+ All Categories
Home > Documents > Advanced Inequations Exercise - 1(a)

Advanced Inequations Exercise - 1(a)

Date post: 02-Jun-2018
Category:
Upload: atul-kumar
View: 220 times
Download: 0 times
Share this document with a friend

of 22

Transcript
  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    1/22

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    2/22

    3

    log9log 9

    log3

    = 2

    5. [D]

    95 71 4

    log 36log 3 log 981 27 3

    23 3log 36log 5 3 4981 3 3 log 7

    3 33

    l 13 log 36 4 log 7log 5

    4 2 23 3 3

    3

    4 2233 3log 36log 5 log 73 3 3

    3

    4 225 36 7

    625 36 6 49 890

    6. [C]

    k 5 xlog x log k log 5 ; given k 1 , k > 0

    log x log k log 5log k log 5 log x

    5 xlog x log 5

    x = 5 is the only possible solution

    7. [A]

    5 alog a log x 2

    log a log x

    2log5 log a

    5log x 2

    2x 5

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    3/22

    = 125

    8. [C]

    2 2 4 2A log log log 256 2log 2

    12

    4

    2 2 42

    log log log 4 log 2

    2 2 21

    log log 4 2 log 21

    2

    2log 2 4 1 4

    5

    9. [D]

    10log x y (given)

    32

    1000 10log x 2 log x

    101

    2 log x3

    bk aa1

    by formula log log bk

    2 y3

    11. [A]

    12

    log sin x 0 ; x 0, 4

    as base1

    2lies between 0 to 1 to satisfy given inequality, 0 < sin x < 1

    x 0, 2 ,3

    As we can see in this interval

    we get3 9 11

    , , ,4 4 4 4

    as integral

    1y

    2

    4

    34

    2

    9

    4

    114

    3 4 x

    y

    0

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    4/22

    multiples of4

    12. [B]

    2

    1

    2log x 6x 12 2

    1 22log x 6x 12 2

    221 log x 6x 12 2

    22log x 6x 12 2

    22 2log x 6x 12 log 4 0

    2

    2

    x 6x 12log 0

    4

    2x 6x 12

    0 14

    case1

    2x 6x 12

    0 4

    2x 6x 12 0

    x R ..(1) as discriminant if quadratic expression 2x 6x 12 is less than zero.

    Descriminant 2

    D 6 4 12 1

    D =12

    case

    2

    2x 6x 12

    44

    2x 6x 12 4

    2x 6x 8 0

    1

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    5/22

    x 4 x 2 0

    x 2, 4 .(ii)

    By taking intersection of (i) & (ii) we get

    x 2, 4

    13. [B]

    2log (x 1)2 x 5 here x1 > 0 ; x > 1 (i)

    1

    2(2 )

    log (x 1)

    2 x 5

    22 log x 12 x 5 bka1 b

    or by formula log logk a

    2

    2log x 12 x 5

    2(x 1) x 5

    2x 1 2x x 5

    2x 3x 4 0

    (x4) (x + 1) > 0

    So we get x , 1 4, (ii)

    By taking intersection of (i) & (ii)

    14. [C]

    210log (x 2 x 2) 0

    As base is greater than 1 so to hold the inequality true

    20 x 2x 2 1

    So, 2 20 x 2x 2 and x 2x 2 1

    Case1

    42

    4

    1

    x 4,

    1

    1 3 1 3

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    6/22

    2x 2x 2 0

    x 1 3 x 1 3 0

    So, x ,1 3 1 3, .(i)

    Case2

    2x 2x 2 1

    2x 2x 3 0

    x 3 x 1 0

    So we get x 1, 3 .(ii)

    By taking intersection of (i) & (ii) we get,

    x 1,1 3 1 3, 3

    15. [A]

    0.2x 2

    log 1x

    As base of log is less than 1 so hold the inequality true

    x 2

    0.2x

    x 2

    0.2 0x

    x 2 0.2x

    0x

    0.8x 2

    0x

    So, 5

    x , 0,2

    16. [C]

    1 3

    5

    2

    0

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    7/22

    m

    a amlog n log n ma a n

    17. [C]

    nmn ma a

    Take log both side

    nmn m

    a alog a log a

    nmn m

    n 1m n

    18.

    341 2 2

    5 3 93 3 1

    x 16x x4

    35 42 2 3 2

    2 3 13 92 2 2x 4 x 4 x

    5 4 4 33

    23 3 9 22x 4 x 4 x

    5 2 4 3

    22 3 3 2x 4

    17

    364 x

    19. [D]

    mn 1 2n n

    mm 1 2m

    2 2 21

    2 2

    nm m 2n n

    mn m 2m

    2 21

    2 2

    1

    n 1m n

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    8/22

    nm m 2n n mn n 2m2 1

    2n m2 1

    2nm = 0

    20. [D]

    3 xx x 3x x x here x 0

    1

    13

    x1

    1x 3x x

    4

    3

    4x

    x 3x x

    Take log both side

    4

    3x x

    4x log x x log x

    3

    4

    3 4

    x x2

    1

    3 4

    x x3

    1

    3 4

    x3

    3

    4x

    3

    64

    27

    21. [C]

    if1 1

    3 3x 2 2

    m = 2n

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    9/22

    then

    31 1 1 1

    3 3 3 3 32x 6x 2 2 2 6 2 2

    21 1 1 1

    3 3 3 32 2 2 2 2 3

    1 1 2 2

    3 3 3 32 2 2 2 2 2 3

    1 1 2 2

    3 3 3 32 2 2 2 2 1

    =

    3 31 1

    3 32 2 2

    3 3 2 2

    by a b a b a b ab

    12 2 2

    = 3

    22. [A]

    xx x

    x x x (here x 0)

    3

    2

    x3

    x 2x x

    3

    2

    3x

    x 2x x

    take log both sides

    3

    2x x

    3x log x x log x

    2

    3

    2 3

    x x2

    1

    2 3

    x2

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    10/22

    9

    x4

    23. [C]

    x 2x 1

    5 5 0.2 26

    x 2

    x 1 15 5 265

    x 1 1 x 25 5 26

    x 1 3 x5 5 26

    at x = 1, 3 above equation satisfy

    24. [D]

    1

    x 2x

    2

    4 2

    4 2

    1 1x x 2

    x x

    22

    1x 2 2

    x

    222 2 2

    = 362 = 24

    25. [C]

    1 1 1b c abc ca ab

    c a b

    x x x

    x x x

    1 1 1 1 1 1

    c b a c b ax x x

    1 1 1 1 1 1

    c b a c b ax

    0x 1

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    11/22

    26. [C]

    m n mna a a

    m n mna a

    m + n = mn ..(1)

    then m (n2) + n (m2) = ?

    2mn2m2n

    2 (m + n)2 (m + n)

    27. [B]

    log (x + 1) + log (x1) = log 3

    log (x + 1) (x1) = log 3

    2x 1 3

    2x 4

    x 2

    But x + 1 > 0 & x1 > 0

    x >1 & x > 1

    so, x 1, is our feasible region.

    Only x = 2 lies in the feasible region.

    28. [D]

    f (x) 5 x 3

    f (x) 5 (x 3) ; x 3,

    = 5 + (x3) ; x ,3

    f (x) = 8x ; x 3,

    = 2 + x ; x ,3

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    12/22

    So, greatest value of function occur at x = 3

    So f (3) = 83 = 5

    29. [B]

    m 3 2m 2n m 3 n n 1

    m 1 n 3 m

    2 3 5 6

    6 10 15

    m 3 2m 2 m n 3 n 1 n 1

    m 1 m 1 n 3 n 3 m m

    2 3 5 2 3

    2 3 2 5 3 5

    m 3 n 1 m 1 n 3 2m n n 1 m 1 m m n 3 n 3 m2 3 5

    0 0 02 3 5

    1

    30. [A]

    2 1

    3 3x x 2

    Take cube both side

    1 2 12

    2 3 3 32x x 3x x x x 8

    2x x 3x 2 8

    2x 7x 8 0

    (x + 8) (x1) = 0

    x = 1 ,8

    31. [D]

    if a + b + c = 0

    2 2 2 3 3 3a b c a b c

    bc ca ab abc

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    13/22

    3 33 3a b 3ab a b c c 3ab c c

    abc abc

    3abc

    3

    abc

    32. [C]

    x x 12 2 4

    x

    x 22 4

    2

    x x2 2 2 8

    x

    2 8

    x = 3

    so,x 3

    x 3 27

    33. [B]

    2 2

    2 2

    log x log y logx log y

    log x log y log x log y

    log x log y 2 log x log y

    2 log x log y log x log y

    1

    34. [B]

    210log 2x 7x 16 1

    2 12x 7x 16 10

    22x 7x 6 0

    22x 4x 3x 6 0

    (2x + 3) (x + 2) = 0

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    14/22

    3

    x , 22

    35. [C]

    a > 0, b > 0, c > 0

    a b c 1

    log a b c logabc

    a b c

    a b clog

    abc

    a 1 b 1 c 1log a b c

    36. [B]

    10 10 10log log log x 0

    010 10log log x 10 1

    110log x 10 10

    0x 10

    37. [C]

    x 2 2x 4

    25 125

    x 2 2x 4

    2 35 5

    2x 4 6x 125 5

    6 x 12 2 x 45 1

    4x 8 o5 1 5

    So, 4x8 = 0

    x = 2

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    15/22

    38. [C]

    x 1 x 13

    1 x x 6

    here

    x0

    1 x

    ;

    x0

    x 1

    so, x 0, 1 is the feasible region for the equation.

    x 1 x 1361 x x

    1 13

    6x 1 x

    Taking square both side

    36

    x 1 x169

    2 36

    x x 0169

    9 4

    x x 013 13

    9 4

    x ,13 13

    Here values lies in the feasible region.

    So,

    39. [D]

    3y 1 y 1 ..(1)

    3y 1 0 & y 1 0

    1

    y & y 0

    3

    y 0, is our feasible region.

    By eq.(1), taking square of both side,

    3y + 1 = y1

    0 1

    9 4x ,

    13 13

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    16/22

    2y =2

    y =1 ; which does not lie in feasible range of y.

    so no solution of y.

    40. [D]

    x 7 4 3 ; x 4 4 3 3

    22

    x 2 2 2 3 3

    2

    x 2 3

    x 2 3 (1)

    1 1

    x 2 3

    1 1 2 3 2 3

    4 3x 2 3 2 3

    1

    2 3x

    (2)

    1 1x 2 3x 2 3

    2 3 2 3

    = 4

    41. [A]

    3x 3x 9 0

    Let the roots are , ,

    So, 0

    2 0 (1)

    3

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    17/22

    2 2 3 (2)

    2 q

    2q (3)

    By equations (2), (1)

    2 2 2 3

    23 3

    2 1

    1 .(4)

    2q

    2 2

    3q 2

    q 2

    42. [D]

    16 4 2log x log x log x 14

    2 2 21 1

    log x log x log x 144 2

    bk aa1

    by log log bk

    27

    log x 144

    2log x 8

    8

    x 2 256

    43. [C]

    1

    4 3x2

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    18/22

    Case 1 :4

    4 3x 0 x3

    (i)

    So1

    4 3x2

    7

    3x2

    7

    x6

    ..(ii)

    By intersection of (i) & (ii)7 4

    x ,6 3

    .(A)

    Case 2 : 43x < 0 4x 3 ..(iii)

    So 1

    4 3x2

    1

    4 3x2

    9

    3x2

    3

    x2

    ..(iv)

    taking intersection of (iii) & (iv)

    4 3

    x ,3 2

    (B)

    So union of A & B is the solution of the given inequality7 3

    x ,

    6 2

    (C)

    44. [A]

    2x x 6 0

    Case 1 : x 0

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    19/22

    2x x 6 0

    x = 3,2

    but x 0 so x = 3 is the only root.

    Case 2:x < 0

    2x x 6 0

    2x x 6 0

    x = 3,2

    But x < 0 so x =3 is the solution.

    So multiplication = 3 (3) =9

    45. [C]

    x 1

    0x 2

    So, x 2 or x 1

    x 2 holds true for x R

    Now, x 1

    x , 1 1,

    46. [A]

    x 1 x 5 6

    This is special case as (x1)(x + 5) =6

    So the given expression will hold true if x 1 x 5 0

    x 5,1

    12

    15

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    20/22

    47. [D]

    212

    log x 1 0

    As base of log is less than 1.

    So, 212

    log x 1 0

    20 x 1 1

    21 x 2

    2 2x 1 and x 2

    x , 1 1, & x 2, 2

    x 2, 1 1, 2

    48. [D]

    2 x 2 y10

    log x log 2 log y log 23

    2 x10

    log x log 2

    3

    22

    1 10log x

    log x 3

    Lets take 2log x a

    So,1 10

    aa 3

    2 10

    a a 1 03

    9 1

    a a 03 3

    9 1

    a ,3 3

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    21/22

    29 1 1

    log x , 3,3 3 3

    1

    3 3x 2 , 2

    1

    3x 8, 2

    similarly,

    1

    3y 8, 2

    if x y then1

    3x y 8 2

    49. [A]

    2

    3

    2

    log x 3x 2 2

    2

    2

    3 3

    2 2

    3log x 3x 2 log

    2

    2

    3

    2

    x 3x 2log 0

    3

    4

    base is less than 1 so

    2x 3x 2

    0 13

    4

    2 2 3

    0 x 3x 2 & x 3x 24

    2 5

    x 2 x 1 0 & x 3x 04

    2 5 1 5

    x ,1 2, ......(1) & x x x 02 2 4

    1

  • 8/10/2019 Advanced Inequations Exercise - 1(a)

    22/22

    &5 1

    x x 02 1

    &1 5

    x ,2 2

    ..(2)

    taking intersection of (i) & (ii)

    1 5

    x ,1 2,2 2

    50. [A]

    2x x 2a a ;0 9 1

    2x

    2a x 1

    a

    2x x 2

    a 1

    2x x 2 0

    (x 2)(x 1) 0

    x 1, 2

    (0, 1)

    y

    x


Recommended