+ All Categories
Home > Documents > Advanced Hypersonic Test Facilities - GBV · 2007. 11. 17. · Advanced Hypersonic Test Facilities...

Advanced Hypersonic Test Facilities - GBV · 2007. 11. 17. · Advanced Hypersonic Test Facilities...

Date post: 25-Jan-2021
Category:
Upload: others
View: 10 times
Download: 0 times
Share this document with a friend
12
Advanced Hypersonic Test Facilities Edited by Frank Lu University of Texas at Arlington Arlington, Texas Dan Marren Arnold Engineering Development Center White Oak, Maryland Volume 198 PROGRESS IN ASTRONAUTICS AND AERONAUTICS Paul Zarchan, Editor-in-Chief MIT Lincoln Laboratory Lexington, Massachusetts Published by the American Institute of Aeronautics and Astronautics, Inc. 1801 Alexander Bell Drive, Reston, Virginia 20191-4344
Transcript
  • Advanced HypersonicTest Facilities

    Edited by

    Frank Lu

    University of Texas at ArlingtonArlington, Texas

    Dan Marren

    Arnold Engineering Development CenterWhite Oak, Maryland

    Volume 198PROGRESS INASTRONAUTICS AND AERONAUTICS

    Paul Zarchan, Editor-in-Chief

    MIT Lincoln LaboratoryLexington, Massachusetts

    Published by theAmerican Institute of Aeronautics and Astronautics, Inc.1801 Alexander Bell Drive, Reston, Virginia 20191-4344

  • Table of Contents

    Preface xix

    Chapter 1 Hypersonic Ground Test Requirements 1Dennis M. Bushnell, NASA Langley Research Center, Hampton, Virginia

    I. Introduction . . : 1II. History, Status, and Outlook for Hypersonic Test Requirements . . . 2

    III. Potential Civilian Hypersonic Test Requirements Futures 4A. Planetary Exploration 4B. Access to Space 4

    IV. Military Hypersonic Test Requirements Futures 11A. Access to Space 11B. Missiles 12

    V. Conclusion 13References 13

    Chapter 2 Principles of Hypersonic Test Facility Development 17Frank K. Lu, University of Texas at Arlington, Arlington Texas; and Dan E.

    Marren, Arnold Engineering Development Center, White Oak, Maryland

    I. Introduction 17II. Critical Hypersonic Technologies -.-.- 18

    III. Hypersonic Scaling 20IV. High Enthalpy and High Speed 21V. Types of Hypersonic Facilities 24

    VI. Conclusions '.: 26Acknowledgments 27References 27

    Chapter 3 NASA's HYPULSE Facility at GASL - A Dual Mode, DualDriver Reflected-Shock/Expansion Tunnel 29

    R. S. M. Chue, C.-Y. Tsai, R. J. Bakos, and J. I. Erdos, GASL Division,Allied Aerospace Industries, Ronkonkoma, New York; and R. C. Rogers,NASA Langley Research Center, Hampton, Virginia

    I. Introduction 29A. Background 30B. Scope of the Chapter ; 31

    II. Shock Tunnels and Expansion Tubes 32A. Shock-Heated Facilities 32B. Reflected-Shock Tunnels 33C. Shock-Expansion Tubes 35

    vii

  • III. Driver Methods 36A. Lighter Gases 37B. Electrically Heated Light Gases 38C. Combustion Heated Light Gases 38D. Compressively Heated Light Gases (Free-Piston Driver) 39E. Summary of Comparison of Driver Techniques 40F. The Shock-Induced Detonation Driver for HYPULSE 40

    IV. Operation and Performance of HYPULSE 42A. Facility Configuration and Sizing 42B. HYPULSE Operation 43C. Test Conditions Verification 49D. Test Time Determination 49

    V. Driver Gas Contamination in Detonation-Driven RST Mode . . . . 51A. Nozzle Flow 56B. Transient Development of Driver-Gas Leakage 59

    VI. Nozzle Design for Expansion Tunnel Mode Operation 61A. Skimmer Nozzles 63B. Full Capture Contoured Inlet Asymptoting

    to a Conical Profile 64C. Verification with Experiments 65

    VII. Concluding Remarks 68Acknowledgments 69References 69

    Chapter 4 LENS Hypervelocity Tunnels and Applicationto Vehicle Testing at Duplicated Flight Conditions 73

    M. S. Holden and R. A. Parker, Calspan-UB Research Center Buffalo,* New York

    I. Introduction 73II. Ground Test Simulation of Hypersonic Flight Performance 74

    III. Design, Operation, and Performance of the LENS I and LENS IIHypervelocity Ground Test Facilities 80A. Introduction 80B. Design and Operation of the LENS I and II Shock Tunnels. . 80C. Aerothermal, Aero-Optic, and Radiation Instrumentation ,

    Suites 82IV. Facility Validation : 86V. Application of Test Facility and Instrumentation to Hypersonic

    Vehicle Testing 90A. Evaluation of the Aerothermal and Aero-optical

    Characteristics of High-Speed Interceptors 90B. Examples of Aerothermal Measurements to Evaluate

    Seekerhead Performance 91C. Example of Aero-Optic Measurements on Interceptor

    Seekerhead Configurations 96VI. Measurements of Jet Interaction Resulting from Divert Thruster

    Operation 100

    viii

  • A. Introduction 100B. Flowfield and Aerothermal Characteristics 101C. Spectrometer and Radiometer Measurements of Flowfield

    Obscuration Phenomena 102VII. Studies of Scramjet Performance • 104

    A. Introduction 104B. Shock Interaction Phenomena Occurring in the Engine 107

    VIII. Conclusion 107References 109

    Chapter 5 The U-12 Large Shock Tube I l lV. I. Lapygin, I. V. Ershov, S. S. Semenov, and E. I. Ruzavin, Central

    Scientific Research Institute of Mechanical Engineering (TsNIIMASH),Moscow Region, Russia

    I. Introduction I l lII. Description of the U-12 Shock Tube 112

    III. Operation Regimes 114IV. Aerodynamic Investigations 118V. Measurements of Forces and Moments on Flight Vehicle Models. . 123

    VI. Investigation of Nonequilibrium Processes Behind ShockwaveFront in Earth and Planetary Atmospheres 124

    VII. Radio-Physical Investigations at U-12 Facility 128VIII. Ballistic Regime of U-12 Shock Tube Operation . . . . . . 130

    A. Electromagnetic Device for a Disk Gyro-Stabilization 131B. Diaphragm Unit 132C. Brake Assembly 132

    IX. Conclusions 133References 133

    Chapter 6 Detonation-Driven Shock Tubes and Tunnels 135Herbert Olivier, Shock Wave Laboratory, RWTH Aachen University,

    Aachen, Germany; Jiang Zonglin and Hongru R. Yu, Institute of,Mechanics, Chinese Academy of Sciences, Beijing, China; and FrankK. Lu, University of Texas at Arlington, Arlington Texas

    I. Introduction 135II. Gasdynamic Fundamentals of the Detonation Process 137

    III. Operating Principle Detonation Drivers 141A. Upstream Mode . 141B. Downstream Mode 142

    IV. The Detonation-Driven Shock Tunnel TH2-D 144A. Setup of the Facility 144B. Initiation of the Detonation Wave 147C. Wave Processes in the Detonation and Damping Section . . . . 150D. Wave Processes in the Driven Section 153E. Calibration of Test Section Flow ; 156

    V. The JF-10 Detonation-Driven, High-Enthalpy Shock Tunnel 162A. Gas Filling and Mixing System 163

    ix

  • B. Detonation Ignition 164C. Attenuation of the Incident Shockwaves 165D. Calibration Results 167E. Forward-Detonation Driver with a Cavity Ring 168F. Double-Detonation Driver : : 174G. Detonation Driver with a Converging Throat 178

    VI. The UTA High-Performance Shock Tube 182VII. Performance of Detonation-Driven Facilities 195

    VIII. Conclusions 200References 200

    Chapter 7 Aerothermodynamics Research in the1 DLR High EnthalpyShock Tunnel HEG 205

    Klaus Hannemann and Walter H. Beck, Institute of Aerodynamics and FlowTechnology, German Aerospace Center DLR, Gottingen, Germany

    I. Introduction 205II. The HEG Facility 207

    A. Operation 207B. Geometry of the Conical HEG Nozzle 208

    III. Measurement Techniques 209A. Classical 209B. Spectroscopic 210C. Time-Resolved Schlieren 210D. Forces 211

    IV. The Numerical Solver CEVCATS-N 211V. Nozzle Flow and Freestream 213

    A. Chemical/Thermal Equilibrium/Nonequilibrium 213B. Temporal Development of Flow. . . 215C. Driver Gas Contamination 217

    VI.- Flow Past a Circular Cylinder 219VII. Delay of Driver Gas Contamination 224

    VIII. Current Work 229A. X-38/CRV Rescue Vehicle \ 229B. Atmospheric Reentry Demonstrator 232

    IX. Summary and Conclusions . 233Acknowledgments 234References 234

    Chapter 8 Characteristics of the HIEST and its Applicabilityfor Hypersonic Aerothermodynamic and Scramjet Research 239

    Katsuhiro Itoh, National Aerospace Laboratory, Kakuda Space PropulsionLaboratory, Kakuda, Japan

    I. Introduction 239II. Description, General Performance, and Limitations of the HIEST . 240

    A. Description 240B. General Performance 241C. Limitations with the Nozzle Flow 243

    x

  • III. HOPE Aerodynamic Test 246IV. Surface Catalytic Effect on Heat Flux 247V. Scramjet 249

    VI. Conclusions 252References -253

    Chapter 9 Piston Gasdynamic Units with MulticascadeCompression 255

    Vitaly V. Kislykh, TsNIIMASH, Moscow, Russia

    I. Introduction 255II. The Multicascade Compression PGU Complex 261

    III. The Multicascade Compression Method 263IV. Methods for Simulating the Main External Hypersonic Flow 266V. Simulation of Engine Jets Effect on Aft Elements of

    Launchers for Space Transportation System 269VI. Supersonic Combustion Tests in the PGU 271

    VII. Conclusion 274Acknowledgments 275References 275

    Chapter 10 Arc-Heated Facilities 279D. M. Smith, E. J. Felderman, and F. L. Shope, Sverdrup Technology, Inc.,

    Arnold Air Force Base, Tennessee; and J. A. Balboni, NASA AmesResearch Center, Mojfett Field, California

    I. Introduction 279II. Arc Heaters and Hypersonic Testing 280

    A. Purpose and History of Arc Heaters 280B. Types of Arc Facilities 282C. Arc Heater Test Cell Configurations 285D. Arc Heater Test Applications 286

    III. DoD and NASA Arc Facility Overview 290A. DoD Arcs , 290B. NASA Arcs . . 293

    IV. Arc Heater Technology Topics Update 298A. Facility Technology 298B. Testing Techniques 301C. Facility Instrumentation 303D. Arc Modeling/Simulation 304

    V. Summary / . . . 310Acknowledgments 311References , 311

    Chapter 11 The SCIROCCO 70-MW Plasma Wind Tunnel:A New Hypersonic Capability 315

    G. Russo, F. De Filippis, S. Borrelli, M. Marini, and S. Caristia, CIRA,Centra Italiano Ricerche Aerospaziali, Via Maiorise, Capua, Italy

    I. Introduction 315

    xi

  • II. The Facility 317A. Process Description 317B. Facility Performances 318C. Technical Data of Main Components 319D. Facility Commissioning Status and Qualification 323

    III. The Hypersonic Challenge: Future and Potential Applications . . . . 325A. Generalities 325B. Test Chamber Flow Environment 331C. Aerodynamic Simulation Capabilities 338D. Air-Breathing Propulsion Simulation Capabilities 339

    IV. SCIROCCO Evolution 344A. Potential Aerodynamic Upgrade 344B. Potential Air-Breathing Propulsion Upgrade 346

    V. Conclusions 349References 349

    Chapter 12 Aerodynamic and Propulsion Test Unit 353S. J. Rigney and G. D. Garrard, Sverdrup Technology, Inc., Arnold Air

    Force Base, Tennessee

    I. Introduction 353II. General Hypersonic Aeropropulsion System Testing Future

    Requirements 355III. APTU Description 357

    A. Planned Near-Term Incremental APTU Test CapabilityUpgrades 359

    B. Mach 6.5 Free-Jet Test Capability 359C. Longer Test Duration 360D. Enhanced Altitude Simulation .*-.• 361

    1 -E. Enhanced Thrust Determination 361IV. Planned Mid- and Far-Term Incremental APTU Test

    Capability Upgrades 362A. Mach 8.0 Free-Jet Test Capability i 362B. Increased Scale Capability 362

    V. APTU Technology Topics Update . 363A. Test Methodologies 364B. Analysis Techniques 365

    VI. Summary 372Acknowledgment 373References 373

    Chapter 13 Arc-Heated Facilities as a Tool to StudyAerothermodynamic Problems of Reentry Vehicles 375

    Ali Gulhan and Burkard Esser, German Aerospace Center (DLR), Cologne,Germany

    Nomenclature 375I. Introduction 375

    xii

  • II. Experimental Facility and Measurement Techniques 377III. Flow Characterization 381IV. Experiments on Local Aerothermodynamics 384V. Characterization and Qualification of TPS Components 390

    VI. Qualification of Flight Sensors at Reentry Conditions -394VII. Concluding Remarks 400

    Acknowledgments 402References 402

    Chapter 14 The NASA Langley Research Center 8-ft HighTemperature Tunnel 405

    Jeffrey S. Hodge and Stephen F. Harvin, NASA Langley Research Center,Hampton, Virginia

    I. Introduction 405II. Facility Description 407

    A. Major Facility Components 407B. Major Facility Systems 412C. Data Acquisition and Instrumentation. . . 416

    III. Test Capabilities 418A. Structures and Materials ' 418B. Airbreathing Propulsion 421C. System Concept Performance Validation 422

    IV. Operations 422V. Summary 424

    References 425

    Chapter 15 NASA Glenn Research Center's HypersonicTunnel Facility 427

    Mark R. Woike and Brian P. Willis, NASA Glenn Research Center, PlumBrook Station, Sandusky, Ohio

    I. Introduction '•. 427II. Facility History 428

    III. Facility Description 429A. Graphite Storage Heater 430B. Facility Hot Train 432C. Facility Nozzles 433D. Test Chamber and Thrust Stand Assembly 433E. Diffuser/Steam Ejector System 433F. Gaseous Nitrogen System 434G. Gaseous Oxygen System 434H. Cooling Water Systems 434I. Facility Control System 435J. Data Systems 436K. Test Article Support Systems 436L. Gaseous Hydrogen Fuel System 436M. Liquid JP Fuel Systems 437

    xiii

  • N. High Pressure Cooling Water 437IV. Typical Facility Operation 437V. Unique Value and Testing Capability 438

    VI. Summary and Conclusions 439References .439

    Chapter 16 The ONERA F4 High-Enthalpy Wind Tunnel 441A. Masson, Ph. Sagnier, and A. K. Mohamed, ONERA, Le Fauga-Mauzac,

    France

    I. Introduction 441II. Principle and Description of F4 Facility 443

    A. Principle of the F4 Wind Tunnel 443B. General Arrangement and Nozzles 445C. Arc Chamber 446D. Impulse Generator 448E. Vacuum System 448F. Data Acquisition Unit 449G. Schlieren Device 449

    III. Adjustment and Calibration 449A. Chronological Accounts 449B. Practices and Technological Adjustments 450C. Test Section Calibrations 452D. Reservoir Condition Examinations 453E. Nozzle Flow and Free-Stream Characterization 455

    IV. Typical Model Tests 459A. Force Measurement Devices 459B. Heat-Transfer Rate Measurements 463C. Pressure Measurements ". • 464D. Visualization, Schlieren, and Optical Devices 464

    V. Conclusion and Future Prospects 465References ; . . . . 465

    Chapter 17 The AEDC Hypervelocity Wind Tunnel 9 467Dan Marren and John Lafferty, Arnold Engineering Development Center,

    White Oak, Maryland

    I. Introduction 467II. Tunnel 9 Facility Description ; 468

    A. Recent Developments and Upgrades 470B. Mach 10 High Reynolds Number 470C. Mach 14 High Altitude 471D. Mach 8 High Dynamic Pressure

    (Shroud Separation Capability) 472E. Mach 8 Envelope Extension 473F. Mach 16.5 Nozzle 474G. Mach 7 Thermal Structural Facility 475H. Tunnel 9 Aero-Optical Suite 475

    xiv

  • I. Subsystem Enhancement 476III. Conclusion 477

    References 477

    Chapter 18 A Hypersonic Ground-Test Facility Using MagneticLevitation and Electromagnetic Propulsion 479

    Neil Bosmajian, The Boeing Company, Huntington Beach, California

    I. Introduction 479II. Background 480

    III. Overview 481IV. Facility Concept 484V. System Requirements 486

    VI. Test Techniques 488VII. Issues 492

    VIII. Leveraging Technology Programs 493IX. Future Efforts 494X. Summary : : 495

    References , 496

    Chapter 19 Hypersonic Test Capabilitiesat the Holloman High-Speed Test Track 499

    David W. Minto, Holloman High Speed Test Track, Holloman Air ForceBase, New Mexico; and Neil Bosmajian, The Boeing Company,Huntington Beach, California

    I. Introduction 499II. HHSTT Hypersonic Upgrade Program 502

    A. Background V ;- 502B. Modeling and Simulation Tool Improvement 502C. Sled Design Improvement 503D. Facility Improvement 503E. Advanced Rocket Motor Development > 505

    III. HHSTT Hypersonic Capabilities 505A. Test Items Not Recovered 505B. Recovered Test Items 506

    IV. MagLev Test Track Development 510A. Background 510B. Design Evolution 511C. System Description 516D. System Characteristics 518E. Development Tools to Assess System Characteristics 520F. MagLev Test Operations . . . . : 525G. Predicted System Performance Envelopes 527H. Projected Test Applications 527

    V. Conclusion 529Acknowledgment 529References 529

    xv

  • Chapter 20 Increased Launching Capabilities at AEDC'sRange/Track G 531

    Larry Campbell, Sr, Jacobs Sverdrup, Arnold Engineering DevelopmentCenter, Arnold Air Force Base, Tennessee

    I. Introduction 531II. Development of the 8-in. Launcher . 532

    A. Introduction 532B. High-Fidelity Model 533C. Conversion Process 534D. Licensing 535E. Model Design 536F. Angle of Attack 537G. Development to Date on the 8-in. Launcher 538

    III. Development of the 4-in. Launcher 538A. Introduction 538B. Design / Installation Process 539

    IV. Technology Overview for 10 km/s . 542A. Ultra High Pressure-High Pressure Section Concept 544B. Injection Concept 548C. Two-Stage Piston Concept 549D. Laboratory Device Design 551

    V. Conclusion 553References 554

    Chapter 21 A New Mach 8-15 True Temperature Test FacilityConcept 555

    J. T. Best, Arnold Engineering Development Center, Arnold Air Force Base,Tennessee

    I. Introduction and Background 555II. RDHWT/MARIAH II Program 558

    III. Assessment of Test Needs 558A. Hypersonic Flight Systems Test Requirements 560B. Air-Breathing Propulsion Test Requirements 561C. Jet Interaction Test Requirements 562D. Aero-Optical Test Requirements 562

    IV. RDHWT/MARIAH II Facility Concept DevelopmentProgram Overview 563A. Ultra-High-Pressure Air Supply 565B. Nozzle and Throat Sections 567C. Supersonic Thermal Energy Addition Systems 569D. Magnetohydrodynamic (MHD) Augmentation 575E. Integrated System 578

    V. Conclusions 581Acknowledgments 581References 582

    xvi

  • Chapter 22 New-Generation Hypersonic Adiabatic CompressionFacilities with Pressure Multipliers 585

    A. M. Kharitonov, V. I. Zvegintsev, V. M. Fomin, M. E. Topchian, A. A.Meshcheriakov, and V. I. Pinakov, Siberian Branch of the RussianAcademy of Sciences, Novosibirsk Russia

    I. Introduction 585II. Simulation of Hypersonic Flows in Existing Wind Tunnels 587

    III. Advantages of Using High Pressures 594IV. Our Concept 595V. Hypersonic Gasdynamic Facility of Adiabatic Compression A-l. . . 597

    VI. Choice of the Layout, Construction, and Operationof the Stage of Preliminary Compression 597

    VII. Operation Principle of A-l 600VIII. High-Pressure Unit 601

    IX. Test Results and Use 605X. Adiabatic Compression Hypersonic Wind Tunnel AT-303 607

    XI. Control of the System and Measurement Equipment of AT-303 . . . 609XII. Range of Parameters 609

    XIII. Non-Uniformity of the Velocity Field in the Region of ModelLocation 613

    XIV. Conclusions 615References 616

    XVII


Recommended