AD, Bommerholz, August 14-18,2006

I∇

start geometryx0

ψ

x0

w

xn+1

k-loop

k-loop

Adjoint Based Optimization

min Ι (w,x)s.t. R(w,x)=0

optimizationstrategy

RANS solverR(wk,xn)=0

gradient

∫=∇V

mn

m dVxiI ))(,(w,)( δψ

Adjoint solverR*(w,ψk,xn)=0

dim x = M

n-loop n=1,…,N

m-loopm=1,…,M

All at once?

Page 77: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

77Summer School on AD, Bommerholz, August 14-18,2006

),(),(),,( xwRxwIxwL Tψψ −=

Simultaneous Pseudo-Time stepping- One Shot Approach -

0),(0),,(0),,(

==∇=∇

xwRxwLxwL

x

w

ψψ

(state equation)

(adjoint equation)

(design equation)

University of Trier

min Ι (w,x)

s.t. R(w,x)=0

dim x = M

( )( )

⎥⎥⎥

⎢⎢⎢

⎡∇∇

⎥⎥⎥

⎢⎢⎢

∂∂∂∂∂∂∂∂

−⎥⎥⎥

⎢⎢⎢

⎡=

⎥⎥⎥

⎢⎢⎢

Δ+Δ+Δ+

RLL

xRwRxRLLwRLL

xw

xxww

x

wT

xxxw

Twxww

1

0////

ψψψ

( )⎥⎥⎥

⎢⎢⎢

−∇−∇−

⎥⎥⎥

⎢⎢⎢

∂∂∂∂=

⎥⎥⎥

⎢⎢⎢

ΔΔΔ −

RLL

xRIxRB

Ixw

x

wT

1

0//0

00

ψ

KKT

Newton SQPmethod

inexact Newton rSQP method

simultaneous preconditionedpseudo time stepping

Page 78: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

78Summer School on AD, Bommerholz, August 14-18,2006

Lx∇

start geometryx0

ψk+1

x0

wk+1

xk+1

primal updatewk+1=wk-Δt·R(wk,xk)

gradient

∫ ++=∇V

mkkk

mx dVxlL ))(,,(w)( 11 δψ

k-loop dual update

ψk+1= ψk-Δt·R*(wk+1,ψk,xk)

}{ 111 LxRBLBtxx w

T

kxkkk ∇⎟

⎠⎞

⎜⎝⎛

∂∂

−∇Δ−= −−+

m-loopm=1,…,M

design update

Bk – BFGS updatesof reduced Hessian Lxx

Simultaneous Pseudo-Time stepping- One Shot Approach - University of Trier

Page 79: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

79Summer School on AD, Bommerholz, August 14-18,2006

Optimization problem• drag reduction for RAE 2822 • inviscid flow• M=0.73, a=20

Tools• FLOWer• FLOWer adjoint

Simultaneous Pseudo-Time stepping- One Shot Approach - University of Trier

Page 80: Adjoint Computation - RWTH Aachen UniversityKolleg/bilder/ad_gauger.pdf · Summer School on AD, Bommerholz, August 14-18,2006 1 Adjoint Computation for Aerodynamic Shape Optimization

80Summer School on AD, Bommerholz, August 14-18,2006

Optimization at the cost of 4 flow simulations!

Simultaneous Pseudo-Time stepping- One Shot Approach - University of Trier


Recommended