+ All Categories
Home > Documents > Adérito Araújo, Marta Cavaleiro

Adérito Araújo, Marta Cavaleiro

Date post: 11-Apr-2022
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
37
Numerical Approximation of Mean Curvature Flow Adérito Araújo, Marta Cavaleiro Centre for Mathematics, University of Coimbra Seminar of the Mathematics PhD Program UCoimbra-UPorto Coimbra, November 3th, 2010 Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 1 / 29
Transcript
Page 1: Adérito Araújo, Marta Cavaleiro

Numerical Approximation of Mean Curvature Flow

Adérito Araújo, Marta Cavaleiro

Centre for Mathematics, University of Coimbra

Seminar of the Mathematics PhD Program UCoimbra-UPortoCoimbra, November 3th, 2010

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 1 / 29

Page 2: Adérito Araújo, Marta Cavaleiro

Outline

1 IntroductionParkinson’s DiseaseLevel Sets Method

2 Existence and unicityViscosity solutionsEnergy estimate

3 Numerical AnalysisNumerical IMEX MethodParallel Splitting Algorithm

4 Segmentation ModelChan and Vese ModelNumerical Results

5 Conclusions and Future Work

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 2 / 29

Page 3: Adérito Araújo, Marta Cavaleiro

Outline

1 IntroductionParkinson’s DiseaseLevel Sets Method

2 Existence and unicityViscosity solutionsEnergy estimate

3 Numerical AnalysisNumerical IMEX MethodParallel Splitting Algorithm

4 Segmentation ModelChan and Vese ModelNumerical Results

5 Conclusions and Future Work

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 3 / 29

Page 4: Adérito Araújo, Marta Cavaleiro

Parkinson disease

What is it?Degenerative disorder of the central nervous system that affectsthe control of muscles and so may affect movement, speech andpostureCaused by insufficient formation and action of dopamine

DiagnosesThere are currently no blood or laboratory tests that have beenproven to help in diagnosing the disease75% of clinical diagnoses of Parkinson disease are confirmed atautopsy

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 4 / 29

Page 5: Adérito Araújo, Marta Cavaleiro

Parkinson disease

What is it?Degenerative disorder of the central nervous system that affectsthe control of muscles and so may affect movement, speech andpostureCaused by insufficient formation and action of dopamine

DiagnosesThere are currently no blood or laboratory tests that have beenproven to help in diagnosing the disease75% of clinical diagnoses of Parkinson disease are confirmed atautopsy

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 4 / 29

Page 6: Adérito Araújo, Marta Cavaleiro

Parkinson disease

PathologyThe symptoms of Parkinson disease result from the loss ofdopaminergic cells and subsequent loss of melaninThe neurons project to the striatum and their loss leads toalteration in the activity of neural circuits within the basal ganglia

Credits: Wikipedia, the free encyclopedia

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 5 / 29

Page 7: Adérito Araújo, Marta Cavaleiro

Parkinson disease

Decreased dopamine activity in the basal ganglia, a pattern whichaids in diagnosing Parkinson diseasePET and SPECT images may help

Credits: European Parkinson’s Disease Association

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 6 / 29

Page 8: Adérito Araújo, Marta Cavaleiro

Level Sets Method

Γ(t) is implicitly represented by the zero level set of a higher dimensionfunction φ:

Γ(t) = (x , y) ∈ Ω : φ(t , x , y) = 0

Credits: Oleg Alenxandrov, en.wikipedia.org

Notions of interior and exterior of a curve are immediateUnion and division of curves are automatic

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 7 / 29

Page 9: Adérito Araújo, Marta Cavaleiro

Level Sets Method

Evolve the curve in the direction of the normal with speed v ⇔solving a PDE

∂φ

∂t= v |∇φ| , φ(0, x , y) = φ0(x , y)

with suitable boundary conditions

Motion by mean curvature

v = div(∇φ|∇φ|

)For φ ∈ C2,1(]0,T ]× Ω) and ∇φ 6= 0 in a neighborhood of Γ(t):

(IBVP)

φt = |∇φ|div

(∇φ|∇φ|

)(x , y) ∈ Ω, t > 0

φ(0, x , y) = φ0(x , y) (x , y) ∈ Ωφ(t , x , y) = 0 (x , y) ∈ ∂Ω , t > 0

with Ω a bounded open set of R2 and φ0 ∈ C(Ω).

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 8 / 29

Page 10: Adérito Araújo, Marta Cavaleiro

Level Sets Method

Evolve the curve in the direction of the normal with speed v ⇔solving a PDE

∂φ

∂t= v |∇φ| , φ(0, x , y) = φ0(x , y)

with suitable boundary conditionsMotion by mean curvature

v = div(∇φ|∇φ|

)

For φ ∈ C2,1(]0,T ]× Ω) and ∇φ 6= 0 in a neighborhood of Γ(t):

(IBVP)

φt = |∇φ|div

(∇φ|∇φ|

)(x , y) ∈ Ω, t > 0

φ(0, x , y) = φ0(x , y) (x , y) ∈ Ωφ(t , x , y) = 0 (x , y) ∈ ∂Ω , t > 0

with Ω a bounded open set of R2 and φ0 ∈ C(Ω).

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 8 / 29

Page 11: Adérito Araújo, Marta Cavaleiro

Level Sets Method

Evolve the curve in the direction of the normal with speed v ⇔solving a PDE

∂φ

∂t= v |∇φ| , φ(0, x , y) = φ0(x , y)

with suitable boundary conditionsMotion by mean curvature

v = div(∇φ|∇φ|

)For φ ∈ C2,1(]0,T ]× Ω) and ∇φ 6= 0 in a neighborhood of Γ(t):

(IBVP)

φt = |∇φ|div

(∇φ|∇φ|

)(x , y) ∈ Ω, t > 0

φ(0, x , y) = φ0(x , y) (x , y) ∈ Ωφ(t , x , y) = 0 (x , y) ∈ ∂Ω , t > 0

with Ω a bounded open set of R2 and φ0 ∈ C(Ω).

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 8 / 29

Page 12: Adérito Araújo, Marta Cavaleiro

Outline

1 IntroductionParkinson’s DiseaseLevel Sets Method

2 Existence and unicityViscosity solutionsEnergy estimate

3 Numerical AnalysisNumerical IMEX MethodParallel Splitting Algorithm

4 Segmentation ModelChan and Vese ModelNumerical Results

5 Conclusions and Future Work

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 9 / 29

Page 13: Adérito Araújo, Marta Cavaleiro

Viscosity solution (Evans & Spruck, 1991)

Let φ ∈ C(]0,T ]× Ω) ∩ L∞(]0,T ]× Ω).

φ is a viscosity sub-solution (super-solution) of (IBVP) if for allv ∈ C2(]0,T ],Ω), φ− v has a local maximum (minimum) in(t0, x0, y0) then (∇φ(t0, x0, y0) 6= 0)

vt (t0, x0, y0) ≤ (≥)|∇φ(t0, x0, y0)|div(∇φ(t0, x0, y0)

|∇φ(t0, x0, y0)|

)φ is a viscosity solution of (IBVP) if it simultaneity a viscosity suband super-solution.

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 10 / 29

Page 14: Adérito Araújo, Marta Cavaleiro

Results

Under certain conditions, the viscosity solution of (IBVP) existsand its unique (Evans & Spruck, 1991)

The curves Γ(t) are independent of the initial choice φ0 (Evans &Spruck, 1991)

The following stability result holds (Caselles et al., 1993)

sup0≤s≤t

‖φ(s)− φ(s)‖L∞ ≤ ‖φ0 − φ0‖L∞ ∀t ∈ [0,T ]

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 11 / 29

Page 15: Adérito Araújo, Marta Cavaleiro

Motion by Mean Curvature

Determine φ from the initial boundary value problem (IBVP):φt

|∇φ|= ∇T

(∇φ|∇φ|

)(x , y) ∈ Ω , t > 0

φ(0, x , y) = φ0(x , y) (x , y) ∈ Ωφ(t , x , y) = 0 (x , y) ∈ ∂Ω , t > 0

Theorem

‖φ(t)‖L1 + ‖∇φ(t)‖L1︸ ︷︷ ︸‖φ(t)‖W1,1

≤ C(‖φ0‖L1 + ‖∇φ0‖L1︸ ︷︷ ︸‖φ0‖W1,1

)

Proof:

‖∇φ(t)‖L1 +∫ t

0

∫Ω

φ2t

|∇φ|dxdyds = ‖∇φ0‖L1 (Walkington, 1996)

‖∇φ(t)‖L1 ≤ ‖∇φ0‖L1

Poincaré inequality in L1: ‖φ‖L1 ≤ C∗‖∇φ‖L1

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 12 / 29

Page 16: Adérito Araújo, Marta Cavaleiro

Motion by Mean Curvature

Determine φ from the initial boundary value problem (IBVP):φt

|∇φ|= ∇T

(∇φ|∇φ|

)(x , y) ∈ Ω , t > 0

φ(0, x , y) = φ0(x , y) (x , y) ∈ Ωφ(t , x , y) = 0 (x , y) ∈ ∂Ω , t > 0

Theorem

‖φ(t)‖L1 + ‖∇φ(t)‖L1︸ ︷︷ ︸‖φ(t)‖W1,1

≤ C(‖φ0‖L1 + ‖∇φ0‖L1︸ ︷︷ ︸‖φ0‖W1,1

)

Proof:

‖∇φ(t)‖L1 +∫ t

0

∫Ω

φ2t

|∇φ|dxdyds = ‖∇φ0‖L1 (Walkington, 1996)

‖∇φ(t)‖L1 ≤ ‖∇φ0‖L1

Poincaré inequality in L1: ‖φ‖L1 ≤ C∗‖∇φ‖L1

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 12 / 29

Page 17: Adérito Araújo, Marta Cavaleiro

Outline

1 IntroductionParkinson’s DiseaseLevel Sets Method

2 Existence and unicityViscosity solutionsEnergy estimate

3 Numerical AnalysisNumerical IMEX MethodParallel Splitting Algorithm

4 Segmentation ModelChan and Vese ModelNumerical Results

5 Conclusions and Future Work

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 13 / 29

Page 18: Adérito Araújo, Marta Cavaleiro

IMEX Method: time discretization

1|∇φn|

φn+1 − φn

∆t= div

(∇φn+1

|∇φn|

)

tn = n∆t , n = 0, ...,N, with t0 = 0 and tN = Tφn ≈ φ(n∆t , x , y), ∀(x , y) ∈ Ω

Theorem

‖φn+1‖W 1,1 ≤ C‖φn‖W 1,1 ∀n = 0,1, ...,N − 1

Proof:

Multiply the equation by φn+1 − φn with respect to the L2 inner productand integrate by parts

‖∇φn+1‖L1 ≤ ‖∇φn‖L1 ∀n = 0,1, ...,N − 1

Poincaré inequality in L1

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 14 / 29

Page 19: Adérito Araújo, Marta Cavaleiro

IMEX Method: time discretization

1|∇φn|

φn+1 − φn

∆t= div

(∇φn+1

|∇φn|

)

tn = n∆t , n = 0, ...,N, with t0 = 0 and tN = Tφn ≈ φ(n∆t , x , y), ∀(x , y) ∈ Ω

Theorem

‖φn+1‖W 1,1 ≤ C‖φn‖W 1,1 ∀n = 0,1, ...,N − 1

Proof:

Multiply the equation by φn+1 − φn with respect to the L2 inner productand integrate by parts

‖∇φn+1‖L1 ≤ ‖∇φn‖L1 ∀n = 0,1, ...,N − 1

Poincaré inequality in L1

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 14 / 29

Page 20: Adérito Araújo, Marta Cavaleiro

IMEX Method: full discretization

1|∇hφ

nij |φn+1

ij − φnij

∆t= D+

x

(D−x φ

n+1ij

|∇hφnij |

)+ D+

y

(D−y φ

n+1ij

|∇hφnij |

)

Ωh = grid in Ω with space step hFinite differences: D+

x ,D+y (forward); D−x ,D

−y (backward)

φnij ≈ φ(n∆t , xi , yj), ∀(xi , yj) ∈ Ωh

|∇hφnij | =

√(D−x φn

ij )2 + (D−y φn

ij )2

Norm in the discrete W 1,1 space

‖φ‖1,1 =∑i,j

h2|φij |+∑i,j

h2|∇hφij |

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 15 / 29

Page 21: Adérito Araújo, Marta Cavaleiro

IMEX Method: full discretization

Theorem

‖φn+1‖1,1 ≤ C‖φn‖1,1 ∀n = 0, ...,N − 1

Proof:

Multiply

1|∇hφn

ij |φn+1

ij − φnij

∆t= D+

x

(D−x φn+1

ij

|∇hφnij |

)+ D+

y

(D−y φn+1

ij

|∇hφnij |

)

by φn+1ij − φn

ij with respect to the discrete L2 inner product and usesummation by parts∑

ij h2|∇hφn+1ij | ≤

∑ij h2|∇hφ

nij | ∀n = 0, ...,N − 1

Discrete Poincaré inequality in `1:∑

ij h2|φnij | ≤ C∗

∑ij h2|∇hφ

nij |

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 16 / 29

Page 22: Adérito Araújo, Marta Cavaleiro

Parallel Splitting Algorithm

∂φ

∂t= Aφ+ f (t) in Ω× [0,T ], φ(0) = φ0

A = A1 + A2 + · · ·+ Am and f = f1 + f2 + · · ·+ fmA is time independent

Algorithm (Lu, Neittaanmaki and Tai, 1992)At each level time n = 0, ...,N − 1 compute:

1φn+ k

2m − φn

m∆t= Akφ

n+ k2m + fk

((n +

12

)∆t)

k = 1, . . . ,m

2 φn+1 =1m

m∑k=1

φn+ k2m

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 17 / 29

Page 23: Adérito Araújo, Marta Cavaleiro

Parallel Splitting Algorithm

Consider A1φn+ 1

4 = D+x

D−x φn+ 1

4ij

|∇φnij |

and A2φn+ 1

2 = D+x

D−y φn+ 1

2ij

|∇φnij |

Construction of A1

φn+ 14 − φn

2∆t= A1φ

n+ 14 ⇔

1|∇hφn

ij |φ

n+ 14

ij − φnij

2∆t=

φn+ 1

4i−1,j

h2|∇hφni,j |− 2

h2 φn+ 1

4ij

(1

|∇hφni+1,j |

+1

|∇hφni,j |

)+

φn+ 1

4i+1,j

h2|∇hφni+1,j |

A1 is tridiagonal and diagonally dominant with

ai,i−1 =1h2 , ai,i = − 2

h2

(|∇hφ

ni,j |

|∇hφni+1,j |

+ 1

), ai,i+1 =

|∇hφni,j |

h2|∇hφni+1,j |

A similar construction can be made for A2

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 18 / 29

Page 24: Adérito Araújo, Marta Cavaleiro

Parallel Splitting Algorithm

AlgorithmAt each level time n = 0, ...,N − 1 compute:

1 Compute |∇hφnij | =

√(D−x φn

ij )2 + (D−y φn

ij )2

2 Construct A1 and A2

3 Solve

(I − 2∆tA1)φn+ 14 = φn and (I − 2∆tA2)φn+ 1

2 = φn

4 φn+1 =φn+ 1

4 + φn+ 12

2

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 19 / 29

Page 25: Adérito Araújo, Marta Cavaleiro

Parallel Splitting Algorithm

Theorem (Stability)The algorithm is unconditionally stable in the ‖.‖∞ norm.

Proof:

I − 2∆tA1 and I − 2∆tA2 are M-matrices

∃c1, c2 ≥ 0: ‖(I − 2∆tA1)−1‖∞ ≤ c1 and ‖(I − 2∆tA2)−1‖∞ ≤ c2

‖Φn+1‖∞ ≤12

(‖Φn+ 1

4 ‖∞ + ‖Φn+ 12 ‖∞

)≤ 1

2(c1 + c2)‖Φn‖∞

Theorem (Convergence)If (−Ak ), k = 1, ...,m, are irreducible M-matrices, then the algorithm isconvergent of first order in ∆t .

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 20 / 29

Page 26: Adérito Araújo, Marta Cavaleiro

Parallel Splitting Algorithm

Theorem (Stability)The algorithm is unconditionally stable in the ‖.‖∞ norm.

Proof:

I − 2∆tA1 and I − 2∆tA2 are M-matrices

∃c1, c2 ≥ 0: ‖(I − 2∆tA1)−1‖∞ ≤ c1 and ‖(I − 2∆tA2)−1‖∞ ≤ c2

‖Φn+1‖∞ ≤12

(‖Φn+ 1

4 ‖∞ + ‖Φn+ 12 ‖∞

)≤ 1

2(c1 + c2)‖Φn‖∞

Theorem (Convergence)If (−Ak ), k = 1, ...,m, are irreducible M-matrices, then the algorithm isconvergent of first order in ∆t .

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 20 / 29

Page 27: Adérito Araújo, Marta Cavaleiro

Outline

1 IntroductionParkinson’s DiseaseLevel Sets Method

2 Existence and unicityViscosity solutionsEnergy estimate

3 Numerical AnalysisNumerical IMEX MethodParallel Splitting Algorithm

4 Segmentation ModelChan and Vese ModelNumerical Results

5 Conclusions and Future Work

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 21 / 29

Page 28: Adérito Araújo, Marta Cavaleiro

CV model (Chan and Vese, 2001)

Find the curve that minimizes:

F (c1, c2, φ) = µ

∫Ωδ0(φ)|∇φ|dxdy + ν

∫Ω

H(φ)dxdy

+λ1

∫Ω|u0 − c1|2H(φ)dxdy + λ2

∫Ω|u0 − c2|2(1− H(φ))dxdy

It reduces to the resolution of a PDE:

∂φ

∂t= δ0(φ)

(µdiv

(∇φ|∇φ|

)− ν − λ1(u0 − c1)2 + λ2(u0 − c2)2

)

All the previous results could be generalized for

φt = g(φ) div(∇φ|∇φ|

)(x , y) ∈ Ω , t > 0, g > 0

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 22 / 29

Page 29: Adérito Araújo, Marta Cavaleiro

CV model (Chan and Vese, 2001)

Find the curve that minimizes:

F (c1, c2, φ) = µ

∫Ωδ0(φ)|∇φ|dxdy + ν

∫Ω

H(φ)dxdy

+λ1

∫Ω|u0 − c1|2H(φ)dxdy + λ2

∫Ω|u0 − c2|2(1− H(φ))dxdy

It reduces to the resolution of a PDE:

∂φ

∂t= δ0(φ)

(µdiv

(∇φ|∇φ|

)− ν − λ1(u0 − c1)2 + λ2(u0 − c2)2

)

All the previous results could be generalized for

φt = g(φ) div(∇φ|∇φ|

)(x , y) ∈ Ω , t > 0, g > 0

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 22 / 29

Page 30: Adérito Araújo, Marta Cavaleiro

SPECT Images (given by IBILI)

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 23 / 29

Page 31: Adérito Araújo, Marta Cavaleiro

Numerical Results

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 24 / 29

Page 32: Adérito Araújo, Marta Cavaleiro

Numerical Results

Evolution of the zero level set in the iteration for µ = 0.05

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 25 / 29

Page 33: Adérito Araújo, Marta Cavaleiro

Numerical Results

Results of segmentation algorithm for µ = 0.05 (left) and µ = 0.001 (right)

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 26 / 29

Page 34: Adérito Araújo, Marta Cavaleiro

Outline

1 IntroductionParkinson’s DiseaseLevel Sets Method

2 Existence and unicityViscosity solutionsEnergy estimate

3 Numerical AnalysisNumerical IMEX MethodParallel Splitting Algorithm

4 Segmentation ModelChan and Vese ModelNumerical Results

5 Conclusions and Future Work

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 27 / 29

Page 35: Adérito Araújo, Marta Cavaleiro

Conclusions and Future Work

Conclusions

IMEX method with good stability properties

A parallel splitting algorithm

Future Work

Higher order splitting

Optical Coherence Tomography (OCT) images

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 28 / 29

Page 36: Adérito Araújo, Marta Cavaleiro

Conclusions and Future Work

Conclusions

IMEX method with good stability properties

A parallel splitting algorithm

Future Work

Higher order splitting

Optical Coherence Tomography (OCT) images

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 28 / 29

Page 37: Adérito Araújo, Marta Cavaleiro

References

T.F. Chan and L.A. VeseActive Contour Without Edges.IEEE Trans. Image Processing 10, 266-277, 2001.

L.C. Evans and J. SpruckMotion of level sets by mean curvature I.J. Differential Geometry 33, 635-681, 1991.

V. Caselles, F. Catté, T.Coll and F. DibosA geometric model for active contours in image processing.Numerische Mathematik 66, 1-31, 1993.

T. Lu, P. Neittaanmaki and X.C. TaiA parallel splitting-up method for PDEs and its applications to Navier-Stokesequations.RAIRO Math. Model Numer. Anal. 26(6), 673-708, 1992.

N.J. WalkingtonAlgorithms for computing motion by mean curvature.SIAM J. Numer. Anal. 33(6), 2215-2238, 1996.

Adérito Araújo (CMUC) Numerics of mean curvature flow PhD Program 2010 29 / 29


Recommended