+ All Categories
Home > Documents > Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g....

Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g....

Date post: 05-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
43
Advanced Structured Materials Volume 116 Series Editors Andreas Öchsner, Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Esslingen, Germany Lucas F. M. da Silva, Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal Holm Altenbach, Faculty of Mechanical Engineering, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Sachsen-Anhalt, Germany
Transcript
Page 1: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

Advanced Structured Materials

Volume 116

Series Editors

Andreas Öchsner, Faculty of Mechanical Engineering, Esslingen University ofApplied Sciences, Esslingen, GermanyLucas F. M. da Silva, Department of Mechanical Engineering, Faculty ofEngineering, University of Porto, Porto, PortugalHolm Altenbach, Faculty of Mechanical Engineering,Otto-von-Guericke-Universität Magdeburg, Magdeburg, Sachsen-Anhalt, Germany

Page 2: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

Common engineering materials reach in many applications their limits and newdevelopments are required to fulfil increasing demands on engineering materials.The performance of materials can be increased by combining different materials toachieve better properties than a single constituent or by shaping the material orconstituents in a specific structure. The interaction between material and structuremay arise on different length scales, such as micro-, meso- or macroscale, and offerspossible applications in quite diverse fields.

This book series addresses the fundamental relationship between materials and theirstructure on the overall properties (e.g. mechanical, thermal, chemical or magneticetc) and applications.

The topics of Advanced Structured Materials include but are not limited to

• classical fibre-reinforced composites (e.g. glass, carbon or Aramid reinforcedplastics)

• metal matrix composites (MMCs)• micro porous composites• micro channel materials• multilayered materials• cellular materials (e.g., metallic or polymer foams, sponges, hollow sphere

structures)• porous materials• truss structures• nanocomposite materials• biomaterials• nanoporous metals• concrete• coated materials• smart materials

Advanced Structured Materials is indexed in Google Scholar and Scopus.

More information about this series at http://www.springer.com/series/8611

Page 3: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

Loutfy H. Madkour

Nanoelectronic MaterialsFundamentals and Applications

123

Page 4: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

Loutfy H. MadkourFaculty of Science, Chemistry DepartmentAl Baha UniversityBaljarashi, Saudi Arabia

ISSN 1869-8433 ISSN 1869-8441 (electronic)Advanced Structured MaterialsISBN 978-3-030-21620-7 ISBN 978-3-030-21621-4 (eBook)https://doi.org/10.1007/978-3-030-21621-4

© Springer Nature Switzerland AG 2019This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or partof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionor information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in thispublication does not imply, even in the absence of a specific statement, that such names are exempt fromthe relevant protective laws and regulations and therefore free for general use.The publisher, the authors and the editors are safe to assume that the advice and information in thisbook are believed to be true and accurate at the date of publication. Neither the publisher nor theauthors or the editors give a warranty, expressed or implied, with respect to the material containedherein or for any errors or omissions that may have been made. The publisher remains neutral with regardto jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AGThe registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Page 5: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

Preface

Nanoscience and nanotechnology have become highly popular in the last few years.The nanoobjects of importance include quantum dots and nanocrystals of metals,semiconductors, oxides and other materials as well as one-dimensional nanos-tructures such as nanotubes and nanowires. Synthesis, characterization and appli-cations of these nanomaterials are being explored widely. Typical of the novelapplications of nanomaterials that are emerging include single molecule electronicsbased on nanotubes and nanowires, nanocatalysis and biological sensors usingnanocrystals or nanotubes. One-dimensional nanostructures of materials havereceived great attention since the discovery of the carbon nanotubes.

Nanomedicine involves utilization of nanotechnology for the benefit of humanhealth and well being. The use of nanotechnology in various sectors of therapeuticshas revolutionized the field of medicine where nanoparticles of dimensions rangingbetween 1–100 nm are designed and used for diagnostics, therapeutics and asbiomedical tools for research. It is now possible to provide therapy at a molecularlevel with the help of these tools, thus treating the disease and assisting in studyof the pathogenesis of disease.

Nanotechnology is an inherently interdisciplinary field that has generated sig-nificant scientific and engineering interest in recent years. Nanomaterials can befound everywhere in nature and have been part of the environment since our planetwas created about 4.5 billion years ago.

The impact of nanotechnology in all areas of science and technology is evident.Nanotechnology increases the strengths of many materials and devices, as well asenhances efficiencies of monitoring devices, remediation of environmental pollutionand renewable energy production. While these are considered as the positive effectof nanotechnology, there are certain negative impacts of nanotechnology onenvironment in many ways, such as increased toxicological pollution on theenvironment due to the uncertain shape, size and chemical compositions of someof the nanotechnology products (or nanomaterials). It can be vital to understand therisks of using nanomaterials, and cost of the resulting damage. It is required toconduct a risk assessment and full life-cycle analysis for nanotechnology productsat all stages of products to understand the hazards of nanoproducts and the resultant

v

Page 6: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

knowledge that can then be used to predict the possible positive and negativeimpacts of the nanoscale products. Choosing right, less toxic materials (e.g. gra-phene) will make huge impacts on the environment. This can be very useful for thetraining and protection of students, as well as scientists, engineers, policymakersand regulators working in the field.

Nanotechnology refers to an emerging field of science that includes synthesis anddevelopment of various nanomaterials. Presently, different metallic nanomaterialsare being produced using copper, zinc, titanium, magnesium, gold, alginate andsilver. Due to their incredible properties, production of nanomaterials has beenconstantly evolving over the last few years for manifold applications in chemicalsurface processes, chemical industry, environmental pollution monitoring, agricul-ture, smart materials, sensors, nanoscale biostructures, energy capture and storage,magnets, fabrication, electronics, optical and biomedical fields. Nanostructuredmaterials (NSMs) are divided into nanoparticles (NPs), nanotubes (NTs),nanocomposites (NCMs) and nanowires (NWs). Nanoparticle technologies havegreat potentials, being able to convert poorly soluble, poorly absorbed and labilebiologically active substance into promising deliverable substances. Nanoparticlesare applied as delivery systems, e.g. for drugs or bioactive food ingredients. They aredesigned to target drugs to specific organs or to increase the bioavailability ofbioactive food ingredients that may have a health impact. Nanomedicine hastremendous prospects for the improvement of the diagnosis and treatment of humandiseases. Use of microbes in biosynthesis of nanoparticles is an environmentallyacceptable procedure. Nanomedicine is the application of nanotechnology (theengineering of tiny machines) to the prevention and treatment of disease in thehuman body. Nanomaterials can impart antibacterial and anti-odour functionality onhuman skin in powder, gel, stick or spray underarm products. It has also antimi-crobial and anti-irritant properties. This discipline is in its infancy. It has the potentialto change medical science dramatically in the twenty-first century.

The expanding availability of a variety of nanostructures with properties in thenanometer size range has sparked widespread interest in their use in biotechno-logical systems, including the field of environmental remediation. Nanomaterialscan be used as catalysts, adsorbents, membranes, water disinfectants and additivesto increase catalytic activity and capability due to their high specific surface areasand nanosize effects. Thus, nanomaterials appear promising for new effectiveenvironmental technologies. Definitely, nanotechnology applications for siteremediation and wastewater treatment are currently in research and developmentstages, and innovations are underway. The synthesis of metallic nanoparticles hasbeen intensively developed not only due to its fundamental scientific interest butalso for many technological applications. The use of microorganisms in the syn-thesis of nanoparticles is a relatively new eco-friendly and promising area ofresearch with considerable potential for expansion. On the other hand, chemicalsynthesis occurs generally under extreme conditions (e.g. pH, temperature) andchemicals used may have associated environmental and human health impacts. Theuse of microorganisms during the biosynthesis of metallic nanoparticles and theirunique properties that make them good candidates for many applications, including

vi Preface

Page 7: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

in biotechnology should be considered. Thorough cost-benefit analyses are essentialto further evaluate the applicability of nanotechnology. Economic analyses musttake into consideration the synthesis of nanomaterials, the benefit of application aswell as the cost associated with the potential environmental impacts. Lowcostnanomaterials should be explored for potential environmental applications.Nanotechnology based water treatment technologies will only be able to competewith conventional treatment if the cost of nanomaterials as well as the systemsutilizing nanomaterials becomes comparable. Applications of nanomaterials arewide field intervention in industry, environment, medicine and food fields, will savetime and effort, and will be relied upon very dramatically. Environmental impactcan be improved by utilizing nanostructure particulates in corrosion inhibition,coating and eliminating the requirement of toxic solvents. The application ofnanotechnology in the corrosion protection of metals has recently gainedmomentum and is of real promise.

This book in detail explains the classification of environmental nanomaterialsand how to deal with their formation, diffusion, environmental fate and impacts, andour exposure to them. This book is an overview of current research worldwide onthe classification, use and all types of metallic nanomaterials and their uniqueproperties that make them good candidates for many applications, including nan-otechnology and nanobiotechnology. Thus, the aim of this book is to summarize thefundamentals and technical approaches in processing and behaviour of nanostruc-tured materials to provide the readers systematic, comprehensive and brief infor-mation in the challenging field of nanomaterials NMs and nanotechnology.Therefore, this book is a general introduction for all branches of academic science,nanoscience, nanochemistry, physical science, nanotechnology, nano-biotechnology,nanomedicine and in general materials science.

Finally, we would like to thank Editor, all reviewers, and the Editorial BoardMembers for their invaluable contributions.

• Correspondence: Loutfy H. Madkour, Professor of Physical Chemistry andNano Science at Chemistry Department, Faculty of Science, Al Baha University,Saudi Arabia (KSA).

• Tel. +966 533899075; fax: +966 77247272;• E-mail: [email protected]; [email protected]; lmadkour@bu.

edu.sa.

Baljarashi, Saudi Arabia Loutfy H. Madkour

Preface vii

Page 8: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

About This Book

Nanostructured materials (NSM) are divided into nanoparticles (NPs), nanotubes(NTs), nanocomposites (NCMs) and nanowires (NWs). Nanoparticle technologieshave great potentials, being able to convert poorly soluble, poorly absorbed andlabile biologically active substance into promising deliverable substances. The bookincludes 17 chapters and gives emphasis to current classification and future trends invision of life sciences for processing, techniques, synthesis methods and advancedapplications for nanoelectronic materials and nanodevices in industries and researchlaboratory. The nanoobjects of importance include quantum dots and nanocrystals ofmetals, semiconductors, oxides and other materials as well as one-dimensionalnanostructures such as NTs and NWs. Nanoelectronics is certainly among the mostvibrant research fields, which is highly pushed by technology industries. Thenumerical calculation of the electronic properties and in particular the quantumtransport properties of devices at the nanoscale is considered. Principles of com-putational simulations devices and characterization of nanoelectronic materials arediscussed. The book precisely has explained the synthesis techniques for thepreparation of low-dimensional nanomaterials including 0D (quantum dot), 1D(Nanowire, Nanotube) and 2D (Thin films, few layer) and their potential applicationsin nanoelectronic systems. Allotropic forms of elemental carbon nanomaterials(fullerene, nanodiamond, graphite, carbon nanotubes CNT, graphene) andtwo-dimensional transition metal dichalcogenides (2D TMDCs) with their futureapplications are discussed. This book has been concerned with the size effects andgoing from bulk materials to nanomaterials, electronic properties of nanoscaledevices, different classes of nanomaterials from microelectronics to nanoelectronicsinto molecular electronics. Further, the book demonstrates the structural stability,physical, chemical, magnetic, optical, electrical, thermal, electronic, mechanicalproperties of the nanomaterials, physicochemical properties of NPs and givesaspects of their applications. Characterization, fabrication techniques from lab-scaleto mass-production and functionality of nanomaterials by chemical or defect engi-neering has been studied. Environmental impact of nanotechnology and novelapplications of NMs, NWs, NTs, NPs and nanodevices in mechanical industries, theenvironment, energy harvesting, clean energy, manufacturing materials, electronics,

ix

Page 9: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

transistors, health and/or medical therapy are explained. Interfacing biology systemswith nanoelectronics and examples for nanoelectronic—cell interfaces of theadvanced medicine therapeutics applications has been discussed.

x About This Book

Page 10: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

Summary

Today, the feature size of integrated circuits are of the order of 100 nm. In the nearfuture, this order will most likely approach 10 nm and lead to yet more powerfulcomputers. Nanomaterials NMs surreptitiously enter the environment throughwater, soil, and air during various human activities.

Nanoelectronics is certainly among the most vibrant research fields, which ishighly pushed by technology industries. The numerical calculation of the electronicproperties and in particular the quantum transport properties of devices at thenanoscale is considered. Principles of computational simulations devices andcharacterization of nanoelectronic materials are discussed. This book has beenconcerned with the size effects and going from bulk materials to nanomaterials,electronic properties of nanoscale devices, different classes of nanomaterials frommicroelectronics to nanoelectronics into molecular electronics. The electroniccharacteristics such as thermal, chemical and mechanical stability of nanomaterialsare investigated. Characterization, fabrication techniques from lab-scale tomass-production and functionality of nanomaterials by chemical or defect engi-neering has been studied. The comprehensive description of the family of allnanomaterials and their applications is considered. The book precisely discussesabout various preparation and synthesis techniques for low-dimensional nanoma-terials including 0D (quantum dot), 1D (Nanowire, Nanotube) and 2D (Thin films,few layer) and their potential applications in nanoelectronic systems. Allotropicforms of elemental carbon nanomaterials (fullerene, nanodiamond, graphite, carbonnanotubes CNT, graphene) and two-dimensional transition metal dichalcogenides(2D TMDCs) with their applications are discussed. These informations give a clearvision for synthesis and applications of nanomaterials among the researchers. It isnecessary to handle systems comprising millions of atoms, and this will require newefficient algorithms for the most time-consuming stages of the calculations. Further,the book demonstrates the structural stability, physical, chemical, magnetic, optical,electrical, thermal, electronic, mechanical properties of the nanomaterials, physic-ochemical properties of NPs and gives emphasis to applications of them.Applications and novel applications of NMs, NWs, NTs, NPs and nanodevices inmechanical industries, the environment, energy harvesting, clean energy,

xi

Page 11: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

manufacturing materials, electronics, transistors, health and medical therapy arediscussed through the chapters of the book. Fundamentals of nanoelectronics inbiological system and medicine therapeutics applications are studied.

Besides many positive effects of NMs in industrial and medical applications,there are certain toxicities and negative impacts associated with using NPs and otherNMs on environment in many ways. It can be vital to understand the risks of usingNMs, and cost of the resulting damage. It is required to conduct a risk assessmentand full life-cycle analysis for NMs at all stages of products to understand thehazards of nanoproducts and the resultant knowledge that can then be used topredict the possible positive and negative impacts of the nanoscale products.

Generally, the book gives emphasis to current and future trends in vision of lifesciences for synthesis processing and novel applications of nanoelectronic materialsand nanodevices in industries and research laboratory.

Our recommendation for future work is that different reaction parameters such astemperature, pressure, time and pH can play important role in controlling the shapeand morphology of the NMs and NPs, so that should be optimized for achievingspecific characteristic product. Besides this, for good implications and propertiesstudy specific characterization techniques should be used. More importantly,environmental issues should be taken into account before using these materials forany applications, especially in case of heavy metals, which are prone to environ-mental hazards and can also affect the livings as well.

Keywords Nanotechnology � NMs � NSs � NSMs, NPs � NWs � NCMs �SiNWs � CPNWs � NTs � CNTs � DWNTs � CNT � 0D � 1D � 2D � 2D TMDCs �3-D � TMDCs � DFT � CVD � CVC � GCP � HWCVD � Graphene � Fullerene �NanoES � NW-FET � NW-TFT � PVD � PV � QDs � SET � SiGe NWs � SSDs �SSPD � VLS � VS � VSS � SLS � NEMS � MEMS � FET � ISFET � EN � EDL �SNSPD � SPR � TMD-NDs � SiNWs � SiONWs � CMOS � CP NWs � ENIAC �HGNPs � HOPG � HS � LUMO � HOMO

xii Summary

Page 12: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

A Look Ahead

Our book is clearly oriented to give a broad introduction to the field of nanoma-terials to the topics, classification and most basic concepts of nanoscience. Bookinvolves 17 chapters, which can satisfy many useful criteria: Development inNanotechnology; Electronic properties of nanoscale devices; Classes of nanoma-terials; Microelectronics, nanoelectronics and molecular electronics;Characterization and fabrication techniques; Classification of nanoelectronicmaterials; Synthesis techniques of NMs; 0D (quantum dot), 1D (Nanowire,Nanotube) and 2D (Thin films, few layer); Properties and physicochemical prop-erties of NPs; Applications and Novel applications of NMs; Certain toxicities ofNPs; Current and future trends for NMs and nano devices; Fundamentals ofnanoelectronics in biological system; Vision for Life Sciences.

Nanomaterials are all around us, which exist in nature at our life environment.We begin by the periodical various stages of development in nanotechnology.

Our study of nanostructured materials (NSM) begins with giving a brief of somedefinitions: nanotechnology, nanoscale, nanoscience, nanochemistry, nanoparticles,nanowires, nanorodes, nanofibers and nanotubes with referring to the fundamentalissues in nanomaterials.

During this book, we answered many questions such as:

• What is different at the nanoscale?• What is new about nanoscience?• What are nanomaterials NMs?• What are the fundamental issues in nanomaterials?• Where are nanomaterials found?• What nanomaterials exist in nature?• What is the importance of NSMs in our life?• Why is there so much interest in nanomaterials?• What is at nanoscale in nanomaterials?• Why and what is graphene?• Are pure low-dimensional systems interesting and worth pursuing?• Are nanotechnology products available?

xiii

Page 13: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

• What are sensors?• How Artificial Intelligence (AI) and Nanotechnology do They Work Together?• What are the recent advances in nanoelectronic materials?• What are the novel applications of NMs?

Principles of computational simulations devices and characterization of nano-electronic materials are explained.

We describe the role of (NSM) in our modern society, by studying the nature,unique physical properties and its types by giving examples of nanostructuredmaterials.

Next, we build up our vocabulary in learning the role of surfaces and interfaces,which is the study of a nanostructure, with the diameter of the order of a nanometer(10−9 meters). It can also be defined as the ratio of the length to width being greaterthan 1000.

We study in detail allotropic forms of elemental carbon nanomaterials (graphite,diamond, fullerene, carbon nanotubes and graphene), by giving their industrialapplications.

Two-dimentional transition metal dichalcogenides (2D TMDCs), synthesismethods and properties of 2D nanostructured materials are investigated.

Next, we examine the classification of nanomaterials according to Gleiter’sclassification and dimensionality depending on the number of reduced dimensions,which usually refers to the number of degrees of freedom in the momentum from3D to 0D.

Nanowires (NWs) are divided as metallic, semi-conducting, insulating andmolecular, which involves repeating organic or inorganic molecular units.

We learn in detail the physics and ways of processing nanostructured materials,either by bottom-up and/or top-down approaches as techniques for elaboration andsynthesis of nanostructured materials and nanowires.

We continue our study of physical properties (morphology, lattice parameter andthe phase changes), electronic, magnetic, optical, electrical and mechanical (elas-ticity, plasticity, dislocations, hardening, twinning, toughness and ductility) prop-erties of nanomaterials.

We then extend our discussion to the backbone in environmental impact ofnanotechnology research involving classical and kinetic Monte-Carlo methods.

We then become acquainted with some present, future and novel applications ofnanomaterials and nanodevices of nanotechnology for the chemical industry,environmental pollution monitoring, corrosion protection of metals and the humanhealth fields, which can be precisely controlled during synthesis, chemical com-position, length, diameter and doping/electronic properties.

We present a vision for Life Sciences at nanomedicine through interfacesbetween nanoelectronic and biological systems.

xiv A Look Ahead

Page 14: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

We give conclusion about nanomaterials and nanotechnology, which has beenplaying an increasingly important role in supporting innovative technologicaladvances.

With the increasing use of nanomaterials for commercial and industrial purposes,the debate becomes whether the numerous benefits of nanoparticles can overcomethe economic costs, environmental impacts and unknown risks resulting from theiruse.

The risk assessment of such nanomaterials requires evaluation of their mobility,reactivity, environmental toxicity and stability. An understanding of the interactionsbetween nanoparticles and biological systems is of significant interest.

To date, few studies have been conducted on the toxic and environmental effectsthat result from direct and indirect exposure to nanoparticles, and there are no clearstandards to determine their effects. Lack of technical information in this regard hasprovided an appropriate context for supporters and opponents of nanoparticles topresent contradictory and ill-considered results. Such an uncertain atmosphere hascaused increased concerns about the effects of nanoparticles. Therefore, adequatestudies to determine the exact, real risks of the use of nanomaterials are required.The information resulting from these studies can be useful in minimizing theenvironmental hazards that could arise from the use of nanomaterials. Thus, thisbook briefly explains the classification of environmental nanomaterials and how todeal with their formation, diffusion, environmental fate and impacts, and ourexposure to them.

Generally, the book gives emphasis to current and future trends in vision of lifesciences for synthesis processing and novel applications of nanoelectronic materialsand nanodevices in industries and research laboratory.

In general, my book has been satisfying the following criteria:

(1) Summarize the fundamentals and technical approaches in processing andbehaviour of nanostructured materials to provide the readers systematic,comprehensive and brief information in the challenging field of nanomate-rials NMs and nanotechnology. Gives a clear vision for the types, classifi-cation, synthesis, properties, applications and novel applications of all typesof nanomaterials among the researchers.

(2) The book has discussed the interfaces between biology systems and nano-electronics devices by giving some essential applications examples.

(3) The book demonstrates the structural stability, electronic and mechanicalproperties of the nanomaterials and gives emphasis to applications of them.These information give a clear vision for synthesis and applications ofnanomaterials among the researchers.

(4) The book discussed various preparation techniques for low dimensional nanomaterials including 0D (quantum dot), 1D (Nanowire, Nanotube) and 2D(Thin films, few layer) and their potential application in nanoelectronicsystem. The book deals with the different techniques of synthesis of quantum

A Look Ahead xv

Page 15: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

well, quantum wire and quantum dot materials. Mechanism of the variousnano-materials.

(5) The book gives the structural stability, electronic and mechanical propertiesof these materials and gives emphasis to applications of nanomaterials.

(6) Allotropic forms of elemental carbon nanomaterials (fullerene, nanodia-mond, graphite, carbon nanotubes CNT, graphene) and two-dimensionaltransition metal dichalcogenides (2D TMDCs) with their applications arediscussed in details. It gives examples of nanomaterials with variousmorphologies.

(7) The book gives the numerical calculation of the electronic properties and inparticular the quantum transport properties of devices at the nanoscale.

(8) This book has been concerned with the size effects and going from bulkmaterials to nanomaterials, electronic properties of nanoscale devices, dif-ferent classes of nanomaterials and their electronic characteristics, thermal,chemical and mechanical stability of nanomaterials. Characterization andfabrication techniques from lab-scale to mass-production and functionality ofnanomaterials by chemical or defect engineering.

(9) The book demonstrates the structural stability, physical, chemical, magnetic,optical, electrical, thermal, electronic, mechanical properties of nanomateri-als and physicochemical properties of NPs.

(10) The book gives emphasis to present and future novel applications of nano-materials and nanodevices in industries and research laboratory.

(11) The book demonstrates and gives a clear vision for synthesis and applica-tions of nanomaterials among the researchers. It is necessary to handlesystems comprising millions of atoms, and this will require new efficientalgorithms for the most time-consuming stages of the calculations.

(12) The book discusses the advantages and disadvantages of using nanomateri-als; there are certain toxicities which are associated with NPs and othernanomaterials and basic knowledge is required for these toxic effects toencounter them properly.

(13) The book has answered about almost many essential and important questionsthroughout its 17 chapters contained for all various classes of nanomaterials.

(14) Generally, the book gives emphasis to current and future trends to vision forlife sciences of synthesis processing and novel applications of nanomaterialsand nanodevices in industries and research laboratory. It is consideredactually as an essential reference for Nanoelectronic Materials: Fundamentalsand Applications.

xvi A Look Ahead

Page 16: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

Contents

1 Introduction to Nanotechnology (NT) and Nanomaterials(NMs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Nanotechnology Debate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Nanomaterials (NMs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1 What Are the Fundamental Issues inNanomaterials? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.2 Nano Scale and Nanostructures . . . . . . . . . . . . . . . . 211.2.3 Nanostructured Materials . . . . . . . . . . . . . . . . . . . . . 24

1.3 The Nanoworld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261.4 Atoms, Clusters and Nanograins . . . . . . . . . . . . . . . . . . . . . . 301.5 What Is Different at the Nanoscale? . . . . . . . . . . . . . . . . . . . . 331.6 History of Nanomaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2 Principles of Computational Simulations Devices andCharacterization of Nanoelectronic Materials . . . . . . . . . . . . . . . . . 492.1 Charged Particle Single Nanometre Manufacturing . . . . . . . . . 502.2 Exotic Effects and Potential . . . . . . . . . . . . . . . . . . . . . . . . . . 522.3 Preliminary Concepts: Elements from Solid State Physics . . . . 532.4 Computing Electronic Transport . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.1 Electronic Structure Calculations . . . . . . . . . . . . . . . 532.4.2 Density-Functional Theory . . . . . . . . . . . . . . . . . . . 542.4.3 Another Three Alternate Approaches Are . . . . . . . . . 55

2.5 Basics of DFT and Methodology . . . . . . . . . . . . . . . . . . . . . . 622.6 Characterization of Nanomaterials . . . . . . . . . . . . . . . . . . . . . 65

2.6.1 Morphological Characterizations . . . . . . . . . . . . . . . 662.6.2 Structural Characterizations . . . . . . . . . . . . . . . . . . . 672.6.3 Particle Size and Surface Area Characterization . . . . 702.6.4 Optical Characterizations . . . . . . . . . . . . . . . . . . . . . 70

xvii

Page 17: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

2.7 Characterization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 722.7.1 Microscopy Techniques for 2D Materials . . . . . . . . . 722.7.2 Raman Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 762.7.3 Photoluminescence (PL) Spectroscopy . . . . . . . . . . . 782.7.4 X-Ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . 792.7.5 Characterization Possibilities . . . . . . . . . . . . . . . . . . 81

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3 Where Are Nanomaterials (Nms) Found? . . . . . . . . . . . . . . . . . . . . 913.1 Nanoparticles Are All Around Us . . . . . . . . . . . . . . . . . . . . . 913.2 What Nanomaterials Exist in Nature? . . . . . . . . . . . . . . . . . . . 983.3 Environmental Nanoparticles and Colloids . . . . . . . . . . . . . . . 983.4 Humic Substances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983.5 Volcanic Ashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983.6 Desert Sources of Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . 993.7 Biological Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 Benefits of Nanomaterials and Nanowire Geometry . . . . . . . . . . . . 1014.1 The Nanobulk Stage (10–15 Years) . . . . . . . . . . . . . . . . . . . . 1014.2 Advances of Nanomaterials (NMs) . . . . . . . . . . . . . . . . . . . . . 1024.3 The Nanoworld Stage (15–40 Years) . . . . . . . . . . . . . . . . . . . 1024.4 NMs Enhanced Surface Plasmon Resonance for Biological

and Chemical Sensing Applications . . . . . . . . . . . . . . . . . . . . 1034.5 Benefits of the Nanowire Geometry . . . . . . . . . . . . . . . . . . . . 108

4.5.1 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1084.5.2 Exciton Formation . . . . . . . . . . . . . . . . . . . . . . . . . 1114.5.3 Charge Separation . . . . . . . . . . . . . . . . . . . . . . . . . . 1124.5.4 Carrier Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 1124.5.5 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 Disadvantages of Nanomaterials (NMs) . . . . . . . . . . . . . . . . . 116References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Why So Much Interest in Nanomaterials (NMs)? . . . . . . . . . . . . . . 1235.1 Recent Advances of Nanostructured Materials . . . . . . . . . . . . 1245.2 New Properties Can Be Created . . . . . . . . . . . . . . . . . . . . . . . 1245.3 Some Present and Future Applications of Nanomaterials . . . . . 125

5.3.1 Applications of Nanowires . . . . . . . . . . . . . . . . . . . 1265.4 Engineered Nanoparticles Change Shape in Soil

and Groundwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1275.5 Applications of Field-Effect Transistors (FET) . . . . . . . . . . . . 1325.6 Fabrication of 1-D Nanostructures . . . . . . . . . . . . . . . . . . . . . 132

5.6.1 Carbon Nanotubes (CNTs) . . . . . . . . . . . . . . . . . . . 1335.6.2 Silicon Nanowires (SiNWs) . . . . . . . . . . . . . . . . . . . 133

xviii Contents

Page 18: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

5.6.3 SiONWs Are Interest in SNOM and IntegratedOptics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.6.4 Conducting Polymer Nanowires (CP NWs) . . . . . . . 136References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 Examples of Nanomaterials with Various Morphologies . . . . . . . . . 1416.1 Carbon Nanotubes (CNTs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1426.2 Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2.1 Classification of NPs . . . . . . . . . . . . . . . . . . . . . . . . 1446.3 Other Application Examples of Nanoparticles are . . . . . . . . . . 1496.4 Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1496.5 Nanoshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1526.6 Metal Rubber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1536.7 Nanopores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1546.8 Nanoparticles with Different Morphologies . . . . . . . . . . . . . . . 155

6.8.1 Example of a Phase Contrast . . . . . . . . . . . . . . . . . . 1616.8.2 Summary of Different Shapes for Various Metal

Nanocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7 Carbon Nanomaterials and Two-Dimensional TransitionMetal Dichalcogenides (2D TMDCs) . . . . . . . . . . . . . . . . . . . . . . . . 1657.1 Classification of 2D Materials . . . . . . . . . . . . . . . . . . . . . . . . 168

7.1.1 Layered van der Waals Solids . . . . . . . . . . . . . . . . . 1687.1.2 Layered Ionic Solids . . . . . . . . . . . . . . . . . . . . . . . . 1697.1.3 Surface Assisted Nonlayered Solids . . . . . . . . . . . . . 169

7.2 2D Materials, Their Properties, and Applications . . . . . . . . . . . 1697.3 Crystal Structure of 2D Materials . . . . . . . . . . . . . . . . . . . . . . 1767.4 Electronic, Optical, and Mechanical Properties of 2D

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1787.5 2D van der Waals Heterostructures . . . . . . . . . . . . . . . . . . . . 1817.6 Fabrication of 2D Heterostructures . . . . . . . . . . . . . . . . . . . . . 185

7.6.1 Heterostructures by Manual Stacking . . . . . . . . . . . . 1857.6.2 Direct Synthesis of 2D Heterostructures . . . . . . . . . . 187

7.7 2D Heterostructures and Their Applications . . . . . . . . . . . . . . 1897.7.1 Biosensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1917.7.2 Solar Cells (Photovoltaic) . . . . . . . . . . . . . . . . . . . . 1937.7.3 Field Effect Transistors (FET) . . . . . . . . . . . . . . . . . 1957.7.4 Photodetector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1977.7.5 Thermoelectric Devices . . . . . . . . . . . . . . . . . . . . . . 199

7.8 Fullerenes Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2007.9 Diamond Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2037.10 Carbon Nanotubes (Carbon-Based NPs) . . . . . . . . . . . . . . . . . 2047.11 Graphene Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2117.12 Potential Applications of Graphene . . . . . . . . . . . . . . . . . . . . 217

Contents xix

Page 19: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

7.12.1 Solar Cells/Photovoltaics . . . . . . . . . . . . . . . . . . . . . 2207.12.2 Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . 2217.12.3 Water Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . 2227.12.4 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . 2237.12.5 The Latest Developments Graphene

Supercapacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2237.13 Applications of Carbon Nanotubes (CNTs) . . . . . . . . . . . . . . . 225

7.13.1 Carbon Nanotubes and Electronics . . . . . . . . . . . . . . 2277.13.2 Carbon Nanotubes and Energy . . . . . . . . . . . . . . . . 2277.13.3 Carbon Nanotubes in Healthcare . . . . . . . . . . . . . . . 2277.13.4 Carbon Nanotubes and the Environment . . . . . . . . . 228

7.14 The Future of Graphene Research . . . . . . . . . . . . . . . . . . . . . 228References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8 Nanoelectronics and Role of Surfaces Interfaces . . . . . . . . . . . . . . . 2478.1 The Development of Microelectronics . . . . . . . . . . . . . . . . . . 2478.2 The Region of Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . 2488.3 Crystal Structure and Dense Planes . . . . . . . . . . . . . . . . . . . . 2498.4 The Surface Energy c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2518.5 Transistor Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

8.5.1 Single-Electron Transistor (SET) . . . . . . . . . . . . . . . 2568.6 Molecular Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2608.7 Multi Walled Carbon Nanotubes (CNTs) . . . . . . . . . . . . . . . . 260References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

9 Classification of Nanostructured Materials . . . . . . . . . . . . . . . . . . . 2699.1 Glitter’s Classification of Nanostructured Materials (NSM) . . . 2739.2 Classification of Nanomaterials by Dimensionality . . . . . . . . . 2779.3 Some Classifications Definitions . . . . . . . . . . . . . . . . . . . . . . 281

9.3.1 Nanostructures (NSs) . . . . . . . . . . . . . . . . . . . . . . . 2819.3.2 Nanostructured Materials (NSMs) . . . . . . . . . . . . . . 2819.3.3 Nanocomposites (NCMs) . . . . . . . . . . . . . . . . . . . . 281

9.4 Elementary Building Units (Nanostructures) . . . . . . . . . . . . . . 2829.5 Quantum Confinement from 3D to 0D . . . . . . . . . . . . . . . . . . 282

9.5.1 Physical and Chemical Nature of Nanoparticles . . . . 2889.6 Matrix-Reinforced and Layered Nanocomposites . . . . . . . . . . . 291

9.6.1 Microcrystal Matrix (Micro-Nano Type) . . . . . . . . . . 2929.6.2 Nanocrystal Matrix (Nanocomposites) . . . . . . . . . . . 292

9.7 Nanowires (NWs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2929.7.1 Unique Applications of Nanowires . . . . . . . . . . . . . 2969.7.2 Different Types of Nanowires . . . . . . . . . . . . . . . . . 2979.7.3 Basic Growth Mechanism . . . . . . . . . . . . . . . . . . . . 2979.7.4 Why Study Nanowires? . . . . . . . . . . . . . . . . . . . . . . 3009.7.5 Types of Nanowires (NWs) . . . . . . . . . . . . . . . . . . . 306

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

xx Contents

Page 20: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

10 Processing of Nanomaterials (NMs) . . . . . . . . . . . . . . . . . . . . . . . . 30910.1 Top-Down Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

10.1.1 Ball Milling: Mechanical Crushing of Solidsinto Nanocrystallites . . . . . . . . . . . . . . . . . . . . . . . . 316

10.1.2 Photolithography . . . . . . . . . . . . . . . . . . . . . . . . . . . 31710.1.3 Gas Phase Processes . . . . . . . . . . . . . . . . . . . . . . . . 319

10.2 Bottom-Up Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31910.2.1 Gas Phase Processes . . . . . . . . . . . . . . . . . . . . . . . . 32110.2.2 Liquid Phase Processes: Sol-Gel Process . . . . . . . . . 32410.2.3 Liquid Phase Processes: Synthesis of Metal

Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32710.2.4 Material Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 335

10.3 Two Approaches with the Same Goal . . . . . . . . . . . . . . . . . . 33910.4 Methods for Creating Nanostructures . . . . . . . . . . . . . . . . . . . 340

10.4.1 Mechanical Grinding . . . . . . . . . . . . . . . . . . . . . . . . 34010.4.2 Wet Chemical Synthesis of Nanomaterials . . . . . . . . 34210.4.3 Gas Phase Synthesis of Nanomaterials . . . . . . . . . . . 34410.4.4 Sputtered Plasma Processing . . . . . . . . . . . . . . . . . . 35110.4.5 Particle Precipitation Aided . . . . . . . . . . . . . . . . . . . 35210.4.6 Laser Ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

11 Techniques for Elaboration of Nanomaterials . . . . . . . . . . . . . . . . . 35511.1 Vapor-Phase Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

11.1.1 Gas-Vapor Deposition . . . . . . . . . . . . . . . . . . . . . . . 35911.1.2 Plasma-Based Synthesis . . . . . . . . . . . . . . . . . . . . . 35911.1.3 Molecular Beam Epitaxy . . . . . . . . . . . . . . . . . . . . . 36111.1.4 Inert Gas Condensation . . . . . . . . . . . . . . . . . . . . . . 36211.1.5 Flame Pyrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

11.2 Liquid Phase Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36411.2.1 Colloidal Methods . . . . . . . . . . . . . . . . . . . . . . . . . 36411.2.2 Solution Precipitation . . . . . . . . . . . . . . . . . . . . . . . 36511.2.3 Electrodeposition . . . . . . . . . . . . . . . . . . . . . . . . . . 365

11.3 Sol–Gel Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36711.3.1 Sol–Gel Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 36911.3.2 Sol–Gel Coating Processes . . . . . . . . . . . . . . . . . . . 37111.3.3 Reverse Micelles as Nanoreactors . . . . . . . . . . . . . . 37411.3.4 Sol–Gel Applications . . . . . . . . . . . . . . . . . . . . . . . 375

11.4 Solid-State Phase Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 37511.4.1 Mechanical Milling, Attrition and Alloying . . . . . . . 37611.4.2 Severe Plastic Deformation . . . . . . . . . . . . . . . . . . . 379

Contents xxi

Page 21: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

11.5 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38211.6 Consolidation of Nanopowders . . . . . . . . . . . . . . . . . . . . . . . 383

11.6.1 Sintering of Nanoparticles . . . . . . . . . . . . . . . . . . . . 38411.6.2 Non-conventional Processing . . . . . . . . . . . . . . . . . . 387

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

12 Synthesis Methods For 2D Nanostructured Materials,Nanoparticles (NPs), Nanotubes (NTs) and Nanowires (NWs) . . . . . 39312.1 Synthesis Methods for 2D Materials . . . . . . . . . . . . . . . . . . . . 393

12.1.1 Micromechanical Exfoliation Using Scotch Tape . . . 39412.1.2 Liquid Exfoliation . . . . . . . . . . . . . . . . . . . . . . . . . . 39412.1.3 Chemical Vapor Deposition (CVD) . . . . . . . . . . . . . 39712.1.4 Van der Waal Epitaxial Growth on Substrate . . . . . . 39812.1.5 Hydrothermal Synthesis . . . . . . . . . . . . . . . . . . . . . 401

12.2 Synthesis Methods of Nanoparticles NPs . . . . . . . . . . . . . . . . 40312.2.1 Top-Down Syntheses . . . . . . . . . . . . . . . . . . . . . . . 40412.2.2 Bottom-Up Syntheses . . . . . . . . . . . . . . . . . . . . . . . 405

12.3 Synthesis Methods of Nanotubes (NTs) . . . . . . . . . . . . . . . . . 40912.3.1 Arc Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40912.3.2 Laser Ablation for Production of SWNTs . . . . . . . . . 41012.3.3 Chemical Vapour Deposition (CVD) . . . . . . . . . . . . 41012.3.4 Flame Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

12.4 Synthesis Methods of Nanowires NWs . . . . . . . . . . . . . . . . . . 41312.4.1 Lithography (Top-Down) . . . . . . . . . . . . . . . . . . . . 41512.4.2 Spontaneous Growth . . . . . . . . . . . . . . . . . . . . . . . . 41712.4.3 Template-Based Synthesis . . . . . . . . . . . . . . . . . . . . 43612.4.4 Electro-spinning . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

13 Chemistry and Physics for Nanostructures Semiconductivity . . . . . 45713.1 Conductivity of Nanowires NWs . . . . . . . . . . . . . . . . . . . . . . 45913.2 Welding Nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46113.3 Silicon-Germanium Nanowires SiGe NWs . . . . . . . . . . . . . . . 46213.4 Growth Techniques, Morphology, and Structural Properties

of SiGe NWs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46413.4.1 Alloyed Nanowires . . . . . . . . . . . . . . . . . . . . . . . . . 46413.4.2 Axial Heterostructures . . . . . . . . . . . . . . . . . . . . . . . 46613.4.3 Radial Heterostructures . . . . . . . . . . . . . . . . . . . . . . 467

13.5 Chemical and Physical Properties of Nanowires . . . . . . . . . . . 46813.5.1 Electronic Properties . . . . . . . . . . . . . . . . . . . . . . . . 46813.5.2 Thermal and Thermoelectric Properties . . . . . . . . . . 470

13.6 Theoretical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47113.6.1 Electronic Structure . . . . . . . . . . . . . . . . . . . . . . . . . 47113.6.2 Phonons and Thermal Conductivity . . . . . . . . . . . . . 473

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

xxii Contents

Page 22: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

Contents xxiii

14 Properties of Nanostructured Materials (NSMs) andPhysicochemical Properties of (NPs) . . . . . . . . . . . . . . . . . . . . . . . . 47914.1 Properties of Nanoscale Matter . . . . . . . . . . . . . . . . . . . . . . . 48014.2 Nanoscale Materials Show Quantum Confinement Effects . . . . 480

14.2.1 Nanoscale Luminescent Materials Are Mostly LessEfficient Than Microscale Materials . . . . . . . . . . . . . 482

14.2.2 CdSe Nanocrystals . . . . . . . . . . . . . . . . . . . . . . . . . 48314.3 The Physical Properties of Nanoclusters . . . . . . . . . . . . . . . . . 487

14.3.1 The Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . 48714.3.2 The Lattice Parameter . . . . . . . . . . . . . . . . . . . . . . . 49114.3.3 The Phase Changes . . . . . . . . . . . . . . . . . . . . . . . . . 493

14.4 The Electronic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50014.5 The Magnetic Properties and Classifications of Magnetic

Nanomaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51014.6 The Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51814.7 The Electrical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52614.8 The Mechanical Properties of Nanomaterials . . . . . . . . . . . . . . 531

14.8.1 Elasticity, Plasticity, Dislocations, Hardening,Twinning, Toughness … . . . . . . . . . . . . . . . . . . . . . 533

14.8.2 The Role of Grain Boundaries . . . . . . . . . . . . . . . . . 54214.8.3 Hardness, Ductility, Toughness of Nanomaterials . . . 543

14.9 Thermal Properties of NSMs . . . . . . . . . . . . . . . . . . . . . . . . . 55714.10 Chemical Properties of NSMs . . . . . . . . . . . . . . . . . . . . . . . . 55914.11 Physicochemical Properties of NPs . . . . . . . . . . . . . . . . . . . . . 560

14.11.1 Electronic and Optical Properties . . . . . . . . . . . . . . . 56014.11.2 Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . 56114.11.3 Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . 56114.11.4 Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . 563

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

15 Applications of Nanomaterials and Nanoparticles . . . . . . . . . . . . . . 56515.1 Applications of NMs in Mechanical Industries . . . . . . . . . . . . 565

15.1.1 Functional Coatings and Layers . . . . . . . . . . . . . . . . 56815.1.2 MR Contrast Enhancement and Hyperthermia . . . . . 574

15.2 Applications of NMs in Health and Medical Therapy . . . . . . . 57515.3 Applications in Manufacturing and Materials . . . . . . . . . . . . . 58315.4 Applications in the Environment . . . . . . . . . . . . . . . . . . . . . . 58315.5 Applications in the Electronics . . . . . . . . . . . . . . . . . . . . . . . . 58615.6 Applications in Energy Harvesting . . . . . . . . . . . . . . . . . . . . . 58715.7 Current and Future Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . 58915.8 Examples of Nanomaterials’ Applications . . . . . . . . . . . . . . . . 589

15.8.1 Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58915.8.2 Catalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59115.8.3 Phosphors for High-Definition TV . . . . . . . . . . . . . . 59215.8.4 Next-Generation Computer Chips . . . . . . . . . . . . . . 593

Page 23: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

xxiv Contents

15.8.5 Elimination of Pollutants . . . . . . . . . . . . . . . . . . . . . 59315.8.6 Sun-Screen Lotion . . . . . . . . . . . . . . . . . . . . . . . . . 59415.8.7 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59415.8.8 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59515.8.9 Nanomedicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59515.8.10 Paint, Ink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59615.8.11 Nanoinclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59715.8.12 Deodorant/Antiperspirant (Shaving/Depilatory

Products) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

16 Environmental Impact of Nanotechnology and NovelApplications of Nano Materials and Nano Devices . . . . . . . . . . . . . 60516.1 From Microelectronics to Nanoelectronics and Molecular

Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60716.2 Nano in Energy and Clean Energy . . . . . . . . . . . . . . . . . . . . . 61016.3 The Environmental Impact of Nanotechnology . . . . . . . . . . . . 617

16.3.1 Positive Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . 61816.3.2 Negative Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . 61916.3.3 Green Technology . . . . . . . . . . . . . . . . . . . . . . . . . 619

16.4 AI and Nanotechnology How Do They Work Together? . . . . . 61916.4.1 Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62016.4.2 Chemical Modelling . . . . . . . . . . . . . . . . . . . . . . . . 62116.4.3 Nanocomputing . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

16.5 Novel Nanotubes and Encapsulated Nanowires . . . . . . . . . . . . 62216.5.1 Carbon Nanotube Sensors—Applications and

Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62316.5.2 Carbon Nanotube Optics and Their Uses . . . . . . . . . 62616.5.3 Graphene as a Renewable Energy . . . . . . . . . . . . . . 628

16.6 Novel Applications of Nanowires and Nanotubes . . . . . . . . . . 63016.6.1 Novel Photodetectors . . . . . . . . . . . . . . . . . . . . . . . 63116.6.2 White Light-Emitting Diodes . . . . . . . . . . . . . . . . . . 63216.6.3 Nanowire Applications in Electronics . . . . . . . . . . . . 63316.6.4 Devices and Applications of SiGe

Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63416.6.5 High-Performance Nanoelectronic Components . . . . 63516.6.6 Si1−XGex Alloy Nanowire Transistor . . . . . . . . . . . . 63516.6.7 Si-Shell Ge-Core Nanowire Transistor . . . . . . . . . . . 63516.6.8 From Quantum Transport to Superconductivity:

SiGe Nanowires as Platforms for FundamentalPhysics Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

16.7 Nanowire-Based Transistors (Nanotube Field-EffectTransistor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63616.7.1 Nanowire Based Field Effect Transistors . . . . . . . . . 63716.7.2 Sensing of Proteins and Chemicals Using

Semiconductor Nanowires . . . . . . . . . . . . . . . . . . . . 638

Page 24: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

Contents xxv

16.7.3 Limitations of Sensing with Silicon Nanowire FETDevices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

16.7.4 Field Emitting Transistor (FET) Based on C-NTs . . . 63916.7.5 Logical Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 64216.7.6 Voltage Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . 64216.7.7 Chips with Logical Elements . . . . . . . . . . . . . . . . . . 642

16.8 Sensing Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64516.9 Racetrack Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64616.10 Nanowire-Based Metamaterials . . . . . . . . . . . . . . . . . . . . . . . 65116.11 Indicators and Flat Displays . . . . . . . . . . . . . . . . . . . . . . . . . . 653

16.11.1 Thermometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65516.12 Nanowire Photovoltaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

16.12.1 Silicon Nanowire Based Solar Cells and Anodesfor Li-Ion Batteries . . . . . . . . . . . . . . . . . . . . . . . . . 657

16.12.2 Dye-Sensitized Solar Cells . . . . . . . . . . . . . . . . . . . 65816.13 Nanowires and Nano-Composite as Corrosion Inhibitors . . . . . 660

16.13.1 Corrosion Resistant of ZnO NanowiresCoatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662

16.13.2 Corrosion Resistance of Nanoparticle—Incorporated Nano Coatings . . . . . . . . . . . . . . . . . . 665

16.13.3 Novel Advantage of Nano-Coatings . . . . . . . . . . . . . 66616.13.4 Nanoparticle—Based Coatings for Magnesium

Alloys with Thermal and Mechanical Stability . . . . . 66616.13.5 Corrosion Resistant Zeolite Coatings . . . . . . . . . . . . 66716.13.6 Epoxy Coatings-Influence of Nanoparticles

on the Anti-corrosion and Mechanical Propertiesof Epoxy Coatings . . . . . . . . . . . . . . . . . . . . . . . . . 671

16.13.7 Nano Particle Incorporated Self-cleaning Paintsand Biocidal Coatings . . . . . . . . . . . . . . . . . . . . . . . 672

16.13.8 Nanoparticle Based Antimicrobial CorrosionCoatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

16.14 Superconducting Nanowire Single-Photon Detectors(SNSPDs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67516.14.1 Origins of Device Concept . . . . . . . . . . . . . . . . . . . 67616.14.2 SNSPD Device Physics . . . . . . . . . . . . . . . . . . . . . . 67816.14.3 Evolution of SNSPD Devices . . . . . . . . . . . . . . . . . 68016.14.4 Noise Mechanisms in SNSPDs: Dark Counts

and Timing Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . 68016.14.5 Cooling, Optical Coupling and Device Readout . . . . 683

16.15 Superconducting Nanowire Photodetector Arrays . . . . . . . . . . 68516.15.1 Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . 68616.15.2 Example Applications of the SNPD Array

Include . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

Page 25: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

17 Interfacing Biology Systems with Nanoelectronics forNanodevices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70117.1 Nanoelectronic-Biological Interfaces Enable . . . . . . . . . . . . . . 70117.2 Molecular Biomimetic: Nanotechnology Through Biology . . . . 70417.3 Fundamentals of NanoFET in Biology and Medicine . . . . . . . 709

17.3.1 Chemical Synthesis of NanoFETs . . . . . . . . . . . . . . 71017.4 Multiplexed Extracellular Electrical Recording . . . . . . . . . . . . 712

17.4.1 Electrical Interfacing with Cultured Neurons . . . . . . 71317.4.2 Recording from Cardiomyocyte Monolayers . . . . . . . 71417.4.3 Recording from Tissues and Organs . . . . . . . . . . . . . 71417.4.4 Challenges and Promises . . . . . . . . . . . . . . . . . . . . . 715

17.5 Intracellular Electrical Recording . . . . . . . . . . . . . . . . . . . . . . 71517.5.1 Designs and Implementation of Intracellular

NanoFET Probes . . . . . . . . . . . . . . . . . . . . . . . . . . 71817.5.2 Challenges and Promises . . . . . . . . . . . . . . . . . . . . . 719

17.6 Nanoelectronics Innervated Synthetic Tissues . . . . . . . . . . . . . 72017.6.1 A New Concept of Merging Electronics

with Cellular Systems . . . . . . . . . . . . . . . . . . . . . . . 72217.6.2 Designs and Preparation of Synthetic Tissues . . . . . . 72217.6.3 Challenges and Promises . . . . . . . . . . . . . . . . . . . . . 724

17.7 Application Areas of Biosensors and -Assays . . . . . . . . . . . . . 72417.8 Selection of Inorganic-Binding Proteins Through Display

Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72917.8.1 Overview on Nanowire Fabrication . . . . . . . . . . . . . 73217.8.2 Bio-nanowire Device Interface . . . . . . . . . . . . . . . . . 73317.8.3 Nanowire Nanosensors: Beginning . . . . . . . . . . . . . . 73417.8.4 Multiplexed Cancer Marker Detection . . . . . . . . . . . 73517.8.5 Undiluted Blood Serum Analysis . . . . . . . . . . . . . . . 73717.8.6 Nanoelectronic-Cell Interfaces . . . . . . . . . . . . . . . . . 737

17.9 Nanowire Piezoelectric Nanogenerators on Plastic Substratesas Flexible Power Sources for Nanodevices . . . . . . . . . . . . . . 738

17.10 Future Vision for Life Sciences . . . . . . . . . . . . . . . . . . . . . . . 746References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750

Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

xxvi Contents

Page 26: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

About the Author

Prof. LOUTFY H. MADKOUR: (Egyptian) has been a Professor of PhysicalChemistry and Nano Science at Chemistry Department, Faculty of Science andArts, Al Baha University, Baljarashi, 65635, Saudi Arabia (KSA), since 2012 tillnow.

Scopus Author ID: Author ID: 57201889680http://orcid.org/0000-0002-3101-8356https://www.mendeley.com/profiles/prof-loutfy-h-madkour/https://scholar.google.com/citations?hl=en&user=A378_tsAAAAJ&view_op=list_works&sortby=pubdatehttps://www.researchgate.net/profile/Loutfy_Madkourhttps://hindawi.academia.edu/LoutfyMadkour

He received his B.Sc., M.Sc. and Ph.D. from the Cairo, Minia and TantaUniversities of the AR Egypt, respectively in Physical Chemistry. He worked as alecturer in chemistry at the Tanta University since 1982 and as a professor ofphysical chemistry in 1999. He has conducted a series of studies in the field of

xxvii

Page 27: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

physical chemistry, electrochemistry, corrosion science, density functional theory,molecular dynamic simulation, quantum, theoretical chemistry, chemical equal-ization principles, nanoscience, nanotechnology, nanomedicine, electrometallurgy,electroanalytical chemistry, analytical chemistry, polarography, electrolyticextraction of heavy metals from natural ores and deposits, electrochemical ther-modynamics and environmental chemistry. His earlier research accomplishmentsinclude Biosynthesis of Metallic Nanoparticles (MNPs)s and toxicology studies forPharmacological applications in medicine and therapy. He has published 150peer-reviewed original research articles, 11 review articles, and 4 books in the areaof physical chemistry, practical and applied chemistry, corrosion science,nanoscience and nanomedicine. He is serving in different positions in Egypt,Kuwait, Yemen and Saudi Arabia.

He is appointed as the prestigious Editorial Board member of several interna-tional journals such as: International Journal of Industrial Chemistry (IJIC)Published by the SPRINGER; International Journal of Ground Sediment & Water;E-Cronicon Chemistry (EC Chemistry); BAOJ Chemistry; Global Drugs andTherapeutics (GDT); Chronicles of Pharmaceutical Science (ISSN 2572-7761)journal; Journal of Targeted Drug Delivery. UNIQUE PUB INTERNATIONALUPI Journal of Pharmaceutical, Medical and Health Sciences; and Global Journal ofNanomedicine (GJN) ISSN: 2573-2374; Research and Reviews in ComputationalChemistry Journal and Journal of Pharmaceutical sciences-current research(JPSCR) in the area of Pharmaceutical, Pharmacology, Journal of Pharmacology &Pharmaceutical Research (JPPR); Archives of Pharmacy & Pharmacology Researchjournal- APPR and Drug Designing & Development (NAPDD) website; thePharmaceutical Sciences & Analytical Research Journal (PSARJ); Nanotechnology& Applications (NTA); the Clinical Pharmacology and Toxicology Research; TheLaboratory Medicine Journal; Journal Drug Design Development &Therapy MEDCRAVEONLINE.COM MOJDDT; Journal of Pharmacy and DrugDevelopment. E Scientific Publishers and ADVANCES AND APPLICATIONSOF PHARMACY Journal published online by MDPI quarterly. He has joined as anEditorial Board member in Journal of Clinical and Medical Research; InternationalJournal of Environmental Chemistry, Science PG Publishing Group and LOJPharmacology & Clinical Research (LOJPCR) website.

He is a Reviewer for many international Elsevier and Springer journals. He is amember for many interested international societies, including AmericanAssociation for the Advancement of Science (AAAS), European DesalinationSociety (EDS), Egyptian Chemical Society (ECS), Egyptian Corrosion BulletinSociety and American Chemical Society (ACS).

E-mail address: [email protected]; [email protected]; [email protected]

* Corresponding author. Tel. +966 533899075; fax: +966 77247272 SaudiArabia (KSA)

xxviii About the Author

Page 28: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

Editorial Board Member by Author

[1] International Journal of Industrial Chemistry (IJIC) Published by the Springer.http://www.springer.com/chemistry/industrial+chemistry+and+chemical+engineering/journal/40090?detailsPage=editorialBoard[2] International Journal of Ground Sediment & Water.http://www.directoryofscience.com/site/4549486http://ijgsw.comze.com/[3] Research and Reviews in Computational Chemistry.http://www.rrcchemistry.com/index.php/rrcc/announcement/view/1[4] Journal of Pharmaceutical Sciences - Current Research (JPSCR).https://vagusinprosysonline.org/journals/journal-details/editorial-board.php?id=36[5] Journal of Pharmacology & Pharmaceutical Research (JPPR).http://researchopenworld.com/category/journal-of-pharmacology-pharmaceutical-research/[6] E-Cronicon Chemistry (EC Chemistry).https://www.ecronicon.com/chemistry-editorial-panel.phphttps://www.ecronicon.com/chemistry.php[7] BAOJ Chemistry.http://bioaccent.org/chemistry/index.phphttp://bioaccent.org/chemistry/editorialboard.php[8] Global Drugs and Therapeutics (GDT).http://www.oatext.com/Global-Drugs-and-Therapeutics-GDT.php#Editorial_Boardhttps://oatext.com/Global-Drugs-and-Therapeutics-GDT.php#Editorial_Board[9] Chronicles of Pharmaceutical Science (ISSN 2572-7761) journal.https://scientiaricerca.com/cops-eb.php[10] Journal of Targeted Drug Delivery.http://sciaeon.org/targeted-drug-delivery/editorial-board[11] He is appointed as the prestigious editorial board member of UPI Journal ofPharmaceutical, Medical and Health Sciences.https://uniquepubinternational.com/wp-content/uploads/2018/01/Dr.-Loutfy-H.-Madkour.pdf[12] He has joined as an Editorial Board member in Global Journal ofNanomedicine (GJN) ISSN: 2573-2374. Published by Insights in Mining Science &Technology (IMST).https://juniperpublishers.com/gjn/editorialboard.php[13] He is appointed as an Editorial panel member for Archives of Pharmacy &Pharmacology Research journal - APPR.https://irispublishers.com/appr/editorialboard.php[14] He is joined as the editorial board member/reviewer of Science Journal ofChemistry.http://www.journalchemistry.org/editorialboard

About the Author xxix

Page 29: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

[15] He has recognized under “Quarterly Franklin Membership” (MembershipID#EI15469) in international, peer-reviewed, refereed journal, London Journal ofResearch in Science: Natural and Formal (LJRS)[email protected], Arlington Business Park, Theale, United Kingdom.[16] He has joined as an Editorial Board Member of journal entitled “Chemical &Pharmaceutical Research”.http://www.jocpr.com/editorial-board.html[17] He has joined as an Editorial Board member in Drug Designing &Development (NAPDD) website.https://juniperpublishers.com/napdd/editorialboard.php[18] He has uploaded as an Editorial Board member for the PharmaceuticalSciences & Analytical Research Journal (PSARJ).https://chembiopublishers.com/PSARJ/editorial-board.php[19] Editor for Book: Corrosion Science: Theoretical and Practical Applications:Pub Date: December 2017 Hard ISBN: 9781771886024.Published by Apple Academic Press, Inc. is an independent international publisherfocusing on academic and professional books in STEM and other fields. With afocus on relevant content as well as first-class production, Apple Academic Press isdedicated to publishing cutting-edge, informative books written and edited byinternationally renowned experts in their fields.http://appleacademicpress.com/corrosion-science-theoretical-and-practical-applications-/9781771886024#bioshttp://appleacademicpress.com/category.php?id=19[20] He has joined as an Editorial Board member in Nanotechnology &Applications Journal (NTA).http://www.scivisionpub.com/journals/editorialboard-nanotechnology-applications[21] He has uploaded as an Editorial Board member for the Clinical Pharmacologyand Toxicology Research.https://www.pulsus.com/clinical-pharmacology-toxicology-research/editorial-board.html[22] He has joined as an Editorial Board member in The Laboratory MedicineJournal.https://makperiodicallibrary.com/thelaboratorymedicine/editorial-board/[23] He has joined as an Honorable Editor for MOJ Drug Design Development &Therapy Journal Drug Design Development & Therapy.https://medcraveonline.com/MOJDDT/editorial-board[24] He has uploaded as an Editorial Board member for the Journal of Pharmacyand Drug Development. E Scientific Publishers. Is an Open Access Publication thataims to publish Scholarly Articles pertaining to research of Pharmacy and drugproducts?https://escientificpublishers.com/editors/journal-of-pharmacy-and-drug-development

xxx About the Author

Page 30: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

[25] He has joined as an Editorial Board member in Advances and Applications ofPharmacy Journal published online by MDPI quarterly.https://researchnovelty.com/aap.php#Website: www.researchnovelty.com[26] He has joined as an Editorial Board member in Journal of Clinical and MedicalResearch.https://www.redelve.com/editorialmember.php[27] He has been appointed as the editorial board member of International Journalof Environmental Chemistry, Science PG Publishing Group.http://www.sciencepublishinggroup.com/journal/editorialboard?journalid=292[28] He has been uploaded as the Editorial Board member in LOJ Pharmacology &Clinical Research (LOJPCR) website.http://www.lupinepublishers.com/pharmacology-clinical-research-journal/editorial-committee.php

Recent Published Research Articles by Author

[1] Loutfy H. Madkour. Cytotoxic Mechanisms of Heavy Metals Exposure InducedOxidative DNA Damage and the Site of Reactive Oxygen Species (ROS)Production. Global Drugs and Therapeutics (2019) (in press).

[2] Loutfy H. Madkour. Nanoelectronics Applications of Biosensors inMacromolecules Living Organisms Cells. International Journal of Research Studiesin Science, Engineering and Technology, Volume 6, Issue 4 (2019), pp. 23‒43.http://ijrsset.org/pdfs/v6-i4/4.pdf

[3] Loutfy H. Madkour. Nanoparticles as Targeted Drug Co-Delivery in CancerTherapeutics. Chronicles of Pharmaceutical Science Journal, Volume 3, Issue 2(2019), pp. 800‒804.https://scientiaricerca.com/srcops/SRCOPS-03-00081.php

[4] Loutfy H. Madkour. Ecotoxicology-Nanotoxicology and Reactive OxygenSpecies (ROS) Stress Combination of Free Radicals and Nanoparticles towardsAntioxidant Defense Therapeutics. Journal of Targeted Drug Delivery, J TargetDrug Deliv. Volume 3(1) (2019), pp. 1‒58.

[5] Yue Xu, Shengtao Zhang, Wenpo Li, Lei Guo, Shenying Xu, Li Feng, Loutfy H.Madkour. Experimental and theoretical investigations of some pyrazolo-pyrimidinederivatives as corrosion inhibitors on copper in sulfuric acid solution. AppliedSurface Science, Volume 459, 30 November (2018), pp. 612–620.https://doi.org/10.1016/j.apsusc.2018.08.037https://www.sciencedirect.com/science/article/pii/S0169433218321561

About the Author xxxi

Page 31: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

xxxii About the Author

[6] Lei Guo, Min Wu, Savaş Kaya, Meihang Chen, and Loutfy H. Madkour.Influence of the alkyl chain length of alkyltriazoles on the corrosion inhibition ofiron: A DFTB study. AIP Conference Proceedings 1995, 020015 (2018).https://doi.org/10.1063/1.5048746https://aip.scitation.org/doi/abs/10.1063/1.5048746https://aip.scitation.org/doi/pdf/10.1063/1.5048746

[7] Li Feng, Shengtao Zhang, Yujie Qiang, Yue Xu, Lei Guo, Loutfy H. Madkour,and Shijin Chen. Experimental and Theoretical Investigation of Thiazolyl Blue as aCorrosion Inhibitor for Copper in Neutral Sodium Chloride Solution. Materials(Basel) (2018) Jun; 11(6): 1042. Published online (2018) Jun 19.https://doi.org/10.3390/ma11061042https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025645/pdf/materials-11-01042.pdf

[8] Y. Xu, S. Zhang, L. Guo, B. Tan, C. Liao, Y. Zhou, and Loutfy H. Madkour.Halogen-substituted pyrazolo-pyrimidine derivatives as corrosion inhibitors forcopper in sulfuric acid solution. Int. J. Corros. Scale Inhib. (2018), 7(2) 236–249.https://www.researchgate.net/publication/325644146_Halogen-substituted_pyrazolopyrimidine_derivatives_as_corrosion_inhibitors_for_copper_in_sulfuric_acid_solution

[9] Loutfy H. Madkour, Savaş Kaya, Lei Guo, Cemal Kaya. Quantum chemicalcalculations, molecular dynamic (MD) simulations and experimental studies ofusing some azo dyes as corrosion inhibitors for iron. Part 2: Bis–azo dye deriva-tives. Journal of Molecular Structure, 1163 (2018), 397–417.https://doi.org/10.1016/j.molstruc.2018.03.013https://www.sciencedirect.com/science/article/pii/S0022286018302965?dgcid=STMJ_73515_AUTH_SERV_PPUB_V38

[10] Loutfy H. Madkour, Savaş Kaya, Ime Bassey Obot. Computational, MonteCarlo simulation and experimental studies of some arylazotriazoles (AATR) andtheir copper complexes in corrosion inhibition process. Journal of MolecularLiquids, 260 (2018) 351–374.https://doi.org/10.1016/j.molliq.2018.01.055https://www.sciencedirect.com/science/article/pii/S0167732217335651#bg0005

[11] Lei Guo, Ying Gao, Yongxian Xu, Renhui Zhang, Loutfy H. Madkour, andYingchang Yang. Understanding the corrosion behavior of amorphousmultiple-layer carbon coating. Advances in Materials, Machinery, Electronics II:Proceedings of the 2nd International Conference on Advances in Materials,Machinery, Electronics (AMME 2018), Volume number: 1955 Published: Apr 18,2018. AIP Conference Proceedings 1955, 020001 (2018).https://doi.org/10.1063/1.5033573https://aip.scitation.org/doi/pdf/10.1063/1.5033573

Page 32: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

[12] Loutfy H. Madkour. Applications of gold nanoparticles in medicine andtherapy. Pharmacy & Pharmacology International Journal (2018); 6(3) 157‒174.https://doi.org/10.15406/ppij.2018.06.00172http://medcraveonline.com/PPIJ/PPIJ-06-00172.pdf

[13] Loutfy H. Madkour. Toxic Effects of Environmental Heavy Metals onCardiovascular Pathophysiology and Heart Health Function: ChelationTherapeutics. UPI Journal of Pharmaceutical, Medical and Health Sciences(UPI‒JPMHS) (2018); 1(1) 19–62.https://uniquepubinternational.com/wp-content/uploads/2018/03/UPI-JPMHS-2018-7.pdf

[14] Loutfy H. Madkour. Biogenic–Biosynthesis Metallic Nanoparticles (MNPs)for Pharmacological, Biomedical and Environmental NanobiotechnologicalApplications. Chronicles of Pharmaceutical Science Journal, Volume 2, Issue 1(2018), pp. 384‒444.https://scientiaricerca.com/srcops/SRCOPS-02-00038.php

[15] Loutfy H.Madkour. Ecofriendly green biosynthesized of metallic nanoparticles:Bio-reduction mechanism, characterization and pharmaceutical applications inbiotechnology industry. Global Drugs and Therapeutics (2018), Volume 3 (1): 1–11.http://www.oatext.com/ecofriendly-green-biosynthesized-of-metallic-nanoparticles-bio-reduction-mechanism-characterization-and-pharmaceutical-applications-in-biotechnology-industry.php

[16] Loutfy H. Madkour. Review Article: Advanced AuNMs as nanomedicine’scentral goals capable of active targeting in both imaging and therapy in biomole-cules. Global Drugs and Therapeutics (2017), Volume 2(6): 1–12.http://www.oatext.com/advanced-aunms-as-nanomedicines-central-goals-capable-of-active-targeting-in-both-imaging-and-therapy-in-biomolecules.php

[17] Loutfy H. Madkour. Biotechnology of Nucleic Acids Medicines as GeneTherapeutics and Their Drug Complexes. Chronicles of Pharmaceutical ScienceJournal, Volume 1, Issue 4 (2017), pp. 204–253.https://scientiaricerca.com/srcops/pdf/SRCOPS-01-00023.pdf

[18] Loutfy H. Madkour. Advanced AuNMs as Nanomedicine’s central GoalsCapable of Active Targeting in Both Imaging and Therapy in Biomolecules. BioAccent Online BAOJ Nanotechnology, (2017), Volume 3, Issue 1, 015, 1‒18.https://bioaccent.org/nanotechnology/nanotechnology15.pdf

[19] Loutfy H. Madkour. Vision for life sciences: interfaces between nanoelectronicand biological systems. Global Drugs and Therapeutics, 2(4), (2017), 1‒4.https://doi.org/10.15761/gdt.1000126https://oatext.com/Vision-for-life-sciences-interfaces-between-nanoelectronic-and-biological-systems.php

About the Author xxxiii

Page 33: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

[20] Loutfy H. Madkour, Savaş Kaya, Cemal Kaya, Lei Guo. Quantum chemicalcalculations, molecular dynamics simulation and experimental studies of usingsome azo dyes as corrosion inhibitors for iron. Part 1: Mono-azo dye derivatives.Journal of the Taiwan Institute of Chemical Engineers, 68, (2016), 461–480.84993118310http://www.sciencedirect.com/science/article/pii/S1876107016303522

[21] Loutfy H. Madkour, I. H. Elshamy. Experimental and computational studies onthe inhibition performances of benzimidazole and its derivatives for the corrosion ofcopper in nitric acid. International Journal of Industrial Chemistry (IJIC), Volume7, Number 2 (2016) 7, 195–221.84971325185http://link.springer.com/article/10.1007/s40090-015-0070-8

[22] Savaş Kaya, Cemal Kaya, Lei Guo, Fatma Kandemirli, Burak Tüzün, İlkayUğurlu, Loutfy H. Madkour, Murat Saraçoğlu. Quantum chemical and moleculardynamics simulation studies on inhibition performances of some thiazole andthiadiazole derivatives against corrosion of iron. Journal of Molecular Liquids, 219,(2016), 497–504.84962828467http://www.sciencedirect.com/science/article/pii/S016773221531254X

[23] Loutfy H. Madkour, S. K. Elroby. Inhibitive properties, thermodynamic,kinetics and quantum chemical calculations of polydentate Schiff base compoundsas corrosion inhibitors for iron in acidic and alkaline media. International Journal ofIndustrial Chemistry (IJIC), Volume 6, Number 3 (2015) 6: 165–184.84940640561http://link.springer.com/article/10.1007/s40090-015-0039-7

[24] Loutfy H. Madkour. Electro-Thermal and Semiconductivity Behaviour ofNatural Sintered Complex Carbonate Ore for Thermo-Technological Applications.Hindawi Publishing Corporation. Journal of Geochemistry Volume (2014),Article ID 451782, 10 pages.https://www.hindawi.com/archive/2014/451782/

[25] Loutfy H. Madkour, S. K. Elroby. Correlation between corrosion inhibitiveeffect and quantum molecular structure of Schiff bases for iron in acidic andalkaline media. Standard Scientific Research and Essays, Vol 2(13): 680–704,December Special Issue (2014) (ISSN: 2310-7502).http://standardresearchjournals.org/journals/SSRE/Pdf/2014/december_special_issue/Madkour%20and%20Elroby.pdf

xxxiv About the Author

Page 34: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

[26] Loutfy H. Madkour, U. A. Zinhome. Inhibition, kinetic and thermodynamiceffects of new Azo derivatives on iron corrosion in acidic and alkaline solutions.Standard Scientific Research and Essays, Vol 2(13): 705–724, December SpecialIssue (2014) (ISSN: 2310-7502).http://standardresearchjournals.org/journals/SSRE/Pdf/2014/december_special_issue/Madkour%20and%20Zinhome.pdf

[27] Loutfy H. Madkour. Electro-Thermal and Semiconductivity Behaviour ofNatural Sintered Complex Carbonate Ore for Thermo-Technological Applications.International Research Journal of Geology and Mining (IRJGM) (2276-6618), Vol.4(1) pp. 37–50, January (2014).https://doi.org/10.14303/irjgm.2013.034Copyright © (2014) International Research Journals.http://www.interesjournals.org/irjgm/january-2014-vol-4-issue-1/electro-thermal-and-semiconductivity-behaviour-of-natural-sintered-complex-carbonate-ore-for-thermo-technological-applications

[28] Loutfy H. Madkour, S. K. Elroby. Aminic nitrogen- bearing polydentate Schiffbase compounds as corrosion inhibitors for iron in acidic and alkaline media: Acombined experimental and DFT studies. Journal of Corrosion Science andEngineering, Volume 17, (2014).84892389669

[29] Loutfy H. Madkour, U. A. Zinhome. Adsorption and corrosion inhibitiveproperties, thermodynamic and quantum chemical studies of Polydentate Schiffbase Compounds (PSCs) on iron electrode in acidic and alkaline media. MeritResearch Journal of Engineering, Pure and Applied Sciences, Vol. 1(1) pp. 01–27,October (2013).http://www.meritresearchjournals.org/epas/index.htm

[30] Loutfy H. Madkour, U. A. Zinhome. Kinetic-thermodynamic studies of sub-stituted mono- and bis- azo dyes as corrosion inhibitors for iron in nitric acid andsodium hydroxide solutions. Journal of Corrosion Science and Engineering,Volume 15, (2012).84870359337

Recent Published Books by Author

[1] Book Title: Practical and Applied ChemistryPublished By: The Public Authority for Applied Education and Training, Kuwait,first edition (1993), 5 Chapters, and 565 large size pages.

About the Author xxxv

Page 35: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

[2] Book Title: Corrosion Science: Theoretical and Practical ApplicationsPub Date: December (2017)Hard ISBN: 9781771886024By (authors): Savaş Kaya, Ime Bassey Obot, Ph.D., and Loutfy H. Madkour, Ph.D.Published by: Apple Academic Press Inc. is an independent international publisherfocusing on academic and professional books in STEM and other fields. With afocus on relevant content as well as first-class production, Apple Academic Press isdedicated to publishing cutting-edge, informative books written and edited byinternationally renowned experts in their fields.http://appleacademicpress.com/corrosion-science-theoretical-and-practical-applications-/9781771886024#bioshttp://appleacademicpress.com/category.php?id=19

[3] Book Title: Toxic Effects of Environmental Heavy Metals on CardiovascularPathophysiology and Heart Health Function: Chelation TherapeuticsBy (author): Loutfy H. MadkourPublished by: LAP Lambert Academic Publishing (2018-10-15)Book Details:Publishing house: LAP LAMBERT Academic PublishingWebsite: https://www.lap-publishing.com/ISBN-13: 978-613-9-92290-1ISBN-10: 6139922909EAN: 9786139922901Book language: EnglishPublished on: 2018-10-15Keywords: Heavy metals, Cardiovascular Disease, oxidative stress, ROS, EDTA,Curcumin chelation.https://www.morebooks.shop/store/gb/book/toxic-effects-of-environmental-heavy-metals-on-cardiovascular-pathophy/isbn/978-613-9-92290-1

[4] Book Title: Nanoelectronic MaterialsBook Subtitle: Fundamentals and ApplicationsBy (author): Loutfy H. MadkourSeries Title: Advanced Structured MaterialsSeries Volume: 116Copyright: 2019Publisher: Springer International PublishingCopyright Holder: Springer Nature Switzerland AGeBook ISBN: 978-3-030-21621-4DOI: 10.1007/978-3-030-21621-4Hardcover ISBN: 978-3-030-21620-7Series ISSN: 1869-8433

xxxvi About the Author

Page 36: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

Edition Number: 1Number of Pages: XLIII, 777Number of Illustrations: 122 b/w illustrations, 494 illustrations in colourTopics: Nanotechnology

[5] Book Title: Nucleic Acids as Gene Anticancer Drug Delivery TherapyBy (author): Loutfy H. MadkourISBN: 9780128197776Publishing house: ELS USA (Elsevier Inc-US) (2020) (in press).

[6] Book Title: Heavy Metals and Nanoparticles‒Induced Reactive Oxygen Species(ROS): Antioxidants Defenses TherapyBy (author): Loutfy H. MadkourPublishing house: ELS USA (Elsevier Inc-US) (2020) (under publication).

About the Author xxxvii

Page 37: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

Abbreviations

0-D Zero-dimensional (quantum dot: all dimensions at the nanoscale)1-D One-dimensional (e.g. surface films, nanowire, nanotube: two

dimensions at the nanoscale and one dimension at the macroscale)2-D Two-dimensional (e.g. strands or fibers, thin films, few layer: one

dimension at the nanoscale and two dimensions at the macroscale)2D TMDCs Two-dimensional transition metal dichalcogenides3-D Three-dimensional space (e.g. Particles: No dimensions at the

nanoscale, all dimensions at the macroscale)AES Auger electron spectroscopyAFM Atomic force microscopyAI Artificial IntelligenceALD Atomic layer depositionAMBIO Advanced Nanostructured Surfaces for the Control of BiofoulingANNs Artificial neural networksANTT Active nanotube transistora-Si Amorphous siliconATP Adenosine triphosphateAuNPs Gold nanoparticlesBET Brunauer–Emmett–TellerBHJ Bulk heterojunctionC60 and C70 Fullerene with the diameter of 7.114 and 7.648 nmC82 or C84 Endohedral fullerenes (larger fullerenes)CBE Chemical beam epitaxyCBM Conduction band minimumCe Electron specific heatCFL Compact fluorescent lampCHEM-FET Chemical field effect transistorCIGS Copper indium gallium (di) selenideCMOS Complementary metal oxide semiconductorCNT Carbon nanotubes

xxxix

Page 38: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

cp Phonon specific heatCP NWs Conducting polymer nanowiresCRT Cathode ray tubeCS Coconut shellCSD Cell-surface displayCVD Chemical vapor depositionDC Direct CurrentDCR Dark count rateDDU Density gradient ultracentrifugationDFT Density functional theoryDNA Deoxyribonucleic acidDOS density of statesDPN Dip-pen nanolithographyDRIE Deep reactive-ion etchingDRS UV/vis-diffuse reflectance spectrometerDS Dodecyl sulfateDWNTs Double-walled carbon nanotubesEBID Electron beam induced depositionECAP Equal-channel angular pressingECMs Extracellular matricesEDAX Energy Dispersive X-Ray SpectroscopyEDL Electric double layerEDX Energy dispersive X-rayEELS Electron energy loss spectroscopyEFM Electrostatic force microscopyEMC Ensemble Monte Carlo modelEN Engineered nanomaterialsENA Electrochemical noise analysisENIAC Electronic Numerical Integrator and ComputerEOT Equivalent oxide thicknessEQE External quantum efficiencyETE Energy transfer efficiencyFAS Field assisted sinteringFEL Free Electron LaserFe2O3 MaghemiteFe3O4 MagnetiteFCWLEDs Flip-chip white light-emitting diodesFEDs Field Emission DisplaysFET Field-effect transistorsFIB Focused ion beamFQM Fluorescence Quenching MicroscopyFRET Fluorescence resonance energy transferFWHM Full width at half maximumGaAs Gallium arsenideGBs Grain boundaries

xl Abbreviations

Page 39: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

GCP Gas Condensation ProcessingGO Graphene oxideGPa GigapascalsH HexagonalHAGO Hydrogenation assisted graphene origamihBN Hexagonal boron nitrideHDTVs High definition televisionsHGNPs Hollow gold NPsHIP High isostatically pressingHJBT Heterojunction bipolar transistorsHK High-k materialsHOMO Highest occupied molecular orbitalHOPG Highly oriented pyrolytic graphiteHRS High resistance stateHRTEM High resolution transmission electron microscopyHS Humic substancesHSZ High silica zeolitesHWCVD Hot Wire filament chemical vapor depositionIC Integrated circuit levelICMA International Conference on Mechatronics and AutomationICP Inductively coupled plasmaoptical emission spectrometryIEA International Energy AgencyIGC Inert gas condensationIM Irresistible Materials Ltd.IQE Internal quantum efficiencyIR InfraredIr Return currentISFET Ion-selective field effect transistorITO Indium tin oxidej Thermal conductivityL Channel length (L) of the transistorLCD Liquid-crystal displaysLDL Low density lipoproteinLEDs Light-emitting diodesLEED Low energy electron diffractionLlitho Lithographic limitLOT Lateral olfactory tractLPCVD Performed at low pressure chemical vapor depositionLphys Physical limitLPNE Lithographically patterned nanowire electrodepositionLRS Low resistance stateLSPR Localized Surface Plasmon resonanceLSZ Low-silica zeoliteLUMO Lowest unoccupied molecular orbitalMA Mechanical attrition

Abbreviations xli

Page 40: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

MBE Molecular beam epitaxyµc-Si Microcrystalline siliconMD Molecular Dynamic SimulationsMEAs Metal electrodes and arraysMEMS Microelectronic-mechanical systemsmfp Mean free pathsMFCs Mass flow controllersMg-Ni Magnesium-nickelMIT Massachusetts Institute of TechnologyMNPs Magnetic nanoparticlesMOCVD Metal-organic chemical vapor depositionMODFET Modulation-doped field effect transistorMOEMS Micro-optoelectronic- mechanical systemsMOFs Metal organic frameworksMOMBE Metallorganic molecular beam epitaxyMoS2 Molybdenum disulfideMoSe2 Molybdenum diselenideMOSFET Metal-oxide semiconductor field-effect transistorMPs MicroparticlesMQWs Multiple quantum wellsMRI Magnetic resonance imagingMSM-UPDs Metal-semiconductor-metal ultraviolet photo detectorsMVs Mono-vacanciesMWCNTs Multi-walled carbon nanotubesMWNTs Multiwalled nanotubesNanoES Nanoelectronic scaffoldsNBs NanobeltsNc Nanocrystalline materialsNCMs NanocompositesNEGF Nonequilibrium Green’s functionNEMS Nanoelectromechanical systemnm NanometerNMs NanomaterialsNNI National Nanotechnology InitiativeNOR NOT-ORNPs NanoparticlesNS-SC Nanostructured semiconductingNSs NanostructuresNSMs Nanostructured materialsNT NanotechnologyNTs NanotubesNVM Nonvolatile memoryNWs NanowiresNW-FET Nanowire-based field-effect transistorNW-TFT Nanowire-based thin-film transistor

xlii Abbreviations

Page 41: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

OFETs Organic field-effect transistorsOLED Organic light emitting diodesOPVs Organic photovoltaic devicesPANA Polymerizing anthranilic acidPANA-Fe Polyanthranilic acid iron Nano compositePANA-Mg Polyanthranilic acid-magnesium NanocompositePANA-Zn Polyanthranilic acid-Zinc Nano compositePAW Projector augmented wavePC Phosphatide-choline vesiclesPCA Principal component analysisPCE Power conversion efficiencyPCBM Phenyl C61-butyric acid methyl esterPEC Photo electrochemicalPECS Pulsed electric current sinteringPECVD Plasma-Enhanced chemical vapor depositionPEG Polyethylene glycolPEN Poly (ethylene naphthalate)PEO Polyethylene oxidePET Poly (ethylene terephthalate)PD Phage displayPGM Platinum group metalsPL PhotoluminescencePLA Polylactic acidPMMA Poly(methyl methacrylate)pMOSFET p-type metal-oxide semiconductor field-effect transistorPMTs PhotomultipliersPn Pico Newton’sPNCA Plasma Nanoscience Center AustraliaPNP polymer nanoparticlePNRSNSPD photon-number-resolving superconducting nanowire single-photon

detectorPOM Polarized optical microscopyPSA Prostate specific antigenPSPR Propagating Surface Plasmon resonanceP(t) Timedependent power of radiationPV PhotovoltaicPVD Physical vapor depositionPZT Lead zirconium titaniaQDs Quantum dotsQKD Quantum key distributionR RhombohedralRBAI Root bark extract of Azadirachta indicaRES Reticulum endothelial systemRET Resonant energy transferRF Radio-Frequency

Abbreviations xliii

Page 42: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

RHEED Reflection high-energy electron diffractionRNA Ribonucleic acidRpo The coating resistanceRRAM Resistive random access memoryRsheet Sheet resistanceRTA Rapid thermal annealingRTN Random telegraph noiseSAED Selected area electron diffractionSAXS Small-angle X-ray scatteringSBU Secondary builing unitsSDA Structure-directing agentSEI Solid electrolyte interfaceSEM Scanning Electron Microscope analysisSET Single-Electron TransistorSHG Second harmonic generationSHIBL Scanning He+ ion beam lithographySI International System of unitsSiC Silicon carbideSiGe Silicon-germaniumSi3N4 Silicon nitrideSiNWs Silicon nanowiresSiONWs Silica nanowiresSKPM Scanning Kelvin probe microscopySLS Solid-Liquid-SolidSNAP Superconducting nanowire avalanche photodetectorS/N Signal-to-noise ratioSnO2 Tin dioxideSNOM Scanning near-field optical microscopySNSPD Superconducting nanowire single-photon detectorSPAD Single photon avalanche photodiodesSPD Single-photon detectorSPF Sun protection factorSPM Electrical scanning probe microscopy techniquesSPR Surface Plasmon resonanceSPS Spark plasma sinteringSPW Surface Plasmon waveSRAM Static random access memorySSDs Self-switching diodesSSPD Superconducting single-photon detectorSTEM Scanning transmission electron microscopySSM Simulation of styrene moleculesSTM Scanning tunneling microscopySTS Scanning tunneling spectroscopySWCNTs Single-walled carbon nanotubesSWNTs Single-walled carbon nanotubes

xliv Abbreviations

Page 43: Advanced Structured Materials978-3-030-21621-4/1.pdfstructure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced

T Tetragonals Recovery timeT0 Substrate temperatureTCO Transparent conductive oxideTCSPC Time-correlated single-photon countingTDDFT Time dependent DFTTe Electron subsystem\Tes Phonon escape timeTEM Transmission electron microscopyTEOS Tetraethyl orthosilicateTERS Tip-Enhanced Raman SpectroscopyTFBGs Tilted fiber Bragg gratingsTFTs Thin film transistorsTHG Third harmonic generationTiO2 Titanium dioxideTMDs Transition metal dichalcogenidesTMD-NDs Transition-metal dichalcogenide nanodotsTNT Tri-nitro tolueneTp Phonon subsystemTPR Transient photoimpedence responseUFM Ultrasonic force microscopyUHV Ultrahigh vacuumULCI Ultra-large integrated circuitsUV UltravioletUV–Vis Ultraviolet–visibleVASP Vienna ab initio simulation packageVBM VALENCE band maximumVDS Drain-source voltagevdW Van der WaalsVLS Vapor—liquid—solidVS Vapor-SolidVSS Vapor-solid-solidWLEDs White light-emitting diodesWO3 Tungsten oxideWS2 Tungsten disulfideWSe2 Tungsten diselenideXPS X–ray photoelectron spectroscopyXRD X–ray diffractionZnO Zinc oxide

Abbreviations xlv


Recommended