+ All Categories
Home > Documents > Advanced Vitreous State – The Physical Properties of...

Advanced Vitreous State – The Physical Properties of...

Date post: 14-Mar-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
18
1 Advanced Vitreous State – The Physical Properties of Glass Active Optical Properties of Glass Lecture 21: Nonlinear Optics in Glass-Applications Denise Krol Department of Applied Science University of California, Davis Davis, CA 95616 [email protected] [email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 1
Transcript
Page 1: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

1

Advanced Vitreous State – The Physical Properties of Glass

Active Optical Properties of GlassLecture 21: Nonlinear Optics in Glass-Applications

Denise KrolDepartment of Applied ScienceUniversity of California, DavisDavis, CA [email protected]

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 1

Page 2: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 2

Nonlinear optical susceptibilities

!

" (1) #( ) =P(1)(#)

$oE(#)

=Ne

2

$om

1

#0

2%# 2 % i#&

General formalism:

!

= P(1)(t) + P

(2)(t) + P

(3)(t) + ...

!

P(t) = " (1)E(t) + " (2)E(t)2 + " (3)E(t)3 + ...

E and P can be written as sum of frequency components:

!

E = E(" j )e#i" j t

j

$

!

P = P(" j )e#i" j t

j

$

!

" 2(# p =#m +#n ) =P(2)(# p )

E(#m )E(#n )=

Nae3

m2 $D # p( )D #n( )D #m( )

!

" (3)(#q =#m +#n +#p ) =Nbe

4

m3 $D(#q )D(#m )D(#n )D(#p )

output frequency

input frequencies, pos or neg

!

D(" j ) = ("0

2 #" j

2) # i" j$

Value of χ(n)

depends onfrequencies

Page 3: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 3

Nonlinear optics in glass2nd-order nonlinearities

In normal glasses χ(2)=0

3nd-order nonlinearities All materials, including glasses, have a χ(3)

In glass there are only three independent χ(3) tensor elements

χ(3) processes involve the interaction of 3 input waves to generate a polarization(4th wave) at a mixing frequency

with 3 different input frequencies there are many possible output frequencies

Strength of generated signal depends on propagation length-optical fibers!

Phase matching: Δk=k4-k3-k2-k1=0!

" (3)(3# =# +# +#) $ " (3)(# =# +# %#)

Page 4: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 4

Units in nonlinear optics

linear nonlinear

!

r P ( t) = " (1) #

r E (t)+ " (2) #

r E ( t)

2+ " (3) #

r E (t)

3+ # # #Gaussian system of units

!

r P (t) = "

0# (1) $

r E (t) + # (2) $

r E (t)

2 + # (3) $r E (t)

3 + $ $ $[ ]MKS system

ε0 = permittivity of free space = 8.85 x 10-12 F/m

MKS system Gaussian system

Electric Field, E V/m statvolt/cmPolarization, P C/m2 statvolt/cmIntensity, I

Intensity, I W/m2 erg/cm2-sec

χ(2) m/V cm/statvolt, esu χ(2) (MKS) = 4.189 x 10-4 χ(2) (Gaussian)

χ(3) m2/V2 (cm/statvolt)2, esu χ(3) (MKS) = 1.40 x 10-8 χ(3) (Gaussian)

!

I =nc

2"E

2

!

I = 2n"0

µ0

#

$ %

&

' (

1/ 2

E2

Page 5: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 5

χ(2) can be induced in glass by thermal poling

The induced χ(2) can be examined viasecond harmonic generation (SHG)

ω ω

SHG process

Second order optical nonlinearity (χ(2)) = 0 in glassesbecause glasses are isotropic

To induce a χ(2) in glasses Thermal poling technique

silica DC + Heat

~ 1 mm

Thermal poling experiment

t (min.)

T (°C)

280

25

V (kV)

3

Page 6: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 6

Thermal poling-proposed mechanism

χ(2) ∝ χ(3) EDC

+ - + - + - + - +

+ + + + +HV,T

+

RT

- - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - -

Z

Z

EDC

//

// Z

Page 7: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 7

Effect

Nonlinear index

Stimulated Raman scattering

Nonlinear photoinduced changes

n =n0+n2In2 ~ χ(3)(ω=ω+ω−ω)

χ(3) phenomena and applications in glass

Applications

Optical switchingSupercontinuum generation

Raman amplifiers and lasers

Fs laser structuring

Page 8: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 8

Nonlinear optical switch

Signal

Switching

Pulse

Output

Nonlinear Material

Waveguide Interferometer

1

2

Without switching pulse: waves in leg 1 and 2 interfere destructively, no output

With switching puse: due to the nonlinear interaction, the switching pulse causes a phase shift in the part of the signal pulse propagating in leg 2.

As a result waves in 1 and 2 interfere constructively, output

From P.Thielen, PhD Dissertation, UC Davis, 2004

Page 9: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 9

Material dependence of n2

ω0

Classical anharmonic electron oscillator, far from resonance:

!

" (3)(# =# +# $# ) %e4

m3#0

6d5

ω

!

n2(" ) = n2(0) # 1$h"

ES

%

& '

(

) *

2+

,

- -

.

/

0 0

$3.5

!

n2(0) =

3.4(n0

2+ 2)

3(n

0

2"1)d

2

n0

2ES

2#10

"20

Bond polarizability model by M. Lines:

Frequency dependence

Long wavelength limit:

Es is Sellmeier gap

Page 10: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 10

Material dependence of nonlinear index

n2(10-16cm2/W)

T. Monro et al, Annu. Rev. Mater. Res. 2006. 36:467

Page 11: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 11

distance through fiber

self phase modulationpulse of light

!

"(t) =#0$#0n2L

c

dI(t)

dtinstantaneous frequency

generation ofnew frequencycomponents

Page 12: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 12

Supercontinuum generation inmicrostructured fibers

From Philip Russell et al. Source:www.bath.ac.uk/physics/groups/opto/rse/holeyfibres.html

core

cladding

guidance properties determinedby size and pattern of holesunusual dispersionhigh nonlinearity

propagation of pulsed (100fs) Ti-sapphirelaser light( 800 nm) results insupercontinuum generation : 400-1600 nm

Page 13: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 13

Raman gain

!

PNL("

S,z) = 6#

R("

S) A

L

2ASeikS z

!

"R(#S ) =N

6m

$%

$q

&

' (

)

* + 0

2

,1

#v

2 - (#L -#S )2+ 2i.(#L -#S )

ωLωv

ωS

Stokes Raman scattering

vibrationalenergy

At high laser intensities:stimulated Stokes Raman scattering

fiber

Page 14: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 14

χ(3) phenomena and applications in glass

Effect

Nonlinear index

Stimulated Raman scattering

Nonlinear photoinduced changes

Applications

Optical switchingSupercontinuum generation

Raman amplifiers and lasers

Fs laser structuring

Page 15: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

Interaction of glass with sub-bandgap, focused, fs laser pulses

cw laser at 800 nmsilica glass

ultrashort (100fs) pulsesand tight focusing (µm-size spot)

permanent modification

deposition of laser energyinto glass

at low to moderate intensitiessub-bandgap light istransmitted

photon energy

at high intensities multiphotonabsorption occurs

Light-matter Interaction is localizedin time and space ->3-D control of modification

Page 16: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 16Schaffer et al, MRS Bull 31, 620 (2006)

How does the material change on an atomic scale?

4) Proposed mechanism: -Shockwave propagation

(microexplosion) -Fast heating and cooling

3) Plasma formation

1) Multiphoton absorption2) Avalanche photoionization

5) Modified spot

Femtosecond laser modification in glass

?

energy abs~100 fs

energy

dissipation~ 1µs

Page 17: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 17

Davis et. al, Opt. Lett., 21, 1729 (1996)

130 fs

~ 1 µJ of energy

800 nm bulk glass

waveguide

Properties:

Refractive indexAbsorptionComposition (phase separation)Valence state (Sm3+ -> Sm2+)Crystal nucleation (Ag and Au colloids in glass)

Femtosecond laser pulses can modify various glass properties

Applications:

photonic devices

lab-on-chipdata storageoptical switching

Page 18: Advanced Vitreous State – The Physical Properties of Glassinimif/teched/GlassProp/Slides/GlassProp_Lecture21_Krol.pdfActive Optical Properties of Glass Lecture 21: Nonlinear Optics

[email protected] Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 18

Some references

NLO Books:N. Bloembergen, Nonlinear OpticsR.W. Boyd, Nonlinear Optics

NLO in Glass ReviewsE. M. Vogel, M.J. Weber, D. M. Krol, “Nonlinear optical phenomena in glass”, Phys.

Chem. Glasses 32, 231 (1991).

K. Tanaka, “Optical nonlinearity in photonic glasses”, J. Materials Science: 16, 633

(2005)

Fs laser structuring of glass“Ultrafast lasers in materials research”, Special issue, MRS Bulletin August 2006


Recommended