+ All Categories
Home > Documents > AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM_European Bioenergy Outlook 2012sv

Date post: 13-Aug-2015
Category:
Upload: luigichiarini
View: 25 times
Download: 0 times
Share this document with a friend
Description:
bioenergy from biomass in the european union
Popular Tags:
124
Transcript
Page 1: AEBIOM_European Bioenergy Outlook 2012sv
Page 2: AEBIOM_European Bioenergy Outlook 2012sv

Dear readers, The complexitity of bioenergy sector makes difficult to have a clear overview about the situation of the sector and future potential: A variety of different biomass raw material, many different conversion technologies, the final energy use… apart from that there is the question of European legislation that affects RES sector, the competition for raw material and the development of related sectors as agriculture or foresty. The information related to all these issues is scattered throhghout literature and sometimes the figures are not consistant. Thus why, AEBIOM has decided to publish this collection of data on biomass in order to contribute to a better understanding and futher successful development of bioenergy sector in Europe. The figures in this report have been compiled for data published in many different documents, presentations at conferences, and information provided by AEBIOM´s members and other bioenergy experts. This report consists of two main parts. The first part (chapters 3) provides basic information about the biomass resources originated from forest, agricultural and waste streams. The second part (chapters 4-6) is structured according to its end use: electricity, heat and transport. Two more special chapters are dedicated to biogas and pellets sectors. At the end of the document the reader can find the Annex that includes explanation of terms, conversion units and abbreviations. The preparation of European Bioenergy Outlook 2012 was coordinated by Cristina Calderón, with technical assistance from Jean-Marc Jossart, Secretary General of AEBIOM. Special thanks are given to Heinz Kopetz, Gustav Melin, Kjell Anderson and Peter Rechberger who took time out of their busy schedules to review this work. Acknowledgements are also given to the helpful information provided by the attendance of the AEBIOM worshop in perennial energy crops and many other bioenergy experts who provided national statistics and make it possible to have trustworthy figures.

Page 3: AEBIOM_European Bioenergy Outlook 2012sv

Table of Contents Foreword

1 Introduction ............................................................................................... 7

1.1 Biomass for energy ........................................................................................... 8

1.2 Biomass in Europe: The most important facts at a glance ................................... 9

2 Overview about the European Energy System .......................................... 11

2.1 Generalities .....................................................................................................11 2.1.1 Energy breakdown ......................................................................................................... 11 2.1.2 GHG emissions .............................................................................................................. 17

2.2 Bioenergy in Europe .........................................................................................20 2.2.1 Current bioenergy balance ........................................................................................... 20 2.2.2 Overview about the National Renewable Energy Action Plans .................................... 24

3 Biomass supply ........................................................................................ 29

3.1 General overview ............................................................................................30

3.2 Biomass for agricultural land and by-products ..................................................31 3.2.1 Agriculture in eu ........................................................................................................... 31 3.2.2 Energy crops.................................................................................................................. 36

3.2.2.1 Energy crops for biofuels .......................................................................................... 37 3.2.2.2 Energy crops for electricity and heat production ..................................................... 39

3.2.3 Agricultural By-products ............................................................................................... 42

3.3 Biomass from forestry ......................................................................................43 3.3.1 Forestry in Europe ......................................................................................................... 43 3.3.2 The role of forest in the carbon cycle ........................................................................... 49 3.3.3 Forestry residues .......................................................................................................... 51 3.3.4 Wood as a source of energy ......................................................................................... 52

3.4 Biomass from waste ........................................................................................60 3.4.1 Waste production in EU ................................................................................................ 60 3.4.2 Waste as a source of energy ......................................................................................... 62

3.5 Other ..............................................................................................................64 3.5.1 Black liquor ................................................................................................................... 64 3.5.2 Peat .............................................................................................................................. 65

Page 4: AEBIOM_European Bioenergy Outlook 2012sv

4 Biomass for Heat ..................................................................................... 66

4.1 Heat demand in Europe ................................................................................... 67

4.2 Biomass for heat and bioheat .......................................................................... 68

4.3 Small Scale heating ......................................................................................... 70

4.4 District heating and cooling ............................................................................. 73

5 Electricity from biomass .......................................................................... 79

5.1 Electricity in Europe ........................................................................................ 80

5.2 Bioelectricity ................................................................................................... 82

5.3 Combined heat and power (CHP) ..................................................................... 84

6 Biofuels for Transport .............................................................................. 86

6.1 Generalities .................................................................................................... 87

6.2 Biodiesel and bioethanol ................................................................................. 89

7 Biogas sector in Europe ........................................................................... 93

7.1 Generalities .................................................................................................... 94

7.2 Biomethane .................................................................................................... 98

8 Pellets sector in Europe ............................................................................ 99

8.1 Generalities of the pellet sector ..................................................................... 100

8.2 Situation in Europe........................................................................................ 101 8.2.1 Production .................................................................................................................. 101 8.2.2 Trade ........................................................................................................................... 103 8.2.3 Pellet heating devices ................................................................................................. 104 8.2.4 ENplus quality certification statistics .......................................................................... 106

Annexes General country information Symbols and abbreviations Transformation coefficients Energy content, calorific value, specific weight Glossary List of tables and figures

Page 5: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 5

Page 6: AEBIOM_European Bioenergy Outlook 2012sv

6 European Bioenergy Outlook 2012| AEBIOM

FOREWORD

AEBIOM is proud to present the “European Bioenergy Outlook 2012”. After last year’s interest in our “AEBIOM statistical report 2011”, we have decided to make this report an annual happening and change the name to “European Bioenergy Outlook ”. In our opinion, the 2012 edition is even more interesting than the previous year; however you might still find some facts and figures that could be improved. We have the ambition to present the latest figures known in every area. In this year’s Outlook you mainly find figures from 2010 and 2011. Currently Bioenergy is most competitive in the heating sector replacing heating oil in both large and small installations. This development is not due to taxes, but simply due to the high price of oil in the world markets. Therefore, this makes oil disappear from the heating sector all over the globe. The use of combined heat and power and district heating is still small in many parts of Europe. In the long run, the development of CHP is essential to produce power from biomass at a cost competitive level. AEBIOM´s staff has done a tremendous job compiling existing statistics from a large number of sources. During the last years, a number of EU projects have given us new statistics as well as projections for the future. A special thanks to Cristina Calderón who is responsible for the production of the European Bioenergy Outlook 2012. Statistics are not dry numbers. Good statistics presented in a clear way help us to understand what is going on around us, and to paint the big picture. Statistics give important information on the current development and thus function as a base for better decisions. Contrary poor statistics jeopardize sound decisions. Finally, I would like to invite you to read the interesting material ahead and to ask you to help us in our efforts to keep up the trend and continuously increase the use of Bioenergy. Your support and action is important - become an Aebiom member!

Gustav Melin

PRESIDENT AEBIOM BRUSSELS, NOVEMBER 2012

Page 7: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 7

Introduction 1

Page 8: AEBIOM_European Bioenergy Outlook 2012sv

8 European Bioenergy Outlook 2012| AEBIOM

1.1 Biomass for energy Bioenergy refers to renewable energy coming from biological material using various transformation

processes such as combustion, gasification, pyrolysis or fermentation.

Biomass originates from forest, agricultural and waste streams.

Forest and wood-based industries produce wood which is the largest resource of solid

biomass. Biomass procurement logistics from forest to bioenergy plants are subject to

major improvements. The sector covers a wide range of different bio with different

characteristics - wood logs, bark, wood chips, sawdust and more recently pellets. Pellets,

due to their high energy density and standardised characteristics, offer great opportunities

for developing the bioenergy market worldwide.

Agriculture can provide dedicated energy crops as well as by-products in the form of animal

manure and straw. Available land can be used for growing conventional crops such as rape,

wheat, maize etc. for energy purposes or for cultivating new types of crops such as poplar,

willow, miscanthus and others.

Biogenic waste is the biomass that can cover several forms of waste such as organic

fraction of municipal solid waste, wood waste, refuse-derived fuels, sewage sludge, etc.

Each biomass resource has different characteristics in terms of calorific value, moisture and ash

content, etc. that requires appropriate conversion technologies for bioenergy production. These

conversion routes use chemical, thermal and/or biological processes.

Figure 1.1 Biomass feedstock converted to bioenergy carriers

Source: International Energy Agency (IEA)

Page 9: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 9

8,16% of the total final energy consumption in Europe in 2010

Total gross inland consumption of renewables in EU27 was almost 152 Mtoe in 2010, from which 118,22 Mtoe was biomass.

12,90% of the total heat demand in Europe is covered with biomass. Heating with biomass represent more than 93% of all renewable heat production in Europe.

Bioelectricity cover 16.85% of all the demand of electricity form RES in Europe. The cogeneration share was 63,59% of all electricity produced with solid biomass in 2010.

13,2 million toe of biofuels consumed in the transport sector in Europe in 2010. Biofuel is the main biofuel in European transport with a 78% share of total consumption.

The production of wood pellets in EU increased by 20,5% between 2008 and 2010, reaching 9,2 million tons in 2010. 3.2 million tons of pellet production with the ENplus quality certification in 2012.

1.2 Biomass in Europe:

Page 10: AEBIOM_European Bioenergy Outlook 2012sv

10 European Bioenergy Outlook 2012| AEBIOM

overview about the EU energy system 2

Page 11: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 11

2.1 Generalities

2.1.1 ENERGY BREAKDOWN

The dependency of the European Union (EU) on energy imports, particularly of oil and more recently of gas, forms the backdrop for policy concerns relating to the security of energy supplies. More than half of the EU-27’s energy comes from countries outside the EU – and this proportion is rising.

A new era is at hand for energy and environment in the European Community. The current legislative and regulatory agenda for energy is arguably broader and more complex than it has ever been, with proposals now being debated on renewables, fuel quality, the internal market, emissions trading, and a host of related issues.

As it showed in the figure below Europe produces only 48% of its energy needs.

Figure 2.1 Production, net import and consumption of energy in the EU in the EU in 2010

Source: Eurostat 2012

Figure 2.2 EU 27 Energy import dependency

Energy production 830 Mtoe

Net energy imports

953 Mtoe Energy

gross inland consumption

1759 Mtoe

0

10

20

30

40

50

60

70

80

90

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

% o

f n

et im

po

rts

in g

ross

inla

nd

co

nsu

mp

tio

n

Hard coal and derivatives

All Petroleum Products

Natural GasSource: Eurostat, April 2012

Page 12: AEBIOM_European Bioenergy Outlook 2012sv

12 European Bioenergy Outlook 2012| AEBIOM

Energy dependency strongly differs among MS : Denmark is the only net energy exporter while

Malta is entirely dependent on energy imports.

Figure 2.3 Energy import dependency* in Member States in 2010 (%)

Before going into data, it may be useful for the reader of this report to clarify some terms used in Eurostat:

Gross inland consumption: Gross inland consumption is the quantity of energy consumed within the borders of a country. It is calculated using the following formula: primary production + recovered products + imports +stock changes – exports – bunkers (i.e. quantities supplied to sea-going ships)

Final energy consumption: Final energy consumption is the energy finally consumed in the transport, industrial, commercial, agricultural, public and household sectors.It excludes deliveries to the energy transformation sector and to the energy industries themselves.

76,84%

40,33%

25,60%

-18,21%

59,78%

12,93%

85,62%

69,11%

76,69%

49,30%

83,78%

99,9%

41,62%

81,92%

96,82%

58,26%

99,9%

30,69%

61,82%

31,51%

75,45%

21,66%

49,30%

63,13%

48,14%

36,53%

28,27%

-40% -20% 0% 20% 40% 60% 80% 100% 120%

BE

BG

CZ

DK

DE

EE

IE

EL

ES

FR

IT

CY

LV

LT

LU

HU

MT

NL

AT

PL

PT

RO

SI

SK

FI

SE

UK

* Energy dependency shows the extent to which an economy relies upon imports in order to meet

its energy needs. The indicator is calculated as net imports divided by the sum of gross inland

energy consumption plus bunkers.

Source: Eurostat, April 2012

Page 13: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 13

Gross final energy consumtion is defined in Directive 2009/28/EC as the sum of:

- final energy consumption, i.e. energy delivered to industry for manufacturing processes, to the transport sector, including international aviation, and to other sectors (households, services, agriculture, etc) - consumption of electricity and heat by the energy branch for electricity and heat generation (own use by plant), - losses of electricity and heat in transmission and distribution.

Fossils fuels represent three quarters of our energy mix today. However there have been changes in the mix of sources contributing to gross inland energy consumption over the last decade. While gas rose from 23% to 25%, nuclear energy remained almost stable at 14% during this period, oil fell from 38% to 35% and solid fuels from 19% to 16%.

The share of renewable energy is on rise, from 6% of total gross inland energy consumption in 2000 to 10% in 2010, All Member States showed increases in the share of renewable energy in their energy supply in the last decade, with the largest increases in Denmark (from 8% of total gross inland energy consumption in 1999 to almost 20% in 2009), Sweden (from 27% to 47%), Germany (from 2% to 9,8%), Portugal (from 13% to 24,5%), Slovakia (from 3% to 10,3%), Austria (from 23% to 29,7%), Latvia (from 32% to 34%), Spain (from 5% to 13%), Slovenia (from 9% to 16,9%) and Hungary (from 3% to 7,7%).

In the table below we can see the evolution of the energy mix in Europe during the last decade.

Table 2.1 Gross inland consumption by fuel in the EU27 (Mtoe)

All fuels Solid fuels* Oil Gas Nuclear Renewables

2000 1 724,2 320,8 661,2 393,9 243,8 96,9

2001 1 762,7 322,7 676,2 404,0 252,6 99,9

2002 1 759,1 319,7 671,2 405,5 255,5 97,7

2003 1 802,9 330 675,2 425,6 257,0 103,9

2004 1 824,6 327,1 678,5 435,7 260,2 111,6

2005 1 825,2 317,3 679,3 438,5 257,5 116

2006 1 825,7 325,3 675,1 432,9 255,5 123,4

2007 1 808,8 328,7 661,3 432,9 241,4 134,1

2008 1 800,3 305,5 657,2 441 241,9 143,7

2009 1 703,3 267,9 623,1 416,9 230,7 152,7

2010 1 759 279,9 617 441,7 236,5 172,1

* Solid fuels refer to primary coal and other derived solid fuels produced during coal processing and by coal transformation. Solid renewables fuels such as fuelwood and charcoal are included in renewables energy. Source: Eurostat

Page 14: AEBIOM_European Bioenergy Outlook 2012sv

14 European Bioenergy Outlook 2012| AEBIOM

Source: Eurostat

Figure 2.4 EU gross inland energy consumption by fuel in 2000 and 2010

Total EU27 Gross inland Energy consumption in 2000: 1724 Mtoe

Total EU27 Gross inland Energy consumption in 2010: 1759 Mtoe

Solid fuel 19%

Oil 38%

Natural gas 23%

Nuclear 14%

RES 6%

Solid fuel 16%

Oil 35%

Natural gas 25%

Nuclear 14%

RES 10%

Page 15: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 15

Table 2.2 Final energy consumption by fuel in 2010 (Mtoe)

* Not including electricity from renewables ** Not including derived heat from renewables Source: Eurostat (May 2012)

Transport and industry consume more than half of the total final energy in the EU, while a quarter of final energy is consumed by households. Industry and agriculture/ forestry are the only two sectors where final energy consumption has decreased during the last decade.

All fuels Solid fuels Oil Gas Electricity* Derived Heat**

Renevables

EU27 1 153,3 49,54 456,67 268,63 181,01 42,97 151,53

BE 36,43 1,18 14,94 11,07 6,33 0,62 2,16

BG 8,84 0,47 3,14 0,98 1,72 0,96 1,55

CZ 25,62 3,08 6,63 6,69 4,31 2,16 2,6

DK 15,54 0,14 6,75 1,79 1,68 1,58 3,57

DE 217,36 9,64 82,46 54,05 35,38 10,29 24,63

EE 2,91 0,08 0,95 0,21 0,5 0,39 0,78

IE 11,79 0,61 7,11 1,61 1,81 0 0,64

EL 19,03 0,3 12,13 0,78 3,66 0,05 2,11

ES 90,6 1,26 46,77 14,57 13,47 0 14,52

FR 158,77 4,5 66,72 32,48 30,67 3,39 20,73

IT 124,77 2,91 48,91 38,5 18,55 3,06 12,71

CY 1,92 0,02 1,38 0 0,42 0 0,1

LV 4,27 0,09 1,46 0,5 0,22 0,48 1,5

LT 4,75 0,2 1,61 0,57 0,51 0,73 1,13

LU 4,3 0,07 2,86 0,68 0,31 0,03 0,36

HU 16,66 0,48 4,7 6,26 2,68 1,01 1,49

MT 0,45

0,31

0

NL 53,98 1,27 18,26 22,38 8,22 1,93 1,92

AT 27,93 1,13 10,65 4,99 0,85 1,02 8,88

PL 66,32 13,39 20,49 9,49 9,15 6,68 6,54

PT 18,16 0,05 9,32 1,58 1,78 0,34 5,05

RO 22,48 0,94 6,07 6,19 2,17 1,62

SI 4,97 0,05 2,45 0,62 0,59 0,17 1,07

SK 11,59 1,64 2,3 4,11 1,5 0,75 1,28

FI 26,48 0,88 7,92 1,01 5,1 3,04 8,5

SE 34,44 1,2 10,09 0,62 4,21 1,41 16,91

UK 142,95 3,96 60,32 46,92 25,47 1,29 4,94

Page 16: AEBIOM_European Bioenergy Outlook 2012sv

16 European Bioenergy Outlook 2012| AEBIOM

Table 2.3 Final energy consumption by sector in the EU27 (Mtoe)

Year Total Industry Transport Residential Agriculture/

Forestry Services

Non-

specified

2000 1 120,9 329,6 341,3 292,2 28,1 115,4 129,9

2001 1 145,2 328,9 344,7 301,5 27,7 127,2 137,9

2002 1 132,2 325,4 347,5 292,9 26,9 125,0 133,8

2003 1 171,4 338,0 352,7 298,4 27,3 131,3 225,1

2004 1 186,3 336,1 363,0 302,0 27,5 133,8 227,4

2005 1 191,4 331,4 366,7 302,9 27,6 135,8 257,0

2006 1 191,9 324,3 374,4 300,2 26,2 138,6 271,3

2007 1 165,4 323,0 379,7 284,8 25,5 135,6 156,1

2008 1 173,7 312,6 377,5 296,8 25,6 144,0 157,2

2009 1 112,2 267,7 366,8 294,3 24,8 143,3 142,1

2010 1 153,3 291,5 365,2 307,3 25,0 152,4 108,1

Source: Eurostat

Figure 2.5 Final Energy consumption by sector in the EU27 in 2010

Source: Eurostat

According to the official data published by Eurostat in connenction with the EU Sustainable Energy Week in June 2012, renewable sources was estimated to have contribute 12.4% of gross final energy consumption in the EU27. The highest share of renewable energy in total consumption in 2010 was found in Sweden (47.9% of renewable energy sources in total consumption), Latvia, Finland, Austria and Portugal. The lowest is found in Malta , Luxembourg, the United Kingdom and the Netherlands.

Between 2006 and 2010, all Member States increased their share of renewable energy in total consumption. The largest increases were recorded in Estonia (from 16.1% in 2006 to 24.3% in 2010), Romania (from 17.1% to 23.4%), Denmark (from 16.5% to 22.2%), Sweden (from 42.7% to 47.9%) and Spain (from 9.0% to 13.8%).

Industry 23%

Transport 29%

Residential 25%

Agriculture/Forestry

2%

Services 12%

Non-specified

9%

Page 17: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 17

Table 2.4 Share of renewables in gross final enegy consumption (%)

2006 2007 2008 2009 2010 2020

target

EU27 9 9,9 10,5 11,7 12,4 20

BE 2,7 3 3,3 4,6 : 13

BG 9,6 9,3 9,8 11,9 13,8 16

CZ 6,5 7,4 7,6 8,5 9,2 13

DK 16,5 18 18,8 20,2 22,2 30

DE 6,9 9,0 9,1 9,5 11,0 18

EE 16,1 17,1 18,9 23 24,3 25

IE 2,9 3,3 3,9 5,1 5,5 16

EL 7,0 8,1 8 8,1 9,2 18

ES 9,0 9,5 10,6 12,8 13,8 20

FR 9,6 10,2 11,1 11,9 : 23

IT 5,8 5,7 7,1 8,9 10,1 17

CY 2,5 3,1 4,1 4,6 4,8 13

LV 31,1 29,6 29,8 34,3 32,6 40

LT 16,9 16,6 17,9 20,0 19,7 23

LU 1,4 2,7 2,8 2,8 2,8 11

HU 5,1 5,9 6,6 8,1 : 13

MT 0,2 0,2 0,2 0,2 0,4 10

NL 2,7 3,1 3,4 4,1 3,8 14

AT 26,6 28,9 29,2 31 30,1 34

PL 7 7 7,9 8,9 9,4 15

PT 20,8 22,0 23,0 24,6 24,6 31

RO 17,1 18,3 20,3 22,4 23,4 24

SI 15,5 15,6 15,1 18,9 19,8 25

SK 6,6 8,2 8,4 10,4 9,8 14

FI 29,9 29,5 31,1 31,1 32,2 38

SE 42,7 44,2 45,2 48,1 47,9 49

UK 1,5 1,8 2,3 2,9 3,2 15

Source: Eurostat

2.1.2 GHG EMISSIONS

Greenhouse gas emissions in the EU have fallen 8% during the last decade — a net reduction of 410 million tonnes of CO2 eq.. Table 2.5 shows total greenhouse gas emissions in the period 2001-2010, in the EU-27.

At Member State level, all countries reduced greenhouse gas emissions during the last decade but there is a large variation in GHG emission trends between countries. The overall EU GHG emission trend is dominated by the two largest emitters, Germany and the United Kingdom, together accounting for about one third of total EU-27 GHG emissions.

Page 18: AEBIOM_European Bioenergy Outlook 2012sv

18 European Bioenergy Outlook 2012| AEBIOM

Table 2.5 Development of GHG emissions by country (million of tonnes CO2 equivalent)

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

EU27 5131,3 5086,1 5172,3 5177,9 5148,7 5132,3 5079,0 4974,4 4609,9 4720,9

BE 65,7 62,6 67,6 66,5 66,4 67,4 70,9 68,6 58,9 61,4

BG 145,6 141,5 144,6 146,4 146,3 148,4 148,8 143,7 134,7 139,2

CZ 69,7 69,1 73,9 68,1 63,7 71,6 67,0 63,6 60,7 61,1

DK 1053,8 1032,6 1030,8 1019,2 997,3 998,9 977,0 976,0 911,8 936,5

DE 17,6 17,0 18,9 19,2 18,6 18,0 21,1 19,7 16,4 20,5

EE 70,1 68,2 68,2 68,1 69,3 68,9 68,3 67,6 61,7 61,3

IE 128,0 127,8 131,7 132,1 135,7 132,2 135,0 131,3 124,7 118,3

EL 381,6 398,2 405,2 421,2 435,4 427,2 436,3 403,8 366,3 355,9

ES 564,7 557,0 563,7 563,4 567,1 552,4 542,0 537,3 514,6 522,4

FR 557,5 558,7 574,0 577,3 574,7 564,0 555,8 541,6 491,5 501,3

IT 10,0 10,4 10,8 11,2 11,1 11,5 11,4 11,4 11,1 10,8

CY 10,8 10,8 11,0 11,1 11,2 11,7 12,2 11,7 11,0 12,1

LV 20,4 20,9 20,8 21,8 22,9 23,3 25,4 24,3 20,0 20,8

LT 10,1 10,9 11,3 12,7 13,0 12,8 12,2 12,0 11,5 12,1

LU 79,2 76,9 79,9 79,0 79,5 77,8 75,6 73,3 66,9 67,7

HU 2,7 2,8 2,9 2,9 3,0 3,0 3,1 3,1 3,0 3,0

MT 215,1 214,4 215,4 216,8 211,0 207,0 205,5 204,6 198,9 210,1

NL 84,3 86,0 91,9 91,5 92,9 90,1 87,4 87,0 79,7 84,6

AT 381,5 367,9 381,0 385,4 388,9 404,7 407,1 401,3 381,8 400,9

PL 83,2 87,8 82,5 84,5 86,5 81,5 79,0 77,8 74,4 70,6

PT 143,1 147,2 153,1 150,7 148,9 152,8 150,2 146,7 123,4 121,4

RO 19,7 20,0 19,7 20,0 20,3 20,6 20,7 21,4 19,5 19,5

SI 52,4 51,8 52,4 51,8 51,2 51,0 48,9 50,1 44,2 46,0

SK 74,5 76,6 84,5 80,5 68,6 79,8 78,2 70,2 66,1 74,6

FI 69,7 70,4 70,9 70,1 67,4 67,3 65,6 63,6 59,7 66,2

SE 674,9 654,3 659,1 658,9 654,1 649,6 640,0 626,1 572,3 590,2

UK 5131,3 5086,1 5172,3 5177,9 5148,7 5132,3 5079,0 4974,4 4609,9 4720,9

Source: EEA (July 2012)

All the main sectors reduced their greenhouse gas emissions in the last years. One of the main reasons for this has been the decrease for all fossil fuels energy consumption but particularly for coal; the reduction in the use of coal for heat and power generation in the EU27 accounted for two thirds of the net reduction in emissions from energy industries. Along with this decline in the primary consumption of sossil fuels, it should be mention the strong increase in renewable energy (especially biomass). Thus, the “non-carbon effect” is fully accounted for by the increase in renewable energy. The table below shows the total greenhouse gas emissions by sector in EU27 in 2009.

Page 19: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 19

Table 2.6 Development of GHG emissions (CO2 equivalent) by sector in the EU27 (Mtoe)

Total

emissions Total

energy Industrial processes

Solvent and other product

use

Agriculture Waste LULUCF*

2000 5 078,1 3 986,4 394,1 13,8 503,5 180,123 -297,7

2001 5 131,2 4 067,5 380,5 13,7 495,3 174,0 -328,5

2002 2 086,0 4 035,4 375,6 13,2 490,3 171,3 -276,4

2003 5 172,2 4 121,0 388,5 12,7 483,8 166,0 -258,0

2004 5 177,9 4 118,6 402,4 12,7 484,4 159,6 -284,4

2005 5 145,7 4 093,4 407,5 12,8 478,8 156,0 -300,3

2006 5 132,2 4 084,9 405,9 12,8 474,9 153,6 -320,0

2007 5 078,9 4 022,0 419,3 12,4 475,8 149,1 -298,4

2008 4 974,3 3 943,2 397,2 11,9 475,3 146,5 -321,7

2009 4 609,8 3 660,9 329,9 11,3 464,2 143,4 -341,7

2010 4 720,8 3 736,0 343,1 11,6 461,5 141,5 -311,6

* Land Use, Land Use Change and Forestry (negative values mean uptake of CO2). Source: Eurostat

Figure 2.6 Greenhouse gas emissions by main sector in EU27 in 2010

Source: Eurostat, AEBIOM calculations

Energy Industries

31,23%

Manufacturing Industries and Construction

12,82% Transport 20,39%

Road Transportation

19,21%

Other Sectors 16,14%

Page 20: AEBIOM_European Bioenergy Outlook 2012sv

20 European Bioenergy Outlook 2012| AEBIOM

Primary biomass

112.725 ktoe

Input to electricity and CHP

ktoe

Input to DH ktoe

Biomass for households and services

38 970 ktoe

Biomass for industry

21.633 ktoe

Biofuels 13.272 ktoe

Bioelectricity 10.601 ktoe

Derived heat 9.592 ktoe

Import 9.451 ktoe Export 4.243 ktoe

Gross inland consumption 118.220 ktoe

Losses ktoe

2.2 Bioenergy in Europe

2.2.1 CURRENT BIOENERGY BALANCE

According to the last statistics, bioenergy remains the major source among renewables in Europe, accounting for almost 64% of European renewables and showing steady growth patterns across the different market segments. Total gross inland consumption of renewables in EU27 was almost 152 Mtoe in 2010, from which 118,22 Mtoe was biomass and waste or 8,16% of the total final energy consumption in EU27 for the same year.

Figure 2.7 Gross inland consumption of RES in Europe in 2010

Figure 2.8 Bioenergy balance in 2010 (ktoe°)

1679 899 2163 2876

16494

752 309 1011

5724

13467

6064

38 1189 935 101 1324 0 1527

4665 6028

2701 4068

619 756

7337 10398

3117 0

5000

10000

15000

20000

25000

30000

BE BG CZ DK DE EE IE EL ES FR IT CY LV LT LU HU MT NL AT PL PT RO SI SK FI SE UK

kto

e

Renewables of which biomass

Source: Eurostat, AEBIOM calculations

Source: Eurostat, AEBIOM calculations

Page 21: AEBIOM_European Bioenergy Outlook 2012sv

21

Table 2.7 Bioenergy balance in Europe in 2010 (ktoe)

Primary energy

Production Import Export

Gross inland consumption

7. Input to power plants

8. Input to

heating plants

1. Final use industry

2. Final use

residential

3 Final use services

4. Final use transport

5. Bio-

electricity

6. Derived

heat

(1 + 2 + 3 + 4 + 5 +6)

Final energy consumption

(5/7) Efficiency for

electricity

(5+6)/(7+8) Efficiency for

electricity and heat

EU27 112 725 9 451 4 243 118 220 37.671 4.422 21 633 37 510 1 460 13 272 10 601 9 592 94 068 28,14% 47,97%

BE 1 787 614 43 2 352 1.100 0 605 255 7 362 371 45 1 645 33,73% 37,82%

BG 938 8 63 891 4 2 156 711 11 13 3 1 895 75,00% 66,67%

CZ 2 570 122 241 2 449 515 45 407 1 158 49 231 186 89 2 120 36,12% 49,11%

DK 2 424 854 68 3 209 1.490 461 182 951 40 0 398 1 246 2 817 26,71% 84,26%

DE 25 759 451 644 25 567 12.229 697 3 385 6 249 14 2 960 2 897 987 16 492 23,69% 30,05%

EE 961 0 154 820 178 91 100 423 18 0 64 142 747 35,96% 76,58%

IE 321 41 0 358 77 0 141 34 15 90 28 0 308 36,36% 36,36%

EL 887 172 0 1 059 47 0 245 606 1 128 16 0 996 34,04% 34,04%

ES 6 188 825 404 6 601 1.009 0 1 711 2 093 97 1 436 335 0 5 672 33,20% 33,20%

FR 14 360 364 201 14 522 1.594 131 1 957 7 996 381 2 420 404 269 13 427 25,35% 39,01%

IT 6 089 1 836 106 7 794 2.709 81 62 3 165 1 1 466 811 257 5 762 29,94% 38,28%

CY 12 24 0 36 0 0 8 8 6 15 0 0 37 - -

LV 1 794 12 571 1 264 29 148 226 734 81 27 5 103 1 176 17,24% 61,02%

LT 1 114 64 199 994 65 192 76 574 32 45 12 186 925 18,46% 77,04%

LU 75 41 0 116 22 1 28 19 1 41 6 2 97 27,27% 34,78%

HU 1 756 182 112 1 823 721 5 85 658 122 175 199 71 1 310 27,60% 37,19%

MT : 0 0 0 0 0 0 0 0 0 0 0 0 - -

NL 2 507 606 536 2 577 1.852 132 102 301 46 229 605 175 1 458 32,67% 39,31%

AT 4 914 908 442 5 385 1.375 448 1 096 1 686 78 472 392 712 4 436 28,51% 60,56%

PL 6 439 448 13 6 869 1.621 45 898 2 693 213 886 542 292 5 524 33,44% 50,06%

PT 2 994 45 253 3 035 558 0 1 455 712 2 300 224 0 2 693 40,14% 40,14%

RO 3 949 162 27 4 103 20 42 252 3 526 0 115 9 35 3 937 45,00% 70,97%

SI 619 40 11 647 64 6 68 461 2 45 19 23 618 29,69% 60,00%

SK 937 40 53 925 254 66 376 43 14 164 56 99 752 22,05% 48,44%

FI 7 893 113 81 7 925 2.667 585 2 982 1 434 84 142 940 1 594 7 176 35,25% 77,92%

SE 11 387 0 0 11 387 4.052 1.244 4 643 684 45 380 1 048 3 260 10 060 25,86% 81,34%

UK 4 051 1 481 20 5 512 3.418 0 385 336 97 1 127 1 024 0 2 969 29,96% 29,96%

Page 22: AEBIOM_European Bioenergy Outlook 2012sv

22 European Bioenergy Outlook 2012| AEBIOM

As can be seen in the figure bellow, biomass is mainly use for heat (75% of the total final energy consumption of biomass). According to NREAPs projection for 2020, this will continue being like this.

The figure 2.10 shows the evolution of bioenergy use in Europe in the last decade and the 2020 targets. The biggest expected growth will is in transport where the biofuels consumption will be more than double by 2020. Bioelectricity will grow 85,8% and in the heat market the increment is expected to be 27.87%

Figure 2.9 Final energy consumption of biomass in heat, electricity and transport in 2010 (ktoe)

Source:Eurostat, AEBIOM calculation

Figure 2.10 Final energy consumption of bioenergy 2000-2020 in Europe

Source: Eurostat and NREAPs. AEBIOM calculation

Bioheat and derived heat; 70.195; 75%

Bioelectricity; 10.601; 11%

Biofuels for transport;

13.272; 14%

2.933 10.601

19.697 705

13.272

28.859 49.245

70.195

89.756

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2020 (NREAPs)

kto

e

Bioheat and derived heat

Biofuels for transport

Bioelectricity

Page 23: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 23

The share of biomass in the final energy consumption varies significantly among Members States: Sweden, Latvia and Finland lead the way with more that 27%, while Estonia and Lithuania follow with 25,67% and 19,47% respectively.

Table 2.8 Final energy consumption in the EU27 in 2010 (Mtoe) and share of biomass

Final Energy Consumption

Total Mtoe Final Energy Consumption

Biomass Mtoe Share of Biomass

EU27 1 153,30 94,07 8,16%

BE 36,43 1,65 4,52%

BG 8,84 0,90 10,12%

CZ 25,62 2,12 8,27%

DK 15,54 2,82 18,13%

DE 217,36 16,49 7,59%

EE 2,91 0,75 25,67%

IE 11,79 0,31 2,61%

EL 19,03 1,00 5,23%

ES 90,60 5,67 6,26%

FR 158,77 13,43 8,46%

IT 124,77 5,76 4,62%

CY 1,92 0,04 1,93%

LV 4,27 1,18 27,54%

LT 4,75 0,93 19,47%

LU 4,30 0,10 2,26%

HU 16,66 1,31 7,86%

MT 0,45 0,00 0,00%

NL 53,98 1,46 2,70%

AT 27,93 4,44 15,88%

PL 66,32 5,52 8,33%

PT 18,16 2,69 14,83%

RO 22,48 3,94 17,51%

SI 4,97 0,62 12,43%

SK 11,59 0,75 6,49%

FI 26,48 7,18 27,10%

SE 34,44 10,06 29,21%

UK 142,95 2,97 2,08% Source: Eurostat and AEBIOM calculations

Page 24: AEBIOM_European Bioenergy Outlook 2012sv

24 European Bioenergy Outlook 2012| AEBIOM

2.2.2 OVERVIEW ABOUT THE NATIONAL RENEWABLE ENERGY ACTION PLANS

AEBIOM has compiled data from NREAPs, focusing in bioenergy sector, in order to contribute to a better understanding of the bioenergy development in all EU countries, allowing easy comparison for further analysis. The original NREAP documents are available in www.ec.europa.eu/energy/renewables/action_plan_en.htm

For the purpose of calculating the overall renewable and bioenergy share the relevant parameter is the gross final energy consumption in a reference scenario and after aviation reduction. In 2020 the overall share of renewable, under these specifications, will reach 20.7%. On average this projection results in a growth for overall renewables of approximately 12% for the period 2005-2020. Biomass will be by far the most important source of RES energy in Europe, covering 56,5% of all renewables.

According to the NREAPs the total contribution of bioenergy in 2020 will be 138.3 Mtoe and heating will continue being by far the most important sector for bioenergy in 2020 counting 65% of the total and follow by transport with 21% and electricity 14%.

Table 2.9 Estimation of total contribution expected from bioenergy (ktoe)

Bioelectricity Biomass for heat and bioheat* Biofuels

2010 2015 2020 2010 2015 2020 2010 2015 2020

EU27 9 737 14 344 19 697 61 782 72 882 89 756 13 819 19 460 28 859

AT 406 415 443 3 415 3 463 3 607 330 370 490

BE 259 512 949 682 1 178 2 034 329 497 789

BU 0 56 75 734 929 1 073 30 115 196

CY 3 7 12 18 24 30 16 22 38

CZ 166 414 531 1 759 2 248 2 517 243 438 623

DK 324 519 761 2 245 2 526 2 643 31 247 261

EE 21 30 30 612 626 607 1 35 89

FI 696 850 1 110 4 990 5 810 6 610 220 420 560

FR 378 902 1 476 9 953 12 760 16 455 2 715 2 925 3 500

DE 2 818 3 619 4 253 9 092 10 388 11 355 3 429 3 070 5 300

EL 22 43 108 1 012 1 128 1 222 107 386 617

HU 168 193 286 812 829 1 277 144 250 506

IE 30 76 87 198 388 486 134 299 481

IT 743 1 179 1 615 2 239 3 521 5 670 1 016 1 748 2 480

LV 6 57 105 1020 1147 1392 39 39 46

LT 13 65 105 663 879 1 023 55 109 167

LU 6 17 29 23 50 83 42 81 216

MT 1 12 12 1 2 2 0 0 0

NL 514 1 148 1 431 684 778 878 307 567 834

PL 518 851 1 223 3 911 4 227 5 089 966 1 327 1 902

PT 206 289 302 2 179 2 339 2 322 281 429 477

RO 0 0 0 2 794 2 931 3 876 224 363 489

SK 52 116 147 447 576 690 82 137 185

SL 26 54 58 415 495 526 41 79 192

ES 388 513 861 3 583 4 060 4 950 1 703 2 470 3 500

SE 914 1 177 1 441 7 978 8 622 9 426 340 528 716

UK 1 060 1 229 2 249 323 958 3914 996 2 510 4 205

Page 25: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 25

The following graphs show the contribution of biomass to the different sectors in 2020 according to

the NREAPs.

Bioelectricity

Bioelectricity is expected to represent 19,5% of all renewable electricity in 2020 and it is expected to

increase by 116 TWh between 2010 and 2020

On average 70% of bioelectricity should be produced from solid biomass and 24% from biogas in 2020. Figure 2.11 Estimated bioenergy consumption in electricity sector in 2020 in EU27

67,8%

26,8%

5,4%

Gross final consumption of

electricity 300126 ktoe

Bioelectricity 6,56%

solid biomassbiogasbioliquids

* Biomass for heat means the energy content of biomass before conversion (considered as final energy when used in households, services and industry), while bioheat is the energy content of heat after conversion (considered as final energy in DH and CHP plants).

Page 26: AEBIOM_European Bioenergy Outlook 2012sv

26 European Bioenergy Outlook 2012| AEBIOM

Table 2.10 Estimation of total contribution of RES (installed capacity, gross electricity generation) expected in electricity sector in 2020 (GWH)

Total renewable

electricity Out of which

biomass Solid Biogas Bioliquids

2010 2020 2010 2020 2010 2020 2010 2020 2010 2020

EU27 627 898 1 175 742 113 249 229 078 76 706 159 556 28 720 63 028 8 633 12 753

AT 45 383 52 377 4 720 5 147 4 131 4 530 553 581 36 36

BE 4 663 23 120 3 007 11 038 2 580 9 575 393 1439 33 25

BU 3 879 7 537 2 871 - 514 2 357 - -

CY 68 1 175 30 143 - - 30 143 - -

CZ 5 072 11 679 1 930 6 171 1 306 3 294 624 2 871 - 6

DK 12 412 20 595 3 772 8 846 3 578 6 345 194 2 493 - 8

EE 604 1 913 241 346 - - - - - -

FI 22 660 33 420 8 090 12 910 3930 7860 40 270 4120* 4780*

FR 87 369 155 284 4 391 17 171 4506 13 470 935 3 701 - -

DE 104 972

216 935 32 778 49 457 17498 24 569 13 829 23 438 1450 1450

EL 7 838 27 269 254 1 259 73 364 181 895 - -

HU 2 843 5 597 1 955 3 324 1870 2 688 85 636 - -

IE 5 866 13 909 347 1 006 28 687 320 319 - -

IT 66 791 98 885 8 645 18 780 4758 7 900 2 129 6 020 1 758 4 860

LV 3 036 5 191 72 1 226 8 642 64 584 - -

LT 876 2 958 147 1 223 98 810 50 413 - -

LU 256 780 70 334 25 190 44 144 - -

MT 15 433 9 135 - 85 9 50 - -

NL 10 636 50 317 5 975 16 639 5 103 11 975 872 4 664 - -

PL 10 618 32 400 6 028 14 218 5 700 10 200 328 4 018 0 0

PT 22 751 35 584 2 400 3 516 1 092 8 074 138 525 1 170* 1 523*

RO 0 0 0 0 0 0 0 0 0 0

SK 5 481 8 000 610 1 710 540 850 70 860 0 0

SL 4 510 6 126 298 676 150 309 148 367 0

ES 84 034 150 030 4 517 10 017 3 719 7 400 799 2 617 0 0

SE 83 635 97 258 10 632 16754 10 513 16 635 53 53 65 65

UK 31 630 116 970 12 330 26 160 5 500 20 590 6 830 5 570 0 0

* Finland and Portugal have listed black liquor as bioliquid in their National Action Plans.

Page 27: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 27

Biomass for heat

Biomass for heat and bioheat are expected to be increased by 27 Mtoe between 2010 and 2020 becoming the most important renewable source (77.6% of all RES for heating and cooling).

Figure 2.12 Consumption of energy in heating and cooling in EU27 in 2020

Table 2.11 Estimation of total contribution (final energy consumption) expected from biomass in heating and cooling sector (ktoe)

2015 2020

Biomass solid biogas bioliquid Biomass solid biogas bioliquid

EU27 72 883 66 156 2 657 4 093 89 757 80 993 4 416 4 416

AT 3 463 3 447 16 0 3 607 3 591 16 0

BE 1 178 1 138 26 14 2 034 1 947 55 32

BU 929 916 13 0 1 073 1 053 20 0

CY 24 20 5 0 30 24 6 0

CZ 2 248 2 137 110 0 2 517 2 350 167 0

DK 2 526 2 426 92 8 2 643 2 470 165 8

EE 626 626 0 0 607 607 0 0

FI 5 810 3 300 30 2 470 6 610 3 940 60 2 610

FR 12 760 12 500 260 0 16 455 15 900 555 0

DE 10 388 8 389 1 312 688 11 355 8 952 1 692 711

EL 1 128 1 128 - - 1 222 1 222 - -

HU 829 800 0 - 1 277 1 225 56 -

IE 388 362 26 0 486 453 33 0

IT 3 521 3 404 83 33 5 670 5 254 266 150

LV 1 147 1 109 38 - 1 392 1 343 49 -

LT 879 851 28 0 1 023 973 50 0

LU 50 39 12 0 83 70 13 0

MT 2 0 2 - 2 0 2 -

NL 778 604 174 - 878 650 228 -

PL 4 227 3 996 231 - 5 089 4 636 453 -

PT 2 339 1 515 23 801 2 322 1 484 37 801

RO 2 931 2 919 10 2 3 876 3 845 20 11

SK 576 540 36 - 690 630 60 -

SL 495 483 0 12 526 497 0 28

ES 4 060 3 997 63 0 4 950 4 850 100 0

SE 8 622 8 607 14 65 9 426 9 415 11 65

UK 958 904 54 - 3 914 3 612 302 -

90%

5%

5%

Total consumption of energy in the heating

and cooling sector 502,05 million toe

Biomass from heat and bioheat 18%

solid biomassbiogasbioliquids

Page 28: AEBIOM_European Bioenergy Outlook 2012sv

28 European Bioenergy Outlook 2012| AEBIOM

Biofuels

Table 2.12 Estimation of total contribution expected from each renewable energy technology in 2020 in the transport sector (ktoe)

Total renewables energies Biofuels Hydrogen Renewable electricity Others

EU27 32 715 28 859 2 3 110 743

AT 856 490 0 272 94

BE 886 789 0 97 0

BU 205 196 0 5 4

CY 38 38 0 0,56 0

CZ 691 623 0 19 49

DK 290 261 0 29 0

EE 90 89 0 0,6 0,3

FI 600 560 0 40 0

FR 4 062 3 500 0 402 160

DE 6 140 5 300 0 667 173

EL 634 617 0 16,5 0

HU 535 506 0 24 5

IE 519 481 0 37 0,9

IT 2 899 2 480 0 369 50

LV 83 46 0 6 31

LT 170 167 0 2 0

LU 226 216 0 10 0

MT 37 - 0 37 0

NL 905 834 0 71 0

PL 2 018 1 902 0 50 66

PT 535 477 0 58 0

RO 551 489 2 52 6

SK 207 185 0 17 5

SL 203 192 0 10 0

ES 3 855 3 500 0 351 4

SE 1 008 716 0 198 94

UK 4 472 4 205 0 267 0

Following table shows the contribution of the renewable transport energy carriers. Biofuels are expected to be increased by 15 Mtoe between 2010 and 2020, this should represent more than 88% of the renewable energies used in transport by 2020. However, according to a proposal of the Commission (COM(2012)595) crop based biofuels should be limited to 5% (compared to 9% in the graph below) and NREAP are therefore not valid any more.

Figure 2.13 Consumption of energy in transport in EU27 in 2020 9%

Total consumption of energy in

transport sector 314,79

million toe

Biofuels Hydrogen Renewable electricity Others

9%

of which advanced biofuels (Art. 21)*

Page 29: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 29

biomass supply 3

Page 30: AEBIOM_European Bioenergy Outlook 2012sv

30 European Bioenergy Outlook 2012| AEBIOM

3.1 General overview

Bioenergy is the largest source of renewable energy today providing heat, electricity, as well as transport fuels and a significant increase in bioenergy demand is expecting in the coming years. Since bioenergy can be generated from wood, energy crops and biomass residues, as well as organic wastes, there is a considerable potential that can contribute to the rural development, and create new opportunities for farmers and forest owners. International trade in biomass and biomass intermediates (pellets, pyrolysis oil, biomethane) wil be also vital to match supply and demand in different regions in Europe. However a large devate is going on about the sustainable development of bioenergy and the competition with existing uses of biomass such as food, feed or forest product. Therefore in order to understand the future role of bioenergy in Europe, it is important to analyze the potential of biomass supply.

According to the vision roadmap of IEA, a total of 100 EJ (5-7 billion of dry tonnes aprox) will be required in 2050 to provide enough feedstock for the production of heat and electicity, in addition to 60 EJ needed for the production of transport fuels in 2050. This figure can be seen as a considerable increase on the estimated 50 EJ of biomass used for energy today but the IEA claims that the potential is much larger, around 500 EJ. Therefore the world’s bioenergy potential is large enough to meet the global energy demand in 2050.

Figure 3.1 Comparison of primary bioenergy demand and global technical bioenergy potential estimate in 2050

Note: The technical potential for 2050 indicates the upper bound of biomass technical potential based on

integrated global assessment studies using five resource categories indicated on the stacked bar chart, and

limitations and criteria with respect to biodiversity protection, water limitations, and soil degradation, assuming

policy frameworks that secure good governance of land use (Dornburg et al., 2010). Expert estimates undertaken

by the IPCC (2011) indicate potential deployment levels of terrestrial biomass for energy by 2050 in the range of

100 to 300 EJ, with a most likely range of 80-190 EJ/yr, with upper levels in the range of 265-300 EJ/yr.

Source: Technology Roadmap-Bioenergy for heat and power, IEA 2012 (Adapted from IPCC, 2011, and

supplemented with data from IEA, 2011a and IEA, 2012a)

Page 31: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 31

The EUBIONET III partners have estimated that total biomass potential in Europe is 157 Mtoe (excluding biodegradable waste), of which 67% is from woody biomass. According to the same study, in Europe, 48% of the annual biomass potential is currently used.

Figure 3.2 Biomass resources by different sources in EU24 and Norway

Source: Eubionet III project, June 2011

Obtaining accurate data on the biomass resource available can be challenging specially for some biomass feedstock as energy crops. AEBIOM has compiled data from different sources in order to have a clear picture of the biomass resources available in Europe.

The following tables deliver data for the three main relevant biomass sector: agriculture, forestry and waste. Under these main sectors there are categories of dedicated biomass production such as biofuel crops, agricultural by products or primary and secondary forestry residues.

3.2 Biomass for agricultural land and by-products

3.2.1 AGRICULTURE IN EU

Agriculture represents nearly half of the total land use in Europe. However the figure at national

level shows great differences between countries. 14 countries have more than half of their land used

by agriculture, the highest share being Ireland (73,2 %) and 9 countries with less than half of their

land used by agriculture, the smallest shares being Sweden and Finland (8,1 and 7,4 %.).

23%

19%

12% 8%

6%

24%

8% Forest residues

Firewood

Solid ind. Wood residues

Spent liquors

Used wood

Herbaceous & fruit biomass

Other biomass

Page 32: AEBIOM_European Bioenergy Outlook 2012sv

32 European Bioenergy Outlook 2012| AEBIOM

The new binding EU target of about 20% share of renewables in total energy consumption in 2020 (with a 10% contribution of biofuels) could require some 230-250 Mtoe from primary biomass potential. In order to reach the target for 10% biofuels arable land should be dedicated to the production of energy crops. It is estimated that a total area between 17,5 and 21,1 million ha will be required (Biomass Futures project). The land available for growing bioenergy crops will be largely determined by the utilized agricultural area (UAA). As can be seen in the table below, UAA accounts for 42 % of the whole EU27 territorial area. Source: Eurostat

Figure 3.3 Share of agriculture in total land use, 2009 (%)

BG, RO, CY and MT not included Source: Eurostat

Table 3.1 Agricultural land use, 2010

UAA

Area total Arable land Land under

permanent crop

Land under

permanent

grassland

1000 ha % of total area

EU27 441 412 25,7 2,9 13,0

BE 3 053 27,5 0,7 16,3

BG 11 100 28,5 1,5 15,3

CZ 7 887 32,3 0,5 11,9

DK 4 310 55,8 0,2 5,2

DE 35 713 33,4 0,6 13,3

EE 4 523 9,3 11,3 4,3

IE 7 029 15,5 0,0 44,1

EL 13 198 18,3 8,5 2,1

ES 50 537 24,1 10,0 10,7

FR 63 795 37,7 1,7 15,6

IT 30 132 24,3 8,6 11,0

CY 925 9,1 3,8 0,4

LV 6 456 18,1 0,1 10,2

LT 6 530 31,4 0,4 9,3

LU 259 23,9 0,6 26,1

HU 9 303 48,2 2,1 10,8

MT 32 25,3 4,1 0,0

NL 3 736 27,1 1,0 21,6

AT 8 387 16,3 0,8 20,6

PL 31 268 38,8 1,2 10,3

PT 9 191 12,0 8,5 19,4

RO 23 839 38,4 1,5 19,1

SI 2 027 8,3 1,3 13,2

SK 4 904 27,6 0,5 10,5

FI 33 842 6,7 0,0 0,1

SE 45 030 5,8 0,0 1,0

UK 24 410 24,7 0,1 46,1

52,5 50,4

63,5

51,7

25,7

73,2

32,3

51,9 46,6

51,4

31,6

52,7 52,6

61,6 55,1

38,2

52,6

35,8 30,0

42,0

7,4 8,1

65,1

0

10

20

30

40

50

60

70

80

BE CZ DK DE EE IE EL ES FR IT LV LT LU HU NL AT PL PT SI SK FI SE UK

%

Page 33: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 33

Nearly one quarter of the EU-23 land is covered by crops (23,1%). The following table shows the

share of land covered by cultivated areas in the EU-23 countries.

According to Eurostat, the largest share of cultivated areas (between 45 % and 68 % of the NUTS 2

regions) is in regions of eastern and central European countries, such as Hungary, the Czech Republic

and Poland, where very large collective farming is still practiced, in northern parts of France

(Picardie, Nord — Pas-de-Calais, Haute- and Basse Normandie and Poitou-Charentes), eastern

England, some regions of Germany (Leipzig, Sachsen-Anhalt, Hannover), Puglia and Sicilia in Italy and

Denmark. All these regions have fertile lands and a long tradition of agriculture, which explains the

significant share of croplands

Figure 3.4 Share of land cover types in total country area, 2009

BG, RO, CY, IE and MT not included

Source: Eurostat

25,8

37,1

17,9

33

49,6

10,8

32,6 31,6 31,2 32,3

49,8

35,4 35,6

22,3

11

45,8

32,3

45,1

62,7

45,9

58,7 57,1

14,2

26,4

34,9

47,2

32,4

10,4

4,6

23 30,1 29,9

32,5

11,5

23,5 22 45,9

21,3

16,9

35,3

18,2

10,5

28

5,2 3,9

19

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BE CZ DK DE EE IE EL ES FR IT LV LT LU HU NL AT PL PT SL SK FI SE UK

Forest and other wooden land Crop-land Grass-land

Shrub-land Water and wetland Built-up and other artificial areas

Bare land

Page 34: AEBIOM_European Bioenergy Outlook 2012sv

34 European Bioenergy Outlook 2012| AEBIOM

In the EU 27 the main crops grown on arable land are cereals (including rice), followed by forage

plants and vegetable and fruit crops.

Table 3.2 Harvested production of some of the main crops 2010 (1000 tonnes)

Cereals total

(including rice)

Field peas and

others (1) Sugar beet (2) Rape (3) Sunflower (4)

EU 27 284 718 1 994 102 806 19 821 6 956

BE 2 933 5 4 217 51 :

BG 7 036 8 0 545 1 506

CZ 6 878 48 3 065 1 042 57

DK 8 779 22 0 0 0

DE 44 293 177 23 858 5 749 54

EE 670 12 0 130 0

IE 1 996 : 45 22 :

EL 4 098 6 1 229 : 93

ES 19 642 169 3 399 36 887

FR 65 240 1 075 31 723 4 773 1 659

IT 20 960 29 3 472 51 213

CY 65 0 87 0 0

LV 1 417 3 0 225 0

LT 2 768 49 723 415 0

LU 166 1 0 16 0

HU 12 300 40 755 560 987

MT : 0 0 0 0

NL 1 887 5 5 280 12 0

AT 4 818 33 3 132 171 67

PL 27 299 43 9 823 2.078 3

PT 1 092 : 7 : 13

RO 16 565 37 853 924 1 265

SI 555 1 262 15 1

SK 2 571 15 978 323 150

FI 2 972 12 542 179 0

SE 4 333 54 1 974 279 0

UK 23 387 151 7 384 2 230 2

(1) 2008 data for CH; 2009 data for DE, EL, ES, IT, LV, UK.

(2) 2006 data for SI; 2008 data for CH; 2009 data for IE.

(3) 2008 data for NO, CH; 2009 data for IE.

(4) 2005 data for UK; 2008 data for CH.

Source: Eurostat

The crops in the table above are produced in almost all EU Member States. However, a small group

of four countries is responsible for most of the production (see figure below). France, Germany and

Poland together produce almost half of the cereals in the EU-27.

Page 35: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 35

Figure 3.5 Share of main crop production between Member States, 2010 (%)

Source: Eurostat

The most important cereals in European Union are wheat, barley and grain. With around 284 million

tonnes of cereals harvested, wheat accounts for 139 million tonnes, i.e. almost half of all cereals

production (49 %).

Figure 3.6 Harvested production of cereals by type of cereal, EU27, 2010 (%)

Source: Eurostat

Cereal production is concentrated in a few Member States. For each cereal presented in the figure,

the top four producing countries account for more than 60 % of the production. France and

Germany, the two main wheat producers, account for almost 46 % of EU-27 production. In 2010,

Germany and France each produced around 20 % of EU-27 barley output, followed by Spain (16 %).

France is the leading EU-27 grain maize producer and accounts for 24 % of production. Romania,

with 16 % of production, has been the second EU-27 producer since 2009, although in 2007 and

2008 it was producing less than Italy and Hungary.

Wheat 49%

Barley 18%

Grain maize 20%

Rye and maslin 3%

Rice 1%

Others 9%

Page 36: AEBIOM_European Bioenergy Outlook 2012sv

36 European Bioenergy Outlook 2012| AEBIOM

Table 3.3 Harvested production of the most important cereals, 2010 (1000 tonnes)

Wheat (1) Barley (2) Grain maize (3) Rye and

maslin (4) Rice (5)

EU 27 138 450 51 989 56 711 8 023 3 058

BE 1 832 359 667 2 :

BG 3 995 833 2 044 18 56

CZ 4 162 1 585 693 118 :

DK 5 940 2 989 : 260 :

DE 25 190 10 412 4 073 2 903 :

EE 324 253 0 25 :

IE 674 0 : 0 :

EL 1 830 318 2 352 42 230

ES 5 611 8 157 3 179 275 926

FR 38 195 10 100 13 562 151 119

IT 6 341 991 7 878 14 1 493

CY 19 45 : 0 :

LV 1 036 228 : 69 :

LT 2 100 548 37 87 :

LU 91 43 3 6 :

HU 4 419 966 7 410 75 8

MT : : : : :

NL 1 442 204 235 10 :

AT 1 523 778 1 866 174 :

PL 9 488 3 533 1 716 3 466 :

PT 122 75 630 27 165

RO 5 588 1 322 9 101 34 62

SI 152 79 305 3 :

SK 1 228 361 952 36 :

FI 887 1 332 : 68 :

SE 2 184 1 228 8 123 :

UK 14 076 5 525 0 38 :

(1) 2008 data for NO, CH; 2009 data for DK, DE, IE, EL, IT, LV, LT, LU, HU, AT, FI, UK. (2) 2008 data for NO; 2009 data for CH. (3) 2009 data for EL, IT, SE, CH. (4) 2008 data for NO, CH. (5) 2007 data for IT.

Source: Eurostat

3.2.2 ENERGY CROPS

13.2 Mha are available nowadays for the cultivation of biomass crops, while in 2020 it is expected to

be increased and to be around 20.5 Mha. The projections that have been made in 4fcrops project

showed that the available land for the non-food crops will further increased in 2030 and will be 26.2

Mha. The biggest available land for now and for 2020 was recorded in Spain (3616 ha), while in 2030

it is estimated that will be in Poland (4079 ha).

It is reported in the EnCrop Project that in EU27 a total area between 50000 and 60000 ha are

occupied with energy crops for solid biofuels (in 2007). At the same time the cultivation area for

energy crops for liquid biofuels is quite bigger and exceeds the 2,5 million ha. This area is mainly

Page 37: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 37

referring to cereals and rapeseed. The need of producing biofuels to cover the share of 5.75% (of the

total transport fuels) was the main reason for this extended cultivation of the energy crops.

A wide range of crops can be use as energy crops. Regarding their end use product we can

differentiate between: oilseed crops (for biodiesel), sugar and starch crops (for bioethanol) and

lignocellulosic and woody crops (for heat and power production and second generation biofuels).

AEBIOM has compiled data for different sources in order to give an overview of the European

situation for these types of crops. However we would like to point out the difficulties to obtain

figures in Europe for the land dedicated to energy crops and the production.

3.2.2.1 ENERGY CROPS FOR BIOFUELS

The European Commission (2008) calculated that 17,5 million ha of land would be required to reach

the 10% biofuels target, which would amount to about 10% of the total Utilised Agricultural Area

(UAA) in EU27.

The current market demand for biofuels is covered by conventional crops like oilseeds and grains

with limited quantities from lignocellulosic energy crops which are mainly used for heat and

electricity.

A Joint Research Center of EC Reference Report published in 2010 presented the simulation results,

assuming two different scenario, on biofuels´ feedstock both in EU and in the rest of the world.

- Baseline scenario: shows the baseline assumptions regarding EU biofuels policies. The

energy share of biofuels is assumed to reach 8.5% in 2020, of which 7% consists of first

generation and 1.5% second generation biofuels. Consistent with the Renewable Energy

Directive, the energy provided by the latter is considered doubled for the purpose of meeting

the 10% target.

- Counterfactual scenario: Assumes the absence of all internal EU biofuels policies

supporting the production or consumption of biofuels.

In the following tables, it can be seen the estimated variation in the production of these crops and

how much could be attributed to the EU biofuel policy.

Table 3.4 EU 27 oilseed and vegetable oil balance (in thousand tonnes)

2008 2009 2010 2015 2020

Baseline

Oilseed production

26 624 27 180 25 155 28 560 31 573

Oilseed: net trade

-17 142 -14 525 -17 243 -15 793 -16 540

Oilseed: crush 41 468 39 434 40 182 41 953 45 622

Vegetable oil: production

13 110 12 477 12 732 13 278 14 436

Vegetable oil: net trade

-7 992 -8 689 -9 555 -17 242 -20 035

Vegetable oil: consumption

21 079 -21 224 22 303 30 523 34 479

Of which: for biodiesel

7 522 7 576 8 669 16 020 17 973

Page 38: AEBIOM_European Bioenergy Outlook 2012sv

38 European Bioenergy Outlook 2012| AEBIOM

Counterfactual

Oilseed production

26 624 25 167 25 043 27 233 29 931

Oilseed: net trade

-17 142 -14 661 -18 014 -19 441 -20 004

Oilseed: crush -41 468 39 549 40 806 44 270 47 495

Vegetable oil: production

-13 110 12 514 12 930 14 028 15 046

Vegetable oil: net trade

-1 992 -7 697 -6 297 -4 173 -5 489

Vegetable oil: consumption

13 110 12 531 12 948 14 045 15 064

Of which: for biodiesel

7 522 6 594 5 454 2 960 3 299

Source: JRC Institure for Prospective Technological Studies “Impacts of the EU biofuel target on agricultural markets and land use”. Table 3.5 EU27 coarse grains balance (in thousand tonnes)

2008 2009 2010 2015 2020

Baseline

Production 162 379 156 783 154 487 165 510 174 154

Net trade 7 272 221 1 372 -1 441 -116

Consumption 149 627 156 795 156 018 165 896 174 339

Of which: for ethanol

3 400 4 006 4 258 8 415 15 150

Counterfactual

Production 162 379 156 748 154 345 164 423 173 468

Net trade 7 272 492 1 697 -1 194 1 074

Consumption 149 627 156 471 155 595 164 666 172 128

Of which: for ethanol

3 400 3 340 3 273 3 091 7 454

Source: JRC European Comission and Institure for Prospective Technological Studies. “Impacts of the EU biofuel target on agricultural markets and land use”. Table 3.6 EU 27 wheat balance (in thousand tonnes)

2008 2009 2010 2015 2020

Baseline

Production 150 243 133 990 134 323 149 244 154 049

Net trade 11 305 12 169 6 996 15 628 13 530

Consumption 129 006 123 560 126 875 132 910 140 354

Of which: for ethanol

2 800 3 365 4 152 7 832 11 029

Counterfactual

Production 150 243 133 910 133 952 145 921 149 258

Net trade 11 305 12 294 7 492 19 729 18 364

Consumption 129 006 123 347 126 039 125 588 130 847

Of which: for ethanol

2 800 3 128 3 143 334 1 368

Source: JRC European Comission and Institure for Prospective Technological Studies. “Impacts of the EU biofuel target on agricultural markets and land use”.

Page 39: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 39

EU biofuels policies stimulate some changes in EU agricultural land use. In particular, the total area of cerals, oilseeds and sugar beet is 2.2% higher, implying that the secular decline in total area is more gradual that it would otherwise be (-6.5% rather that -8.6%). With EU biofuel polices, the total world area planted with cereals, oilseeds (soya bean, rapeseed and sunflower) and sugar crops is only 0.7%, or 5.2 million ha higher in 2020. Table 3.7 Land use effects of EU biofuel policies in the EU-27 in % difference and thousand ha (baseline scenario)

2008 2009 2010 2015 2020

Wheat (absolute values, ´000 ha)

0,0 0,0 0,1 2,1 3,0

26 435 26 295 24 711 25 635 24 483

Barley (absolute values, ´000 ha) 0,0 0,0 0,1 0,6 0,2

13 993 13 926 14 069 13 536 13 047

Maize (absolute values, ´000 ha)

0,0 0,0 0,1 0,7 0,3

8 902 9 299 9 187 9 356 9 309

Other cereals (absolute values, ´000 ha)

0,0 0,0 0,1 0,7 0,3

10 487 10 197 8 372 8 859 8 728

Total cereals (absolute values, ´000 ha)

0,0 0,0 0,1 1,3 1,5

59 818 59 718 56 339 57 386 55 567

Oilseeds (absolute values, ´000 ha)

0,0 0,0 0,2 4,6 5,6

10 182 10 103 9 249 9 639 9 928

Sugar beet (absolute values, ´000 ha)

0,0 1,2 2,3 10,5 10,6

1 640 1 555 1 496 1 497 1 467

Total area of the above in EU27 (absolute values, ´000 ha)

0,0 0,0 0,2 1,9 2,2

71 639 71 376 67 084 68 522 66 962

Pastures (permanent and temporary) 0,0 0,0 -0,1 -0,8 -0,9

120 184 120 512 125 029 123 517 124 805 Source: JRC European Comission and Institure for Prospective Technological Studies. “Impacts of the EU biofuel target on agricultural markets and land use”.

3.2.2.2 ENERGY CROPS FOR ELECTRICITY AND HEAT PRODUCTION While the production of the first generation biofuels is closely related to the cultivation of annual crops; for electricity and heating purposes either perennial herbaceous plants or wood crops are used. In the future the annual crops, the perennial herbaceous as well as the woody crops could be used for the production of second generation biofuels (that mainly based on the lignocellulosic crops).

Page 40: AEBIOM_European Bioenergy Outlook 2012sv

40 European Bioenergy Outlook 2012| AEBIOM

The following table shows figures about cellulosic energy crops in some EU countries. These figures were gathered during the workshop “Perennial energy crops within the reform of the Common Agricultural Policy” organized by AEBIOM in December 2011. Table 3.8 Cellulosic energy crops in 2011 (ha)

Hemp

Reed Canary grass

Willow Poplar Miscanthus

AT

220-1 100 880-1 100 800

BE*

60 100

BU

CY

CZ

DK

5 300-5 500 820 50-130

EE

FI

18 700

FR

2300 2 000-3 000

DE

4 000 5 000 2 000

EL

HU

IE

2.000

IT

670 5.490 50-100

LV

LT

550

LU

MT

NL

90

PL

5 000 – 9 000 300

PT

RO

SK

SL

ES

SE 390 780 11 000 550 450

UK

1 500-2 300

10 000-11 000

* Willow data only for Walloon region

Source: Danish Agriculture & Food Council; Ministry for food and agricultural-FNR (Germany); Swedish Agricultural board; Crops for Energy (UK); NFU (UK); Miscanthus Growers Ltd. (UK), Cradle Crops (The Netherlands); Association d´initiatives locales pour l´energie et l´environnement, AILE (France) ; NovaBiom (France); VALBIOM, DGARNE -Département des Aides- Direction des Surfaces agricoles (Belgium).

Page 41: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 41

Figure 3.7 Energy crops in Germany

Source: FNR. ttz Bremerhavn, Germany

Page 42: AEBIOM_European Bioenergy Outlook 2012sv

42 European Bioenergy Outlook 2012| AEBIOM

3.2.3AGRICULTURAL BY-PRODUCTS

According to EUBIONET III partners the amount of ago-industrial residues corresponds to an energy potential of approximately 2.4 Mtoe. Given the fact that only 17 countries were analized (see the map below) and some countries with a large agricultural sector were not assessed (e.g. France), the total EU potential is likely to be even larger. As an estimation (based on the number of inhabitants) the potential is estimated to be around 17.9 Mtoe. However, it needs to be pointed out that the amount of agricultural activity per capita differs amongst EU member states, so this should only be seen as a rough approximation. In Southern European countries (Greece, Italy, Spain and Portugal) residues from olive production are by far the largest resource. The annual amount of residues in these countries would be more than 7 million tons, equivalent to a theoretical energy potential of more than 150 PJ (based on an overall olive harvest of just over 10 million tons). It should be mentioned that the energy utilization of olive waste is already growing rapidly, as well as for nuts (almond, hazel etc.) shells that in Southern Europe is becoming an interesting potential energy resource, presently already used in substitution of wood pellet fuel into small scale stoves and boilers. Another large resource is grain screenings, at the European level assessed at a theoretical potential equivalent to 40 PJ (1 Mtoe). Other biomass types could be residues breweries, 27 the tobacco industry and plant oil (besides olive oil) production, e.g. sunflower shells, sheanut shells etc. Figure 3.8 Estimated unexploited agro-industrial residues.

Source: EUBIONET III project, October 2011

Page 43: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 43

3.3 BIOMASS FROM FORESTRY Forests are key ecosystems that fulfil a number of roles: environmental functions, economic growth especially in rural areas (91% of the overall EU territory), wood and non-wood products and source of raw material for forest- based industries and energy. Forests and other wooded land cover more than 40 % of the EU’s land area. Expansion of the EU’s forest area exceeds the loss of forest land to infrastructure and urban uses. Several Member States have expanded their forest cover by plantation programmes on agricultural land which is no longer cultivated. This positive development sets the EU apart from many other global regions, where deforestation continues to reduce forest area.

Table 3.9 Forest area in Europe and in the world, 1990-2010

Area (1000 ha) Annual change (1000ha) Annual change rate (%)

1990 2000 2010 1990-2000 2000-2010 1990-2000 2000-2010 Europe* 180 521 188 971 195 911 845 694 0,46 0,36

World 4 168 399 4 085 063 4 032 905 -8 334 -5 216 -0,2 -0,13 * Countries and areas included in this regional section for the purposes of this review are: Albania, Andorra, Austria, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Faroe Islands, Finland, France, Germany, Gibraltar, Greece, Guernsey, Holy See, Hungary, Iceland, Ireland, Isle of Man, Italy, Jersey, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Monaco, Montenegro, Netherlands, Norway, Poland, Portugal, Republic of Moldova, Romania, Russian Federation, San Marino, Serbia, Slovakia, Slovenia, Spain, Svalbard and Jan Mayen Islands, Sweden, Switzerland, The Former Yugoslav Republic of Macedonia, Ukraine, United Kingdom. Source: FAO ”State of the World’s forest 2011”

3.3.1 FORESTRY IN EUROPE Forests and other wooded land in the EU cover approximately 177 million ha (over 40 % of the EU territory), of which 130 million ha are available for wood supply. Ecologically, the EU’s forests belong to many different biogeographical regions and have adapted to a variety of natural conditions, ranging from bogs to steppes and from lowland to alpine forests. Socioeconomically, the EU’s forests vary from small family holdings to state forests or large estates owned by companies, many as part of industrial wood supply chains. The MS with the largest proportions of wooded area are Finland and Sweden, where approximately three quarters of the land area was covered with forests or woods. These same two MS recorded the highest areas of wooded land per inhabitant, approximately ten times the EU average. Sweden alone accounted for 17.6 % of all the wooded land in the EU in 2010, and the five largest wooded areas (in Sweden, Spain, Finland, France and Germany) collectively accounted for well over three fifths (62.4 %) of the wooded land in the EU. The least densely wooded MS are Malta, The Netherlands, Ireland and the United Kingdom. Between 2000 and 2010, wooded area in the EU increased through natural expansion and afforestation by a total of 3.5 million hectares, a rise of 2.0 %. In relative terms, the largest expansions in wooded area were recorded in Ireland (21.4 %), while Bulgaria and Latvia both recorded increases in excess of 10 %. Only four of the EU Member States recorded a fall in their areas of wooded land, with Denmark recording the largest reduction (-5.0 %) ahead of Portugal, Slovenia and Finland.

Page 44: AEBIOM_European Bioenergy Outlook 2012sv

44 European Bioenergy Outlook 2012| AEBIOM

Table 3.10 Forest area in the EU

Forest and other wooden

land Forest available for

wood supply Forest and other

wooden land

2000 2010 2000 2010 (1)

2000 2010

(1000 ha) (ha/capita)

EU 27 174 235 177 757 128 125 13 2605 0,36 0,35

BE 694 706 663 672 0,07 0,07

BG 3 480 3 927 2 258 2 864 0,42 0,52

CZ 1 637 2 657 2 561 2 330 0,26 0,25

DK 622 591 371 581 0,12 0,11

DE 11 076 11 076 10 985 10 568 0,13 0,14

EE 2 337 2 350 2 103 2 013 1,70 1,75

IE 650 789 597 : 0,17 0,18

EL 6 525 6 539 3 317 3 595 0,60 0,58

ES 27 452 27 747 10 480 14 915 0,69 0,60

FR 17 165 17 572 14 645 15 147 0,28 0,27

IT 10 439 10 916 8 446 8 086 0,18 0,18

CY 387 387 43 41 0,56 0,48

LV 3 097 3 467 2 777 3 138 1,30 1,54

LT 2 103 2 240 1 756 1 875 0,60 0,67

LU 88 88 87 86 0,20 0,18

HU 1 866 2 029 1 622 1 726 0,18 0,20

MT 0 0 0 : 0,00 0,00

NL 360 365 290 295 0,02 0,02

AT 3 955 4 006 3 341 3 343 0,49 0,48

PL 9 059 9 337 8 342 8 532 0,23 0,24

PT 3 667 3 611 2 009 1 822 0,36 0,34

RO 6 600 6 733 4 628 5 193 0,29 0,31

SI 1 283 1 274 1 130 1 175 0,65 0,62

SK 1 921 1 933 1 767 1 775 0,36 0,36

FI 23 305 23 269 20 508 19 869 4,51 4,35

SE 30 653 31 247 21 076 20 554 3,46 3,35

UK 2 813 2 901 2 323 2 411 0,05 0,05

(1) EU27, excluding Ireland and Malta Source: Eurostat “Forestry in the EU and the world”, 2011

In Europe, the forest area designated primarily for conservation of biological diversity doubled in the last 20 years. Table 3.11 Area of forest designated primarily for conservation of biological diversity in Europe, 1990–2010

Area (1000 ha) Annual change (1000ha) Annual change rate (%)

1990 2000 2010 1990-2000 2000-2010 1990-2000 2000-2010

Europe 6 840 13 203 19 407 636 620 6,80 3,93

World 270 413 302 916 366 255 3 250 6 334 1,14 1,92 Source: FAO, “State of the World´s Forest”

About 60% of the forests in the EU are in private ownership, with about 15 million private forest owners. Private forest holdings have an average size of 13 ha, but the majority of privately-owned forests are less than 3 ha in size.

Page 45: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 45

Based on data for 24 EU Member States (incomplete data for Greece, Portugal and Sweden), the publicly owned forest area decreased by a total of 2.9 % between 2000 and 2010, whereas privately owned forest area increased by 8.6 %. Table 3.12 Forest ownership in the EU

Publicy owned Private and other Change 2000-2010

2000 2010 2000 2010 Pub.

owned Priv. & other

Pub. owned

Priv. & other

(1000ha) (1000 ha/year) (% annual average)

BE 290 301 377 377 1,1 0,0 0,4 0,0

BG 3 041 3 408 334 519 36,8 18,4 1,1 4,5

CZ 2 023 2 041 614 616 1,8 0,2 0,1 0,0

DK 138 139 348 448 0,1 10,0 0,1 2,6

DE 5 846 5 708 5 230 5 368 -13,8 13,8 -0,2 0,3

EE 899 858 1 344 1 345 -4,1 0,1 -0,5 0,0

IE 399 400 236 337 0,1 10,1 0,0 3,6

EL (1) 2 790 2 907 811 845 23,4 6,8 0,8 0,8

ES 4 988 5 336 1 200 12 838 34,8 83,7 0,7 0,7

FR 3 984 4 113 11 369 1 141 12,9 47,2 0,3 0,4

IT 2 811 3 073 5 558 6 076 26,2 51,8 0,9 0,9

CY 118 119 54 54 0,1 0,0 0,1 0,0

LV 1 749 1 655 1 493 1 696 -9,4 20,3 -0,6 1,3

LT 1 562 1 366 458 784 -19,6 32,6 -1,3 5,5

LU 41 41 46 46 0,0 0,0 0,0 0,0

HU 1 155 1 178 753 861 2,4 10,9 0,2 1,4

MT 0 0 0 0 - - - -

NL 184 184 176 181 0,0 0,5 0,0 0,3

AT 928 858 2 332 2 482 -7,0 15,0 -0,8 0,6

PL 7 535 7 661 1 524 1 658 12,6 13,4 0.2 0,8

PT (1) 54 54 3 366 3 382 0,1 3,2 0,1 0,1

RO (2) 6 010 4 398 356 2 097 -161,2 174,1 -3,1 19,4

SI 365 291 868 962 -7,4 9,4 -2,2 1,0

SK 1 006 980 915 958 -2,6 4,3 -0,3 0,5

FI 7 213 6 699 15 245 15 389 -51,4 14,4 -0,7 0,1

SE (3) 7 522 7 664 20 990 20 941 28,4 -9,8 0,4 0,0

UK 1 011 959 1 782 1 922 -5,2 14,0 -0,5 0,8 (1) 2005 instead of 2010, change from 2000 to 2005 instead of from 2000 to 2010. (2) Excluding other ownership. (3) 2005 instead of 2000, change from 2005 to 2010 instead of from 2000 to 2010. Source: SoEF 2011

As demand for wood increases from both wood processing industries and the energy sector, the question of whether there is enough wood is of great concern nowadays. In order to understand how much wood is available, it is essential to know how much wood is growing in the European Union’s forests and how much is removed. The growing stock (table 3.17) provides information on available resources as well as the basis for estimating biomass stocks. The increment in the EU’s growing stock was in excess of 700 million m3 in 2010, around 1.6 times as high as the volume of fellings (only approximately 63 % of the increment is felled. With Europe’s forest area and growing stock expanding, it would seem that a high level of wood removal for production is not incompatible with sustainable forest management in countries with relatively developed economies and stable institutions.

Page 46: AEBIOM_European Bioenergy Outlook 2012sv

46 European Bioenergy Outlook 2012| AEBIOM

Table 3.13 Area of forest designated primarily for production in Europe, 1990–2010

Area (1000 ha) Annual change (1000ha) Annual change rate (%)

1990 2000 2010 1990-2000 2000-2010 1990-2000 2000-2010

Europe 111 363 111 229 108 829 -13 -240 -0,01 -0,22

World 1 181 576 1 160 325 1 131 210 -2 125 -2 911 -0,18 -0,25 Source: FAO, “State of the World´s Forest”

Table 3.14 Commercial wood volume (forest available for wood supply) in the EU.

Growing stock Increment Fellings Grow. stock

Increment Fellings

2000 2010 2000 2010 2000 2010 2010

(million m3 over bark) (m3/ha)

EU 27 19 394 21 750 752 768,3 463 484,1 163,3 5,8 3,6

BE 142 164 5 5 4 4 244,4 7,9 5,7

BG 321 435 14 15 4 8 151,9 5,1 2,7

CZ 678 738 20 23 16 18 316,6 9,9 7,7

DK 56 112 5 6 2 2 192,7 10,0 4,1

DE 3 356 3 466 122 107 49 60 328,0 10,1 5,6

EE 427 398 11 11 13 6 197,8 5,6 2,8

IE 58 74 3 4 2 3 119,4 5,8 4,5

EL (1) 157 170 4 5 2 2 47,4 1,3 0,5

ES 617 784 29 46 18 17 52,6 3,1 1,1

FR 2 119 2 453 98 94 63 64 162,0 6,2 4,2

IT 1 153 1 285 32 33 11 13 159,0 4,0 1,6

CY 3 3 0 0 0 0 79,0 0,9 0,2

LV 515 584 17 18 12 12 186,1 5,8 4,0

LT (2) 320 408 9 11 6 9 217,6 5,7 4,6

LU (3) 13 0 1 1 0 0 299,1 7,5 2,9

HU 291 259 12 11 7 7 150,1 6,4 4,0

MT 0 0 0 0 0 0 0,0 0,0 0,0

NL 49 56 2 2 1 2 189,8 7,6 5,3

AT 1 060 1 107 31 25 19 24 331,1 7,5 7,0

PL (3) 1 584 2 092 38 68 33 41 245,2 8,0 4,8

PT (4) 210 154 13 19 11 14 84,5 10,5 7,9

RO 697 1 35 34 14 17 211,5 6,5 3,3

SI 305 390 7 9 3 3 331,9 7,8 2,9

SK 437 478 12 13 7 10 269,1 7,4 5,9

FI 1 916 2 024 79 91 67 59 101,9 4,6 3,0

SE 2 643 2 651 91 96 74 81 129,0 4,7 3,9

UK 267 340 21 21 9 11 141,0 8,6 4,4

(1) Fellings, 2005 instead of 2010. (2) Increment and fellings, 2005 instead of 2000. (3) Increment, 2005 instead of 2010. (4) Increment and fellings, 2005 instead of 2010. Source: Eurostat, SoEF 2011

Page 47: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 47

The most common primary designated function of forests within the EU is production essentially of wood but also of non-wood forest products. Futher downstream, arrange of manufacturing processes take these basic and primary wood products and transform them into a range of wood and paper products or as a source of energy. The following figure gives a clear overview of the wood flow in Europe.

Figure 3.9 Wood fow in EU 27, 2010

Source: VTT, EUBIONET3 project

A common measure of the magnitude of the extraction of wood from forests is roundwood removals: this comprises all quantities of roundwood removed from the forest or other felling sites and stripped of the bark (under bark). The total level of removals in the EU in 2010 was 420 million m

3 under bark. The largest volumes of

wood removals were recorded in Sweden, Germany, France, Finland and Poland, which together accounted for close to two thirds of the EU total. The production of roundwood in the EU in 2009 was, in the main, composed of industrial roundwood (accounting for 79% of the total), while the production of fuelwood covered the remaining 20.1 %.

Page 48: AEBIOM_European Bioenergy Outlook 2012sv

48 European Bioenergy Outlook 2012| AEBIOM

Table 3.15 Roundwood removals under bark and proportion of fuelwood in EU

Total roundwood Fuelwood, including wood for charcoal

Thousands of cubic metres Thousands of cubic metres % of total roundwood

2000 2005 2010 2000 2005 2010 2000 2005 2010

EU27 408 094 443 484 420 794 68 935 75 127 84 892 16,89% 16,94% 20,17%

BE 4 510 4 950 4 827 550 650 713 12,20% 13,13% 14,78%

BG 4 783 5 861 5 668 2 107 2 678 2 657 44,04% 45,69% 46,88%

CZ 14 441 15 510 17 022 940 1 225 2 114 6,51% 7,90% 12,42%

DK 2 952 2 962 2 669 461 1 280 1 079 15,62% 43,23% 40,44%

DE 53 710 56 946 54 418 2 622 6 041 9 030 4,88% 10,61% 16,59%

EE 8 910 5 500 7 560 1 640 1 050 1 701 18,41% 19,09% 22,50%

IE 2 673 2 648 2 789 73 19 31 2,73% 0,72% 1,14%

EL 2 244 1 522 1 251 1 601 1 004 804 71,33% 65,95% 64,32%

ES 14 321 15 531 15 648 1 600 2 180 2 480 11,17% 14,04% 15,85%

FR 65 864 52 498 55 477 26 388 24 555 26 173 40,07% 46,77% 47,18%

IT 9 329 8 690 7 254 5 680 5 673 4 839 60,89% 65,28% 66,71%

CY 20 9 8 5 3 3 26,38% 39,96% 40,51%

LV 14 304 12 842 12 533 1 680 950 2 312 11,74% 7,40% 18,45%

LT 5 500 6 045 7 096 1 450 1 130 1 943 26,36% 18,69% 27,38%

LU 259 248 274 18 12 16 6,93% 4,87% 6,11%

HU 5 902 5 940 5 740 2 596 3 136 2 993 44,00% 52,79% 52,16%

MT 0 0 0 0 0 0 - - -

NL 1 039 1 110 1 080 160 290 290 15,40% 26,13% 26,84%

AT 13 276 16 471 17 830 2 860 3 685 4 549 21,54% 22,37% 25,51%

PL 26 025 31 944 35 467 1 536 3 413 4 124 5,90% 10,68% 11,63%

PT 10 831 10 746 9 648 600 600 600 5,54% 5,58% 6,22%

RO 13 148 14 501 13 111 3 032 2 959 2 563 23,06% 20,41% 19,55%

SI 2 253 2 732 2 945 532 943 1 104 23,61% 34,52% 37,48%

SK 6 163 9 302 9 599 277 297 509 4,49% 3,19% 5,31%

FI 54 542 52 250 50 951 4 395 5 134 4 974 8,06% 9,83% 9,76%

SE 63 300 98 200 70 200 5 900 5 900 5 900 9,32% 6,01% 8,40%

UK 7 791 8 519 9 718 229 317 1 381 2,94% 3,72% 14,21%

* Fuelwood is wood of generally lower quality (from trunks and branches of trees), to be used as fuel for cooking, heating and energy production and includes wood used to produce charcoal. Source: Eurostat, AEBIOM calculations

Page 49: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 49

3.3.2 THE ROLE OF FOREST IN THE CARBON CYCLE Forests play a crucial role in climate change mitigation and adaptation. At the global level, the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2007) indicated that global forest vegetation contains 283 Gt of carbon in biomass, 38 Gt in dead wood and 317 Gt in soils (in the top 30 cm) and litter. The total carbon content of forests ecosystems has been estimated at 638 Gt, which exceeds the amount of carbon in the atmosphere. Forest biomass in the EU contained 9 800 million tonnes of carbon in 2010, an increase of 5.1 % compared with 2005. A longer analysis from 1990 to 2010 (excluding Estonia and Portugal) shows an increase in carbon stock of 26.0 %.

Table 3.16 Carbon stock in living forest biomass in the EU

Carbon stock in living forest biomass Carbon stock per

inhabitant

1990 2000 2005 2010 2005 2010

(million tons carbon) (ton carbon/capita)

EU 27 : : 9 341 9 819 19,0 19,6

BE 50 61 63 64 6,0 5,9

BG 127 161 182 202 23,5 26,7

CZ 287 322 339 356 33,2 33,9

DK 22 26 36 37 6,7 6,7

DE 981 1 193 1 283 1 405 15,6 17,2

EE : 168 167 165 123,9 123,1

IE 16 18 20 23 4,9 5,1

EL 67 73 76 79 6,9 7,0

ES 289 396 400 422 9.3 9,2

FR 965 1 049 1 165 1 208 18,6 18,7

IT 375 467 512 558 8,8 9,2

CY 3 3 3 3 4,0 3,7

LV 193 234 244 272 105,8 121,0

LT 134 146 151 153 44,1 46,0

LU 7 9 9 9 19,5 17,9

HU 117 130 136 142 13,5 14,2

MT 0 0 0 0 0,0 0,0

NL 21 24 26 28 1,6 1,7

AT 339 375 299 393 48,7 46,9

PL 691 807 887 968 23,2 25,4

PT : : 102 102 9,7 9,6

RO 600 599 601 618 27,7 28,8

SI 116 141 159 178 79,6 87,0

SK 163 190 202 211 37,5 38,9

FI 721 802 832 832 158,9 155,5

SE 1 178 1 183 1 219 1 255 135,3 134,4

UK 120 119 128 136 2,1 2,2 Source: FAO (Global FRA, 2010)

The forest functions in the carbon balance are addressed by three Kyoto Protocol activities: afforestation/reforestation; deforestation; and forest management. In the following table it can be seen the data that countries report on the changes to carbon stocks in managed forests that result from these three types of activities.

Page 50: AEBIOM_European Bioenergy Outlook 2012sv

50 European Bioenergy Outlook 2012| AEBIOM

Table 3.17 Data on afforestation and reforestation (A/R), deforestation (D) and forest management (FM) activities reported by Annex B Parties under the Kyoto Protocol for the year 2008 (in Gt CO

2 equivalent)

A/R D FM CO2 balance

AT -2 531 1 224 -1 307

BE -399 468 69

BG 1 353* 275 1 628

CZ -272 160 -6 145 -6 257

DK -70 35 281 247

DE -2 615 16 393 -20 441 -6 663

EE -534 6 600 6 066

IE 2 763* 11 2 774

EL -351 4 -2 052 -2 399

ES -10 276 188 -39 120 -52 279

FR -13 591 11 926 -84 620 -86 285

IT -1 736 386 -50 773 -52 122

CY - - - -

LV -440 1 674 -23 595 -22 361

LT - - - -

LU - - - -

HU -1183 44 -3 885 -5 025

MT - - - -

NL -574 780 233

PL -3 916 263 -46 865 -50 519

PT -4 134 6 877 2 563 -180

RO - - - -

SI -2 456 2 385 -10 307 -7 851

SK 2 426 -10 324 -7 897

FI -1 077 2 886 -39 935 -38 126

SE -1 576 2 385 -18 606 -17 797

UK -2 696 452 -10 873 -13 116 * AEBIOM considers this could be an error in the publicationas afforestation should always be a negative number (sequestration of carbon) Source: FAO ( State of World Forest 2011) http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/5270.php

The use of wood as a fuel is largely carbon neutral if wood resources are cultivated in a sustainable way. Although carbon dioxide is released into the atmosphere when wood is burnt, this is converted into carbon and oxygen as trees grow, and hence the cycle of tree growth and wood burning is often referred to as being carbon neutral.

Page 51: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 51

3.3.3 FORESTRY RESIDUES In the next table it can be seen the quantity of wood waste and paper and cardboard waste that was treated within Europe. Almost 25 million tonnes of wood waste were treated in the EU in 2008, while the figure for paper and cardboard was 13.3 million tonnes higher. Waste treatment operations distinguish between five different treatment types: recovery, energy recovery, incineration, disposal on land, and land treatment/release into water. Table 3.18 Waste and recycling of wood products in the EU (tonnes)

Wood waste Paper & cardboard waste

2004 2006 2008 2004 2006 2008

EU 27 30 910 36 180 24 970 37 550 34 920 38 260

BE 989 440 565 1 581 630 574

BG 0 0 19 169 125 196

CZ 226 120 113 152 201 246

DK 721 862 891 677 788 782

DE 2 221 2 502 2 642 6 054 5 922 5 908

EE 180 398 319 0 6 35

IE 155 180 159 118 26 6

EL 24 63 88 263 425 440

ES 279 573 1 737 2 217 3 346 5 060

FR 4 261 3 727 4 583 7 550 6 050 5 659

IT 4 248 4 378 1 790 3 335 4 143 4 450

CY 0 2 2 6 29 23

LV 2 0 0 15 18 19

LT 17 34 60 68 141 146

LU 70 172 69 0 0 18

HU 183 174 135 287 344 354

MT 1 1 0 2 3 3

NL 944 644 1 422 2 670 2 656 2 268

AT 2 935 2 282 3 565 1 156 1 425 1 401

PL 930 419 2 194 1 157 212 1 326

PT 1 109 681 981 345 781 303

RO 80 109 761 344 335 325

SI 75 150 165 349 373 380

SK 126 421 151 45 108 102

FI 3 472 4 122 115 424 734 468

SE 4 948 10 916 178 1 677 1 846 2 339

UK 2 715 2 747 2 272 6 891 4 174 5 430 Source: Eurostat

The next table provides a breakdown of the origin of waste streams. The highest share of wood waste in the EU was produced by wood manufacturers in 2008 (some 39.0 % of all wood waste), while paper manufacturers accounted for 13.5 % of the total and households for 4.8 %. Households accounted for the highest share of waste paper and cardboard, some 29.8 % of the total generated in the EU in 2008. Both wood manufacturing and paper manufacturing accounted for only a tiny fraction of the total waste generated by all activities, while households accounted for 8.4 %.

Page 52: AEBIOM_European Bioenergy Outlook 2012sv

52 European Bioenergy Outlook 2012| AEBIOM

Table 3.19 Waste generated by wood and paper manufacturing and by households in the EU, 2008 (% share of waste from all NACE activities and households) Wood manufacturing Paper manufacturing Households

Total waste

Wood waste

Paper & cardboard

waste

Total waste

Wood waste

Paper & cardboard

waste

Total waste

Wood waste

Paper & cardboard

waste

EU27 1,1 39,0 0,1 1,2 13,5 16,9 8,4 4,8 29,8

BE 0,9 23,3 0,1 1,4 3,8 9,5 9,2 15,0 18,9

BG 0,1 60,0 0,0 0,1 16,5 20,8 1,0 0,0 0,0

CZ 0,7 54,6 0,1 1,1 0,9 18,7 12,5 4,1 19,3

DK 0,2 1,1 0,4 1,3 0,0 17,4 16,6 26,5 12,4

DE 0,8 20,9 0,1 1,1 2,4 16,1 9,5 7,0 61,4

EE 5,4 79,9 0,1 0,6 4,1 12,5 2,2 0,3 6,6

IE 0,0 52,9 0,9 1,8 4,1 19,9 7,1 0,0 0,0

EL 0,1 9,7 0,0 0,2 0,2 10,8 5,8 0,0 0,0

ES 0,2 12,0 0,2 1,4 2,3 19,9 16,4 6,3 23,2

FR 1,4 54,2 0,1 0,8 4,4 20,5 8,5 0,0 18,1

IT 0,8 33,1 0,2 1,2 3,7 19,3 18,1 19,8 56,9

CY 0,4 38,2 0,0 0,7 0,3 6,3 23,5 0,0 47,2

LV 4,3 66,2 1,5 0,7 0,1 57,6 40,5 0,0 0,0

LT 1,5 40,5 0,3 0,6 6,4 14,9 19,9 1,2 45,3

LU 0,4 40,8 0,1 0,2 0,7 16,5 2,9 5,9 14,3

HU 1,3 73,3 0,0 0,9 0,2 19,3 17,0 0,4 20,7

MT 0,0 0,0 0,0 0,4 0,0 0,0 11,3 0,0 23,4

NL 0,3 10,0 0,1 0,9 1,3 18,6 9,5 14,8 42,6

AT 7,8 69,4 0,1 1,5 5,8 11,3 6,8 2,6 46,2

PL 1,5 55,6 0,3 0,9 14,7 17,0 4,9 0,0 6,0

PT 1,9 27,3 0,1 2,3 5,9 9,0 14,1 0,0 0,0

RO 0,7 73,0 0,1 0,1 2,4 9,1 4,5 7,2 40,2

SI 5,4 53,7 0,1 3,4 5,4 41,0 14,2 2,0 16,9

SK 2,2 38,3 0,0 5,0 44,2 15,5 15,5 0,2 20,5

FI 7,4 47,4 0,1 5,5 23,7 20,1 2,0 0,5 28,2

SE 0,3 3,7 0,1 7,8 85,9 64,5 5,1 0,5 22,6

UK 0,5 29,2 0,1 0,7 0,8 8,7 9,4 12,6 14,1 Source: Eurostat

3.3.4 WOOD AS A SOURCE OF ENERGY Wood for use as an energy source comes not only from tree felling, but also from selective thinning of managed forests and other forestry practices (direct sources). Wood for energy use may also be derived as a by-product from downstream processing in wood-based manufacturing, for example, as off-cuts, trimmings, sawdust, shavings, wood chips or black liquor (indirect sources). End-of-life wood and paper products may also be used as a source of energy (recovered wood). The squeme in page 47 (figure 3.9) can help to understand the global picture. The following figure provides an overview of the use of wood from all wood sources in Europe. As we said before it should be noted that some of the wood resources used for energy come directly from forests and the remainder from production residues. Around 42% of all mobilized woody biomass supply is used for energy purposes. But it should be noted that, despite the increasing rate of wood consumption for energy, the region´s forest are increasing in area as well as standing volumes (see section 3.3.1).

Page 53: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 53

Figure 3.10 Wood resources use in the EU27, 2010 (% share of total volume in m3)

Source: Eurostat Wood and wood waste was the principal source of renewable energy consumed in the majority of EU Member States (see Figure below), its relative importance ranging from a high of 97.46 % in Estonia to just 12.87 % in Cyprus. Figure 3.11 Share of wood and wood waste in total renewable energy in the EU, 2010 (% of gross inland consumption of renewable energy)

Malta not available Source: Eurostat, AEBIOM calculations.

In Europe the production of fuelwood continues to rise despite the economic crisis, due to the increment in use of energy form renewable sources and price increases for fossil fuels. Production of fuelwood in the EU rose to 82.6 million m3 in 2009 as it can be seen in the following table. The production of wood pellets in the EU grew at a phenomenal rate, rising 41.3 % between 2008 and 2009; almost half of the EU’s production was concentrated within Germany and Sweden in 2009.

Energy use 42%

Sawmill industry

24%

Panel & plywood industry

12%

Pulp industry

17%

Other material

uses 2%

Processed solid wood

fuel 3%

48,55%

57,60% 61,83%

71,18%

65,11%

37,57%

96,46%

31,05%

38,23%

31,53%

49,97%

24,42%

12,87%

78,17%

88,17%

36,09%

76,67%

46,43% 49,60%

80,57%

47,13%

68,29%

53,46% 52,31%

84,77%

56,93%

30,26%

0%

25%

50%

75%

100%

EU27

BE BG CZ DK DE EE IE EL ES FR IT CY LV LT LU HU MT NL AT PL PT RO SI SK FI SE UK

Page 54: AEBIOM_European Bioenergy Outlook 2012sv

54 European Bioenergy Outlook 2012| AEBIOM

Table 3.20 Production of roundwood, fuelwood and other basic wood products in the EU, 2009 (1000 m

3)

Roundwood Wood chips &

particles

Wood residues & pellets

Total Industrial

roundwood Fuelwood Total Pellets

EU27 391 923 309 334 82 590 47 533 38 790 7 828

BE 4 395 3 670 725 475 425 0

BG 4 599 2 224 2 375 47 53 6

CZ 16 187 14 307 1 880 1 380 1 140 0

DK 2 812 1 706 1 106 168 0 0

DE 56 634 48 073 8 561 3 127 828 1 460

EE 4 860 3 708 1 152 1 700 800 488

IE 2 349 2 262 87 516 167 8

EL 1 261 507 754 3 11 0

ES 13 980 11 900 2 080 1 747 2 231 242

FR 54 108 28 643 25 465 4 799 7 000 554

IT 7 581 2 600 4 981 420 200 0

CY 10 6 4 2 0 0

LV 10 409 8 673 1 736 2 847 890 671

LT 5 460 3 677 1 783 835 683 278

LU 274 257 17 555 853 14

HU 5 244 2 365 2 879 58 89 0

MT 0 0 0 0 0 0

NL 1 016 726 290 107 728 185

AT 16 727 12 144 4 584 3 505 2 362 222

PL 34 629 30 475 4 154 929 5 500 585

PT 9 564 8 964 600 198 1 507 402

RO 12 557 8 587 3 969 410 1 732 200

SI 2 930 1 948 983 118 236 6

SK 9 087 8 501 586 620 809 90

FI 41 653 36 701 4 952 5 803 4 990 260

SE 65 100 59 200 5 900 15 500 5 000 1 982

UK 8 497 7 509 988 1 665 555 175

Source: Eurostat

Information collected by the Joint Energy Enquiry (JWEE) shows that direct sources accounted for some 43% of total wood used as an energy source in the EU countries analysed (see following table), and 57% of wood used for energy coming from indirect sources. Private households were generally the main users of wood as a source of energy, accounting for almost half (48.17%) of the wood used for energy purposes in 2009. The industrial use counts almost one quarter (24.31%). The highest shares of industrial use are in Ireland, Slovakia, Belgium, Finland and Sweden.

Page 55: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 55

Residential use, mainly dependent on direct supplies of firewood, is prevalent in Southern and Central Europe with France, the Czech Republic, Italy, Lithuania, Germany and Austria reporting this category as their primary use. The forest products industry typically consumes energy generated from the solid and liquid co-products of its manufacturing processes. Therefore, countries with important forest industries, such as Finland or Sweden have a higher level of industrial consumption. The power and heat sector is the most important consumer of wood energy in the United Kingdom, and has relatively large shares in Germany, Sweden and the Baltic region. Overall it represents 20% of wood energy use. Table 3.21 Wood energy Sources and Uses in 2009 (1000 m

3)

U1 Power and Heat

U2 Industrial U3

Residential U4 Other

Sum (U1, U2, U3, U4)

%

AUSTRIA

S1 Direct 4,8 0 7001,7 987,5 7994 41,10%

S2 Indirect

5172,7 2668,7 1307,9 2815 11964,3 59,90%

S3 Recovered

0 0 0 0 0 0

S4 Unspecified

0 0 0 0 0 0%

Sum (S1, S2, S3, S4)

5177,6 2668,7 8309,6 3802,5

% 25,90% 13,40% 41,60% 19,10%

BELGIUM

S1 Direct 0 0 0 0 0 0%

S2 Indirect

792,6 1515,9 0 10,9 2319,3 78,80%

S3 Recovered

0 0 0 0 0 0

S4 Unspecified

0 0 623,1 0 623,1 21,20%

Sum (S1, S2, S3, S4)

792,6 1515,9 623,1 10,9

% 26,90% 51,50% 21,20% 0,40%

CYPRUS

S1 Direct 0 0 4,8 0 4,8 6,70%

S2 Indirect

0 1,6 29,6 35,2 66,4 93,30%

S3 Recovered

0 0 0 0 0 0

S4 Unspecified

0 0 0 0 0 0

Sum (S1, S2, S3, S4)

0 1,6 34,4 35,2

% 0 2,30% 48,30% 49,40%

Page 56: AEBIOM_European Bioenergy Outlook 2012sv

56 European Bioenergy Outlook 2012| AEBIOM

CZECH REPUBLIC

S1 Direct 0 28,8 8414,9 16,8 8460,4 71,30%

S2 Indirect

867,9 2121,7 335,5 81,5 3406,6 28,70%

S3 Recovered

0 0 0 0 0 0

S4 Unspecified

0 0 0 0 0 0

Sum (S1, S2, S3, S4)

867,9 2150,5 8750,4 98,3

% 7,30% 18,10% 73,70% 0,80%

ESTONIA

S1 Direct 8,6 48,3 1653,50 25,2 1735,60 39,80%

S2 Indirect

1357,10 570,3 677,9 7,5 2.612,90 59,90%

S3 Recovered

16,1 0 0 0 16,1 0,40%

S4 Unspecified

0 0 0 0 0 0

Sum (S1, S2, S3, S4)

1381,70 618,6 2.331,40 32,7

% 31,70% 14,20% 53,40% 0,70%

FINLAND

S1 Direct 3816,60 653,1 5538,30 0 10008,10 33,20%

S2 Indirect

3374,70 15.548,20 747 0 19669,80 65,30%

S3 Recovered

391,5 41,5 0 0 433 1,40%

S4 Unspecified

0 0 0 0 0 0

Sum (S1, S2, S3, S4)

7582,80 16242,80 6285,30 0

% 25,20% 53,90% 20,90% 0

FRANCE

S1 Direct 653,2 1422,1 27118,9 223,0 29417,2 60,5%

S2 Indirect

440,8 7848,9 8770,6 5,0 17065,3 35,1%

S3 Recovered

497,6 0,0 1.611,5 0,0 2109,1 4,3%

S4 Unspecified

0,0 0,0 0,0 0,0 0,0 0

Sum (S1, S2, S3, S4)

1591,6 9271,0 37501,0 228,0

% 3,3% 19,1% 77,2% 0,5%

Page 57: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 57

GERMANY

S1 Direct 5700,4 0,0 19951,6 0,0 25652,0 51,2%

S2 Indirect

7668,1 3629,6 3555,2 0,0 14852,9 29,6%

S3 Recovered

7320,1 0,0 1411,0 0,0 8731,1 17,4%

S4 Unspecified

574,5 0,0 319,5 0,0 894,0 1,8%

Sum (S1, S2, S3, S4)

21263,1 3629,6 25237,3 0,0

% 42,4% 7,2% 50,3% 0

IRELAND

S1 Direct 0,0 0,0 88,7 57,6 146,3 20,4%

S2 Indirect

0,0 328,6 131,0 0,0 459,6 64,0%

S3 Recovered

0,0 112,7 0,0 0,0 112,7 15,7%

S4 Unspecified

0,0 0,0 0,0 0,0 0,0 0

Sum (S1, S2, S3, S4)

0,0 441,3 219,7 57,6

% 0 61,4% 30,6% 8,0%

ITALY

S1 Direct 5000,0 1000,0 18000,0 348,0 24348,0 87,2%

S2 Indirect

0,0 1000,0 1500,0 0,0 2500,0 9,0%

S3 Recovered

1082,0 0,0 0,0 0,0 1082,0 3,9%

S4 Unspecified

0,0 0,0 0,0 0,0 0,0 0

Sum (S1, S2, S3, S4)

6082,0 2000,0 19500,0 348,0

% 21,8% 7,2% 69,8% 1,2%

LITHUANIA

S1 Direct 187,1 0,0 1661,9 43,2 1892,1 55,8%

S2 Indirect

995,0 0,0 361,1 144,2 1500,3 44,2%

S3 Recovered

0,0 0,0 0,0 0,0 0,0 0

S4 Unspecified

0,0 0,0 0,0 0,0 0,0 0

Sum (S1, S2, S3, S4)

1182,1 0,0 2023,0 187,3

% 34,8% 0 59,6% 5,5%

Page 58: AEBIOM_European Bioenergy Outlook 2012sv

58 European Bioenergy Outlook 2012| AEBIOM

SLOVAK REPUBLIC

S1 Direct 110,3 0,0 462,8 24,0 597,1 25,7%

S2 Indirect

158,3 1.257,0 157,8 147,3 1720,3 73,9%

S3 Recovered

0,0 0,0 0,0 10,4 10,4 0,4%

S4 Unspecified

0,0 0,0 0,0 0,0 0,0 0

Sum (S1, S2, S3, S4)

268,6 1.257,0 620,6 181,7

% 11,5% 54,0% 26,7% 7,8%

SLOVENIA

S1 Direct 0,0 0,0 1252,6 0,0 1252,6 67,1%

S2 Indirect

128,8 418,1 44,8 21,6 613,2 32,9%

S3 Recovered

0,0 0,0 0,0 0,0 0,0 0

S4 Unspecified

0,0 0,0 0,0 0,0 0,0 0

Sum (S1, S2, S3, S4)

128,8 418,1 1297,4 21,6

% 6,9% 22,4% 69,5% 1,2%

SWEDEN

S1 Direct 9254,2 0,0 4968,8 486,8 14709,8 35,6%

S2 Indirect

5755,2 17965,9 1497,5 330,0 25548,6 61,9%

S3 Recovered

1006,2 0,0 0,0 0,0 1006,2 2,4%

S4 Unspecified

0,0 0,0 0,0 0,0 0,0 0

Sum (S1, S2, S3, S4)

16015,6 17965,9 6466,3 816,8

% 38,8% 43,5% 15,7% 2,0%

UNITED KINGDOM

S1 Direct 990,2 73,8 949,2 0,0 2.013,2 41,3%

S2 Indirect

1222,4 321,8 367,8 0,0 1.912,1 39,2%

S3 Recovered

279,9 295,5 372,8 0,0 948,2 19,5%

S4 Unspecified

0,0 0,0 0,0 0,0 0,0 0

Sum (S1, S2, S3, S4)

2492,5 691,1 1689,8 0,0

% 51,1% 14,2% 34,7% 0

Page 59: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 59

S1 Direct: Any wood fibre entering energy production without any further treatment or conversion. It comprises removals from forests and outside. It also comprises any woody biomass from any land use and covers. It comprises any form of woody biomass, such as green chips, roundwood or split, stacked or loose from any part of the trees such as roots, stemwood and branches, fruits and shells. S2 Indirect: Processed and unprocessed co-products (residues) from the wood processing industries are considered as indirect supply. These co-products can be solid (sawdust, chips, slabs, etc.) or liquid from the pulp industry (black liquor or tall oil). Processed wood fuels such as wood pellets, briquettes but also wood charcoal are also included under indirect supply. S3 Recovered: Post consumer recovered wood comprises any waste wood fibre after at least one life cycle. S4 Unspecified: Many countries know something about the amount of wood used but not its source. * Latvia: The apparent inconsistency in the share of woody biomass among renewable energy sources possibly indicates that the use of wood energy in Latvia might be underreported in the UNECE/FAO enquiry. For this reason AEBIOM has not included the data of Latvia in this table. * No data for The Netherlands Source: UNECE/FAO Joint Wood Energy Enquiry (JWEE) 2009. United Nations, Geneva.

Table 3.22 Role of wood energy in forest sector and energy sector, 2009

Wood energy in forest sector Wood energy in energy sector

Direct mobilisation

of woody biomass for

energy production

from forests and outside

forests (m3/ha)

Share of Total Roundwood

and fuelwood supply directly

used for energy

purposes (%)

Total woody biomass used for energy per

ha of Forest and Other

Wooded Land (OWL)

available for wood supply

(m3/ha)

Share of Total domestic

woody biomass supply

(including cascaded use)

used for energy

purposes (%)

Share of woody

biomass in TPES (%)

Share of woody biomass in RES

(%)

Share of wood energy

generated from black liquor (%)

Imported wood fuel as share of

wood energy (%)

BE - - 4,41 18,00% 1,10% 27,40% 30,20% 17,00%

CZ 3,36 66,00% 4,71 73,00% 5,80% 101,90% 9,20% 1,30%

DE 2,43 50,20% 4,74 89,80% 3,30% 37,70% 0,00% 1,80%

EE 0,8 42,00% 2,01 51,60% 16,40% 126,90% 1,90% 3,40%

IE 0,22 6,30% 1,09 18,70% 1,00% 23,40% 0,00% 8,60%

FR 2 57,10% 3,3 54,30% 3,90% 51,10% 7,30% 0,70%

IT 2,91 82,20% 3,34 72,40% 3,50% 36,30% 0,00% 16,60%

CY 0,11 32,40% 1,65 81,70% 0,60% 15,20% 0,00% 83,50%

LV - - - - - - - -

LT 1,03 37,50% 1,85 43,00% 8,40% 80,90% 0,00% 9,10%

NL - - - - - - - -

AT 2,39 30,50% 5,97 46,90% 13,10% 47,20% 8,10% 11,80%

SI 1,04 46,50% 1,54 51,30% 5,60% 43,80% 0,00% 10,80%

SK 0,34 7,40% 1,33 19,80% 2,90% 40,00% 29,30% 1,20%

FI 0,48 20,20% 1,45 41,10% 18,90% 79,50% 41,90% 3,40%

SE 0,71 22,10% 2 36,80% 18,90% 54,30% 25,80% 3,10%

UK 0,85 22,30% 2,05 23,40% 0,50% 16,30% 0,00% 9,20% TPES: Total primary energy supply. Source: UNECE/FAO Joint Wood Energy Enquiry (JWEE) 2009. United Nations, Geneva.

Page 60: AEBIOM_European Bioenergy Outlook 2012sv

60 European Bioenergy Outlook 2012| AEBIOM

3.4 BIOMASS FROM WASTE

3.4.1 WASTE PRODUCTION IN EU

In 2008 (last available data), some 2390 million tonnes of waste was generated in the EU-27, of

which around 19% is biodegradable waste.

Table 3.23 Waste generated in Europe for all NACE activities include households in 2008 (tonnes)

Total waste

Biodegradable waste*

Paper and

cardboard

wastes

Wood

wastes

Animal and

vegetal

wastes

Household

and similar

wastes**

Common

sludges

EU27 2 611 580 000 58 710 000 68 420 000 114 960 000 202 310.000 64 470 000

BE 48 621 916 3 542 574 1 572 776 4 265 806 3 608 476 863 242

BG 286 092 936 109 991 327 051 976 508 3 746 741 1 182 360

CZ 25 419 695 697 807 248 256 540 638 3 281 224 1 239 164

DK 15 155 208 782 386 892 056 165 969 3 171 601 541 749

DE 372 796 353 9 981 698 10 270 534 12 231 406 20 806 297 2 033 096

EE 19 583 855 159 295 1 288 169 287 052 465 707 72 383

IE 23 637 015 33 524 147184 523 116 144 848 154 242

EL 68 643 963 729 179 830 006 137 599 5 077 244 161 732

ES 149 254 157 4 732 556 1 932 320 15 647 005 22 604 041 1 945 536

FR 345 002 210 6 899 000 8 681 750 7 590 660 23 921 420 2 317 490

IT 179 034 461 5 160 681 3 448 043 9 405 736 26 189 697 1 223 235

CY 1 842 781 153 027 17 201 199 867 183 341 70 190

LV 1 495 084 9 670 87 267 144 507 751 917 95 593

LT 6 333 352 109 029 231 373 1 061 890 1 252 682 57 038

LU 9 592 144 104 668 74 450 91 316 212 188 14 024

HU 16 949 197 590 524 335 905 1 378 997 3 494 208 223 711

MT 1 499 220 4 169 433 15 108 260 796 173

NL 99 591 174 2 919 366 2 141 949 13 251 111 7 878 747 26 870 584

AT 56 308 766 1 524 865 6 231 841 3 711 597 1 875 717 847 453

PL 140 340 303 1 158 495 3 366 748 7 123 815 6 783 974 401 277

PT 36 479 845 2 441 059 2 010 148 1 190 398 7 888 216 792 182

RO 189 310 549 546 408 1 805 150 17 668 175 8 386 970 216 883

SI 5 038 401 199 521 470 248 256 251 860 908 607 186

SK 11 472 008 218.704 629 430 1 224 526 1 533 083 1 164 067

FI 81 792 854 805.621 12 477 463 1 242 875 1 705 201 818 011

SE 86 168 590 2.292.088 4 507 626 1 788 044 2 523 149 669 486

UK 334 127 092 12 802 975 4 398 220 12 842 426 43 700 567 19 888 143

* Not all the biodegradable waste can be considered as biowaste. According to the Waste Framework Directive

(2008/98/CE) biowaste includes organic waste from gardens and parks, food and kitchen waste from

households, restaurants, caterers and distribution networks, and comparable waste from food-processing

plants. Biodegradable waste covers other biodegradables such as wood, paper, paperboard, wastewater and

sludge.

** Total household wastes, not all it is biodegradable.

Source: Eurostat

Page 61: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 61

Municipal waste (biodegradable garden, kitchen and food waste) represents more than half of all the

biowaste generated in Europe. The quantity of municipal waste generated per inhabitant in the EU27

decreased between 2001-2010 by 3,64% to reach 502 kg.

Table 3.24 Municipal waste* generated in Europe in 2010

Municipal waste (thousand of

tonnes) MSW renewable (1000toe)

Waste

generated

Energy

recovery

Primary

production

Final energy

consumption

EU27 252 095 42 007 8 052 569

BE 5 074 1 743 329 0

BG 3 091 0 0 0

CZ 3 334 495 63 21

DK 3 732 2 025 534 30

DE 47 691 6 840 2 271 86

EE 417 0 0 0

IE 2 846 108 6 6

EL 5 175 0 0 0

ES 24 664 2 236 216 0

FR 34 535 11 200 1 214 291

IT 32 090 4 590 778 0

CY 611 0 0 0

LV 680 0 0 0

LT 1 253 1 0 0

LU 344 122 14 0

HU 4 129 406 53 0

MT 246 0 : :

NL 9 887 3 229 817 0

AT 4 960 1 465 189 0

PL 12 038 0 3 3

PT 5 464 1 058 96 0

RO 7 830 0 0 0

SI 864 9 0 0

SK 1 809 171 22 8

FI 2 519 441 145 35

SE 4 364 2 124 743 0

UK 32 450 3 744 558 89

* Municipal waste is defined as waste collected by or on behalf of municipalities and includes waste produced

by households; it may also include similar waste from offices, small businesses and so on, depending on the

arrangements in the municipality.

Source: Eurostat

The figure below summarises the quantity of waste treated by the three main treatment types:

disposal, incineration (including energy recovery) and recovery (including all treatment of

biodegradable matter, for example composting)

To date, incineration is still the main energy conversion channel for renewable municipal waste, and

more than 7 Mtoe were produced in Europe from solid renewable municipal waste incineration.

Page 62: AEBIOM_European Bioenergy Outlook 2012sv

62 European Bioenergy Outlook 2012| AEBIOM

According to Eurobserver, almost half of the energy produces in Europe´s municipal waste

incineration plants is obstained from fermetescible waste (biomass waste).

Table 3.25 Composition of waste treatment type, EU-27, 2008

(million tonnes) (% of treatment type)

Recovery (other than energy recovery) 1092,4 -

Mineral waste 764,7 70

Metallic wastes 76,5 7

Animal and vegetal wastes 65,5 6

Paper and cardboard wastes 43,7 4

Incineration (including energy recovery) 129,1 -

Household and similar wastes 50,4 39

Sorting residues 12,9 10

Chemical wastes 9,8 8

Mixed and undifferentiated materials 3,3 3

Disposal 1168,9 -

Mineral wastes 970,2 83

Household and similar wastes 97,7 8

Common sludges 39,6 3

Sorting residues 27,4 2

Source: Eurostat

3.4.2 WASTE AS A SOURCE OF ENERGY

Using waste to produce energy has a twofold involvement in climate change: reduce GHG emissions

(e.g. CH4 from landfilling, CO2 from incineration and recycling) and save limited fossil fuel resources

used by traditional power plants.

According to CEWEP (Confederation of European Waste-to-Energy Plants) 73 million tonnes of

household and similar waste that remains after waste prevention, reuse and recycling, was treated

in Waste-to-Energy Plants across Europe in 2009, 29 billion kWh of electricity and 73 billion kWh of

heat can be generated. Then between 7-40 million tonnes of fossil fuels (gas, oil, hard coal and

lignite) can be substituted annually, emitting 20-40 million tonnes of CO2.

Source: CEWEP

Figure 3.12 Waste to energy cycle, 2010

Page 63: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 63

The tables below summarize some data from EurObserv´ER for the production of energy from

renewable municipal waste.

German waste-to-energy sector is one of the most efficient in Europe, but, on a per capita basis,

Denmark is Europe´s most heavily committed country to energy recovery from renewable waste.

Table 3.26 Gross electricity production form renewable municipal waste combustion in EU in 2009*(GWh)

Electricity only plants CHP plants Total electricity

DE 3083,0 1083,0 4166,0

FR** 1277,0 703,0 1980,0

IT 799,7 816,5 1616,2

NL 404,0 1169,0 1573,0

SE 0,0 1241,0 1241,0

UK 1240,7 269,9 1510,6

DK 0,0 1019,9 1019,9

ES 761,0 0,0 761,0

BE 309,6 147,0 456,6

AT 253,0 48,0 301,0

FI 65,0 226,0 291,0

PT 290,0 0,0 290,0

HU 29,0 84,0 113,0

LU 24,3 0,0 24,3

SK 0,0 22,0 22,0

CZ 0,0 10,9 10,9

EU 8536,3 6840,2 15376,6

* Estimation

** French overseas departments excluded

Source: EurObserv´ER 2010

Table 3.27 Heat production from renewable municipal waste combustion in the European Union in 2009* (in ktoe)

Heat plants only CHP plants Total heat

DE 169,1 355,8 525,0

SE 110,0 380,1 490,1

DK 35,8 316,9 352,7

FR** 58,4 195,1 253,5

NL 81,5 38,1 119,6

IT 0,0 55,9 55,9

Finland 11,2 42,5 53,6

AT 13,1 33,1 46,2

CZ 24,4 10,0 34,4

HU 0,0 12,6 12,6

SK 2,4 0,5 3,0

BE 0,0 2,7 2,7

EU 505,8 1443,4 1949,2

** French overseas departments excluded

Source: Eurostat

Page 64: AEBIOM_European Bioenergy Outlook 2012sv

64 European Bioenergy Outlook 2012| AEBIOM

Figure 3.13 Primary energy production form renewable municipal waste per inhabitant for each European country in 2009 (toe/1000 inhab)

** French overseas departments excluded

Source: EurObserv´ER 2010

3.5 Other

3.5.1 BLACK LIQUOR Black liquor is the spent cooking liquor from the kraft process when digesting pulpwood into paper

pulp removing lignin, hemicelluloses and other extractives from the wood to free the cellulose fibers.

The pulp industry creates an important amount of secondary residues in the form of black liquor.

This by-product of pulp mills is almost completely used for energy production in the pulp and paper

industry.

The paper and pulp industry uses more than 350 Mm³ wood; one part of this wood – the lignin

fraction (black liquor) – and also other by-products such as bark are used to produce energy: heat

and electricity.

Table 3.28 Biomass use as fuel in paper and pulp mills (Mtoe)

2008 2009

% of fuel consumption in 2009

AT 0,75 0,74 48,57

BE 0,28 0,27 54,64

FI 4,39 3,34 74,68

FR 1,15 0,97 55,96

DE 1,03 1,03 24,76

IT 0,006 0,01 0,28

NL 0,02 0,02 3,64

Norway 0,37 0,27 72,68

PT 0,94 0,96 73,62

ES 0,59 1,00 35,96

SE 5,01 4,94 91,59

Total 11 CEPI Countries 14,57 13,55 54,34

Source: CEPI -Confederation of European paper industry, 2010

98

69,1

46,7

29,5 25,6 25 21,9 20,6 18,7 11,4 11,3 9,3 6,9 5,5 5,1 4,6 1,2 0,02

15,4

Page 65: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 65

3.5.2 PEAT Peat is an intermediate fuel, part way between the biomass of which it was originally composed and

the fossil fuel (coal) that it would eventually become, given appropriate geological conditions.

Peat is not recognized as biomass by the European Commission and therefore is also not considered

a renewable source of energy. However, peat is an important source of energy for many northern

European countries and is often co-fired with biomass, providing as a way technical advantages.

In Europe, only some 1750 km2 (0.34% of total peatland) is used for energy peat production. Only six

countries have a significant peat for energy industry in EU27: Estonia, Ireland, Latvia, Lithuania,

Finland and Sweden (one quarter of the land area in Sweden is covered with peat). The total use of

fuel peat in EU is about 3,3 Mtoe of which 45% is used for CHP (Combined heat and power)

production and 38% for production of condensing power. The share of peat in district heating was

about 10% and in residential heating about 8% of the total. Around two million people are supplied

with heating energy from peat.

Table 3.29 Primary production, imports, exports and gross inland consumption of peat for energy in 2010 (ktoe)

Source: Eurostat

Figure 3.14 Peat use in different categories in EU (ktoe)

Source: VTT report “Peat industry in the six EU member states”, updated 2010

1402

304 377

1653

CHP

Condensing power

District heat

Residential heat

Primary

production Imports Exports

Gross inland consumption of peat for energy

EU27 3 139 122 32 3 526

EE 88 0 23 83

IE 995 0 0 804

LV 2 0 1 2

LT 9 0 3 8

RO 1 8 0 8

FI 1 806 2 4 2 270 SE 238 133 0 351

Page 66: AEBIOM_European Bioenergy Outlook 2012sv

66 European Bioenergy Outlook 2012| AEBIOM

Biomass for Heat 4

Page 67: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 67

4.1 Heat demand in Europe

Globally, heat represents a sizable part of energy consumption (47%). In Europe, the final energy

demand for heating (48%) is higher than for electricity (20%) or transport (32%).

Figure 4.1 Heat consumption in EU in 2010 (Mtoe)

Source: Eurostat

Figure 4.2 Expected additional heat demand* until 2020 (%expected growth rate 2010-2020)

Note: 2010 was taken as a base year

*Only heat for DH and CHP

Source: European Commission (“EU energy trends to 2030”), Cross Border Bioenergy calculations.

18,97

3,63

14,40 7,61

110,00

1,53 4,96

6,28

30,95

70,27

57,08

0,46 2,52 2,49

1,11

9,32

0,03

29,75

13,86

38,54

6,50

13,92

2,15 6,86

14,34 14,50

62,16

0

20

40

60

80

100

120

BE BG CZ DK DE EE IE EL ES FR IT CY LV LT LU HU MT NL AT PL PT RO SI SK FI SE UK

Mto

e

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Page 68: AEBIOM_European Bioenergy Outlook 2012sv

68 European Bioenergy Outlook 2012| AEBIOM

4.2 Biomass for heat and bioheat

The total demand for heat in Europe that is covered with biomass is 12,90%. The shares of biomass

use for heat production in EU 27 countries are varying. Counties like Sweden (59,51%), Finland

(42,51%), Latvia (45,32%) or Estonia (44,76%) have a high share of biomass use for heat production,

while in other countries like Malta (0%), United Kingdom (1,32%) and Netherlands (2,10%), the share

of biomass for heat is slightly increasing the last years.

Table 4.1 Final heat consumption of biomass for heat in comparison with the total heat consumption in Europe in 2010

Total heat consumption

(all fuels)

Final energy consumption of heat from

RES

Biomass for heat

ktoe % of all fuels % of RES

EU27 544 187 75 342 70 195 12,90% 93,17%

BE 18 965 960 912 4,81% 95,00%

BG 3 632 926 879 24,20% 94,92%

CZ 14 404 1 758 1 703 11,82% 96,87%

DK 7 606 2 499 2 419 31,80% 96,80%

DE 110 002 11 564 10 635 9,67% 91,97%

EE 1 526 688 683 44,76% 99,27%

IE 4 960 197 190 3,83% 96,45%

EL 6 283 1 077 852 13,56% 79,11%

ES 30 949 4 152 3 901 12,60% 93,95%

FR 70 269 10 794 10 603 15,09% 98,23%

IT 57 076 4 061 3 485 6,11% 85,82%

CY 462 85 22 4,76% 25,88%

LV 2 524 1 157 1 144 45,32% 98,88%

LT 2 487 880 868 34,90% 98,64%

LU 1 112 55 50 4,50% 90,91%

HU 9 318 1 054 936 10,05% 88,80%

MT 34 0 0 0,00% 0

NL 29 754 725 624 2,10% 86,07%

AT 13 862 3 985 3 572 25,77% 89,64%

PL 38 542 4 616 4 096 10,63% 88,73%

PT 6 495 2 245 2 169 33,39% 96,61%

RO 13 918 3 966 3 813 27,40% 96,14%

SI 2 147 587 554 25,80% 94,38%

SK 6 864 541 532 7,75% 98,34%

FI 14 337 6 286 6 094 42,51% 96,95%

SE 14 504 9 428 8 632 59,51% 91,56%

UK 62 159 1 054 818 1,32% 77,61%

Source: Eurostat, AEBIOM calculations

Page 69: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 69

The demand for heat consumes the largest share of primary energy supply and RES can offer a

practical alternative to fossil fuels under many circumstances. Paradoxically, RES used for heating

and cooling purposes have received relatively little attention compared to those used to generate

electricity and produce transport fuels.

As can be seen in the table below, heating with biomass represents more than 93% of all renewable

heat production. The share of biomass for heat in EU27 has been calculated by AEBIOM as part of

the final energy consumption. AEBIOM stimates that the EU27 consumes about 70,2 Mtoe biomass

for heating, including wood, wood waste and renewable municipal wastes, approximately 74,62% of

the final energy demand of biomass.

Figure 4.3 Final heat consumption of biomass for heat in comparison with the total renewable heat in 2010. Targets of biomass for heat in 2010 and 2020

Source: Eurostat, AEBIOM calculations

According to this calculation, 53.44% of the final energy consumption of biomass for heat is

delivered to households, 30,82% to industry and only 2,08% to services. The other 13,66%

corresponds to derived heat.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

BE BG CZ DK DE EE IE EL ES FR IT CY LV LT LU HU MT NL AT PL PT RO SI SK FI SE UK

kto

e

TOTAL RES

Biomass

2010 target

2020 target

Page 70: AEBIOM_European Bioenergy Outlook 2012sv

70 European Bioenergy Outlook 2012| AEBIOM

Figure 4.4 Final energy consumption of biomass for heat in Europe in 2010 in the different sectors

Source: Eurostat, AEBIOM calculations.

4.3 Small Scale heating Small scale biomass conversion technologies include stoves (for individual rooms, with typical capacities of a few kW) and boilers (capacities of a few tens of kW for homes up to 500 kW for big heating consumers e.g. schools, supermarkets, etc.). There has been significant innovation in the field of biomass technology during the past two decades, and modern systems are fully automatic with very low emissions. The development of new technologies will enable the production of high quality fuels, secure and sustainable supplies, clean and effective combustion processes, as well as optimally-integrated solutions for households. It should be mentioned here that the availability of data for small scale heating markets is generally limited due to the decentralized nature of these heat generation facilities and the problems of measurement that are associated therewith. Due to the wide dispersion of small scale burners and boilers, it is not easy to ascertain the total installed heat capacity. According to a survey made by EUBIONET III project, countries like Austria, Germany, Finland and Sweden have a very broad range of different producers for small-scale boilers. Boilers are traded within whole Europe. Especially East-European countries are concentrated on home markets and export their product limited to Europe and Russia. Producers in Austria, Germany, Finland and Sweden export their boiler within Europe, Russia, but also to North and South American countries and also to Asian markets. The Lot 15 EuP preparatory study on solid fuel small combustion installation (SCIs) done by the

European Commission, DG TREN, stimated the general market shares of majority of appliances

subjected to analysis in this study. It can be seen in the following figures that these shares will not

change significantly.

0

2000

4000

6000

8000

10000

12000

BE BG CZ DK DE EE IE EL ES FR IT CY LV LT LU HU MT NL AT PL PT RO SI SK FI SE UK

kto

e

Derived heatHeat for servicesHeat for householdsHeat for industry

Page 71: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 71

Figure 4.5 Market share changes for different appliances (%)

Source: EuP Preparatory Study Lot15

The most common biomass fuels for domestic heat production are wood logs, wood chips and wood

pellets. Especially for modern low-energy houses, wood pellets technologies are having a rapidly

rising share in many Member States e.g. Austria, Germany, Italy, France, etc. (see chapter dedicated

to pellets) . Wood fuel utilisation in small scale heating systems in Europe is currently concentrated

in a small number of member states (predominantly Austria and Germany and, to a lesser extent,

Italy, Finland, Belgium and France).

As a rough estimate, it is probably safe to say that at least 8,2 Million stock (2007) of wood biomass boilers up to 500 kW are installed in Europe, over 90% of which are boilers up to 50 kW (Bio Intelligent Service, 2009). As above mentioned these are mainly installed in Austria and Germany. In Baltic States and East Europe countries fossil fuel heating systems are still the mostly used. In some countries, e.g. Poland, the use of coal-boilers is still frequent. At the moment (2011) more than 1,5 Million pellet stoves are installed for heating purposes in Europe. The biggest European market for this segment is Italy, where over 1.100.000 units are installed. The other part is mainly present in France and Austria. Austria is one of the countries with more reliable statistics about small scale biomass heating

devices. In Austria more than 720,000 main heating systems based on biomass combustion have

been in operation in 2009/2010, which amounts to about 20 % of the total number of main heating

systems. Considering also secondary heating systems, more than 1.38 million small-scale biomass

appliances are in operation. During the last years about 15,000 to 20,000 newly installed modern

biomass combustion systems per year have been installed. Among these newly installed systems

pellet boilers have gained a dominating role (klima:aktiv Marktanalyse Energieholz 3/11).

Page 72: AEBIOM_European Bioenergy Outlook 2012sv

72 European Bioenergy Outlook 2012| AEBIOM

Figure 4.6 Number and capacity of annually newly installed Biomass Biolers<100 kw from 2001 to 2010 in Austria.

Source: Chamber of Agriculture, Lower Austria, Biomass Heating Survey. Publication “Basic Data Bioenergy 2012”, published by Austrian Energy Agency and Austrian Biomass Association.

Figure 4.7 Heating technologies used in Austrian households 2009/10

Source: Statistics Austria, Energy Consumption of Domestic Households. Publication “Basic Data Bioenergy 2012”, published by Austrian Energy Agency and Austrian Biomass Association.

Page 73: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 73

4.4 District heating and cooling District Heating (DH) currently covers 10% of the total heat demand in Europe. There are more than 5.000 medium and large scale distict heating systems (DHC+ Platform). However, market penetration of district heating is unevenly distributed; While DH is having an average market share of 10% in Europe,it is particularly widespread in North, Central and Eastern Europe, where market shares often reach up to 50 70%. District Cooling in Europe today has a market share of about 2% of the total cooling market, corresponding to approximately 10 PJ (3 TWh) cooling. The market penetration of District Cooling shows great diversity. Overall, this market has emerged quite recently and is consequently less developed than the District Heating market. Cooling with biomass is currently limited to centralized district solutions therefore statistics are very limited. Table 4.2 District heating statistics in some EU member states in 2009

Number of

DH utilities

Total installed DH

capacity (MWth)

Share of citizens

served by DH

AT 730 8200 20

Croatia 11 1.800 10

CZ 449 38

DK 61,20

EE 200 5586 53

FI ca 150 20790 49

FR 418

(systems) 16460 8

DE 228 51506 14

EL 5 (2007) 445

IT 55 2204 (only in

CHP) 4

LV 40 7308 64

LT 30 9621 60

NL 5552

Norway 70 2305 1

PL 499 59790 50

RO 91 53200 23

SL 58 2242 17 SK 365 27896 41

SE 439

(systems) 15000 42

Switzerland 41 2150

Source: Euroheat and Power

Page 74: AEBIOM_European Bioenergy Outlook 2012sv

74 European Bioenergy Outlook 2012| AEBIOM

Figure 4.8 Total length of DH pipeline network in 2009 and 2005

Figure 4.9 District cooling capacity 2009 and where available 2005

Figure 4.10 Energy supply composition for District Heat generated in 2009

Recycled heat: Surplus heat from electricity production, from fuel and biofuel-refining and from different

industrial processes.

Source: Euroheat and Power

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

- Others

- DirectRenewables- Recycled heat

0

5.000

10.000

15.000

20.000

25.000

km

Total length of DH pipline system 2009

Source: Euroheat and power

Source: Euroheat and power 0

100

200

300

400

500

600

700

Austria Finland France Germany Italy Norway Poland Slovakia Slovenia Sweden

MW

DC capacity 2009 DC capacity 2005 (if not available 2007)

Source: Euroheat and power

Page 75: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 75

DHC using renewables is strongly increasing in Europe. According to the European Technology Platform on Renewable Heating and Cooling, in 2020 over 25% of heat consumed in the European Union could be generated with renewable energy technologies. The large majority of this renewable heat will still be produced from biomass sources. According to EurObserv´ER analysis, the volume of heat from solid biomass sold by heating networks increased by 18% in 2010 which equates 6.7 Mtoe in 2010, and 68.7% of this was delivered by cogeneration units whose heat production increased 19.3% between 2009 and 2010. Table 4.3 Heat production from solid biomass in the European Union in 2009 and 2010* (in Ktoe) in the transformation sector **

2009 2010*

Heat-only plants

CHP plants Total heat Heat-only plants

CHP plants Total heat

EU 1 829 3 869 5 698 2 103 4 617 6 721

SE 774 1 328 2 102 939 1 477 2 416

FI 214 945 1 159 235 1 077 1 312

DK 0 579 579 0 846 846

AT 259 325 584 298 399 698

DE 140 195 336 148 231 379

PL 39 211 250 38 236 274

LT 145 36 181 149 36 186

EE 83 44 127 93 50 143

LV 87 9 96 92 10 101

IT 0 61 61 0 94 94

SK 30 28 57 50 38 88

CZ 20 30 50 22 37 59

NL 0 39 39 0 49 49

HU 5 29 33 3 26 29

RO 20 0 20 20 0 20

SL 12 4 16 13 5 18

BE 0 6 6 0 6 6

LU 1 0 1 1 0 1

BU 1 0 1 1 4617 1 * Estimation ** Heat sold by district heating networks or self-consumed. Source: EurObserv´ER 2011

Below, some graphs showing the District Heating market in different EU countries. This information has been extracted from the DH Market Handbook elaborated by the Cross Border Bioenergy Project consortium (www.crossborderbioenergy.eu)

Page 76: AEBIOM_European Bioenergy Outlook 2012sv

76 European Bioenergy Outlook 2012| AEBIOM

Figure 4.11 Amount of district heating systems in Germany in 2010 with a nominal heat output between 100-1000 kW and according raw materials use.

Figure 4.12 Amount of biomas heating systems with a nominal heat output > 1MW in Germany in 2010 and the used raw materials

Figure 4.13 Fuel consumtion for district heating production in Austria

Source: dbfz.de. Cross Border Bioenergy

Project

Source: dbfz.de. Cross Border Bioenergy

Project

Source. Annual Energy Statistic 2010. Cross

Border Bioenergy Project

Page 77: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 77

Figure 4.14 Energy mix in Swedish District Heating

Source: District Heating and Cooling Platform.

Page 78: AEBIOM_European Bioenergy Outlook 2012sv

78 European Bioenergy Outlook 2012| AEBIOM

BECOME AEBIOM MEMBER

AEBIOM Membership Who can become AEBIOM Full Member? National biomass associations Who can become AEBIOM Associate Member? Bioenergy companies active in the bioheat, bioelectricity, transport biofuels and biogas sectors, associations of specific biomass sectors such as pellets, biogas, wood energy etc. How to proceed? Complete, sign and return the application form found on www.aebiom.org to [email protected]

Page 79: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 79

ELECTRICITY FROM BIOMASS 5

Page 80: AEBIOM_European Bioenergy Outlook 2012sv

80 European Bioenergy Outlook 2012| AEBIOM

5.1 Electricity in Europe The European Union primarily uses fossil fuels to produce its electricity (52.3% in 2009). However

unstable fuel prices and an increase in energy demand make power generation from RES more

economically competitive than ever before.

Figure 5.1 Final electricity consumption in EU countries in 2010 (ktoe)

Source: Eurostat

Figure 5.2 Expected additional electricity demand between 2010 and 2020

Source: European Commission “EU energy trends to 2030”, Cross Border Bioenergy project

7163

2330 4919

2757

45482

593 2163

4567

22406

38185

25736

420 534 716 568 2941

138

9189

5274

10188

4290 3553 1029 2074

7178

11283

28230

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

BE BG CZ DK DE EE IE EL ES FR IT CY LV LT LU HU MT NL AT PL PT RO SI SK FI SE UK

0%

5%

10%

15%

20%

25%

30%

35%

14,3% 15,8% 15,5%

34,4%

20,8%

7,3% 8,6%

26,0% 23,8%

24,9%

9,8%

17,1% 17,0%

24,4%

18,3%

22,3% 21,9%

24,7%

15,0%

12,3%

18,5% 17,1%

24,4%

8,0%

19,9%

31,6%

9,3%

Page 81: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 81

Over the past decade, biomass power output has been the second driver (after wind energy) for

renewable electricity growth. Austria, Germany, the United Kingdom, Denmark, Finland and Sweden

are leading this process, mostly producing bio-electricity from wood residues in cogeneration plants.

CHP systems remain the principle technology used to produce electricity form solid biomass,

representing around three-quarters of total electrical production.

Table 5.1 Final energy consumption of electricity in Europe in 2010 and proportion of renewable electricity (ktoe)

Total

electricity Renewable electricity

Proportion of RES in electricity sector

EU27 243 907 62 899 25,79%

BE 7 163 838 11,70%

BG 2 330 608 26,09%

CZ 4 919 610 12,40%

DK 2 757 1.073 38,92%

DE 45 482 10 103 22,21%

EE 593 90 15,18%

IE 2 163 352 16,27%

EL 4 567 909 19,90%

ES 22 406 8 933 39,87%

FR 38 185 7 516 19,68%

IT 25 736 7 182 27,91%

CY 420 3 0,71%

LV 534 312 58,43%

LT 716 207 28,91%

LU 568 259 45,60%

HU 2 941 261 8,87%

MT 138 - -

NL 9 189 968 10,53%

AT 5 274 4 427 83,94%

PL 10 188 1 034 10,15%

PT 4 290 2 506 58,41%

RO 3 553 - -

SI 1 029 441 42,86%

SK 2 074 576 27,77%

FI 7 178 2 076 28,92%

SE 1 1283 7 077 62,72%

UK 2 8230 2 757 9,77%

Source: Eurostat, AEBIOM calculations.

Page 82: AEBIOM_European Bioenergy Outlook 2012sv

82 European Bioenergy Outlook 2012| AEBIOM

5.2 Bioelectricity

Biomass for electicity output has increased by 13.5% on average since 1999. The development of

solid biomass and biogas sectors has been particularly significant, as they have made an additional

contribution of 44,1 TWh and 20,7 TWh respectively. Due to incentive schemes that have been

installed recently in some EU countries (guaranteed feed-in tariffs, call for tender procedures and

green certificates), new power plants have been implemented using biomass over the last few years.

In average, bioelectricity covers 16,85% of all the demand of electricity from RES in Europe. This

percentage increases up to 71,11% in Estonia, 62,50% in Netherlands or 52,42% in Poland. The

countries with less used of biomass to produce renewable electricity are Bulgaria with only 0,49%,

followed by Greece with 1,76% and Latvia with 1,60% of bioelectricity out of all RES used in

electricity production.

Figure 5.3 Final energy consumption of electricity from RES and bioelectricity in 2010

Soruce: Eurostat, AEBIOM calculation. Biomass electricity generation is based on three fuel types: solid biomass, biogas, and the biodegradable fraction of MSW. According to EurObserv’ER primary energy production from solid biomass increased by almost 8% between 2009 and 2010, which equates an additional contribution of 5.9 Mtoe. Renewable electricity output from incineration of renewable municipal solid waste is rising continuously in all the EU. It is put at almost 15.4 TWh in 2009, which is 1.3% up on 2008. But the biggest increase has been in biogas recovery in the form of electricity. 25.2 TWh was produced from biogas, which is an increase of 17.9% on 2008.

371 3 186 398 2897 64 28 16 335 404 811 0 5 12 6 199 0 605 392 542 224 9 19 56 940 1048 1024 0

2000

4000

6000

8000

10000

BE BG CZ DK DE EE IE EL ES FR IT CY LV LT LU HU MT NL AT PL PT RO SI SK FI SE UK

kto

e

Electricity from RES

Bioelectricity

Page 83: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 83

Table 5.2 Total gross electricity production (electricity only plants and CHP plants) from solid biomass, municipal waste combustion and biogas in the European Union in 2009 (when not available, 2008) and 2010* (when not available 2009*) (inTWh)

Solid biomass MSW combustion Biogas

2009 2010* 2008 2009* 2008 2009*

European Union

61,893 67,006 15,180 15,376 21,356 25,170

Austria 3,321 3,321 0,33 0,301 0,602 0,638

Belgium 2,709 2,784 0,37 0,456 0,333 0,461

Bulgaria 0,006 0,006 - - -

Cyprus - - - - 0,012 0,012

Czech Republic

1,396 1,493 0,0117 0,109 0,266 0,441

Denmark 1,996 3,323 1,117 1,019 0,298 0,324

Estonia 0,307 0,733 - - 0,009 0,010

Finland 8,402 9,385 0,293 0,291 0,029 0,031

France ** 1,234 1,36 1,881 1,980 0,700 0,846

Germany 10,881 10,73 4,506 4,166 9,979 12,562

Greece - - - - 0,191 0,217

Hungary 2,029 1,993 0,109 0,113 0,068 0,095

Ireland 0,064 0,14 - - 0,127 0,117

Italy 2,828 2,26 1,556 1,616 1,599 1,739

Latvia 0,004 0,007 - - 0,039 0,045

Lithuania 0,087 0,116 - - 0,009 0,015

Luxembourg - - 0,0243 0,024 0,043 0,053

Netherlands 3,55 4,197 1,408 1,573 0,734 0,915

Poland 4,907 5,906 - - 0,251 0,319

Portugal 1,713 2,223 0,276 0,290 0,071 0,083

Romania 0,011 0,011 - - 0,001 0,001

Slovakia 0,493 0,614 0,022 0,022 0,015 0,021

Slovenia 0,12 0,12 - - 0,055 0,068

Spain 2,197 2,459 0,782 0,761 0,584 0,527

Sweden 10,103 9,281 1,268 1,241 0,030 0,034

United Kingdom

3,535 4,582 1,225 1,510 5,304 5,951

* Estimation ** French overseas departments excluded Source: EurObserv´ER 2011

Co-firing is the technology with the largest growth potential in the power sector and is the most cost effective method for large-scale power generation from biomass, which is particularly relevant for power utilities. Globally, roughly 5 EJ (119,42 Mtoe) of biomass/waste could in theory be burned in coal power plants every year, assuming that biomass could be co-fired in all coal-fired power plants at a 10% fuel share, on energy basis. The large number of coal-fired power plants also makes biomass co-firing an option in many MS. Europe has roughly two-thirds of about 150 coal-fired power plants presently co-firing biomass, either as pilot tests or in commercial use (Article Strategies for 2

nd generation biofuels in EU, University of Technology Göteborg, Sweden)

Page 84: AEBIOM_European Bioenergy Outlook 2012sv

84 European Bioenergy Outlook 2012| AEBIOM

5.3 Combined heat and power (CHP)

Europe is assisting the expansion of biomass use for power and CHP generation. Austria, Germany,

the UK, Denmark, Finland and Sweden are leading this process, mostly producing bio-electricity from

wood residues in cogeneration plants. Waste products, such as black liqueurs, wood waste, bark or

sawdust, are also treated internally in large-scale power plants in CHP operation, which can use

biomass alone, or mix it with other fuels.

Figure 5.4 Share of biomass CHP compare to all CHP (in terms of electricity)

Source: Eurostat, Cross Border Bioenergy project. Figure 5.5 Growth rate of biomass CHP electricity output over the period 2006-2009

Source: Eurostat, Cross Border Bioenergy project.

The following table shows that the highest share of biomass in CHP plants is in Sweden, Finland and

Denmark. Key conditions facilitating the market development in these countries are the existence of

district heating networks and the strong support policies for respective schemes. Besides, these are

countries with a large forestry industry, therefore it is expected that such countries should have the

highest proportions of biomass in the fuel mix for co-generation.

0

10

20

30

40

50

60

70

%

-40

-20

0

20

40

60

80

100

Page 85: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 85

The main biomass feedstock for cogeneration is solid biomass. Cogeneration from solid biomass

grew at a faster pace than that of electricity-only plants, rising by 9.7% between 2009 and 2010; As a

result, the cogeneration share was 63.6% in 2010.

Table 5.3 Gross electricity production in CHP plant from solid biomass, municipal waste combustion and biogas in the European Union in 2009 (when not available, 2008) and 2010* (when not available 2009*) (inTWh)

* Estimation ** French overseas departments excluded Source: EurObserv´ER 2011

Solid biomass Renewable MSW Biogas

2009 2010 2008 2009 2008 2009

CHP

% of all electricity produced with solid biomass

CHP

% of all electricity produced with solid biomass

CHP

% of all electricity produced

with renewable

MSW

CHP

% of all electricity produced

with renewable

MSW

CHP

% of all electricity produced

with biogas

CHP

% of all electricity produced

with biogas

EU27 38,85 62,77% 42,61 63,59% 6,80 44,79% 6,84 44,48% 3,99 18,69% 4,77 18,96%

AT 2,07 62,18% 2,07 62,18% 0,02 4,85% 0,05 15,95% 0,05 7,48% 0,04 5,64%

BE 0,95 35,11% 0,99 35,63% 0,01 2,97% 0,15 32,24% 0,16 47,75% 0,29 62,04%

BG 0,01 100,00% 0,01 100,00%

-

-

-

-

CY

-

-

-

- 0,01 100,00% 0,01 100,00%

CZ 0,87 62,61% 0,90 60,15% 0,01 94,02% 0,01 9,17% 0,20 76,32% 0,20 45,12%

DK 2,00 100,00% 3,32 100,00% 1,12 100,00% 1,02 100,00% 0,30 99,66% 0,32 99,69%

EE 0,20 64,82% 0,48 64,80%

-

- 0,00 0,00% 0,00 0,00%

FI 7,53 89,65% 8,51 90,69% 0,20 68,26% 0,23 77,66% 0,03 100,00% 0,03 100,00%

FR **

0,86 70,02% 0,95 70,00% 0,68 35,94% 0,70 35,51% 0,09 13,43% 0,18 20,69%

DE 3,00 27,56% 3,21 29,91% 1,15 25,43% 1,08 26,00% 1,14 11,44% 1,24 9,85%

EL

-

-

-

- 0,02 10,47% 0,03 15,67%

HU 0,20 10,00% 0,20 9,98% 0,09 77,98% 0,08 74,34% 0,07 100,00% 0,10 100,00%

IE 0,02 26,56% 0,02 13,57%

-

- 0,02 13,39% 0,02 14,53%

IT 0,72 25,57% 0,72 31,73% 0,92 59,19% 0,82 50,50% 0,31 19,26% 0,37 20,99%

LV 0,00 100,00% 0,01 100,00%

-

- 0,04 94,87% 0,04 93,33%

LT 0,09 100,00% 0,12 100,00%

-

- 0,01 100,00% 0,02 100,00%

LU

-

- 0,00 0,00% 0,00 0,00% 0,04 100,00% 0,05 100,00%

NL 1,79 50,31% 1,75 41,70% 1,05 74,64% 1,17 74,32% 0,65 88,69% 0,83 91,04%

PL 4,91 100,00% 5,91 100,00%

-

- 0,25 100,00% 0,32 100,00%

PT 1,36 79,63% 1,56 70,04% 0,00 0,00% 0,00 0,00% 0,01 11,27% 0,01 12,05%

RO 0,00 9,09% 0,00 9,09%

-

- 0,00 0,00% 0,00 0,00%

SK 0,49 100,00% 0,61 100,00% 0,02 100,00% 0,02 100,00% 0,01 93,33% 0,02 95,24%

SL 0,11 93,33% 0,12 100,00%

-

- 0,05 83,64% 0,06 86,76%

ES 1,57 71,28% 1,90 77,10% 0,00 0,00% 0,00 0,00% 0,58 100,00% 0,53 100,00%

SE 10,10 100,00% 9,28 100,00% 1,27 100,00% 1,24 100,00% 0,03 100,00% 0,03 100,00%

UK 0,00 0,00% 0,00 0,00% 0,27 22,29% 0,27 17,81% 0,46 8,67% 0,53 8,84%

Page 86: AEBIOM_European Bioenergy Outlook 2012sv

86 European Bioenergy Outlook 2012| AEBIOM

Biofuels for Transport 6

Page 87: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 87

6.1 Generalities

As it can be seen in the following graph the European Union is strongly dependent on fossil fuels for

its transport needs and is a net importer of crude oil. More than 90% of the total energy

consumption in the transport sector comes from petroleum products.

The 10% target in transport by 2020 is viewed by many as one of the hardest target to reach, as the

biofuel usage today is small in most EU-27 countries. According to Eurostat data the proportion of

biofuels within the total energy consumption in the transport sector is only 3.63% in the EU27.

Therefore, this sector should grow rapidly withing the coming years to achieve the 2020 target.

Figure 6.1 Final energy consumption in the transport sector in EU 27 and proportion of biofuels.

Source: Eurostat, AEBIOM calculation.

According to last available figures of Eurobserv´ER the biofuel consumption increased by 3%

between 2010 and 2011 which translates into 13.6 million tonnes of oil equivalent (toe) used in 2011

compared to 13.2 million toe in 2010. Despite the positive figure, this increase is much less

comparing to the previous years: 10.7% between 2009 and 2010, 24.6% between 2008 and 2009

and 41.7% between 2007 and 2008.

0,21% 0,24%

0,32%

0,40%

0,54% 0,85%

1,47%

1,78% 2,53%

3,25% 3,63%

310.000

320.000

330.000

340.000

350.000

360.000

370.000

380.000

390.000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

kto

e

Total petroleum products Biofuels Total energy consumption in transport

Page 88: AEBIOM_European Bioenergy Outlook 2012sv

88 European Bioenergy Outlook 2012| AEBIOM

Figure 6.2 Trend of the European Union biofuel consumption for transport (ktoe)

* Estimate

Sources: Data from 2000 to 2009 (Eurostat 2012), data from 2010 to 2011 (EurObserv’ER 2012).

Figure 6.3 Evolution of the final energy consumption in biofuels for transport thend (ktoe)

Source: Eurostat

705 821 1096 1422 1976

3100

5495

3744

9559

11908

13179 13571

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011*

0

2000

4000

6000

8000

10000

12000

14000

16000

kto

e

0

500

1.000

1.500

2.000

2.500

3.000

BE BG CZ DK DE EE IE EL ES FR IT CY LV LT LU HU MT NL AT PL PT RO SI SK FI SE UK

kto

e

2005

2008

2010

Page 89: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 89

6.2 Biodiesel and bioethanol

Between 2010 and 2011, just a handful of countries decided to increase their biofuel incorporation

rates in the fuel total – namely, Finland (4 to 6%), Poland (5.75 to 6.2%), Italy (3.5 to 4%), Spain (5.83

to 6.2%), Bulgaria (3.5% to 5% in volume), the Netherlands (4 to 4.25%) and Denmark (first quota set

at 3.5%). However Germany continued being in 2011 the largest consumer of biofuels.

Table 6.1 Biofuel consumption for transport in the European Union in 2010 and 2011 (ktoe)

2010 2011*

Bioethanol Biodiesel Other

biofuels**

Total

consumption Bioethanol Biodiesel

Other

biofuels**

Total

consumption

EU27 2 684,85 10 343,88 149,78 13 178,52 2 852,58 10 587,55 130,59 13 570,72

AT 68,48 408,31 13,02 489,82 68,91 349,07 13,67 431,66

BE 49,90 277,17 0 327,07 48,12 273,30 0 321,42

BG 0 15,90 0 15,90 0 0 0 0

CY 0 15,02 0 15,02 0 15,02 0 15,02

CZ 61,26 172,49 0 233,75 59,28 240,56 0 299,84

DK 22,04 0,72 0 22,76 135,42 4,41 0 139,84

EE 0 0 0 0 0 0 0 0

FI 71,53 52,91 0,09 124,53 79,48 92,34 0,268 172,1

FR 254,21 1788,14 0 2042,35 252,924 1797,94 0 2050,87

DE 751,19 2234,95 53,90 3040,15 795,14 1143,92 17,67 1956,74

EL 0 124,60 0 124,60 0 103,39 0 103,39

HU 57,39 116,65 0 174,04 54,12 110,00 0 164,12

IE 30,73 59,68 2,32 92,74 29,62 67,70 0 97,33

IT 156,06 1297,31 0 1453,37 145,74 1286,71 0 1432,45

LV 8,41 18,69 0 27,11 7,64 34,02 0 41,66

LT 10,41 34,73 0 45,14 9,20 35,37 0 44,57

LU 0,720 40,04 0 40,76 5,13 38,42 0 43,55

NL 134,08 94,65 0 228,74 147,34 163,37 0 310,71

PL 153,48 789,25 34,64 977,38 141,87 841,31 34,60 1017,79

PT 0 325,25 0 325,25 0 306,89 0 306,89

RO 71,51 125,87 0 197,38 71,58 126,37 0 197,95

SK 39,33 121,07 0 160,40 39,98 123,72 0 163,70

SL 2,90 41,72 0 44,62 3,74 31,62 0 35,36

ES 233,44 1186,85 0 1420,29 229,57 1443,13 0 1672,71

SE 191,11 175,01 45,79 411,92 200,67 229,80 64,37 494,85

UK 316,49 826,81 0 1143,30 327,02 729,07 0 1056,10

* Estimation

** Pure vegetable oils used for Germany, Poland, Austria, Ireland, biogas fuel for Sweden and Finland

Source: EurObserv´ER

Page 90: AEBIOM_European Bioenergy Outlook 2012sv

90 European Bioenergy Outlook 2012| AEBIOM

Biodiesel is the main biofuel in European transport with a 78% share of total consumption, as against 21% for

bioethanol. The vegetable oil fuel share is becoming negligible (0.5%) and for the moment the biogas fuel share in

transport is specific to Sweden and a few places in Germany.

Figure 6.4 Breakdown of biofuel consumption for transport in Europe in 2011* by biofuel type

* Estimation Source: EurObserv´ER 2012

Figure 6.5 Production of bioethanol (map left) and biodiesel (map right) in EU in the year 2009 (million litres/year)

Source: Biofuels Platform

Vegetable oil 0,50%

Biogas 0,50%

Bioethanol 21,00%

Biodiesel 78,00%

Vegetable oil

Biogas

Bioethanol

Biodiesel

Page 91: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 91

Figure 6.6 EU biofuels trade in 2010

Source: Eurostat, AEBIOM calculations

1.058

3.512

405

1.763

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

Biogasoline Biodiesels

kto

e

Imports Exports

Page 92: AEBIOM_European Bioenergy Outlook 2012sv

92 European Bioenergy Outlook 2012| AEBIOM

Figure 6.7 EU biodiesel trade balance 2000–2009 in PJ

Source: P. Lamers et al. / Renewable and Sustainable Energy Reviews 15 (2011) 2655– 2676

Figure 6.8 EU fuel ethanol trade balance 2000–2009 in PJ

Source: P. Lamers et al. / Renewable and Sustainable Energy Reviews 15 (2011) 2655– 2676

Page 93: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 93

Biogas sector in Europe 7

Page 94: AEBIOM_European Bioenergy Outlook 2012sv

94 European Bioenergy Outlook 2012| AEBIOM

7.1 Generalities Biogas has become a real success story over the last years. As can be seen in the table below, in 2010, more than 10.9 Mtoe of biogas were produced in Europe, which means a growth of 31.3% comparing with 2009. There is no doubt that the role of biogas in the European energy mix is steadily growing. But it is also true that ten countries in Europe provide 85% of the total biogas production in Europe and that much of the strong growth in primary energy production from biogas emerged in Germany, which already contributes to almost 61% of the total production in Europe. Table 7.1 Primary production of biogas in the EU 27 in 2008 and 2009 (ktoe)

* Estimation ** Overseas department not included 1 Urban and industrial

2 Decentralised agricultural plants, municipal solid waste, methanation plants, centralized

codigestion and multi-products plants. Source: Eurobserver

2009 2010*

Landfill Gas

Sewage sludge gas

1

Other biogas

2

Total Landfill Gas

Sewage sludge gas

1

Other biogas

2

Total

EU27 3034,6 982,9 4317,1 8334,

7 2929,8 1075,2 6938,3

10943,3

BE 42,7 2,1 80,5 125,3 41,9 14,6 70,9 127,4

BG - - - - - - - -

CZ 29,2 33,7 67,0 129,9 29,5 35,9 111,3 176,7

DK 6,2 20,0 73,4 99,6 8,1 20,1 74,0 102,2

DE 265,5 386,7 3561,2 4213,

4 232,5 402,6 6034,5 6669,6

EE 1,6 1,0 0,0 2,5 2,7 1,1 0,0 3,7

IE 42,2 8,1 4,1 54,4 44,2 8,6 4,5 57,3

EL 46,3 9,5 0,2 56,0 51,7 15,0 1,0 67,7

ES 140,9 10,0 32,9 183,7 119,6 12,4 66,7 198,7

FR** 442,3 45,2 38,7 526,2 323,7 41,6 48,0 413,3

IT 361,8 5,0 77,5 444,3 383,8 7,0 87,7 478,5

CY 0,0 0,0 0,2 0,2 0,0 0,0 0,2 0,2

LV 6,8 2,7 0,2 9,7 7,9 3,3 2,2 13,3

LT 1,3 2,1 1,2 4,7 2,0 3,0 5,0 10,0

LU 0,0 1,4 11,0 12,4 0,1 1,2 11,7 13,0

HU 2,8 10,5 17,5 30,9 2,6 12,3 19,3 34,2

MT - - - - - - - -

NL 39,2 48,9 179,8 267,9 36,7 50,2 206,5 293,4

AT 4,9 19,0 135,9 159,8 5,1 22,5 143,9 171,5

PL 35,7 58,0 4,5 98,0 43,3 63,3 8,0 114,6

PT 21,3 1,5 1,0 23,8 28,2 1,7 0,8 30,7

RO 0,0 0,0 1,1 1,1 0,0 0,0 1,1 1,1

SE 34,5 60,0 14,7 109,2 35,7 60,7 14,8 111,2

SI 8,3 7,7 11,0 27,1 7,7 2,8 19,9 30,4

SK 0,8 14,8 0,7 16,3 0,8 9,5 1,8 12,2

FI 26,0 12,6 2,8 41,4 22,7 13,2 4,5 40,4

UK 1474,4 222,6 0,0 1697,

0 1499,4 272,8 0,0 1772,2

Page 95: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 95

Biogas is mainly used for electricity production. According to EurObserv´ER, the power output from

biogas would be as much as 30,4 TWh in 2010 (25,1 TWh in 2009) which is a 20,9% up on 2009 and

the heat production in 2010 amounted to 1,5 Mtoe. Therefore, according to this data, members

states are already ahead of their electricity targets in the NREAPs (28,7 TWh in 2010) and in line

with their heat consumption forecast (1,5 Mtoe in 2010).

Table 7.2 Gross biogas electricity output in the European Union in 2009 and 2010* (GWh)

*Estimation ** Overseas department not included Source: Eurobserver

2009 2010*

Electricity-only

plants CHP

Total electricity

Electricity-only plants

CHP Total

electricity

EU27 20 307,9 4 793,3 25 101,1 24 470,9 5 868,6 3 0339,6

BE 161,9 313,7 475,6 149,3 418,0 567,3

BG - - - - - -

CZ 241,6 199,6 441,3 361,0 275,0 636,0

DK 1,3 318,3 319,6 1,5 330,7 332,2

DE 11 325,0 1 237,0 12 562,0 14 847,0 1 358,0 16 205,0

EE 0,0 6,7 6,7 0,0 10,2 10,2

IE 169,0 17,0 186,0 176,0 22,0 198,0

EL 189,9 33,9 223,8 190,7 31,4 222,1

ES 479,0 51,0 530,0 564,0 88,0 653,0

FR** 671,4 175,0 846,4 774,2 304,2 1078,4

IT 1 299,6 365,4 1 665,0 1 451,2 602,9 2 054,1

CY 0,0 0,0 0,0 0,0 0,0 0,0

LV 2,6 42,4 45,0 2,5 50,8 53,3

LT 0,0 14,8 14,8 0,0 31,0 31,0

LU 0,0 53,3 53,3 0,0 55,9 55,9

HU 0,0 96,0 96,0 0,0 83,0 83,0

MT - - - - - -

NL 82,0 833,0 915,0 82,0 946,0 1 028,0

AT 571,0 39,0 610,0 603,0 45,0 648,0

PL 0,0 319,2 319,2 0,0 398,4 398,4

PT 72,6 10,4 83,0 89,8 9,8 99,6

RO 0,0 1,0 1,0 0,0 1,0 1,0

SE 0,0 34,0 34,0 0,0 36,4 36,4

SI 9,7 59,2 68,8 7,2 90,2 97,4

SK 1,0 21,0 22,0 1,0 21,0 22,0

FI 0,2 31,4 31,6 51,5 37,8 89,2

UK 5 030,0 521,0 5 551,0 5 118,0 622,0 5 740,0

Page 96: AEBIOM_European Bioenergy Outlook 2012sv

96 European Bioenergy Outlook 2012| AEBIOM

According to the data collected from EUBA, the number of biogas plants in Europe has increased over 30% between 2009 and 2010. As can be seen in the table below, German biogas industry is the undisputed world market leader in the distribution and development of biogas technology and where it can be found the biggest growth in the number of new installed biogas plants in 2010, followed by Hungary and Czech Republic. Other best practice countries like Austria, Denmark, Sweden, Switzerland and the Netherlands experience very positive market developments which encourage other countries to follow the example.

*including industry and sewage

Source: European Biogas

Association

Table 7.3 Thermal energy production in 2010 (GWh)

Source: European Biogas Association Table 7.4 Biogas plants in Europe in 2009 and 2010

Thermal energy

production

CZ -

DE 7700

EE 15

EL 49

FR 1014

IT -

LV -

LT 140

LU 23

HU 113

NL 564

AT 200

PL 365

RO -

SE 666

FI 315

Switzerland 49

TOTAL approx.. 11 213

Total number of biogas plants

2009

Total number of biogas plants

2009 Agriculture Landfill Other*

CZ 202 235 124 61 50

DE 4 490 7 090 5 905 - 1 185

EE - 3 - - -

EL - 17 0 2 15

ES - 12 12 - -

FR 491 498 48 301 149

IT 445 510 313 197 -

LV 5 15 8 4 3

LT 11 16 1 8 7

LU 26 30 26 - 4

HU 25 43 21 8 14

NL 130 209 95 25 89

AT 458 425 330 15 80

PL 155 160 9 78 73

RO 6 6 0 0 6

SE 230 228 31 57 140

FI 68 74 10 39 25

UK - 275 32 75 168

Switzerland 586 587 86 - 501

TOTAL approx.

7 328 10 433 7 051 870 2 509

Page 97: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 97

Figure 7.1 Left: substrate input in biogas plants in Germany in 2010 (mass referred); Right: Substrate input of energy crops in biogas plants 2010 in Germany (mass referred).

Source: FNR

Maize silage 76%

Cereal grain 4%

Whole plant grain silage

7%

Grass silage 11%

Sugar beet 1%

Other 1%

Energy crops 46%

Biowaste 7%

Industrial and

harvest residues

2%

Livestock excrement

s 45%

Page 98: AEBIOM_European Bioenergy Outlook 2012sv

98 European Bioenergy Outlook 2012| AEBIOM

7.2 Biomethane Biogas can be upgraded to biomethane and injected into the natural gas grid to substitute natural gas or can be compressed and fuelled via a pumping station at the place of production. Finally, injected biomethane can be used at any ratio with natural gas as vehicle fuel, therefore biomethane could play an important role in the transportation sector. Sweden is the biomethane leader with a 55% share of all gas used in vehicles. Mostly few countries have fair experience in biomethane to grid injection technology: Sweden, The Netherlands, Germany and Austria. According to Green Gas Grids project, more than 170 plants are operating in these countries that upgrade biogas to biomethane, of zith a large proportion is feeding into the public natural gas grids. Table 7.5 Number of biomethane plants in some European Countries

Source: Green Gas Grid Acording to the information provided by dena (German Energy Agency), in July 2012 in Europe biomethane injection plants with a feeding capacity of about 70,000 Nm³/h are operating. The average plant size is about 500 Nm³/h feed performance. As can be seen in the previous table, with 84 biomethane plants out of 177 in all Europe, Germany takes the lead in biomethane production in Europe. Besides, according to market research, about 75 more are expected to start operation in the following years. Figure 7.2 Biomethane production in Germany: Number of plants in operation and upgrading capacity installed, status March 2012

Biomethane plants

Biomethane plants feeding the grid

AT 10 7

FR 3 1

DE 84 82

HU 1 -

NL 13 13

SE 47 8

UK 2 2

Source: Green Gas Grids

Page 99: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 99

Pellets sector in Europe 8

Page 100: AEBIOM_European Bioenergy Outlook 2012sv

100 European Bioenergy Outlook 2012| AEBIOM

8.1 Generalities of the pellet sector The wood pellet market has experienced a large growth in the last years. In 2010 the global wood pellet production reached 14.3 million tons while the consumption was close to 13.5 million tons2 thus recording an increase of more than 110% if compared to 2006. Worldwide, the production capacity of pellet plants is also increasing, as well as their average size. Between 2009 and 2010 the global installed production capacity of the pellet industry has recorded a 22% increase, reaching over 28 million tons. The highest increase in production capacity was observed in North America (the U.S., Canada) and Russia, followed by traditional European producing countries such as Germany, Sweden and Austria. Figure 8.1 Estimated world wood pellet production 2000-2010 (kt).

Source: P. Lamers et al. / Renewable and Sustainable Energy Reviews 16 (2012) 3176– 3199

Figure 8.2 Global raw material availability and pellet production , 2008-2015

Source: VTT, Pöyry

Page 101: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 101

Figure 8.3 Wood pellet production capacity by country

Source: IEA Bioenergy Task 40 “Sustainable Bioenergy Trade”

8.2 Situation in Europe

8.2.1 PRODUCTION In 2009 around 670 pellet plants were active in EU, 30% of them with a rather small production capacity below 10,000 tons/y, however since 2008/2009 the rapid growth of pellet demand has stimulated investments in large‐scale plants in the range of several hundred thousand tons in EU as well as in the U.S., Russian Federation and other countries (IEA Bioenergy Task 40 “Sustainable Bioenergy Trade”, Sikkema et al. 2011). The European Union is still the main market for wood pellets and will remain as such for the next several years. Between 2008 and 2010 the production of wood pellets in EU increased by 20.5%, reaching 9.2 million tons in 2010, equal to 61% of the global production. In the same period, EU wood pellet consumption increased by 43.5% to reach over 11.4 million tons in 2010, equal to nearly 85% of the global wood pellet demand (IEA Bioenergy Task 40 “Sustainable Bioenergy Trade”, Sikkema et al. 2011). Figure 8.4 Production and consumption of wood pellets in EU

Source: IEA Bioenergy Task 40 “Sustainable Bioenergy Trade”

7,68

8,73 9,26

7,95

9,09

11,41

0

2

4

6

8

10

12

2008 2009 2009

mill

ion

to

nn

es

Production consumption

Page 102: AEBIOM_European Bioenergy Outlook 2012sv

102 European Bioenergy Outlook 2012| AEBIOM

Table 8.1 Pellets production and production capacity in EU27 (kt)

2009 2010 2011

Number of

plants Capacity Production

Number of plants

Capacity Production Number of

plants Capacity Production

AT 27 1100 695 29 1200 850 31 1250 940

BE 8 440 223 7 460 286 10 480 300

BG 24

CH 7 193 51

CZ 160 145 137

DE 72 2500 1600 57 2600 1750 54 2700 1880

ES 28 500 900 29 900 150 32 950 225

FI 29 700 299 27 650 290 27 650 310

FR 31 866 346 27 1040 550

HU 10 125 81 10 200 162

IT 29 750 550 27 725 600 21 700 470

LT 7 250 170

PT 15 875 400 19 853 550 19 853 650

SE 80 2300 1580 80 2500 1750 75 2300 1350

UK 480 300

Source : European Pellet Council, 2012 Figure 8.5 Wood pellet plant capacity utilization rate (%) by country in 2010

Source: IEA Bioenergy Task 40 “Sustainable Bioenergy Trade”

Page 103: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 103

8.2.2 TRADE Pellet trade in Europe is developing rapidly. The new European quality standard (EN14961-2) facilitates cross-border trade - growing by more than 1 million tons per year from 2009-2011. The ENplus certification is another important factor to open new markets for pellet producer and traders. See ENplus statistics. Portugal and Latvia are the biggest exporters of industrial pellets. Table 8.2 Pellet trade within EU27 (kt)

Exporting country 2009 2010 2011 main target country

Austria 159 285 274 IT, DE

Belgium 119 50 51 FR, NL

Bulgaria 11 8 6 IT

Czech R 72 102 83 AT, IT, DE

Denmark 20 124 184 DE, SE, NL

Estonia 316 383 562 DK, SE

Finland 154 187 116 DK, SE

France 59 62 87 IT, BE, DE

Germany 370 543 680 DK, AT, IT

Hungary 33 13 20 IT

Italy 2 4 10

Latvia 231 420 670 DK

Lithuania 93 126 203 DK, IT

Luxembourg 7 15 37

Netherlands 74 103 136 DK, BE

Poland 98 142 135 DK

Portugal 138 199 508 DK, UK, NL

Romania 62 142 176 AT, IT

Slovakia 46 64 44 IT, HU

Slovenia 75 81 106 IT

Spain 59 138 121 PT, FR

Sweden 104 69 154 DK

UK 6 61 57 DK

EU27 2308 3323 4420

Growth rate

44% 33%

Source: Eurostat, EPC calculation Pellet imports into Europe are aslo growing quickly. This development is mostly spurred by industrial pellets and co-firing initiatives in BE, NL, UK, DK. Currently new production capacity is being build in the South-East USA as well as Russia.

Page 104: AEBIOM_European Bioenergy Outlook 2012sv

104 European Bioenergy Outlook 2012| AEBIOM

Table 8.3 Pellet export to EU27 (kt)

Exporting country 2009 2010 2011 main target country

Argentina 10 9 6 IT

Australia 9 66 14 NL

Bosnia 54 44 47 IT, SLO

Belarus 75 90 100 LT, DK

Canada 520 983 1160 UK, NL, BE

Chile 0 1 3 IT

Croatia 73 95 115 IT

New Zealand 0 21 30 IT, UK

Norway 10 4 13 SE

Russia 379 396 475 DK, SE

South Africa 42 25 43 NL, UK

Switzerland 6 15 3 IT

Ukraine 30 57 149 PL

USA 535 763 1001 NL, UK, BE

Total import to EU27 1742 2569 3161

Growth rate

47% 23%

Source : Eurostat, EPC calculations

8.2.3 PELLET HEATING DEVICES The European Pellet Council (EPC) and Ekman have conducted a survey mostly among national pellet associations to assess Europe's heating demand for pellets until 2020. The growth (potential) in this sector is significant and more predictable than in the power sector. Table 8.4 Pellet heating demand outlook (kt)

2011 2015 2020

Austria 710 1490 3500

Belgium 100 150 200

Denmark 700 1000 1250

France 560 1400 2500

Finland 70 150 450

Germnay 1400 1900 3500

Ireland 40 60 70

Italy 1900 3100 4250

Spain 150 450 1150

Sweden 1000 1200 1400

Switzerland 160 250 400

UK 50 500 1250

other 1100 1600 2200

total 7940 13250 22120

Source: EPC, Ekman

Page 105: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 105

Table 8.5 Annually installed pellet boilers < 50kw

2005 2006 2007 2008 2009 2010 2011 2012*

Austria 8 243 9 836 3 284 10 470 7 815 7 510 10 400 12 400

Belgium 600 700 500 800 450 200 300 400

Denmark 5 000 20 000 4 500 3 000 5 000 4 000 4 000 4 500

France 1 240 3 697 798 5 510 4 300 3 100 4 200 5 460

Finland 2 500 2 000 4 500 3 500 2 000 2 000 2 000 2 000

Germany 17 000 26 000 13 000 22 000 20 000 15 000 15 000 25 000

Ireland 500 1 500 1 120 1 178 376 106 100 100

Italy 2 000 3 000 2 200 1 900 1 800 1 570 2 000 5 000

Spain

500 500 1 000 1 700 2 900 3 800 3 000

Sweden 12 000 20 000 3 500 5 000 2 500 3 500 3 500 3 500

Switzerland 1 570 2 222 1 026 1 197 885 1 180 1 300 1 500

* Estimation Source: European Pellet Council, 2012 Table 8.6 Annually sold pellet stoves

2005 2006 2007 2008 2009 2010 2011 2012*

Austria 3 780 5 640 1 750 3 050 2 600 3 273 5 000 7 000

Belgium 1 700 3 000 4 400 4 200 4 200 4 200 3 000 3 000

France 5 710 10 278 13 787 17 100 23 000 27 000 38 000 53 200

Finland

200 300 300 300 400 600 600

Germany 5 000 5 000 7 000 9 000 24 000 15 000 7 000 7 000

Ireland

512 345 179 111 100 100

Italy 100 000 308 000 193 000 143 000 147 000 176 000 182 000 195 000

Spain

7 000 16 000 10 000 11 000

Switzerland 709 1 114 913 949 800 756 800 800

* Estimation Source: European Pellet Council, 2012

Page 106: AEBIOM_European Bioenergy Outlook 2012sv

106 European Bioenergy Outlook 2012| AEBIOM

Figure 8.6 Annual increase of pellet demand for domestic heating

Source: European Pellet Council, 2012

8.2.4 ENPLUS QUALITY CERTIFICATION STATISTICS The ENplus quality certification is a major step towards establishing pellets as a widely used energy commodity. For the first time nummerous national standards and certifications are replaced by one uniform system based on the EN 14961-2 standard for wood pellets. This system has been agreed upon by the European Pellet Council in January 2011 and thus enjoys the support of large parts of the European pellet sector. In 2012, 14 countries have Enplus producers. More information can be found in the European Pellet Council website: www.pelletcouncil.eu and www.enplus-pellets.eu Figure 8.7 ENplus production and trade

Source: EPC

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

2005 2006 2007 2008 2009 2010 2011 2012*

Boilers <50KW Stoves

-

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

3.500.000

2011 2012

Production

Trade

Page 107: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 107

ANNEX 9

Page 108: AEBIOM_European Bioenergy Outlook 2012sv

108 European Bioenergy Outlook 2012| AEBIOM

GENERAL COUNTRY INFORMATION

Country abbreviations and key general statistics

Total

Area (km2)

Population (1000

inhabitants)

GDP in current prices

(EUR/inhabitant) (

1)

Unemployment rate (% of the labour force)

EU 27 4 281 550 503680 25100 10,2

AT Austria 83.870 8443 35700 4,1

BE Belgium 30.528 11041 33500 7,1

BG Bulgaria 111.002 7327 4800 12,0

CY Cyprus 9.251 797 20600 10,0

CZ Czech Republic 78.865 10505 14700 6,8

DE Germany 357.104 81844 31400 5,6

DK Denmark 43.098 5581 43000 7,5

EE Estonia 45.227 1340 11900 10,9

EL Greece 131.982 11291 19000 21,7

ES Spain 505.365 46196 23300 23,8

FI Finland 338.420 5401 35200 7,5

FR France 505.365 65398 30600 10,0

HU Hungary 93.034 9958 10100 11,0

IE Ireland 70.285 4583 34900 14,8

IT Italy 301.323 60821 26000 10,0

LT Lithuania 65.300 3008 9500 13,6

LU Luxembourg 2.586 525 82700 5,2

LV Latvia 64.589 2042 9800 15,3

MT Malta 316 416 15300 6,0

NL Netherlands 37.355 16730 36100 5,0

PL Poland 312.679 38538 9300 9,9

PT Portugal 91.909 10542 9300 14,8

RO Romania 238.391 21356 5800 7,2

SE Sweden 450.295 9483 41000 7,5

SI Slovenia 20.273 2055 17400 8,2

SK Slovak Republic 49.037 5404 12700 13,7

UK United Kingdom 244.101 62990 27800 8,2

(1) Data for 2011 except Bulgaria, Ireland, Poland and Romania 2010

Source: Eurostat

Page 109: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 109

SYMBOLS AND ABBREVIATIONS AND DECIMAL PREFIXES Symbols and abbreviations

Symbol Meaning Symbol Meaning

, Decimal separator GDP Gross Domestic Product

- / n.a. Data not available GIC Gross Inland Consumption

- % Per cent h Hour

BTL Biomass to Liquid IEA International Energy Agency

ca. Circa = approximately IRENA International Renewable Energy Agency

CEPI Confederation of European Paper Industries

J Joule

CHP Combined Heat and Power Kg oe Kilogram oil equivalent

CO2 Carbon Dioxide m³ Cubic meter

DH District Heating m.c./MC Moisture content

DME Di-Methyl Ether MSW Municipal solid waste

EE Energy efficiency NCV Net Calorific Value

E85 Fuel with ethanol content of 85 %

Nm³ Normal m³

EEA European Environmental Agency

ODS Organic dry substance

EREC European Renewable Energy Council

ORC Organic rankine cycle

ESU Economic Size Unit RES Renewable Energy Sources

ETBE Ethyl Tertiary Butyl Ether RME Rape Methyl Ester

EPC European Pellet Council solid m³ Solid cubic meter

EC European Commission

FAME Fatty Acid Methyl Ester toe Ton of oil equivalent

FAO Food and Agriculture Organisation

UAA Utilized agricultural areas

GCV Gross Calorific Value VAT Value Added Tax

W Watt

Table Decimas prefixes

101 Deca (da) 10

-1 Deci (d)

10² Hecto (h) 10-2

Centi (c)

10³ Kilo (k) 10-3

Milli (m)

106 Mega (M) 10

-6 Micro (μ)

109 Giga (G) 10

-9 Nano (n)

1012

Tera (T) 10-12

Pico (p)

1015

Peta (P) 10-15

Femto (f)

1018

Exa (E) 10-18

Atto (a)

Table General conversion factor for energy

to from

1 MJ 1kWh 1 kg oe Mcal

1 MJ 1 0.278 0.024 0.239

1 kWh 3.6 1 0.086 0.86

1 kg oe 41.868 11.63 1 10

1 Mcal 4.187 1.163 0.1 1

Page 110: AEBIOM_European Bioenergy Outlook 2012sv

110 European Bioenergy Outlook 2012| AEBIOM

ENERGY CONTENT, CALORIFIC VALUE, SPECIFIC WEIGHT

Average net calorific value, energy content

NCV (GJ/m³) Density (t/m³) NCV (GJ/t) 1 m³ = x toe 1 t = x toe

toe 41,868

Diesel 35,4 0,83 42,7 0,85 1,02

Biodiesel* 32,8 0,88 37,3 0,78 0,89

Rape oil 34,3 0,915 37,5 0,82 0,9

Gasoline 31,9 0,748 42,7 0,76 1,02

Ethanol 21,2 0,794 26,7 0,51 0,64

*also called RME for rapeseed methyl ester or FAME for fatty acid methyl ester. Calorific value can change according to raw material used for biodiesel production

Source: M. Kaltschmitt,H. Hartmann, Energie aus Biomasse, Springer 2001

Net calorific value, moisture content and energy density for different biomass fuels

Fuel

Net calorific value,

dry content kWh/kg

(moisture content

0%) (qp,net,d)

Moisture content

w-% (Mar)

Net calorific value, as

received=actual value kWh/kg

(qp,net,ar)

Bulk density

kg/loose m

3

Energy density

(MWh/loose m

3)

Ash content, dry, %

Sawdust 5,28-5,33 45-60 0,60-2,77 250-350 0,45-0,70 0,4-0,5

Bark, birch 5,83-6,39 45-55 2,22-3,06 300-400 0,60-0,90 1-3

Bark, coniferous

5,14-5,56 50-65 1,38-2,50 250-350 0,50-0,70 1-3

Plywood chips

5,28-5,33 5-15 4,44-5,00 200-300 0,9-1,1 0,4-0,8

Wood pellets

5,26-5,42 7-8 4,60-4,90 550-650 2,6-3,3 0,2-0,5

Steam wood chips

5,14-5,56 40-55 1,94-3,06 250-350 0,7-0,9 0,5-2,0

Lof wood (oven-ready)

5,14-5,28 20-25 3,72-4,03 240-320 1,35-1,95

Logging residue chips

5,14-5,56 50-60 1,67-2,50 250-400 0,7-0,9 1,0-3,0

LIQUIDS

SOLID FUELS

Page 111: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 111

Whole tree chips

5,14-5,56 45-55 1,94-2,78 250-350 0,7-0,9 1,0-2,0

Reed canary grass (spring harvested)

4,78-5,17 8-20 3,70-4,70 70 0,3-0,4 1,0-10,0

Reed canary grass (autumn harvested)

4,64-4,92 20-30 3,06-3,81 80 0,2-0,3 5,1-7,1

Grain 4,8 11 4,30 600 2,6 2

Straw, chopped

4,83 12-20 3,80-4,20 80 0,3-0,4 5

Miscanthus, chopped

5,0 8-20 3,86-4,06 110-140 1,72-2,19 2,0-3,5

Straw pellets 4,83 8-10 4,30-4,40 550-650 2,4-2,8 5

Olive cake (olive pomace)

4,9-5,3 55-70 1,00-3,10 800-900 1,46-1,64 2-7

Olive cake (olive marc)

4,9-5,3 <10 4,30-4,70 600-650 2,6-2,9 2-7

1kWh/kg = 1 MWh/ton = 3.6 GJ/ton Source: EUBIONET “Biomass fuel supply chains for solid biofuels” Calculation of net calorific value as received (CEN/TS 15234)

The net calorific value (at constant pressure) as received (net calorific value of the moist biomass fuel) is calculated according to equation: qp,net,ar is the net calorific value (at constant pressure) as received [MJ/kg] qp,net,d is the ner calorific value (at constant pressure) in dry matter [MJ/kg] (net calorific value of dry fuel) Mar is the moisture content as received [w-%, wet basis] 0,02443 is the correction factor of the enthalpy of vaporization (constant pressure) for water (moisture) at 25°C [MJ/kg per 1 w-% of moisture)

qp,net,ar=qp,net,d x [(100 – Mar)/100] – 0,02443 x Mar

Page 112: AEBIOM_European Bioenergy Outlook 2012sv

112 European Bioenergy Outlook 2012| AEBIOM

Typical moisture content of biomass fuels and corresponding calorific values as received

GCV NCV

Moisture content (%) kWh/kg GJ/t toe/t kWh/kg GJ/t toe/t

Green wood direct from the forest, freshly harvested

60% 2 7,2 0,17 1,6 5,76 0,14

Chips from short rotation coppices after harvest

50-55% 2,5 9 0,21 2,1 7,56 0,18

Recently harvested wood

50% 2,6 9,36 0,22 2,2 7,92 0,19

Saw mill residues, chips etc

40% 3,1 11,16 0,27 2,9 10,44 0,25

Wood, dried one summer in open air, demolition timber

30% 3,4 12,24 0,29

Wood, dried several years in open air

20% 4 14,4 0,34

Pellets 8-9% 4,7 16,92 0,4

Wood, dry matter 0% 5,2 18,72 0,45

Cereals as stored after harvest, straw, hay, miscanthus after harvest

13-15% 4 14,4 0,34

Silomaize 30%

Rape seed 9% 7,1 25,6 0,61

Chicken litter as received

68% 2,6 9,6 0,22

To compare with:

Hard coal 8,06 29 0,69

Brown coal 4,17 15 0,36

Peat 2,8 10 0,24

Source: M. Kaltschmitt,H. Hartmann, Energie aus Biomasse, Springer 2001; AEBIOM

The energy content of one ton of wood depends primarily upon the moisture content and not on the wood species. This is not true on volume basis. The energy content of 1 m³ wood depends upon the species, the water content and the form of the wood (logs, fire wood pieces, chips etc.). In the practical use the NCV is of greater importance than the GCV, because normally the energy needed to evaporate the water is not used. This energy needed to evaporate 1 kg of moisture is around 2,44 MJ (0,68 kWh). The GCV is only of importance in combustion plants, where the vapour is condensed and therefore this energy can be used. The NCV of a given biomass fuel depends mainly on the mass, measured in units such as tons or kg and the moisture content. The moisture content is defined as follows: m: total weight of a given biomass d: weight of the dry matter of this biomass (after completely drying) Moisture content, m.c. in % = 100 – d/m x 100

Page 113: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 113

Examples for weight and energy content (NCV) for 1 m³ wood at different water contents, species and shape of the wood

Species Shape m.c. in % t/m³ GJ/m³ kWh/m³

Spruce Solid wood 0 0,41 7,7 2.130

Spruce Solid wood 40 0,64 6,6 1.828

Spruce Stapled wood 25 0,33 4,5 1.245

Spruce Chips 40 0,22 2,3 640

Beech Solid wood 0 0,68 12,6 3.500

Solid wood 40 0,96 9,2 2.547

Beech Stapled wood 25 0,5 6,3 1.739

Beech Chips 40 0,34 3,2 892

Pellets 9 0,69 10,8 3.300

Average figures

Average figures for different species

Solid wood 35 0,75 7,2 2.000

Average figures for different species

Chips 35 0,3 2,9 800

Source: M. Kaltschmitt,H. Hartmann, Energie aus Biomasse, Springer 2001

Frequently used conversion factors for different units of solid biomass

1 PJ = 0.278 TWh = 0.024 Mtoe = 139.000 m³ solid wood = 5.900 ha SRC* 1 TWh = 3.6 PJ = 0.086 Mtoe = 500.000 m³ solid wood = 21.400 ha SRC 1 Mtoe = 41.868 PJ = 11.63 TWh = 5.8 Mm³ solid wood = 248.500 ha SRC 1 Mm³ solid wood = 0.172 Mtoe = 7.19 PJ = 2 TWh = 42.800 ha SRC 1 Mha SRC = 4 Mtoe = 168.3 PJ = 46.8 TWh = 23.4 Mm³ solid wood *SRC = short rotation coppices, assumption 9 t dry matter/year and ha. Gaseous fuels

Net Calorific value and density of gaseus fuels

NCV NCV NVC Density NCV

kWh/Nm³ MJ/m³ toe/1000m³ kg/Nm³ kWh/kg

Natural gas 9,9 36 0,86 0,73 13,6

Biogas (60% methane)

6 21,6 0,52

Biomethane (upgraded biogas)

9,5 36 0,86 0,73 13

GASEOUS FUELS

Page 114: AEBIOM_European Bioenergy Outlook 2012sv

114 European Bioenergy Outlook 2012| AEBIOM

TRANSFORMATION COEFFICIENTS, AVERAGE YIELDS Transformation coefficients from biomass to final energy The following coefficients describe the quantity of final energy in terms of toe that can be produced on the basis of one ton of different forms of biomass and different conversion technologies. Biodiesel: conversion technology: transesterification 1 t rape seed 0,4 t rape seed oil 0,4 t biodiesel 0,45 m³ RME = 0,35 toe These figures are valid for big installations. Ethanol : conversion technology: alcoholic fermentation 1 t corn (14% m.c.) 0,382 m³ ethanol = 0,194 toe 1 t wheat (14% m.c.) 0,378 m³ ethanol = 0,192 toe 1 t sugar beet (16% sugar content) 0,107 m³ ethanol = 0,054 toe 1 t sugar cane ( 14% sugar content) 0,085 m³ ethanol = 0,043 toe Biogas: conversion technology: anaerobic fermentation 1 t silo maize (30% dry matter) 180 m³ biogas 110 m³ biomethane = 0,088 toe 25% of this biogas is needed as energy source for the fermentation 1 t sugar beet (23% organic dry matter) 170 m³ biogas 100 m³ biomethane = 0,08 toe 1 t cattle manure (8-11% org. dry matter) 25 m³ biogas 15 m³ biomethane = 0,012 toe 1 t pig manure (7% organic dry matter) 20 m³ biogas 12 m³ biomethane = 0,01 toe 1 t poultry manure. (32 % organ. dry matter) 80 m³ biogas 48 m³ biomethane = 0,04 toe 1 t organic waste from households 90m³ biogas 55 m³ biomethane = 0,05 toe 1 t glycerine (100% organic dry matter) 840 m³ biogas 500 m³ biomethane = 0,4 toe Advanced biofuels: 1 t wood (dry matter) = 0,2 t BTL = 0.2 toe 1 t wood (dry matter) = 0,2 t ethanol

Page 115: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 115

CO2 EMISSIONS CO2 emissions for stationary combustion in the energy industries (1000 kg of CO2 per TJ on a net calorific basis)

Fuel

CO2

Default Emission

Factor

Lower Upper

Crude Oil 73,3 71,1 75,5

Orimulsion 77 69,3 85,4

Natural Gas Liquids 64,2 58,3 70,4

Gas

olin

e

Motor Gasoline 69,3 67,5 73

Aviation Gasoline 70 67,5 73

Jet Gasoline 70 67,5 73

Jet Kerosene 71,5 69,7 74,4

Other Kerosene 71,9 70,8 73,7

Shale Oil 73,3 67,8 79,2

Gas/Diesel oil 74,1 72,6 74,8

Residual Fuel Oil 77,4 75,5 78,8

Liquefied Petroleum Gases 63,1 61,6 65,6

Ethane 61,6 56,5 68,6

Naphtha 73,3 69,3 76,3

Bitumen 80,7 73 89,9

Lubricants 73,3 69,3 76,3

Petroleum coke 97,5 82,9 115

Refinery Feedstocks 73,3 68,9 76,6

Oth

er O

il

Refinery Gas 57,6 48,2 69

Paraffin Waxes 73,3 72,2 74,4

White Spitir ans SBP 73,3 72,2 74,4

Other Petroleum Products 73,3 72,2 74,4

Anthracite 98,3 94,6 101

Coking Coal 94,6 87,3 101

Other Bituminous Coal 94,6 89,5 99,7

Sub-Bituminous Coal 96,1 92,8 100

Lignite 101 90,9 115

Oil shale and Tar Sands 107 90,2 125

Brown Coal Briquettes 97,5 87,3 109

Patent Fuel 97,5 87,3 109

Page 116: AEBIOM_European Bioenergy Outlook 2012sv

116 European Bioenergy Outlook 2012| AEBIOM

Co

ke Coke Oven Coke and Lignite Coke 107 95,7 119

Gas Coke 107 95,7 119

Coal Tar 80,7 68,2 95,3

Der

ived

Gas

es Gas Works Gas 44,4 37,3 54,1

Coke Oven Gas 44,4 37,3 54,1

Blast Furnance Gas 260 219 308

Oxigen Stell Furnance Gas 182 145 202

Natural Gas 56,1 54,3 58,3

Municipal Waste (non-biomass fraction) 91,7 73,3 121

Industrial Wastes 143 110 183

Waste Oils 73,3 72,2 74,4

Peat 106 100 108

Solid

Bio

fuel

s Wood/Wood Waste 112 95 132

Black Liquor 95,3 80,7 110

Other Primary Solid Biomass 100 84,7 117

Charcoal 112 95 132

Liq

uid

Bio

fuel

s

Biogasoline 70,8 59,8 84,3

Biodiesels 70,8 59,8 84,3

Other Liquid Biofuels 79,6 67,1 95,3

Gas

Bio

mas

s

Landfill Gas 54,6 46,2 66

Sludge Gas 54,6 46,2 66

Other Biogas 54,6 46,2 66

Oth

er n

on

-

foss

il fu

els

Municipal Wastes

(biomass fraction) 100 84,7 117

Source: IPCC Guidelines for National Greenhouse Gas Inventories.

Page 117: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 117

GLOSSARY Biodiesel Biodiesel is a methylester derived from vegetable oils or animal fats by the process of trans-esterification. Biodiesel has similar properties as fossil diesel and can be blended with fossil diesel or used as pure biofuel. Bioethanol Bioethanol is an alcohol – C2H5OH – derived from sugar by fermentation. The crops used for the production of ethanol for energy purposes contain sugar (like sugar beets or sugar cane) or starch like cereals or corn. In the latter case starch is hydrolyzed to sugar and then fermented to alcohol. . The conversion of lignin or cellulose to sugar is a more complicated process and subject to research in pilot plants. These technologies are summarized under the term advanced biofuels. Biomass The biodegradable fraction of products, waste and residues from biological origin from agriculture (including vegetal and animal substances), forestry and related industries including fisheries and aquaculture, as well as the biodegradable fraction of industrial and municipal waste. (Renewable Energy Directive) Biofuels ‘Biofuels’ means liquid or gaseous fuel for transport produced from biomass Bioliquids ‘Bioliquids’ means liquid fuel for energy purposes other than for transport, including electricity and heating and cooling, produced from biomass Biogas Biogas is a gas containing 50-70% biomethane. It is produced by micro-organisms under anaerobic conditions from different sources of wet biomass such as manure, fresh crops, and organic waste. The process of biogas production takes place in landfill sites and also in swamps and other places in the nature, where organic matter is stored under anaerobic conditions. Black liquor Wood consists of cellulose, hemicellulose and to 30-35% of lignin, which cannot be used to produce pulp and paper. Black liquor is a recycled by-product formed during the process of chemical pulping of wood in the papermaking industry. In this process, lignin is separated from cellulose, with the latter forming the paper fibres. Black liquor is the combination of the lignin residue with water and the chemicals used for the extraction. It plays an important role as bioenergy carrier in the paper and pulp industry. An example: A pulp mill consuming 1 million m³ wood per year can use 0.03-0.04 Mtoe primary energy in the form of black liquor. By-products and waste of the forest- and wood industry Further wood based fuels are by-products of the forest- and wood industry such as: Bark, saw dust, demolition wood, branches, tops and other wood waste. CO2eq (Carbon Dioxide Equivalent) Carbon dioxide equivalent is the standard unit for comparing the global warming potential of any greenhouse gas over a specified period of time. In this way, the relative severity of all greenhouse gas emissions can be evaluated in terms of one agreed reference point. CHP (Combined Heat and Power) Combined heat and power (CHP) or cogeneration is a technology used to improve energy efficiency through the generation of heat and power in the same plant, generally using a gas turbine with heat recovery. Heat delivered from CHP plants may be used for process or space-heating purposes in any sector of economic activity including the residential sector. CHP thus reduces the need for additional fuel combustion for the generation of heat and avoids the associated environmental impacts, such as

Page 118: AEBIOM_European Bioenergy Outlook 2012sv

118 European Bioenergy Outlook 2012| AEBIOM

CO2 emissions. Energy crops Energy crops are those annual or perennial plants that are specifically cultivated to produce solid, liquid or gaseous forms of energy, including transportation biofuels. These can be traditional crops such as oilseeds, (rape, soybean, sunflower) cereals (wheat, barley, maize) sugar beet and new dedicated perennial energy crops – only planted for energy purposes – such as short rotation coppices (willows, poplars) miscanthus, reed canary grass and others. Economic Size Unit For each activity (‘enterprise’) on a holding, or farm (e.g. wheat, dairy cows or vineyard), a standard gross margin (SGM) is estimated, based on the area (or the number of heads) and a regional coefficient. The sum of all margins, for all activities of a given farm, is referred to as the economic size of that farm. The economic size is expressed in European Size Units (ESU), 1 ESU being equal to 1 200 euros of SGM. Final Energy Consumption ‘Gross final consumption of energy’ means the energy commodities delivered for energy purposes to industry, transport, households, services including public services, agriculture, forestry and fisheries, including the consumption of electricity and heat by the energy branch for electricity and heat production and including losses of electricity and heat in distribution and transmission. Note: According to the understanding of AEBIOM (taking into account the phrasing in the template of the RES Directive) the share of RES electricity will be calculated in the following way: Fire wood Fire wood is the oldest form of woody biomass, yet in many European countries it is still the most used biomass. The production and the use of firewood is labour intensive, explaining why firewood has lost market shares in the past. New firewood boilers complying with high environmental standards, new technical development of producing firewood and the increasing price of fossil fuels lead to a renaissance of firewood as heating fuel in some regions Gross Calorific Value (GCV) The gross calorific value is the total amount of heat released by a unit quantity of fuel when it is burned completely with oxygen and when the vapor produced during combustion is condensed to liquid water. GCV includes the heat of condensation and is therefore independent upon the moisture content Gross Inland Consumption (GIC) Gross inland consumption is the quantity of energy consumed within the borders of a country. It is calculated using the following formula: Primary production + recovered products + imports + stock changes – exports – bunker (i.e. quantities supplied to sea going ships) Net Calorific Value (NCV) The net calorific value (or lower heating value – LHV) is the amount of heat released by a unit quantity of fuel, when it is burned completely with oxygen, and when the water contained in the fuel is transformed to vapor and not condensed to water again. This quantity therefore does not include the heat of condensation of any water vapor. The net calorific value of a given biomass depends on the content of dry matter (excluding minerals) and moisture. The higher the moisture content and minerals content (giving ashes) the lower the net calorific value. Organic Waste (renewable) Renewable organic waste is the term used to describe those wastes that are readily biodegradable, or easily broken-down with the assistance of micro-organisms. Organic wastes consist of materials that contain molecules based on carbon, the carbon coming from the atmosphere via the green plants. This includes food waste and green waste. Pellets Wood pellets are a clean, CO2 neutral and convenient fuel, mostly produced from sawdust and wood shavings compressed under high pressure using no glue or other additives. They are cylindrical in

Page 119: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 119

shape and usually 6-10 mm in diameter. The average length is about 10-30 mm. Furthermore, due to their high energy content the convenient delivery and storage features, pellets are the ideal fuel for fully automatic small scale heating systems. With a rapidly growing share in the market, they are a key technology for increasing biomass utilisation in Europe. In the last few years pellets are increasingly used in power plants for co-firing. Pellets are also an excellent way of using local resources thus making a concrete contribution to environmental protection and climate change prevention. Refuse-derived fuel (RDF) (Also solid recovered fuel or specified recovered fuel) RDF is produced by shredding and dehydrating municipal solid waste (MSW). It consists largely of organic components of municipal waste such as plastics and biodegradable waste. RES = Renewable Energy Sources ‘energy from renewable sources’ means energy from renewable non-fossil sources, namely wind, solar, aerothermal, geothermal, hydrothermal and ocean energy, hydropower, biomass, landfill gas, sewage treatment plant gas and biogases Round wood Wood in its natural state as felled, with or without bark. It may be round, split, roughly squared or in other forms. Normally measured in m

3.

Ton of oil equivalent (toe) The ton of oil equivalent is a conventional standardized unit for measuring energy, defined on the basis for a ton of oil with a net calorific value of 41 868 kJ/kg. Utilised agricultural area (UAA) Total arable land,permanent grassland, land used for permanent crops and kitchen gardens. The UAA excludes unutilised agricultural land, woodland and land occupied by buildings, farmyards, tracks, ponds, etc. Wood chips The importance of wood chips as heating fuel is increasing rapidly due to competitive prices and automatic heating systems based on wood chips. Wood chips are either produced as by-products from saw mills and other wood industries or from logs coming directly from the forests; in the latter case their price is higher. High quality wood chips can only be produced from optimal raw material with a minimum diameter of five centimetres. Smaller diameters cause more ash, which means less convenience for the customer operating the wood chip heating system. Rotten and musty wood, dirty wood, demolition wood, shrubs with small branches and whole trees are not suitable to produce high quality wood chips for small wood chip heating systems. Such raw materials can, however, be used to produce lower quality wood chips for larger biomass district heating plants. Wood briquettes Briquettes are similar to wood pellets, but physically larger. Sizes vary but briquettes can vary in diameter from around 50 mm to 100 mm +. Briquettes are usually between 60 mm and 150 mm in length. They can offer a cleaner, more consistent alternative to firewood logs, offering higher energy density and steady combustion.

Page 120: AEBIOM_European Bioenergy Outlook 2012sv

120 European Bioenergy Outlook 2012| AEBIOM

LIST OF TABLES TABLE 2.1 GROSS INLAND CONSUMPTION BY FUEL IN THE EU27 (MTOE) ........................................................... 13 TABLE 2.2 FINAL ENERGY CONSUMPTION BY FUEL IN 2010 (MTOE) ................................................................... 15 TABLE 2.3 FINAL ENERGY CONSUMPTION BY SECTOR IN THE EU27 (MTOE) ......................................................... 16 TABLE 2.4 SHARE OF RENEWABLES IN GROSS FINAL ENEGY CONSUMPTION (%) ...................................................... 17 TABLE 2.5 DEVELOPMENT OF GHG EMISSIONS BY COUNTRY .............................................................................. 18 TABLE 2.6 DEVELOPMENT OF GHG EMISSIONS (CO2 EQUIVALENT) BY SECTOR IN THE EU27 (MTOE)........................ 19 TABLE 2.7 BIOENERGY BALANCE IN EUROPE IN 2010 (KTOE)............................................................................. 21 TABLE 2.8 FINAL ENERGY CONSUMPTION IN THE EU27 IN 2010 (MTOE) AND SHARE OF BIOMASS ……………………… 23 TABLE 2.9 ESTIMATION OF TOTAL CONTRIBUTION EXPECTED FROM BIOENERGY (KTOE) ........................................... 24 TABLE 2.10 ESTIMATION OF TOTAL CONTRIBUTION OF RES (INSTALLED CAPACITY, GROSS ELECTRICITY GENERATION)

EXPECTED IN ELECTRICITY SECTOR IN 2020 (GWH) ……………………………………………………………………………………. 26 TABLE 2.11 ESTIMATION OF TOTAL CONTRIBUTION (FINAL ENERGY CONSUMPTION) EXPECTED FROM BIOMASS IN HEATING

AND COOLING SECTOR (KTOE) ……………………………………………………………………………………………………………….. 27 TABLE 2.12 ESTIMATION OF TOTAL CONTRIBUTION EXPECTED FROM EACH RENEWABLE ENERGY TECHNOLOGY IN 2020 IN

THE TRANSPORT SECTOR (KTOE) ..…………………………………………………………………………………………………………… 28 TABLE 3.1 AGRICULTURAL LAND USE, 2010 …………………………………………………………………………………………….. 32 TABLE 3.2 HARVESTED PRODUCTION OF SOME OF THE MAIN CROPS 2010 (1000 TONNES) .................................... 34 TABLE 3.3 HARVESTED PRODUCTION OF THE MOST IMPORTANT CEREALS, 2010 (1000 TONNES)............................. 36 TABLE 3.4 EU 27 OILSEED AND VEGETABLE OIL BALANCE (IN THOUSAND TONNES) ................................................. 37 TABLE 3.5 EU27 COARSE GRAINS BALANCE (IN THOUSAND TONNES) ................................................................... 38 TABLE 3.6 EU 27 WHEAT BALANCE (IN THOUSAND TONNES) ............................................................................. 38 TABLE 3.7 LAND USE EFFECTS OF EU BIOFUEL POLICIES IN THE EU-27 IN % DIFFERENCE AND THOUSAND HA (BASELINE

SCENARIO) ……………………………………………………………………………………………………………………………………….. 39 TABLE 3.8 CELLULOSIC ENERGY CROPS IN 2011 (HA) ……………………………………………………………………………….. 40 TABLE 3.9 FOREST AREA IN EUROPE AND IN THE WORLD, 1990-2010 ................................................................ 43 TABLE 3.10 FOREST AREA IN THE EU ............................................................................................................. 44 TABLE 3.11 AREA OF FOREST DESIGNATED PRIMARILY FOR CONSERVATION OF BIOLOGICAL DIVERSITY IN EUROPE, 1990–

2010 .............................................................................................................................................. 44 TABLE 3.12 FOREST OWNERSHIP IN THE EU ................................................................................................... 45 TABLE 3.13 AREA OF FOREST DESIGNATED PRIMARILY FOR PRODUCTION IN EUROPE, 1990–2010 ........................... 46 TABLE 3.14 COMMERCIAL WOOD VOLUME (FOREST AVAILABLE FOR WOOD SUPPLY) IN THE EU. ............................... 46 TABLE 3.15 ROUNDWOOD REMOVALS UNDER BARK AND PROPORTION OF FUELWOOD IN EU ………………………………..48 TABLE 3.16 CARBON STOCK IN LIVING FOREST BIOMASS IN THE EU ..................................................................... 49 TABLE 3.17 DATA ON AFFORESTATION AND REFORESTATION (A/R), DEFORESTATION (D) AND FOREST MANAGEMENT

(FM) ACTIVITIES REPORTED BY ANNEX B PARTIES UNDER THE KYOTO PROTOCOL FOR THE YEAR 2008 (IN GT CO2

EQUIVALENT) .................................................................................................................................... 50 TABLE 3.18 WASTE AND RECYCLING OF WOOD PRODUCTS IN THE EU (TONNES) ................................................... 51 TABLE 3.19 WASTE GENERATED BY WOOD AND PAPER MANUFACTURING AND BY HOUSEHOLDS IN THE EU, 2008 ....... 52 TABLE 3.20 PRODUCTION OF ROUNDWOOD, FUELWOOD AND OTHER BASIC WOOD PRODUCTS IN THE EU, 2009 (1000

M3) ................................................................................................................................................. 54

TABLE 3.21 WOOD ENERGY SOURCES AND USES IN 2009 …..…………………………………………………………………….. 55 TABLE 3.22 ROLE OF WOOD ENERGY IN FOREST SECTOR AND ENERGY SECTOR, 2009 ............................................. 59 TABLE 3.23 WASTE GENERATED IN EUROPE FOR ALL NACE ACTIVITIES INCLUDE HOUSEHOLDS IN 2008 …..…………. 60 TABLE 3.24 MUNICIPAL WASTE* GENERATED IN EUROPE IN 2010 ..................................................................... 61 TABLE 3.25 COMPOSITION OF WASTE TREATMENT TYPE IN EU 27 …………………………………………………………........ 62 TALBE 3.26 GROSS ELECTRICITY PRODUCTION FROM RENEWABLE MUNICIPAL WASTE COMBUSTION IN EU IN 2009 …. 63 TABLE 3.27 HEAT PRODUCTION FROM RENEWABLE MUNICIPAL WASTE COMBUSTION IN THE EUROPEAN UNION IN 2009*

(IN KTOE) ......................................................................................................................................... 63 TABLE 3.28 BIOMASS USE AS FUEL IN PAPER AND PULP MILLS …………………………………………………………………… 64 TABLE 3.29 PRIMARY PRODUCTION, IMPORTS, EXPORTS AND GROSS INLAND CONSUMPTION OF PEAT FOR ENERGY IN

2010 (KTOE) ................................................................................................................................... 65 TABLE 9.2 FINAL HEAT CONSUMPTION OF BIOMASS FOR HEAT IN COMPARISON WITH THE TOTAL HEAT CONSUMPTION IN

EUROPE IN 2010 ………………………………………………………………………………………………………………………………. 68 TABLE 4.2 DISTRICT HEATING STATISTICS IN SOME EU MEMBER STATES IN 2009................................................... 73 TABLE 4.3 HEAT PRODUCTION FROM SOLID BIOMASS IN THE EU IN THE TRANSFORMATION SECTOR ………………………. 75

Page 121: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 121

TABLE 5.1 FINAL ENERGY CONSUMPTION OF ELECTRICITY IN EUROPE IN 2010 AND PROPORTION OF RENEWABLE

ELECTRICITY (KTOE) ............................................................................................................................ 81 TABLE 5.2 TOTAL GROSS ELECTRICITY PRODUCTION (ELECTRICITY ONLY PLANTS AND CHP PLANTS) FROM SOLID BIOMASS,

MUNICIPAL WASTE COMBUSTION AND BIOGAS IN THE EUROPEAN UNION IN 2009 (WHEN NOT AVAILABLE, 2008)

AND 2010* (WHEN NOT AVAILABLE 2009*) (INTWH) ............................................................................. 83 TABLE 5.3 GROSS ELECTRICITY PRODUCTION IN CHP PLANT FROM SOLID BIOMASS, MUNICIPAL WASTE COMBUSTION AND

BIOGAS IN THE EUROPEAN UNION IN 2009 (WHEN NOT AVAILABLE, 2008) AND 2010* (WHEN NOT AVAILABLE

2009*) (INTWH) ............................................................................................................................. 85 TABLE 6.1 BIOFUEL CONSUMPTION FOR TRANSPORT IN THE EUROPEAN UNION IN 2010 AND 2011 (KTOE) ............... 89 TABLE 7.1 PRIMARY PRODUCTION OF BIOGAS IN THE EU 27 IN 2008 AND 2009 (KTOE) ........................................ 94 TABLE 7.2 GROSS BIOGAS ELECTRICITY OUTPUT IN THE EU IN 2009 AND 2010 ….……………………………………………. 95 TABLE7.3 THERMAL ENERGY PRODUCTION IN 2010 (GWH) ............................................................................ 96 TABLE 7.4 BIOGAS PLANTS IN EUROPE IN 2009 AND 2010 ………………………………………………………………………… 96 TABLE 7.5 NUMBER OF BIOMETHANE PLANTS IN SOME EUROPEAN COUNTRIES ...................................................... 98 TABLE 8.1 PELLETS PRODUCTION AND PRODUCTION CAPACITY IN EU27 (KT) ...................................................... 102 TABLE 8.2 PELLET TRADE WITHIN EU27 (KT) ................................................................................................ 103 TABLE 8.3 PELLET EXPORT TO EU27 (KT) ..................................................................................................... 104 TABLE 8.4 PELLET HEATING DEMAND OUTLOOK (KT) ...................................................................................... 104 TABLE 8.5 ANNUALLY INSTALLED PELLET BOILERS < 50KW ............................................................................... 105 Table 8.6 AnnuaLLY SOLD PELLET STOVES …………………………..……………………………………………………………… 105

Page 122: AEBIOM_European Bioenergy Outlook 2012sv

122 European Bioenergy Outlook 2012| AEBIOM

LIST OF FIGURES FIGURE 1.1 BIOMASS FEEDSTOCK CONVERTED TO BIOENERGY CARRIERS ................................................................. 8 FIGURE 2.1 PRODUCTION, NET IMPORT AND CONSUMPTION OF ENERGY IN THE EU IN THE EU IN 2010 ..................... 11 FIGURE 2.2 EU 27 ENERGY IMPORT DEPENDENCY ........................................................................................... 11 FIGURE 2.3 ENERGY IMPORT DEPENDENCY* IN MEMBER STATES IN 2010 (%) ..................................................... 12 FIGURE 2.4 EU GROSS INLAND ENERGY COSUMPTION BY FUEL IN 2000 AND 2010 ………………………………………… 14 FIGURE 2.5 FINAL ENERGY CONSUMPTION BY SECTOR IN THE EU27 IN 2010 ....................................................... 16 FIGURE 2.6 GREENHOUSE GAS EMISSIONS BY MAIN SECTOR IN EU27 IN 2010 ……. ………………….……………………. 19 FIGURE 2.7 GROSS INLAND CONSUMPTION OF RES IN EUROPE IN 2010 .............................................................. 20 FIGURE 2.8 BIOENERGY BALANCE IN 2010 (KTOE°) ......................................................................................... 20 FIGURE 2.9 FINAL ENERGY CONSUMPTION OF BIOMASS IN HEAT, ELECTRICITY AND TRANSPORT IN 2010 (KTOE) …….... 22 FIGURE 2.10 FINAL ENERGY CONSUMPTION OF BIOENERGY 2000-2020 IN EUROPE.............................................. 22 FIGURE 2.11 ESTIMATED BIOENERGY CONSUMPTION IN ELECTRICITY SECTOR IN 2020 IN EU 27 ……………..……..…… 25 FIGURE 2.12 CONSUMPTION OF ENERGY IN HEATING AND COOLING IN EU27 IN 2020 …………………………………….. 27 FIGURE 2.13 CONSUMPTION OF ENERGY IN TRANSPORT IN EU27 IN 2020 .......................................................... 28 FIGURE 3.1 COMPARISON OF PRIMARY BIOENERGY DEMAND AND GLOBAL TECHNICAL BIOENERGY POTENTIAL ESTIMATE IN

2050 .............................................................................................................................................. 30 FIGURE 3.2 BIOMASS RESOURCES BY DIFFERENT SOURCES IN EU24 AND NORWAY …..………………………………………. 31 FIGURE 3.3 SHARE OF AGRICULTURE IN TOTAL LAND USE, 2009 (%) ................................................................... 32 Figure 3.4 Share of land cover types in total country area, 2009 ……………..………………………………………. 33 FIGURE 3.5 SHARE OF MAIN CROP PRODUCTION BETWEEN MEMBER STATES, 2010 (%) …………………………………… 35 FIGURE 3.6 HARVESTED PRODUCTION OF CEREALS BY TYPE OF CEREAL, EU27, 2010 (%) ....................................... 35 FIGURE 3.7 ENERGY CROPS IN GERMANY ....................................................................................................... 41 FIGURE 3.8 ESTIMATED UNEXPLOITED AGRO-INDUSTRIAL RESIDUES ………………………………………………………………. 42 FIGURE 3.9 WOOD FOW IN EU 27, 2010 ..................................................................................................... 47 FIGURE 3.10 WOOD RESOURCES USE IN THE EU27, 2010 (% SHARE OF TOTAL VOLUME IN M3) …………………….... 53 FIGURE 3.11 SHARE OF WOOD AND WOOD WASTE IN TOTAL RENEWABLE ENERGY IN THE EU, 2010 (% OF GROSS INLAND

CONSUMPTION OF RENEWABLE ENERGY) ................................................................................................ 53 FIGURE 3.12 WASTE TO ENERGY CYCLE, 2010 …………………………………………………………………………………………. 62 FIGURE 3.13 PRIMARY ENERGY PRODUCTION FORM RENEWABLE MUNICIPAL WASTE PER INHABITANT FOR EACH

EUROPEAN COUNTRY IN 2009 (TOE/1000 INHAB) .................................................................................. 64 FIGURE 3.14 PEAT USE IN DIFFERENT CATEGORIES IN EU (KTOE) ......................................................................... 65 FIGURE 4.1 HEAT CONSUMPTION IN EU IN 2010 (MTOE) ................................................................................ 67 FIGURE 4.2 EXPECTED ADDITIONAL HEAT DEMAND* UNTIL 2020 (%EXPECTED GROWTH RATE 2010-2020) .............. 67 Figure 4.3 Final heat consumption of biomass for heat in comparison with the total renewable heat in 2010. Targets of biomass for heat in 2010 and 2020 ………………………………………………………… 69 FIGURE 4.4 FINAL ENERGY CONSUMPTION OF BIOMASS FOR HEAT IN EUROPE IN 2010 IN THE DIFFERENT SECTORS ....... 70 FIGURE 4.5 MARKET SHARE CHANGES FOR DIFFERENT APPLIANCES (%) ............................................................... 71 FIGURE 4.6 NUMBER AND CAPACITY OF ANNUALLY NEWLY INSTALLED BIOMASS BIOLERS<100 KW FROM 2001 TO 2010

IN AUSTRIA. ...................................................................................................................................... 72 FIGURE 4.7 HEATING TECHNOLOGIES USED IN AUSTRIAN HOUSEHOLDS 2009/10 …………………………………………….. 72 FIGURE 4.8 TOTAL LENGTH OF DH PIPELINE NETWORK IN 2009 AND 2005 …………………………………………………….. 74 FIGURE 4.9 DISTRICT COOLING CAPACITY 2009 AND WHERE AVAILABLE 2005 ...................................................... 74 FIGURE 4.10 ENERGY SUPPLY COMPOSITION FOR DISTRICT HEAT GENERATED IN 2009 ........................................... 74 FIGURE 4.11 AMOUNT OF DISTRICT HEATING SYSTEMS IN GERMANY IN 2010 WITH A NOMINAL HEAT OUTPUT BETWEEN

100-100 KW ABD ACCORDING RAW MATERIALS USE ……………………………………………..…………………… 76 FIGURE 4.12 AMOUNT OF BIOMASS HEATING SYSTEMS WITH A NOMINAL HEAT OUTPUT > 1MW IN GERMANY IN 2010

AND THE USED RAW MATERIALS …………………………………………………………………………………………………………… 76 FIGURE 4.13 FUEL CONSUMTION FOR DISTRICT HEATING PRODUCTION IN AUSTRIA ................................................ 76 FIGURE 4.14 ENERGY MIX IN SWEDISH DISTRICT HEATING ................................................................................ 77 FIGURE 5.1 FINAL ELECTRICITY CONSUMPTION IN EU COUNTRIES IN 2010 (KTOE).................................................. 80 FIGURE 5.2 EXPECTED ADDITIONAL ELECTRICITY DEMAND BETWEEN 2010 AND 2020 ……………………….……………. 80 FIGURE 5.3 FINAL ENERGY CONSUMPTION OF ELECTRICITY FROM RES AND BIOELECTRICITY IN 2010 …….………………. 82 FIGURE 5.4 SHARE OF BIOMASS CHP COMPARE TO ALL CHP (IN TERMS OF ELECTRICITY) ……………………….…………. 84 FIGURE 5.5 GROWTH RATE OF BIOMASS CHP ELECTRICITY OUTPUT OVER THE PERIOD 2006-2009 ........................... 84

Page 123: AEBIOM_European Bioenergy Outlook 2012sv

AEBIOM | European Bioenergy Outlook 2012 123

FIGURE 6.1 FINAL ENERGY CONSUMPTION IN THE TRANSPORT SECTOR IN EU 27 AND PROPORTION OF BIOFUELS ……….87 FIGURE 6.2 TREND OF THE EUROPEAN UNION BIOFUEL CONSUMPTION FOR TRANSPORT (KTOE)................................ 88 FIGURE 6.3 EVOLUTION OF THE FINAL ENERGY CONSUMPTION IN BIOFUELS FOR TRANSPORT (KTOE) ……………………… 88 FIGURE 6.4 BREAKDOWN OF BIOFUEL CONSUMPTION FOR TRANSPORT IN EUROPE IN 2011* BY BIOFUEL TYPE ………… 90 FIGURE 6.5 PRODUCTION OF BIOETHANOL (MAP LEFT) AND BIODIESEL (MAP RIGHT) IN EU IN THE YEAR 2009 (MILLION

LITRES/YEAR) .................................................................................................................................... 90 FIGURE 6.6 EU BIOFUELS TRADE IN 2010 ...................................................................................................... 91 FIGURE 6.7 EU BIODIESEL TRADE BALANCE 2000–2009 IN PJ ........................................................................... 92 FIGURE 6.8 EU FUEL ETHANOL TRADE BALANCE 2000–2009 IN PJ..................................................................... 92 FIGURE 7.1 SUBSTRATE INPUT IN BIOGAS PLANTS IN GERMANY IN 2010 ….……………………………………………………… 97 FIGURE 7.2 BIOMETHANE PRODUCTIN IN GERMANY ………………………………………………………………………………… 98 FIGURE 8.1 ESTIMATED WORLD WOOD PELLET PRODUCTION 2000-2010 (KT). .................................................. 100 FIGURE 8.2 GLOBAL RAW MATERIAL AVAILABILITY AND PELLET PRODUCTION, 2008-2015 ..……………………………. 100 FIGURE 8.3 WOOD PELLET PRODUCTION CAPACITY BY COUNTRY ....................................................................... 101 FIGURE 8.4 PRODUCTION AND CONSUMPTION OF WOOD PELLETS IN EU ............................................................ 101 FIGURE 8.5 WOOD PELLET PLANT CAPACITY UTILIZATION RATE (%) BY COUNTRY IN 2010 ……………………………….. 102 FIGURE 8.6 ENPLUS PRODUCTION AND TRADE ……………………..……………………………………………………………….. 106 FIGURE 8.7 ENPLUS PRODUCTION AND TRADE ............................................................................................ ..106

Page 124: AEBIOM_European Bioenergy Outlook 2012sv

124 European Bioenergy Outlook 2012| AEBIOM


Recommended