+ All Categories
Home > Documents > Aerospace Metals

Aerospace Metals

Date post: 31-Oct-2015
Category:
Upload: nataliya-kompaniyets-jouri
View: 203 times
Download: 1 times
Share this document with a friend
Description:
paper
288
TO 1-1A-9 NAVAIR 01-1A-9 TECHNICAL MANUAL ENGINEERING SERIES FOR AIRCRAFT REPAIR AEROSPACE METALS - GENERAL DATA AND USAGE FACTORS F09603-99-D-0382 DISTRIBUTION STATEMENT - Approved for public release; distribution is unlimited. Other requests for this document shall be referred to 542 MSUG/GBMUDE , Robins AFB, GA 31098. Questions concerning technical content shall be referred to 542 SEVSG/GBZR, Robins AFB, GA 31098. Published Under Authority of the Secretary of the Air Force and by Direction of the Chief of the Naval Air Systems Command. 26 FEBRUARY 1999 CHANGE 5 - 27 JUNE 2005  BASIC AND ALL CHANGES HAVE BEEN MERGED TO MAKE THIS A COMPLETE PUBLICATION
Transcript
Page 1: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 1/288

TO 1-1A

NAVAIR 01-1A

TECHNICAL MANUAL

ENGINEERING SERIES

FOR AIRCRAFT REPAIR

AEROSPACE METALS -

GENERAL DATA

AND USAGE FACTORS

F09603-99-D-0382

DISTRIBUTION STATEMENT - Approved for public release; distribution is unlimited. Other requests for this document shall be referred tMSUG/GBMUDE, Robins AFB, GA 31098. Questions concerning technical content shall be referred to 542 SEVSG/GBZR, Robins AFB, GA 3

Published Under Authority of the Secretary of the Air Force and by Direction of the Chief of the Naval Air Systems Command.

26 FEBRUARY 1999 CHANGE 5 - 27 JUNE 2

BASIC AND ALL CHANGES HAVE BEEN MERGED TO MAKE THIS A COMPLETE PUBLICATION

Page 2: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 2/288

TO 1-1A-9

NOTE: The portion of the text affected by the changes is indicated by a vertical line inthe margins of the page. Changes to illustrations are indicated by miniaturepointing hands. Changes to wiring diagrams are indicated by miniature point-ing hands or by shaded areas. A vertical line running the length of a figure inthe outer margin of the page indicates that the figure is being added.

INSERT LATEST CHANGED PAGES. DESTROY SUPERSEDED PAGES.LIST OF EFFECTIVE PAGES

*Zero in this column indicates an original page.

USAF

Page *Change

 No. No.

Page *Change

 No. No.

Page *Change

 No. No.

Dates of issue for original and changed pages are:

 TOTAL NUMBER OF PAGES IN THIS PUBLICATION IS 288, CONSISTING OF THE FOLLOWING:

Original . . . . . . . . . . . . . 0 . . . . . . . . . 26 February 1999Change. . . . . . . . . . . . . . 1 . . . . . . . . . . . . .25 June 2001Change. . . . . . . . . . . . . . 2 . . . . . . . . . . .1 October 2001

Change. . . . . . . . . . . . . . 3 . . . . . . . . . . . . . 26 July 2002Change. . . . . . . . . . . . . . 4 . . . . . . . . . . 17 January 2003Change. . . . . . . . . . . . . . 5 . . . . . . . . . . . . .27 June 2005

Title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

i - vi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4vii Deleted . . . . . . . . . . . . . . . . . . . . . . . . . 4viii Blank Deleted . . . . . . . . . . . . . . . . . . . 41-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2 Blank . . . . . . . . . . . . . . . . . . . . . . . . . . 02-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 02-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2-3 - 2-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 02-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42-9 - 2-12 . . . . . . . . . . . . . . . . . . . . . . . . . . 02-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-14 - 2-26 . . . . . . . . . . . . . . . . . . . . . . . . . 02-27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2-28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 02-29 - 2-33 . . . . . . . . . . . . . . . . . . . . . . . . . 12-34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42-35 - 2-42 . . . . . . . . . . . . . . . . . . . . . . . . . 02-43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-44 - 2-51 . . . . . . . . . . . . . . . . . . . . . . . . . 02-52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-54 - 2-72 . . . . . . . . . . . . . . . . . . . . . . . . . 02-73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-74 Blank . . . . . . . . . . . . . . . . . . . . . . . . . 12-75 - 2-120 Deleted . . . . . . . . . . . . . . . . . 12-121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-122 - 2-136 . . . . . . . . . . . . . . . . . . . . . . . 03-1 - 3-17 . . . . . . . . . . . . . . . . . . . . . . . . . . 03-18 - 3-19 . . . . . . . . . . . . . . . . . . . . . . . . . 5

3-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3-21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3-23 - 3-24 . . . . . . . . . . . . . . . . . . . . . . . . . 03-25 - 3-26 . . . . . . . . . . . . . . . . . . . . . . . . . 13-27 - 3-31 . . . . . . . . . . . . . . . . . . . . . . . . . 03-32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-33 - 3-38 Deleted . . . . . . . . . . . . . . . . . . 13-39 Blank . . . . . . . . . . . . . . . . . . . . . . . . . 13-40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-41 - 3-49 . . . . . . . . . . . . . . . . . . . . . . . . . 0

3-50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33-51 - 3-63 . . . . . . . . . . . . . . . . . . . . . . . . .03-64 Blank. . . . . . . . . . . . . . . . . . . . . . . . . .04-1 - 4-4 . . . . . . . . . . . . . . . . . . . . . . . . . . .04-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44-6 - 4-14 . . . . . . . . . . . . . . . . . . . . . . . . . .04-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44-17 - 4-18 . . . . . . . . . . . . . . . . . . . . . . . . .04-19 - 4-22 . . . . . . . . . . . . . . . . . . . . . . . . .14-23 - 4-43 Deleted . . . . . . . . . . . . . . . . . . .14-44 Blank Deleted . . . . . . . . . . . . . . . . . . .15-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .05-2 - 5-3 . . . . . . . . . . . . . . . . . . . . . . . . . . .15-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0

5-5 - 5-6 . . . . . . . . . . . . . . . . . . . . . . . . . . .45-7 - 5-11. . . . . . . . . . . . . . . . . . . . . . . . . . .05-12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25-13 - 5-14 Deleted . . . . . . . . . . . . . . . . . . .15-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-16 Blank. . . . . . . . . . . . . . . . . . . . . . . . . .15-17 - 5-19 . . . . . . . . . . . . . . . . . . . . . . . . .05-20 Blank. . . . . . . . . . . . . . . . . . . . . . . . . .06-1 - 6-10 . . . . . . . . . . . . . . . . . . . . . . . . . .06-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46-12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .06-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46-14 Blank. . . . . . . . . . . . . . . . . . . . . . . . . .07-1 - 7-5 . . . . . . . . . . . . . . . . . . . . . . . . . . .07-6 - 7-10 . . . . . . . . . . . . . . . . . . . . . . . . . .17-11 - 7-15. . . . . . . . . . . . . . . . . . . . . . . . . .07-16 Blank. . . . . . . . . . . . . . . . . . . . . . . . . .0

8-1 - 8-14 . . . . . . . . . . . . . . . . . . . . . . . . . .09-1 - 9-12 . . . . . . . . . . . . . . . . . . . . . . . . . .0A-1 - A-24. . . . . . . . . . . . . . . . . . . . . . . . . .0Glossary 1 - Glossary 10. . . . . . . . . . . . . . .0

A Change 5

Page 3: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 3/288

T.O. 1-1A-9

TABLE OF CONTENTS

Section Page Section Page

I INTRODUCTION..................................................... 1-1 2-199 Deleted

1-1 PURPOSE ............................................. 1-1 2-200 Deleted

2-201 DeletedII FERROUS (STEEL) ALLOYS................................. 2-1

2-202 Deleted2-1 Classification ........................................2-1

2-203 Deleted2-2 SAE Numbering System......................2-1

2-216 Deleted2-4 Carbon Steels........................................ 2-1

2-234 Fabrication of Ferrous2-7 Nickel Steels ......................................... 2-2

 Alloys..............................................2-1212-8 Chromium Steels.................................. 2-2

2-292 Steel Surface Finishes...................... 2-1302-9 Chromium - Nickel Steels....................2-2

2-11 Chrome - Vanadium Steels.................. 2-3 III A  LUMINUM ALLOYS............................................. 3-1

2-12 Chrome - Molybdenum 3-1 Classification ........................................ 3-1

Steels ..................................................2-3 3-4 Commercial and Military

2-13 Principles of Heat Treat- Designations ......................................3-1

ment of Steels ....................................2-3 3-8 Mechanical Properties.......................... 3-22-14 Hardening ............................................. 2-3 3-16 Physical Properties............................. 3-18

2-19 Quenching Procedure ........................... 2-4 3-17 Heat Treatment of Alumi-

2-26 Tempering (Drawing) ........................... 2-4 num Alloys .......................................3-18

2-29 Normalizing........................................... 2-5 3-51 Heat Treatment.................................. 3-24

2-30 Case Hardening.................................... 2-5 3-56 Heat Treating Equipment.................. 3-24

2-35 Carburizing ........................................... 2-6 3-70 Fabrication.......................................... 3-28

2-41 Cyaniding .............................................. 2-7 3-73 Forming Sheet Metal..........................3-28

2-42 Nitriding................................................ 2-7 3-96 Deleted

2-43 Heat Treating Equipment.................... 2-7 3-97 Deleted

2-48 Heat Control, Furnace Tem- 3-118 Deleted

peratures Survey and 3-123 Deleted

Temperature Measuring  3-131 Deleted

Equipment..........................................2-8 3-145 Deleted

2-53 Furnace Control Instru- 3-154 Deleted

ments Accuracy..................................2-8 3-175 Machining............................................ 3-45

2-55 Salt Bath Control ............................... 2-10 3-179 Cutting Tools for Machin-2-58 Quenching Tanks and ing Aluminum..................................3-45

Liquids..............................................2-10 3-180 Turning................................................ 3-46

2-60 Heat Treating Procedures.................. 2-10 3-183 Milling-Aluminum .............................. 3-46

2-68 Hardness Testing................................ 2-11 3-189 Shaping and Planing.......................... 3-49

2-73 Specification Cross 3-195 Tapping................................................ 3-56

Reference..........................................2-11 3-198 Filing ................................................... 3-56

2-74 General Heat Treating  3-202 Reaming .............................................. 3-57

Temperatures, Composi- 3-204 Sawing................................................. 3-57

tion (Chemical) and 3-210 Grinding .............................................. 3-58

Characteristics of Vari- 3-216 Polishing.............................................. 3-58

ous Steel and Steel Alloy................2-35 3-218 Roughing ............................................. 3-58

2-75 Machining of Steels 3-219 Greasing or Oiling .............................. 3-58

(General) ..........................................2-60 3-221 Buffing ................................................ 3-59

2-81 Machining Corrosion Re- 3-223 Hardness Testing................................ 3-59

sisting Steel .....................................2-65 3-226 Non-Destructive2-117 Deleted Testing/Inspection ...........................3-59

2-128 Deleted 3-228 Anodizing Process for In-

2-131 Deleted spection of Aluminum

2-135 Deleted  Alloy Parts .......................................3-59

2-147 Deleted 3-231 Aluminum Alloy Effects on

2-152 Deleted Scratches on Clad Alu-

2-168 Deleted minum Alloy ....................................3-59

2-184 Deleted 3-233 Allowable Defects................................ 3-59

2-186 Deleted 3-234 Harmful Scratches.............................. 3-60

2-195 Deleted

Change 4

Page 4: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 4/288

T.O. 1-1A-9

TABLE OF CONTENTS - Continued

Section Page Section Page

3-241 Disposition of Scratches 5-39 Deleted

Sheets/Parts.....................................3-60 5-40 Deleted

3-242 Cleaning of Aluminum Al- 5-42 Deleted

loy Sheet (Stock) ..............................3-60 5-43 Deleted

5-45 DeletedIV M AGNESIUM ALLOYS .......................................... 4-1

5-47 Soldering ............................................. 5-154-1 Classification ........................................ 4-1

5-48 Riveting ............................................... 5-154-4 Definitions............................................. 4-1

5-51 Machining and Grinding.................... 5-174-13 Safety Requirements for

5-52 Machining............................................ 5-17Handling and Fabrication

5-54 Turning................................................ 5-17of Magnesium Alloys.........................4-2

5-57 Milling ................................................. 5-174-19 Safety Precautions for All

5-63 Drilling................................................ 5-17 Alloys (Including Fire

5-66 Tapping................................................ 5-19Hazards).............................................4-3

5-69 Reaming .............................................. 5-194-22 Grinding and Polishing  5-70 Grinding .............................................. 5-19Safety Practices...............................4-14

4-24 Deleted  VI COPPER AND COPPER BASE

4-25 Heat Treating Safety  A LLOYS.................................................................... 6-1

Practices...........................................4-15 6-1 Copper and Copper Base

4-26 Identification ...................................... 4-16  Alloys..................................................6-1

4-29 Heat Treating Magnesium 6-3 Copper Alloying Elements ................... 6-1

 Alloys -(General)..............................4-16 6-5 Heat Treatment and Hot

4-45 Alloy General Characteris- Working Temperature of 

tic Information.................................4-19 Copper Alloys.....................................6-1

4-47 Deleted 6-7 Stress Relief of Copper

4-77 Deleted  Alloys..................................................6-1

4-78 Deleted 6-9 Machining Copper and Cop-

4-79 Deleted per Alloys ...........................................6-1

4-82 Deleted 6-10 Wrought - Copper - Berylli-

4-93 Deleted um Alloys ...........................................6-16-12 Heat Treating Procedures

 V TITANIUM AND TITANIUM ALLOYS................. 5-1and Equipment

5-1 Classification ........................................ 5-1Requirements...................................6-10

5-4 General.................................................. 5-16-15 Solution - Heat Treatment

5-5 Military and CommercialCopper Beryllium ............................6-11

Designations ......................................5-16-17 Precipitation or Age

5-6 Physical Properties............................... 5-1Hardening........................................6-11

5-7 Mechanical Properties.......................... 5-1

5-10 Methods of Identification..................... 5-1  VII TOOL STEELS......................................................... 7-1

5-11 Hardness Testing.................................. 5-1 7-1 General.................................................. 7-1

5-12 Tensile Testing ..................................... 5-1 7-4 Alloying Elements in Tool

5-13 Non-Destructive Testing ...................... 5-1 Steels ..................................................7-1

5-14 Fire Damage ......................................... 5-6 7-5 Specifications........................................7-1

5-15 Heat Treatment - (General)................. 5-6 7-6 Class Designations ............................... 7-5

5-22 Hydrogen Embrittlement..................... 5-8 7-7 Applications of Tool Steels................... 7-5

5-25 Fabrication.......................................... 5-11 7-9 Selection of Material for a5-26 Forming Sheet Metal - Cutting Tool.......................................7-5

(General) ..........................................5-11 7-16 Heat Treat Data ................................... 7-6

5-28 Draw Forming..................................... 5-11 7-18 Distortion in Tool Steels ...................... 7-6

5-29 Hydraulic Press Forming................... 5-11 7-19 Deleted

5-32 Stretch Forming.................................. 5-11 7-21 Deleted

5-33 Drop - Hammer Forming................... 5-11 7-22 Deleted

5-34 Joggling ............................................... 5-12 7-23 Deleted

5-35 Blanking and Shearing ...................... 5-12 VIII TESTING AND INSPECTION, HARD-

5-37 DeletedNESS TESTING....................................................... 8-1

5-38 Deleted

ii Change 4

Page 5: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 5/288

T.O. 1-1A-9

TABLE OF CONTENTS - Continued

Section Page Section Page

8-1 General.................................................. 8-1 IX HEAT TREATMENT............................................... 9-1

8-3 Methods of Hardness 9-1 General.................................................. 9-

Testing................................................8-1 9-9 Special Heat Treatment

8-5 Brinell Hardness Test.......................... 8-1 Information........................................9-1

8-8 Rockwell Hardness Test....................... 8-1 9-11 Tint Test for Determining 

8-15 Vickers Pyramid Hardness Coating Removal from

Test.....................................................8-4 Nickel Base and Cobalt Base

8-18 Shore Scleroscope Hardness  Alloys..................................................9-1

Test.....................................................8-8 9-13 Titanium Alloy Parts............................ 9-3

8-20 Testing with the 9-16 Solution, Stabilization, or

Scleroscope .........................................8-9 Precipitation Heat Treatment..........9-3

8-21 Tensile Testing ..................................... 8-9 9-38 Stress-Relief After Welding................. 9-8

8-22 Decarburization 9-59 Local Stress-Relief.............................. 9-11

Measurement .....................................8-9 9-68 Description of Methods ...................... 9-118-24 Hardness Method................................ 8-10 A Supplemental Data..................................................A-1

8-27 Nondestructive Inspection

Methods............................................8-14 Glossary ...............................................................GLS 18-33 Chemical Analysis ..............................8-14

8-34 Spectrochemical Analysis...................8-14

LIST OF ILLUSTRATIONS

Figure Title Page Figure Title Page

2-1 Number and Distribution of 4-2 Deleted

Thermocouples ............................................ 2-9 4-3 Deleted2-2 Deleted 4-4 Deleted

2-3 Deleted 8-1 Brinell Hardness Tester................................ 8-4

2-4 Stretch Forming......................................... 2-127 8-2 Rockwell Hardness Tester . ........................... 8-5

2-5 Surface Roughness .................................... 2-135 8-3 Attachments for Rockwell Tester ................. 8-6

3-1 Head to Alloy Identification 8-4 Vickers Pyramid Hardness Tester ............... 8-7

Method ......................................................3-20 8-5 Standard Pyramid Diamond

3-2 Drill Designs and Recommended Indentor.......................................................8-8

Cutting Angles..........................................3-55 8-6 Shore Scleroscope ..........................................8-8

4-1 Typical Dust Collectors for 8-7 Test Specimens ............................................ 8-11

Magnesium................................................4-22

LIST OF TABLES

Number Title Page Number Title Page

2-1 Soaking Periods for Hardening 2-4 Machinability Rating of Various

Normalizing and Annealing Metals........................................................2-61

(Plain Carbon Steel) .................................2-10 2-5 Conversion of Surface Feet Per

2-2 Specification Cross Reference .................... 2-12 Minute (SFM) to Revolutions

2-3 Cutting Speeds and Feeds for Per Minute (RPM)....................................2-63

SAE 1112 Using Standard 2-6 Tool Correction Chart ................................. 2-64

High Speed Tools .....................................2-61

Change 4 ii

Page 6: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 6/288

T.O. 1-1A-9

LIST OF TABLES - Continued

Number Title Page Number Title Page

2-7 General Machining Comparison 3-7 Heat Treating (Soaking)

of Corrosion Resisting Steel to Temperatures ...........................................3-17

Free Machining Screw Stock 3-8 Soaking Time for Solution Heat

B1112 ........................................................2-65 Treatment of All Wrought

2-8 Suggested Cutting Speeds and Products....................................................3-23

Feeds .........................................................2-66 3-9 Soaking Time for Solution

2-9 Tool Angles - Turning................................. 2-68 Treatment of Cast Alloys.........................3-23

2-10 Suggested Milling Cutting  3-10 Recommended Maximum

Speeds and Feeds.....................................2-69 Quench Delay, Wrought Al-

2-11 Suggested Tool Angles - Milling.................2-70 loys (For Immersion Type

2-12 Drilling Speeds for Corrosion Quenching)................................................3-24

Resisting Steel ..........................................2-70 3-11 Precipitation (Aging) Treating 

2-13 Tapping Allowances (Holes Size Temperatures, Times and

to Screw Size). ..........................................2-71 Conditions.................................................3-252-14 Deleted 3-12 Reheat Treatment of Alclad

2-15 Deleted Alloys.........................................................3-27

2-16 Deleted 3-13 Cold Bend Radii (Inside) for

2-17 Deleted General Applications................................3-29

2-18 Deleted 3-14 Maximum Accumulative Reheat

2-19 Deleted Times for Hot Forming Heat

2-20 Deleted Treatable Alloys at Different

2-21 Deleted Temperatures ...........................................3-32

2-22 Deleted 3-15 Deleted

2-23 Deleted 3-16 Deleted

2-24 Deleted 3-17 General Rivet (Alum) Identifica-

2-25 Deleted tion Chart .................................................3-42

2-26 Deleted 3-18 General Aluminum Rivet Selec-

2-27 Deleted tion Chart (Rivet Alloy vs As-

2-28 Deleted sembly Alloy) ............................................3-45

2-29 Deleted 3-19 Shear Strength of Protruding 2-30 Deleted and Flush Head Aluminum

2-31 Deleted  Alloy Rivets, Inch Pounds .......................3-47

2-32 Deleted 3-20 Bearing Properties, Typical, of  

2-33 Deleted  Aluminum Alloy Plates and

2-34 Cold Bend Radii (Inside) Car- Shapes.......................................................3-48

bon/Low Alloy Steels..............................2-128 3-21 Standard Rivet Hole Sizes with

2-35 Cold Bend Radii (Inside) Cor- Corresponding Shear and

rosion Resistant Steel Alloys.................2-128 Bearing Areas for Cold Driven

2-36 Forging Temperature Ranges  Aluminum Alloy Rivets............................3-50

for Corrosion Resistant Steel ................2-128 3-22 Turning Speeds and Feeds......................... 3-51

2-37 Galvanic Series of Metals and 3-23 Tool Angles - Turning ................................. 3-52

 Alloys.......................................................2-134 3-24 Milling - Speeds and Feeds ........................3-52

2-38 Surface Roughness and Lay 3-25 Tool Angles - Milling................................... 3-53

Symbols...................................................2-136 3-26 Shaping and Planing - Speeds

3-1 Designations for Alloy Groups ..................... 3-1 and Feeds..................................................3-543-2 Aluminum Alloy Designation and 3-27 Shaping Tool Angles ................................... 3-54

Conversions to 4 Digit System..................3-1 3-28 Thread Constant for Various

3-3 Federal and Military Standard Thread Forms ..........................3-56

Specifications..............................................3-3 4-1 Cross-Reference, Alloy Designa-

3-4 Chemical Composition Nominal tions to Specifications................................4-3

and General Use Data 1/ ...........................3-9 4-2 Alloy Designation

3-5 Mechanical Properties - Typical................. 3-14 Cross-Reference..........................................4-6

3-6 Physical Properties - Standard 4-3 Chemical Properties of Magnesi-

 Alloys.........................................................3-16 um Alloys....................................................4-7

iv Change 4

Page 7: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 7/288

T.O. 1-1A-9

LIST OF TABLES - Continued

Number Title Page Number Title Page

4-4 Mechanical Properties Magnesi- 6-2 Hot Working and Annealing  

um Extrusions and Forgings at Temperatures for Copper and

Room Temperature - Typical.....................4-9 Wrought Copper Alloys..............................6-9

4-5 Mechanical Properties Magnesi- 6-3 Typical Stress-Relief Treat-

um Alloy Sheet and Plate at ments for Certain Copper Alloys ............6-11

Room Temperature - Typical...................4-11 6-4 Standard Machinability Rating 

4-6 Mechanical Properties of Mag- of Copper Alloys .......................................6-12

nesium Alloy Castings at 6-5 Typical Engineering Properties..................6-13

Room Temperatures.................................4-12 6-6 Age Hardening  

4-7 Physical Properties - Magnesi- Time-Temperature Conditions

um Alloy @ 68oF......................................4-13 and Material Temper -

4-8 Solution Heat Treating Temper- Designations .............................................6-13

atures and Holding Times .......................4-18 7-1 Tool Steel Specifications...............................7-2

4-9 Artif icial Aging (Precipitation 7-2 Chemical Composition, Tool Steel................ 7-3Treatment)................................................4-19 7-3 Tool Steel Selection ....................................... 7-5

4-10 Deleted 7-4 Tool Steel Hardening and Tem-

4-11 Deleted pering Temperatures .................................7-5

4-12 Deleted 7-5 Forging, Normalizing and An-

4-13 Deleted nealing Treatments of Tool and

4-14 Deleted Die Steels....................................................7-7

4-15 Deleted 7-6 Thermal Treatment for Harden-

4-16 Deleted ing and Tempering Tool Steel

4-17 Deleted - General ...................................................7-11

4-18 Deleted 7-7 Comparison of Tool Steel

4-19 Deleted Properties..................................................7-14

4-20 Deleted 8-1 Hardness Conversion Chart ......................... 8-3

4-21 Deleted 8-2 Rockwell Scales, Loads and Pre-

4-22 Deleted fix Letters.................................................8-10

4-23 Deleted 8-3 Approximate Hardness - Tensile

4-24 Deleted Strength Relationship of Car-4-25 Deleted bon and Low Alloy Steels ........................8-12

4-26 Deleted 9-1 Typical Heat Treatment

4-27 Deleted  Application..................................................9-1

4-28 Deleted 9-2 Cross-Index for Solution, Stabili-

4-29 Deleted zation or Precipitation Heat

4-30 Deleted Treatments .................................................9-4

4-31 Deleted 9-3 Cross-Index for Stress-Relief  

5-1 Specif ication Cross Reference Ti- Heat Treatments........................................9-9

tanium Alloy...............................................5-2  A-1 Chemical Symbols .........................................A-1

5-2 Nominal Mechanical Properties  A-2 Decimal Equivalents .....................................A-2

at Room Temperature................................5-7  A-3 Engineering Conversion Factors..................A-6

5-3 Heat Treat, Stress Relief and An-  A-4 Table of Weights - Aluminum

nealing Temperatures and Times .............5-9 and Aluminum Alloy................................. A-8

5-4 Recommended Minimum CCLD  A-5 Table of Weights - Brass...............................A-9

Bend Radii ................................................5-12  A-6 Table of Weights - Bronze ..........................A-105-5 Deleted  A-7 Table of Weights - Copper ..........................A-11

5-6 Turning Speeds for Titanium  A-8 Table of Weights - Iron ...............................A-12

 Alloys.........................................................5-18  A-9 Table of Weights - Lead..............................A-12

5-7 Tool Angles for Alloys................................. 5-18  A-10 Table of Weights - Magnesium

5-8 Speeds and Feeds for Milling.....................5-18 and Magnesium Alloy.............................A-12

5-9 Angles for Tool Grinding ............................5-19  A-11 Table of Weights - Nickel Chro-

6-1 Chemical Composition by Trade mium Iron Alloy (Inconel) ...................... A-13

Name...........................................................6-2  A-12 Table of Weights - Nickel Cop-

per Alloy................................................... A-13

 A-13 Table of Weights - Steel..............................A-13

Change 4 v

Page 8: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 8/288

T.O. 1-1A-9

LIST OF TABLES - Continued

Number Title Page Number Title Page

 A-14 Table of Weights - Zinc ...............................A-16  A-18 Bend Set Back Chart ..................................A-21

 A-15 Temperature Conversion Chart .................A-17  A-19 Comparative Table of Standard

 A-16 Standard Bend Radii for 90o

Gages........................................................ A-22

Cold Forming-Flat Sheet ........................ A-18  A-20 Melting Points Approximate.......................A-23

 A-17 Metal Bending and Bend Radii

Bend Allowances Sheet Metal

Bend Allowances Per Degree

of Bend Aluminum Alloys....................... A-19

vi Change 4

Page 9: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 9/288

T.O. 1-1A-9

SECTION I

INTRODUCTION

1-1. P U RP OS E . 1-4. The in forma t ion/inst ruct ion conta ined

herein ar e for genera l use. If a conf lict exists1-2. This is one of a series of technical or engi-betw een this technical ma nua l and t he specific

neering technical m an uals prepared to a ssist per-technical manual(s) or other approved data for a

sonnel engaged in the ma intenan ce and repair ofparticular w eapon, end i tem, equipment, etc., th e

Aerospace Weapon Systems and Supporting Equip-data applicable to the specific item(s) will govern

ment (AG E). Army P ersonnel: Wherever the textin a l l cases.

of this manual refers to other technical orders(T.O.’s) for support ing informat ion, refer to compa- 1-5. The use of ‘‘shal l ’’, ‘‘wi l l ’’, ‘‘should’’ andra ble Army documents. ‘‘ma y’’ in this t echnica l ma nua l is a s follow s:

1-3. Th is tech nica l m a nu a l pr ovid es pr ecise d a ta a . Wh en ever t he w or d ‘‘sh a ll’’ a ppea r s, it sh a lon speci f i c meta l s to ass is t in select ion , usage and be in terpreted to mean tha t the requirements a repr oces sin g for f a br ica t ion a n d r epa i r. I t in clu des b in din g.such data as specification cross reference;

b. The words ‘‘wil l ’’, ‘‘should’’ and ‘ ‘ma y’’, shallapproved designa tion system for al loys and tem-

be interpreted a s nonma nda tory provisions.pers; temperatures and other controls for heattreat ments; mecha nical an d physical properties c. The word ‘‘wi l l ’’ is used to express declara-processing inst ructions for ba sic corrosion preven- tion of purpose.tion; forming char acteristics; a nd other informa -

d. The word ‘‘should’’ is used to express non-tion required for general aerospace weapon systemmandatory desired or preferred method ofrepair. P rocedures for genera l foundry practice,accomplishment.sand control , gat ing a nd risering of both ferrous

and non-ferrous castings may be obtained from e. The word ‘‘may’ ’ i s used to express ana va ilable commercia l ha ndbooks and /or publica - acceptable or suggested means of accomplishment.t ions. Due to the many ty pes, grades, deversif ied

1-6. D elet eduses and new developments of metal products, itma y not include al l dat a r equired in some 1-7. WELDING. In format ion on welding aero-instances and further study and citation of this spa ce meta ls is cont a ined in NAVAIR 01-1A-34,dat a w il l be required. If a requirement exists for T.O. 00-25-252, T.C. 9-238.informa tion not included, a request for assista nceshould be ma de to WR-ALC , LE M.

Change 1 1 -1 / ( 1 -2 bl ank)

Page 10: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 10/288

Page 11: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 11/288

T.O. 1-1A-9

SECTION II

FERROUS (STEEL) ALLOYS

2-1. C L AS S I F IC ATI ON .

TYP E OF S TE E L NU ME RALS2-2. S AE NU MB E RI NG S YS TE M. A n um er al(AND DIGITS)index system is used to identify the compositions

of the SAE steels, which makes it possible to use Nickel-Chromium-Molybdenumnumerals t ha t a re partia lly descriptive of the com- Steelsposition of mat erial covered by such numbers. Thef irst digit indicates the ty pe to which the steel 1.80%nickel; 0.50 and 0.80%belongs; for example ‘‘1’’ indicat es a carbon steel; Chromium; 0.25% Molybdenum 43xx‘‘2’’ a nickel steel; and ‘‘3’’ a nickel chromium steel. 0.55%Nickel; 0.50 and 0.65%In the case of the simple alloy steels, the second Chromium; 0.20% Molybdenum 86xxdigit generally indicat es the a pproximat e percent- 0.55%Nickel; 0.50 Chromiumage of the predominant a lloying element. Usua lly 0.25% Molybdenum 87xxthe last t wo or three digits indicate the a pproxi- 3.25%Nickel; 1.20 Chromiummate average carbon content in ‘‘points’’ or hun- 0.12% Molybdenum 93xxdredt hs of 1 percent . Thus ‘‘2340’’ indicat es anickel steel of approximately 3 percent nickel (3.25 Nickel-Molybdenum St eelsto 3.75) a nd 0.40 percent car bon (0.38 to 0.43). In 1.75 Percent Nickel; 0.25some instances, in order to avoid oonfusion, it has percent Molybdenum 46xxbeen found necessary to depart from this system of 3.50 Percent Nickel; 0.25identifying the approximate alloy composition of a percent Molybdenum 48xxsteel by va rying the second a nd th ird digits of thenumber. An insta nce of such depart ure is the Chromium S t eels 5xxxsteel num bers selected for several of t he corrosion Low C hromium 50xx--and heat resisting alloys. Medium C hromium 51xxx

H igh Chromium 52xxx2-3. The bas ic numerals for the var ious types ofCorrosion and HeatSAE steel are:Resist ing 514xx a nd

515xxTYP E OF S TE E L NU ME RALS

(AND DIGITS)Chromium-Va na dium S teel 6xxx

0.80-1.00 percent Chromium,Ca rbon S t eels 1xxx0.10-0.15 Va na dium 61xxP la in Ca rbon 10xx

F ree Cut t ing (S crew S t ock) 11xxS ilicon Ma nga nese S teels 9xxx

A P ercent S ilicon 92xxMa nga nese S t eels 13xxLow Alloy , H igh Tensile 950B oron Intensif ied xxB xxNickel Chromium S teels 3xxxLea ded S t eels xxLxx1.25 Percent Nickel; 0.65

percent Chromium 31xxC orrosion a nd H ea t Resist ing 303xx 2-4. CARB ON S TE E LS . S teel cont a ining ca r-

bon in percentages ranging from 0.10 to 0.30 per-Molybdenum S t eels 4xxx cent is cla ssed a s low ca rbon st eel. The equiva lent

0.25 P ercent Molybdenum 40xx S AE numbers ra nge from 1010 t o 1030. S t eels ofthis gra de are used for th e man ufacture of art iclessuch a s safety w ire, certain nuts, cable bushing,etc. This steel in sheet form is used for seconda rystructural parts and clamps and in tubular formfor moderately stressed structura 1 parts .

2-5. Steel conta ining carbon in percentages rang-ing from 0.30 to 0.50 percent is classed as mediumcarbon steel. This steel is especially a da pta ble forma chining, forging, and where surface hardn ess is

2-1

Page 12: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 12/288

TO 1-1A-9

mportant. Certain rod ends, light forgings, and parts such as

Woodruff keys, are made from SAE 1035 steel.

2-6. Steel containing carbon in percentage ranging from 0.50

o 1.05 percent is classed as high carbon steel. The addition of 

other elements in varying quantities adds to the hardness of 

his steel. In the fully heat-treated condition it is very hard and

will withstand high shear and wear, but little deformation. Ithas limited use in aircraft construction. SAE 1095 in sheet

form is used for making flat springs and in wire form for 

making coil springs.

2-7. NICKEL STEELS. The various nickel steels are pro-

duced by combinining nickel with carbon steel. Some benefits

derived from the use of nickel as an alloy in steel are as

follows:

a. Lowers the percentage of carbon that is necessary for 

hardening. The lowering of the carbon content makes the steel

more ductile and less susceptible to uneven stress.

 b. Lowers the critical temperature ranges (heating and

cooling) and permits the use of lower heating temperatures for 

hardening.

c. Hardening of nickel alloy steels at moderate rates of 

cooling has the advantage of lowering the temperature gradi-

ents, reducing internal stress/warpage and permits deeper/

more uniform hardening.

d. The low heat treating temperatures required, reduces the

danger of overheating, excessive grain growth and the conse-

quent development of brittleness.

e. The characteristics depth hardening from the addition of 

nickel to steel as an alloy results in good mechanical proper-

ties after quenching and tempering. At a given strength

(except for very thin sections/parts) the nickel steels provide

greatly improve elastic properties, impact resistance and

toughness.

2-8. CHROMIUM STEELS. Chromium steel is high in

hardness, strength, and corrosion resistant properties. SAE

51335 steel is particularly adaptable for heat-treated forgings

which require greater toughness and strength than may be

obtained in plain carbon steel. It may be used for such articlesas the balls and rollers of anti-friction bearings.

2-9. CHROMIUM-NICKEL STEELS. Chromium and nickel

n various proportions mixed with steel form the chrome-

nickel steels. The general proportion is about two and one-half 

imes as much nickel as chromium. For all ordinary steels in

his group the chromium content ranges from 0.45 to 1.25

percent, while the nickel content ranges from 1 to 2 percent.

Both nickel and chromium influence the properties of steel;

nickel toughens it, while chromium hardens it. Chrome-nickel

steel is used for machined and forged parts requiring strength,

ductility, toughness and shock resistance. Parts such as crank-

shafts and connecting rods are made of SAE 3140 steel.

2-10. Chrome-nickel steel containing approximately 18 per-

cent chromium and 8 percent nickel is known as corrosion-resistant steel. It is usually identified as aisi types 301, 302,

303, 304, 304L, 309, 316, 316L, 321, 347, 347F or Se, etc.,

however; the basic 18-8 chrome-nickel steel is type 302. The

other grades/types have been modified by changing or adding

alloying elements to that contained in the basic alloy. The

alloys are varied to obtain the required mechanical properties

for some specific purpose such as improving corrosion resis-

tance or forming machining, welding characteristics, etc. The

following are examples of variations:

a. 301-Chromium and Nickel (approximate 0.5 Nickel) is

lowered to increase response to cold working.

 b. 302-Basic Type 18 Chromium 8 Nickel.

c. 303-Sulfur(s) or Selenium (se) added for improved

machining characteristics.

d. 304-Carbon (c) lowered to reduce susceptibility to car-

 bide precipitation. This alloy is still subject to carbide pre-

ceipitation from exposure to temperatures 800-1500F range

and this shall be considered when it is selected for a specific

application.

e. 304L-Carbon (c) lowered for welding applications.

f. 309-Cr and Ni higher for additional corrosion and scale

resistance.

g. 316-Molybdenum (Mo) added to improve corrosion

resistance and strength.

h. 316L-C- lowered for welding applications.

i. 321-Titanium (Ti) added to reduce/avoid carbide precip-

itation (stabilized grade).

 j. 347-Columbium (Cb), Tantalum (Ta)- Added to reduce/avoid carbide precipitation (stabilized grade).

k. 347F or Se - Sulfur (s) or Selenium (Se) added to

improve machinability.

The chrome-nickel steels are used for a variety of applications

on aircraft and missiles. In plate and sheet form it is used for 

firewalls, surface skin,

2-2 Change 5

Page 13: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 13/288

T.O. 1-1A-9

exhaus t st acks , hea ter duct s , gun we lls, ammuni- cool ing is slow , the ca rb ide par t icles a re rela t ive lyt ion chutes , clamps , hea t sh ields/def lector s , f a i r- coarse and few ; in th is condit ion the s tee l i s sof t .i ng , s t if f en er s, b ra ck et s , s h im s, et c. I n ba r a n d I f t h e cool in g i s r a pid, a s be q u en ch in g in oi l orr od it i s u sed t o f a br ica t e va r iou s f i t t in g s, bol t s, w a t e r, t he ca r b on pr ecipi ta t e s a s a clou d of ver ys tu ds , s cr ew s , n ut s, cou pl in gs , f la n ges , v a lv e f i ne ca r bi de pa r t icles , w h ich con dit ion is a s soci-s t em s/s ea t s , t u r n-b uck les , et c. I n w ir e f or m it is a t e d w i t h h ig h h a r d nes s of t h e s t eel .used for safety wire, cable, rivets, hinge pins,

2-15. At elevated temperatures , the iron matr ixscreens/screening a nd other miscellaneous it ems.exists in a form called ‘‘austenite’’ which is capableof dissolving ca rbon in solid solution. At ordina ry2-11. C H ROME -VAN AD I U M S TE E L S. Th etemperatures th e iron exists as ‘‘ferrite’’, in wh ichvan adium content of this steel is a pproximat elycarbon is relatively insoluble and precipitates; as0.18 percent and the chromium content approxi-described in the preceding paragraph, in the formma tely 1.00 percent. Ch rome-va na dium steelsof carbide part icles. The temperat ure at wh ichwhen heat-treated have excellent properties suchthis chan ge from a ustenite to ferrite begins toas strength, toughness, and resistance to wear andoccur on cooling is called the ‘‘upper critical tem-fatigue. A special grade of this steel in sheet formperature ’’ of the steel, and varies wit h th e carboncan be cold-formed int o intr icate sha pes. It ca n becontent; up to approximately 0.85 percent carbon,folded and f lat tened without signs of breaking orthe upper crit ical temperat ure is lowered w ithfailure. Chrome-van adium steel wit h mediumincreasing carbon content ; from 0.85 to 1.70 per-high carbon content (SAE 6150) is used to makecent carbon the upper critical temperature issprings. Chrome-vana dium steel wit h high carbon

raised with increasing car bon content. St eel tha tcontent (SAE 6195) is used for ball a nd rollerha s been heated t o its upper crit ical point w illbearings.harden completely if rapidly quenched; however, in

2-12. CHRO ME - M OL YB D E N U M S TE E L S . practice it is necessary to exceed this temperatureMolybdenum in small percentage is used in combi- by/from a pproxima tely 28o to 56oC (50o to 100oF)nation with chromium to form chrome-molybde- to insure thorough heating of the inside of thenum st eel; this steel has importa nt applicat ions in piece. If the upper critica l tempera tur e isaircraf t . Molybdenum is a strong alloying element, exceeded too much, an unsatisfactory coarse grainonly 0.15 to 0.25percent being used in the chrome- size will be developed in the hardened steel.molybdenum steels; the chromium content varies

2-16. Success ful hardening of s teel wil l largelyfrom 0.80 to 1.10 percent. Molybden um is verydepend upon t he following factors af ter steel ha ssimiliar to tungsten in its effect on steel. In somebeen selected w hich has ha rden a bility desires:insta nces it is used to replace tungsten in cutt ing

tools, however; the heat treat chara cterist ic varies. a . Cont rol over the r a te of hea t ing , speci f i -The addition of up to 1%molybdenum gives steel a cally to prevent cracking of thick and irregularhigher tensile strength a nd elastic limit with only sections.a slight reduct ion in ductility. They are especiallyadaptable for welding and for this reason are used b . Thorough and un iform hea t ing through secprincipally for welded structural parts and assem- tions to the correct ha rdening temperatures.blies. P a rts fabr icated from 4130, a re used exten-

c. Cont rol of furnace a tmosphere, in the casesively in t he construction of a ircraf t , m issiles, andof certa in steel parts , t o prevent scaling an dmiscellaneous G SE eq uipment. The 4130 a lloy isdecarburization.used for parts such as engine mounts (recipro-

cating), nuts, bolts, gear structures, support brack- d . Cor rect hea t capaci t y , v iscos it y , and tem-ets for a ccessories, etc. perat ure of quenching medium t o harden a de-

quately and to avoid cracks.2-13. P RINCIPLES OF HEAT TREATMENT OFSTEELS. e . In addi t ion to the preceding f actor s , the

thickness of the section controls the depth of hard-2-14. H AR D E NI NG . At or din a r y t em per a t ur es , ness for a given steel composition. Very t hick sec-the carbon content of steel exists in the form of t ions may not ha rden thr ough because of the low part icles of iron carbide scatt ered throughout the rate of cooling at the center.iron ma trix; the na ture of these car bide par ticles,i. e., t h eir nu mb er , s iz e, a n d d is tr ib ut ion , d et er - 2-17. Wh en hea t in g s teel, t h e t em per a t ur em in es t he h a r d nes s a n d st r en g t h of th e s t eel . At s hou ld be d et er m in ed by t h e u se of a ccu r a t eeleva t ed t em per a t u res , t h e ca r b on is d is solved in ins t ru m en t s. At t imes , h ow e ver , su ch in st r u men t st h e i ron m a t r ix a n d t he ca r b id e-pa r t i cl es a ppea r a r e n ot a va i la b le, a n d in s uch ca s es , t h e t em per a -only a f ter th e steel has cooled through its ‘‘cr it ica l t ur e of th e s teel ma y be ju dg ed a ppr oxim a t el y b ytemperature ’’ (see paragraph 2-15). I f t h e r a t e of it s col or . Th e a ccu ra cy w i th w h ich t em per a t ur es

2-3

Page 14: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 14/288

T.O. 1-1A-9

m a y b e ju dg ed b y color d epen ds on t h e exper ien ce 2-20. Q U E NC H I NG M E D IU M .of the w orkma n, the light in w hich the work is

2-21. Oil is much s lower in ac t ion than w a ter ,being done, the character of the scale on the steel,an d th e tendency of heated steel to warp or crackthe amount of radiated light within the furnace,wh en quenched ma y be greatly reduced by its use.an d th e emissivity or tendency of steel to ra diat eUnfortunately, parts made from high carbon steelor emit light.will not develop maximum ha rdness when

2-18. A n um ber of liq uid s m a y be used for q uen ch ed in oil u nless t hey are q uit e t hin in cr ossquenching steel. Both the medium a nd t he form of section. In aircraft , however, it is generally usedthe ba th depend la rgely on the na ture of the work and is recommended in a l l ca ses where i t w i ll pro-t o be cooled . I t is im por ta n t t ha t a su ff icien t d uce t he d es ir ed d eg ree of h a rd ness.qua ntity of the medium be provided to allow themeta l to be quenched without causing a n a pprecia- NOTEble chan ge in the temperat ure of the ba th . This is Alloy steels should n ever be qu enchedparticularly important where many art icles are to in water .be quenched in su ccession.

2-22. In cert a in cases wa t er i s used in thequenching of steel for the har dening process. TheNOTEwater bath should be approximately 18oC (65oF),Aerators may be used in the Quenchas extremely cold water is apt to warp or crack theTanks to help dissipate the vaporsteel and water above this temperature will notbarrier.produce the required hardness.

2-19. QU E NC H ING P ROC E DU RE . Th e t en -2-23. A 10%, salt brine (sodium chloride) solutiondency of steel to wa rp an d crack during theis used when higher cooling rates are desired. Aquenching process is difficult to overcome, and is10%salt brine solution is made by dissolving 0.89due to the fact th at certa in part s of the art icle coolpound of salt per ga llon of wa ter.more rapidly tha n others. Whenever t he ra te of

cooling is not uniform, internal stresses are set up 2-24. For many a r t icles such as mi l ling cu t te rson the metal which may result in warpage or an d similar t ools , a ba th of wa ter covered by acracking, depending on the severity of the stresses. f ilm of oil is occa sionally used. When th e steel isIrregularly shaped parts are particularly suscepti- plunged th rough this oil f ilm a thin coating w illble to these conditions although parts of uniform adhere to it, retarding the cooling effect of thesection size are oft en af fected in a similar ma nner. wa ter slightly, thus reducing the tendency to crackOpera tions such a s forging a nd ma chining ma y set due to contraction.up internal str esses in steel par ts a nd it is t here-

2-25. STRAIGH TENING OF P ARTS WARPE Dfore a dvisable to normalize a rt icles before a tt empt-I N QU E N C H I NG . Wa r ped pa r t s m us t b eing th e hard ening process. The following recom-straightened by first heating to below the temper-mendations will greatly reduce the warpinging temperature of the art icle, and th en applyingtendency and should be carefully observed:pressure. This pressure should be cont inued unt il

a . An a r t icle should never be thrown in to th e piece is cooled. It is desira ble to retemper thequenching media /ba th . B y permit ting it to lie on par t a f t er s t ra ightening a t the s t ra ightening tem-the bottom of the bat h it is apt to cool fast er on pera ture. No at tempt should be ma de tothe top side than on t he bott om side, thus causing straighten hardened steel without heating, regard-it to wa rp or crack. less of the number of times it has been previously

heat ed, as st eel in its ha rdened condition cannotb . The a r t icle should be sl igh t ly ag i t a ted inbe bent or sprung cold with any degree of safety.the ba th to destroy th e coating of vapor which

might prevent it from cooling rapidly. This allows 2-26. TE MP E R IN G (D RAWI NG ). S t eel t ha tthe ba th t o remove the heat of the a rt icle ra pidly

has been hardened by rapid cooling from a pointby conduction a nd convection. slightly above its crit ical r an ge is of ten ha rdertha n necessary an d generally too brit t le for mostc. An a r t icle should be quenched in such apurposes. In ad dition, it is under severe intern a lmanner that all parts will be cooled uniformly andstr ess. In order to relieve th e str esses a nd reducewit h the lea st possible distort ion. For exam ple, athe brit t leness or restore ductility t he meta l isgear w heel or shaf t should be quenched in a ver-a lw a y s ‘‘tempered ’’. Tempering consists in rehea t-ticle position.ing the st eel to a temperature below the crit ical

d. I rregula rly sh aped sect ion s sh ould be r an ge (usu ally in th e n eigh borh ood of 600 -im mer sed in such a ma nn er t ha t th e pa rt s of t he 1200oF). This reheat ing causes a coa lescence a ndg rea t e st s ect ion t h ick nes s en t er s t h e b a t h f ir st . en la r g em en t of th e f in e ca r b id e pa r t i cl es pr od uced

2-4

Page 15: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 15/288

T.O. 1-1A-9

by dras t ic quench ing , and thus t ends to sof ten the bending , and weld ing . Normal iz ing may be accom-s tee l. The des ired st reng th wan ted w i l l determine plished in furnaces used for annea l ing . The a r t i -the tempering tempera ture . This i s accomplished cles a re put in the furnace and hea ted to a poin tin th e s a m e t y pes of fu r na ces a s a r e u sed for h a r d- a p pr oxima t e ly 150o to 225oF a bove the crit icalen in g a n d a n n ea l in g. L es s r ef i ned m et h od s a r e t em per a t ur e of t h e s teel. Af t er th e pa r t s h a vesom et im es used for tem per in g sm a ll t ools. been held at t his tem per at ur e for a suf f icien t t im e

for t he parts to be heated uniformly throughout,2-27. As in the case of hardening, tempering they must be removed from the furnace and cooledtemperatures ma y be a pproximately determined in st ill air . P rolonged soaking of the metal a t highby color. These colors a ppear only on th e surfa ce temperatures must be avoided, as t his practice wilan d a re due to a th in f ilm of oxide which forms on cause the gra in structure to enlar ge. The lengththe metal after the temperature reaches 232oC of t ime r equired for the soaking t empera ture w ill(450oF). In order to see the tempering colors, the depend upon th e ma ss of metal being tr eat ed. Thesurface must be brightened. A buff stick consisting optimum soaking time is roughly one-quarter hourof a piece of wood with emery cloth attached is per inch of diameter or thickness.ordina rily used for this purpose. When tempering

2-30. C AS E H AR DE N IN G . I n m a ny in st a ncesby th e color meth od, a n open f lam e of heat ed ironit is desirable to produce a ha rd, w ear-resista ntplate is ordinarily used as the heating medium.surface or ‘‘case’’ over a str ong, tough core. Trea t-Although the color method is convenient, it shouldment of this kind is known as ‘‘case hardening ’’.not be used unless adequate facilities for determin-This trea tment ma y be a ccomplished in severa ling tempera tur e a re not obta ina ble. Tempering

ways, the principal ways being carburizing, cya-temperatures can also be determined by th e use ofniding, and nitriding.crayons of known m elting point . Such crayons are

commercially a vaila ble for a w ide range of temper- 2-31. Flame Ha rdening/Softening. Surface hard-atures under the trade name of ‘‘Tempilstiks’’. The ening/soft ening by a pplying intense hea t (such asabove method may be used where exact properties tha t produced by a n Oxy-Acetylene f lam e) can beaf ter tempering is not t oo importa nt such a s for accomplished on almost any of the medium carbonblacksmit h work. The most desireable method for or al loys st eel, i.e. 1040, 1045, 1137, 1140 etc.genera l a erona utical use, is to determine tempera- The part s a re surface hardened, by a pplying atures by ha rdness checks, and subsequent a djust- reducing f lame (An Oxidizing f lame should neverments ma de as necessary t o obta in th e properties be used) at such a rate, that the surface is rapidlyrequired. For recommend ed tempering tempera- heated to the proper quenching temperature fortur es see heat t rea t da ta for mat erial/composition the steel being trea ted. Following the applicat ioninvolved. of the heat , the part is quenched by a spraying of

wa ter/oil ra pidly. The fa st quench har dens the2-28. Steel is usually subjected to the annealing steel to the depth that the hardening temperatureprocess for the following purposes:

ha s penetra ted below the surface. The actua l ha rd-ness resulting will depend on the rate of coolinga . To increase it s duct i li t y by reducing ha rd-from the quenching tempera ture. In ha rdening byness and brit t leness.this m ethod th e shape a nd size/ma ss of th e partmust be considered. Most operat ions will requireb . To ref ine the cryst a l l ine s t ructure andspecial ad apted spra y nozzles to a pply t he quench-remove stresses. St eel wh ich ha s been cold-ing media, which is usually wat er. Normally,worked is usually a nnealed so as t o increase itsf lame ha rdening will produce surface hardnessductility . H owever, a large a mount of cold-dra wnhigher tha n can be obtained by routine furnacewire is used in its cold-worked state when veryheating a nd quenching, because surface can behigh yield point a nd t ensile strength a re desiredcooled at a faster ra te. If a combinat ion of highan d relat ively low ductility is permissible, as instrength core and surface is required some of thespring wire, piano wire, and wires for rope and

medium carbon alloy steels can be heat t reatedcable. Hea ting to low temperat ures, as in solder- an d subsequently surface ha rdened by the f lameing, will destroy these properties. How ever, ra pidmethod.heat ing wil l narrow the a f fected a rea .

NOTEc. To sof ten the ma ter ia l so tha t mach in ing ,forming, etc., can be performed. This method is not adapted for sur-

face hardening of part s for use in crit-2-29. N OR MAL I ZI NG . Alt h ou gh in volv in g a

ical applications.slightly different heat treatment, normalizing mayb e cla s sed a s a for m of a n n ea l in g. Th is pr oces s 2-32. S u rf a ce s of t en in g is a ccom plis hed by hea t -a l so r em oves st r es ses d ue to m a ch in in g , f or ging , ing t h e s ur fa ce t o ju st b elow t h e t em per a t u re

2-5

Page 16: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 16/288

T.O. 1-1A-9

r eq ui red for h a rd en in g a nd a llow i ng t he ma t er ia l 2-38. S olid , l iq uid , a n d ga s ca r bu riz in g met h od sare employed.to cool (in a ir) na tur a lly. This meth od is some-

times used to soften material that has been hard-a . The s imples t method of carbur iz ing con-ened by frame cutt ing. Oft en it is necessary to

sists of soaking the parts at an elevated tempera-apply the heat in short intervals t o preventture w hile in conta ct w ith solid car bona ceousexceeding the h ar dening temperature.ma terial such as w ood charcoal, bone charcoal a nd

charred leather.2-33. Induct ion. Ha rdening/Heat ing. The induc-tion method of heat ing can be used to surface

b . L iquid ca rbur iz ing cons is t s of immers ingharden steels , in a manner similar to that used forthe par ts in a l iquid sa l t ba t h , heated to thef lame ha rdening. The exception is tha t the heatproper temperat ure. The carbon penetra tes thefor ha rdening is produced by placing the pa rt in asteel as in the solid method producing the desiredmagnetic field (electrical) specifically designed forcase.the purpose. P ar ts ha rdened (surface) by this

method will be limited to capability and size of c. Ga s ca rbur iz ing cons is t s of hea t ing theloop/coil used t o produce the m a gnet ic f ield. parts in a retort and subjecting them to a carbona-

ceous gas such as carbon monoxide or the common2-34. In some ins tances the induct ion method

fuel ga ses. This process is par ticula rly ada pta blecan be used to deep harden; the extent will depend

to certa in engine part s .on exposure/dw ell time, int ensity of the m a gneticf ield, an d the size of the part to be treated. 2-39. When pack ca rbur iz ing , the pa r t s a re

packed with the carburizing material in a vented2-35. C AR B U RI ZI NG . At e leva t ed t em per a -steel container to prevent the solid carburizing

tures iron can react w ith ga seous carbon com-compound from burning a nd t o retain t he carbon

pounds to form iron carbide. B y heatin g steel,monoxide and dioxide ga ses. Nichrome boxes,

while in contact w ith a carbon-aceous substa nce,capped pipes of mild steel, or welded mild steel

carbonic gases given off by th is ma terial w ill pene-boxes ma y be us ed. Nichrome boxes a re most eco-

trate the steel to an amount proportional to thenomical for production because they withstand oxi-

time and t empera ture. For example, if mild orda tion. Ca pped pipes of mild steel or welded mild

soft steel is heated to 732oC (1,350oF) in an steel boxes a re useful only as subst itut es. Theatmosphere of carbonic gases, it will absorb carbon container should be so placed as to allow the heatfrom the gas until a carbon content of approxi- to circulat e entirely ar ound it. The furna ce mustmately 0.80 percent has been attained at the sur- be brought t o the car burizing tempera ture a sface, this being the saturation point of the steel for quickly a s possible and held at this heat from 1 tothe particular temperat ure. B y increasing the 16 hours, depending upon the depth of caseheat to 899

o

C/(1,650o

F) the same steel will absorb desired an d the size of the work. Af ter carbu-carbon from t he gas until a carbon content of rizing, the container should be removed andapproximat ely 1.1 percent ha s been at ta ined, allowed to cool in air or the parts removed fromwhich is th e sat urat ion point for t he increased the carburizing compound and quenched in oil ortemperature. w a ter. The air cooling, alth ough slow, reduces

wa rpage and is a dvisable in many cases .2-36. The carburiz ing process may be applied toboth plain carbon and alloy steels provided they 2-40. Carbur ized s tee l pa r t s a re r a re ly usedar e with in the low carbon range. Specifically, the without subsequent heat treatment, which consistscarburizing steels a re those containing n ot more of several steps to obta in optimum ha rdness in theth an 0.20 percent carbon. The lower t he ca rbon case, and optimum strength and ductility in thecontent in the st eel, the more readily it w ill core. G ra in size of the core and case is ref ined.absorb, carbon during the carburizing process.

a . Ref in ing the core i s accomplished by

2-37. The amount of carbon absorbed and the reheating t he parts t o a point just a bove the crit i-thickness of the case obtained increases with t ime; cal temperat ure of the steel. After soaking for ahowever, the carburization progresses more slowly suff icient t ime to insure uniform heating, th eas the carbon content increases during the process. part s a re quenched in oil.The length of time required to produce the desireddegree of carburizat ion ma terial used a nd th e tem- b. The harden ing tempera ture for the h ighpera ture to which the meta l is subjected. It is carbon case is w ell below t ha t of th e core. It is,apparent that , in carburizing, carbon travels therefore, necessary to heat the parts again to theslowly from the outside toward the inside center, crit ical t empera ture of the case an d quench themand therefore, the proportion of carbon absorbed in oil to produce the required hardness. A soakingmust decrease from the outside to the inside. period of 10 minutes is generally sufficient.

2-6

Page 17: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 17/288

T.O. 1-1A-9

c. A f in a l s t res s r el iev in g oper a t i on is n eces - f l a king of t h e n it r id ed ca s e. Wh en no d is t or t ion iss a ry to minimize the ha rden ing st resses produced permiss ib le in the n i t r ided par t , i t is necessa ry tob y t h e pr ev iou s t r ea t m en t . Th e s t res s r el iev in g n or m a li ze t h e s t eel pr ior t o n it r id in g to r em ove a l ltemperature is generally a round 350oF . Th is is s tr a in s r esu lt in g fr om t he for gin g, q uen ch in g, ora ccom pli sh ed b y h ea t in g, s oa k in g u nt il u ni for ml y m a ch in in g.hea ted, an d cooling in still air. When extreme

2-43. H E AT TR E ATI NG E QU I P M E NT. E q uip-ha rdness is desired, th e temperature should bement necessary for heat trea ting consists of a suit-carefully held to the lower limit of the range.able means for bringing the meta l to the required

2-41. C YAN ID I NG . S t eel pa r t s m a y b e s ur fa ce- temperature m easuring a nd controlling device an dhardened by heating while in contact with a quenching medium. Hea t ma y, in some insta nces,cyanid salt , followed by quenching. Only a thin be supplied by means of a forge or welding torch;case is obta ined by this method an d it is , there- however, for the treatment required in aircraftfore, seldom used in connection with aircraft con- work, a furna ce is necessary. Various jigs and f ix-struction or repair . Cya niding is, however, a rapid tures are sometimes needed for controlling quench-an d economical method of case ha rdening, an d ing and preventing warping.ma y be used in some insta nces for relat ively unim-porta nt par ts . The work to be hardened is 2-44. F U RN AC E S . H ea t t rea t in g fu rn a ces a reimmersed in a bat h of molten sodium or potassium of many designs and no one size or type perfectlycyan ide from 30 to 60 minut es. The cya nide bat h f ills every heat t reating requirement. The sizeshould be maintained at a temperature to 760oC t o and q uant i ty of meta l to be t rea t ed and the var i-

899oC (1,400oF to 1,650oF). Immedia tely af ter ous trea tments r equired determine the size andremoval from the bath, the parts are quenched in type of furnace most suitable for each individualwa ter. The case obta ined in this mann er is due case. The furnace should be of a suitable type andprincipally to the formation of carbides and design for the purpose intended and should benitr ides on th e surfa ce of the steel. The use of a capable of ma inta ining with in the w orking zone aclosed pot and ventilating hood are required for temperature va rying not more tha n + or - 14oCcyaniding, a s cyanide vapors are extremely (25oF) for the desired value.poisonous.

2-45. HE AT TREATING FURNACES/BATHS .2-42. N ITR I DI NG . Th is met h od of ca s e h a r d-ening is advantageous due to the fact that a 2-46. The accepta ble heat ing media for heatharder case is obtained than by carburizing. Many treating of steels are air, combusted gases, protec-engine parts such as cylinder barrels and gears tive at mosphere, inert at mosphere or va cuum fur-may be treated in this way. Nitriding is generally naces, molten-fused salt baths, and molten-lead

applied to certain special steel alloys, one of the ba ths. The hea t trea ting furna ces/ba th s a re ofessentia l const ituent s of w hich is a luminum . The many designs and no one size or type will perfectlyprocess involves the exposing of the parts to f ill every heat trea ting requirement. Furna cesam monia ga s or other nit rogenous mat erials for 20 and baths shall be of suitable design, type andto 100 hours at 950oF. The cont a iner in w hich th e const ruction for purpose intend ed. P rotective a ndwork and ammonia gas are brought in contact inert a tmospheres shall be ut ilized a nd circulat edmust be airt ight and capable of maintaining good as necessary to protect all surfaces of parts com-circula tion a nd even tempera tur e th roughout. The prising t he furna ce load.depth of case obtained by nitriding is about 0.015inch i f h ea t e d f or 50 h ou r s. Th e n it r id in g pr oces s 2-47. Th e d es ig n a n d con st r uct ion of t h e h ea t in gdoes not a f fect the phys ica l s t a te of the core i f the equipment sha l l be such tha t the furnace/ba th i spreceding tempering t empera ture w as 950oF or ca pa ble of ma int a inin g w it hin the w orking zone, a tover . Wh en a pa r t is to b e on ly pa r t i a ll y t r ea t e d, a n y point , a t em per a t u re va r ying not m or e t h a ntinning of an y surfa ce will prevent it from being ±25oF (±14oC) from the required heat treating tem-

n it r id ed . N it r id ed s ur fa ces ca n b e r eh ea t ed t o per a t ur e, w it h a n y ch a rg e. Af t er t h e ch a r ge h a s950oF wi th ou t los ing any of the ir ha rdness , how- been brought up to t rea t ing/soaking tempera tureever , i f h ea t e d a b ove t h a t t em per a t u re, t he h a r d - a l l a r ea s of t he w or king zon e s ha l l b e w i t hin t h en es s i s r a pid ly los t a n d ca n n ot be r eg a in ed by per mis si ble t em per a t ur e r a n ge s pecif i ed for t her et r ea t m en t . P r ior t o a n y n it r id in g t r ea t m en t , a l l s t eel/a l loy b eing h ea t t r ea t ed (See Table 2-3, MIL-d eca r b ur iz ed m et a l m us t be rem oved t o p reven t H-6875 or en g in eer in g da t a f or m a t er ia l in volved ).

2-7

Page 18: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 18/288

T.O. 1-1A-9

NOTE furnaces, a minimum of 9 test thermocouples or 1per 25 cubic feet, whichever is greater, shall beSpecification SAE-AMS-H-6875, Heatused. Bath furnaces shall be tested by use of aTreatment of Steel, will be the controlminimum of 5 test locations or 1 per each 15 cubicdocument for heat treating steelfeet. The locations may be surveys, using suitablematerial to be used on aerospaceprotected multiple or single brake test thermocou-equipment. Where new alloys areples. For distribution of test thermocouples, see

involved, it will be necessary to Figure 2-1. Temperature measuring and recording review the involved specification orinstruments used for controlling the furnace shallmanufacturer’s engineering or designnot be used to read the temperature of the testdata for the appropriate heat informa-temperature sensing elements.tion (temperature, control, atmos-

phere, times, etc). In case of conf lict 2-52. For all surveys, the furnace or bath tem-the Military/Federal Specif ication will perature shall be allowed to stabilize at the poten-be governing factor or the conf lict will tial test temperature. The initial survey shall bebe negotiated with the responsible made at the highest and lowest temperatures of technical/engineering activities for the furnace specified operating range. Periodicresolution. surveys may be made at a convenient temperature

within the operating range. The temperature of 2-48. HEAT CONTROL, FURNACE TEMPERA-all test locations/thermocouples shall be recordedTURES SURVEY AND TEMPERATURE MEA-at 5 minute intervals, starting immediately afterSURING EQUIPMENT.

insertion of the test thermocouples in the furnace2-49. Furnaces/baths shall be equipped with or bath. Reading shall be continued for 1/2-hoursuitable automatic temperature control devices, or more after furnace control thermocouple readsproperly calibrated and arranged, preferably of the within 25oF of original setting. After all the testpotentiometer type to assure adequate control of  thermocouples have reached the minimum of thetemperature in all heat-treating zones. The heat treating range, their maximum variationresulting temperature readings shall be within shall not exceed ±25oF (14oC) and shall be within±1.0 percent of the temperature indications of the the specified heat treating temperature range incalibrating equipment. Thermocouples shall be accordance with Specification SAE-AMS-H-6875 orproperly located in the working zones and ade- Table 2-3. If the test indicates that conditions arequately protected from contamination by furnace not satisfactory, the required changes shall beatmospheres by means of suitable protecting  made in the furnace and arrangements of thetubes. charge. The furnace control couples shall be cor-

rected for any deviation from the standard electro-2-50. A survey shall be made before placing anymative force (EMF) temperature chart as deter-new furnace in operation, after any change ismined in calibration of the couples.made that may affect operational characteristics,

and semi-annually thereafter to assure conform- 2-53. FURNACE CONTROL INSTRUMENTSance with temperature and control requirement  ACCURACY.previously cited. Where furnaces are used only for

2-54. The accuracy of temperature measuring,annealing or stress relieving, an annual surveyrecording and controlling instruments shall bewill be acceptable. The survey may be waived atchecked at regular intervals, not exceeding 3the discretion of the authorized inspector or repre-months or upon request of personnel in charge orsentative provided that the results from previousauthorized (Government) inspector or representa-tests, with the same furnace or bath and sametives. The accuracy of the instrument shall betype of load, show that the temperature and con-made by comparison tests with a standardized pre-trol uniformity is within specified limits. As acision potentiometer type instrument of knownpart of the inspection thermocouples should be(tested) accuracy used with a calibrated thermo-

closely inspected for condition and those severely couple. The test thermocouple shall be locateddeteriorated and of doubtful condition should beapproximately 3 inches from the installed furnacereplaced.thermocouple(s). The temperature for check shall

2-51. The initial and succeeding (semi-annual be at working temperature with a production load.and annual) surveys shall be performed with a If instruments are replaced or not used for 3standard production type atmosphere, controlled if  months they shall be checked before use.required. A minimum of 9 test thermocouples or 1per 15 cubic feet, whichever is greater, shall beused for air furnaces except circulating air fur-naces used for tempering only. In the tempering 

2-8 Change 4

Page 19: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 19/288

T.O. 1-1A-9

Figure 2-1. Num ber and Di st r ibu t ion of T hermocoup les 

2-9

Page 20: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 20/288

T.O. 1-1A-9

2-55. SALT BATH CONTROL. Tab le 2-1 . Soak ing Per iods for Harden ing Normal iz ing and 

Ann eali ng (Plain Carbon Steel) 2-56. The bat h composit ion shall be adjusted asfrequently as necessary to prevent objectionableattachment of the steel or alloy to be treated and TIME OFto permit a t ta inment of the desired mecha nical HEATING TOproperties of the finished product. The bat h will D IAME TE R RE QU IRE D TIME OF

be checked at least once a m onth. OR TE MP E RATU RE H OLD INGTH IC KNE S S (AP P ROX) (AP P ROX)

2-57. Temperature recording should be of theautomatic controlling and recording type, prefera- INC H E S H OU RS H OU RSbly th e potent iometer type. Thermocouples shouldbe placed in a suitable protecting tube, unless the 1 a nd less 3/4 1/2furnace at mosphere is such th at undue deteriora- Over 1 1 1/4 1/2tion of the thermocouples will not result. through 2

Over 2 1 3/4 3/42-58. Q U E N CHI NG TAN K S AN D L I QU I D S .

through 3Suita ble tanks m ust be provided for quenching

Over 3 2 1/4 1ba ths . The size of ta nks should be suff iciently

through 4large to allow th e liquids to remain a pproximat ely

Over 4 2 3/4 1at room temperature. Circulating pumps and cool-

through 5ers may be used for maint aining a pproximately

Over 5 3 1/2 1 1/2constant temperatures where a large amount of through 8quenching is done. The locat ion of these ta nks isvery important due to the fact that insufficiently

2-63. H AR D E NI NG . Tem per a t ur es r eq uir ed forra pid tran sfer from th e furnace to the quenchinghardening steel are governed by the chemical com-medium may destroy the effects of the heat treat-position of the steel, previous treatment, handlingment in many instances.equipment, size and shape of piece to be treated.

2-59. The quenching l iquids commonly used are Generally, parts of heavy cross section should bea s follows: Wa ter at 18oC (65oF), Commercial ha rdened from t he high side of the given tempera-Quenching Oil, and Fish Oil. ture range.

2-60. HE AT TRE ATI N G PRO CE D U RE S . 2-64. TE M P E R IN G (D R AWI NG . ) Tem per in gconsists of heating the ha rdened steel to the a ppli-cable temperat ure holding at this temperat ure forNOTEapproximately 1 hour per inch of the thickness of

Additional Hea t Treat ment informa- the largest section, and cooling in air or quenchingtion is discussed in Section IX.

in oil at approximat ely 27o to 66oC (80o to 150oF).2-61. I NI TI AL FU R N AC E TE M P E R ATU R E S . Th e t em per a t ur e t o b e u sed for tem per in g of s teelI n nor m a li zing , a n n ea l in g a n d ha r d en in g w h er e d ep en d s u pon t he ex a ct ch em ica l com pos it i on ,pa r t s a r e n ot pr eh ea t e d, t h e t em per a t u re in t h a t h a r d nes s, a n d gr a in s t ru ct u re ob t a in ed by h a r d en -z on e of t h e fu rn a ce w h er e w or ks is in t rod uced in g a n d t h e m et h od of t em per in g. Th e t em per in gshould be at least 149oC (300oF ) b el ow t h e w or k- t em per a t ur es g iv en a re on ly a ppr oxim a t e, a n d t h eing tempera ture a t the t ime of inser t ion of pa r t s of exac t t empera ture should be determined by ha rd-s im ple d es ig n. F or p a r ts of com pl ica t e d d es ig n n es s or t en sion tes t f or ind iv id u a l pieces . Th einvolving a br u pt ch a n g e of sect ion or sh a r p cor - f in a l t em per in g t em per a t u res sh ou ld n ot b e m or eners, the temperatur e should be at least 260oC t ha n 111oC (200oF) below the tempering, tempera-(500oF) below the working tempera ture. The fur- ture g iven . I f the cen ter of the sect ion is morenace must be brought to the proper t empera ture tha t 1/2-inch from the surface , the t ens ile s t reng th

gra dua lly. a t t he center w ill in genera l be reduced; t herefore,a lower tempering temperature should be used for2-62. S OAK I NG P E R I OD S . Th e per iod of s oa k -

sections thicker than 1 inch in order to obtain theing is governed by both the size of the section and

required tensile strength.the na ture of the steel. Ta ble 2-1 indicat es in ag en er a l w a y t h e ef fect of si ze on t he t im e for soa k - 2-65. AN NE AL I NG . An nea l in g con sis ts ofing . Th is t a ble i s int en d ed t o b e u sed a s a g uide h ea t in g t o t h e a p pl ica b le t em per a t u re, h olding a ton ly and should not be cons t rued as being a man- th is t empera ture for approx ima te ly the per iod ofd a t or y req u ir em en t . I t a p pl ies on ly t o pl a in ca r - t ime g iven , a n d cool in g in t h e f ur n a ce t o a t e mper -bon a nd low a lloy st eels. a t ure not higher t ha n 482oC (900oF). The st eel

2-10

Page 21: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 21/288

T.O. 1-1A-9

may then be removed from the furnace and cooled betw een the tens ile s t reng th and hardness i s indi-in st ill air . cated in Ta ble 8-3. This table is to be used as a

guide. It a pplied only to the plain carbon and low 2-66. N OR MAL I ZI NG . N or m a liz in g con sis ts of

alloy steels not to corrosion-resistant, magnet,heat ing the steel to the a pplicable temperatur e,

va lve, or tool steels. When a na rrow ra nge ofholding at this temperature for period of time,

ha rdness is required, the tests to determine theremoving from furnace and cooling in still air.

relat ionship between hardness and strength2-67. C AR B U RI ZI NG . C a rbu rizin g con sis ts of sh ou ld be m a de on t he a ct ua l pa r t. H a r dn ess v a l-heat ing the steel packed in a car burizing medium, ues should be within a ra nge of t wo pointsin a closed container, to the applicable tempera- Rockwell or 20 points B rin ell or Vickers. The ten-ture a nd holding at this temperat ure for th e neces- sile strength-ha rdness relat ionship is quit e uni-sary period of time to obtain the desired depth of form for parts which are sufficiently large andcase. 1020 steel will require 1 to 3 hours a t a rigid to permit obtaining a full depression on acarburizing temperature of 899oC (1650oF) for f lat surface without def lection of the piece. Foreach 1/64 inch of ca se depth , required. P ar ts ma y cylindrical part s of less tha n 1 inch in diam eter,be cooled in the box or furnace to a temperature of the Rockwell reading w ill be lower tha n indicatedapproximately 482oC (900oF) th en air cool. This in the table for the corresponding tensile strength.treatment leaves the alloy in a relat ively soft con- Any process which affects the surface, such asdit ion a nd it is then necessary t o condition by buff ing a nd plat ing, or t he presence of decar bu-heat ing an d quenching, first for core refinement, rized or porous a reas a nd ha rd spots, will af fect

followed by h eating an d quenching for case ha rd- the corresponding relation betw een ha rdness an dness. Alloy ma y be quenched directly from the tensile strength . Therefore, these surfa ces mustcarburizing furnace, thus producing a ha rd case be adequa tely removed by grinding before mea-a nd a core ha rdness of Rockwell B67. This trea t- surements are made.ment produces a coarse grain in some types ofsteel an d ma y cause excessive distortion. Usua lly 2-72. In making ha rdness measurements onth ere is less distortion in fine gra in steels. The tubular sections, correction factors must be deter-core treat ment outlined above refines the gra in as mined a nd a pplied to the observed readings inwell as hardens. order to compensa te for the roundn ess and def lec-

tion of the tubing under the pressure of the pene-2-68. H AR D NE S S TE S TI NG .tra tor. This ma y be impractical because every

2-69. G E N E RAL . H a r dn ess t est in g is a n tube size end wa ll thickness would have a differ-important factor in the determination of the ent factor. As an alternate, the following procedureresults of the heat treatment as well as the condi- may be used: Short lengths may be cut from the

tion of the metal before heat treatment and must, tube. A mandrel long enough to extend out bothth erefore, be ca refully considered in connection ends of the tube a nd slightly sma ller in dia meterwith this work. The methods of hardn ess testing than the inner diameter of the tube is then passedin general use are: the Brinell, Rockwell, Vickers, through the section and the ends supported in ‘‘V’’a nd Sh ore Scleroscope. Ea ch of these meth ods is supports on the hardness tester. Ha rdness read-discussed in section VIII. ings may then be taken on the tubing.

2-70. TE N S IL E S TR E NG TH . Tem per in g t em -2-73. S PE CI F I CATI ON CROS S RE F E RE N CE .

pera tures listed with t he individua l steels in TableTa ble 2-2 is a cross reference index listing the

2-3 are offered as a guide for obtaining desiredsteel and alloy types and the corresponding Fed-

tensile and yield strength of the entire cross sec-eral, Military, and aeronautical material specifica-

tion. When the physical propert ies a re specifiedtions for the different configurat ions. Where t wo

in terms of tensile strength, but t ension tests a reor more specifications cover the same material,

impractical, har dness tests ma y be employed usingstock ma terial m eeting t he requirements of a mili-

the equivalent ha rdness values specif ied in Tableta ry specificat ion sha ll be used for a ll aeronautical8-3.stru ctura l items. Some of the specificat ions listedin Ta ble 2-2 are for reference only, and are not2-71. HARDNESS-TENSILE STRENGTH RELA-approved for Air Force use.TIONSHIP. The approx ima te rela t ionsh ip

2-11

Page 22: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 22/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on C ross Reference 

COMP /ALLO YD E S IG N FORM/C OMMOD ITY AMS FE D E RAL MILITARY

1005 Rod, w elding steel a nd 5030 MI L-R-908, C1 1

cast iron, rod a nd w ire,st eel w elding (A/Capplication)

1008 S t eel, sheet a nd st rip, MIL-S -4174f la t , a luminum coat edlow carbon, MIL-S-4174

1010 B a rs, B illet s, B looms, MIL-S -16974Slabs

B a rs (G enera l P urpose) QQ-S -633 MIL-S -11310

Wire QQ-W-461

S heet a nd S t r ip 5047 QQ-S -698

S heet a nd S t r ip 5040

S heet a nd S t r ip 5042 QQ-S -698

S heet a nd S t r ip 5044 QQ-S -698

Tubing, S ea mless 5050

Tubing, Welded 5053

Rivet s 7225

Wire (Ca rbon) QQ-W-409

S t rip (For S ma ll Arms, MIL-S -13468Bullets)

B looms, B illet s, S la bs MIL-S -16788 C 1 1

S t eel D isks (For D eep MIL-S -13852Drawn Ammunitionitems)

Tubes, S ea mless MIL-T-16286 C1 A(Marine Boilerapplication)

E lect rodes, Welding MIL-E -6843 C1 E6013

E lect rodes, Welding 5031 MIL-E -6843 C1 E6013

E lect rodes, Welding MIL-E -18193 t y 60

Rod a nd Wire (Welding MIL-R-5632 C1 1Low Carbon Steel)

1015, 1016, B ar (G enera l P urpose) 5060 QQ-S -633 (Comp1017, 1018 B a r a nd B illet s C1015-C1019)and 1019

Tube, S ea mless/Welded WW-T-731 Comp A

2-12

Page 23: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 23/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLOYD E S IG N FORM/COMMOD ITY AMS FE D E RAL MILITARY

1015, 1016, Tube, Mecha nica l QQ-T-830 MT1015

1017, 1018and 1019(Continued)

S t eel - Ca rbon 5060 QQ-S -633 Comp C1015

Wire (Ca rbon) QQ-W-409 (C omp 10151019

Wire (C a rbon) QQ-W-461

Tubing MIL-T-3520

S t eel D isks MIL-S -13852

P la t e, S heet a nd S t r ip MIL-S -7809(See Corten)

S heet a nd S t rip, B a rs, QQ-S -640Billets

B looms, S la bs MIL-S -16974

1020 B a rs, B illet s, B looms, MIL-S -16974Slabs

B a rs QQ-S -633 MIL-S -3090

S heet a nd S t rip MIL-S -7952

Wire (C a rbon) 5032 QQ-W-461

Wire

Wire (B ook B inder) QQ-W-414

S heet a nd S t rip 5045 QQ-S -698 1020

P la t e (C a rbon) QQ-S -635

Wire (C a rbon) QQ-W-409

Tubing (Automot ive) MIL-T-3520

B a rs MIL-S -11310

B looms, B illet s, S la bs MIL-S -16788 C1 2

Tubing (Welded) MIL-T-20162 G r 1

Tubing MIL-T-20169

S t eel D isks (F or deep MIL-S -13852drawn ammunit ionitems)

Sheet a nd Str ip

Tubing (S ea mless a nd QQ-T-830Welded)

Change 1 2 -1 3

Page 24: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 24/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLO YD E S IG N FORM/C OMMOD ITY AMS FE D E RAL MILITARY

1022 B a rs a nd F orgings 5070 QQ-S -633 MIL-S -11310

Plates (Up to 1″ ) QQ-S -691, C1 A

Wire (Ca rbon) QQ-W-409

S t eel D isk (For deep MIL-S -13852draw n ammunit ionitems)

B a rs, B illet s, B looms, MIL-S -16974Slabs

S heet a nd S t r ip QQ-S -640

Tubing QQ-S -643

Tubing, Mecha nica l QQ-T-830

1025 Fit t ings MIL-F-20236 t y 1

B a rs QQ-S -633

Tubing MIL-T-3520

Tubing MIL-T-5066

Ca st ings QQ-S -681, C1 1

Ca st ings QQ-S -681, C1 2

B a rs MIL-S -11310

Tubing, S ea mless 5075 MIL-T-5066

Tubing, Welded 5077 MIL-T-5066

Wire QQ-W-409

Ca st ing MIL-S -15083 C1 B

S t eel D isks MIL-S -13852

S heet a nd S t r ip MIL-S -7952

Tubing QQ-S -643

P la t e MIL-P -20167 C1 C

C ort en P la t e, S heet a nd S t r ip MIL-S -7809(High Str)

NAX AC S heet , P la te, B a r , 63549115 B illet , B loom, S t r ip

1035 S t eel, C a rbon (B a rs, 5080 QQ-S -633 (B a r)Forgings, and Tubings)

Ingot MIL-S -20145 G r N

P la t e MIL-P -20167 C1 A

B a r QQ-S -633

Wire (Ca rbon) QQ-W-461

2-14

Page 25: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 25/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLOYD E S IG N FORM/COMMOD ITY AMS FE D E RAL MILITARY

1035 Tubes MIL-T-20141(Continued)

P la t e (C a rbon) QQ-S -635

Forgings MIL-S -16900

Tubes, S ea mless 5082

P la t e a nd D isk MIL-S -3289

P la t es (Ma rine B oiler) QQ-S -691 C1 B

P la t es (Ma rine B oiler) QQ-S -691 C1 C

S ha pes, B a r a nd P la te QQ-S -741 G r A(Structural)

Wire QQ-W-409

S heet , S t rip QQ-S -640

Forgings (Na va l S hip MIL-S -19434, C1 1Board)

P la t es a nd D isks (For MIL-S -3289artillery ammunitioncartridge cases)

Tubes MIL-T-11823

1040 B a rs QQ-S -633

P la t e (C a rbon) QQ-S -635

Ca st ings QQ-S -681, C1 1

Wire QQ-W-409B a rs MIL-S -11310

B looms, B illet s, B a rs MIL-S -16974and S labs

1045 Tubes (Welded) MIL-T-4377

B a rs QQ-S -633

Wire (C a rbon) QQ-W-461

Ingot s MIL-S -20145 G r P

P la t e QQ-S -635

S heet s, S t rip, Tubes, QQ-S -640Seamless

S t r ip MIL-S -303

S t r ip (For a mmunit ion MIL-S -3039cartridge clips)

1050 B a rs QQ-S -633 MIL-S -20137

P la t e (C a rbon) QQ-S -635

2-15

Page 26: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 26/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLO YD E S IG N FORM/C OMMOD ITY AMS FE D E RAL MILITARY

1050 B looms, B illet s, a nd MIL-S -16788, C1 C 5(C ont inued) S la bs (For Forgings)

B ars, B illet s, B looms, 5085 QQ-S -681Slabs , Cas t ings

Tubing, S ea mless/ QQ-T-880Welded

1055 Ingot s MIL-S -20145 G r R

Forgings (For S hell MIL-S -10520Stock)

B a rs QQ-S -633

E lect rodes MIL-E -18193 (Ty 201)

1060 B a r QQ-S -633B a rs, a nd Wire MIL-S -16410 comp 3

Wire, S pr ings, QQ-W-428 Ty 1 a nd 2

S pring MIL-S -2839

B looms, B illet s, S la bs MIL-S -16788, C1 C6

B a rs, B looms, B illet s, MIL-S -16974Slabs

Forgings MIL-S -10520 comp 3

S heet , S t r ip QQ-S -640

1070-1075 S heet , S t r ip MIL-S -8143

Wire, S pring 5115

S t eel Tool QQ-T-580

Wa shers 7240 FF-W-84 C1 A

Wire B a rs QQ-S -633 MIL-S -12504

S t eel, S t r ip (S pr ing- MIL-S -11713 comp 2Time Fuse)

S t rip, S pr ing 5120(1074)

1080, 1086, B a rs QQ-S -6331090

S t eel, Tool QQ-T-580 C1-W1-09

B looms, B illet s, S la bs MIL-S -16788 C 1 C8(For F orgings)

Wire, D ra w n Met a l MIL-W-6714(St itching, (G alva nized)

2-16

Page 27: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 27/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLOYD E S IG N FORM/COMMOD ITY AMS FE D E RAL MILITARY

1080, 1086, B looms, B illet s, B a rs, MIL-S -169741090 S la bs(Continued)

Wire, Comm Qua lit y 5110

Wire, C a rbon 5112 QQ-W-470Spring, Music

1095 B a rs 5132 QQ-S -633 MIL-S -8559

B a rs, Wire MIL-S - 16410 comp 1

Wire, S pr ing QQ-W-428

S heet , S t rip MIL-S -11713 comp 3

Wire (H igh Ca rbon) QQ-W-470

S heet , S t rip 5121 MIL-S -7947 cond AStr ip

S heet , S t rip 5122 MIL-S -7947 cond HStr ip

S prings 7340

Wire, S pr ing (For MIL-W-13604small armsapplication)

B looms, B illet s, S la bs MIL-S -16788

S t eel B a rs, Round, MIL-S -46033Squa re and Fla t forForgings

S t r ip MIL-S -17919

B a rs, B looms, B illet MIL-S -16974and S labs

1112 S t eel, Ca rbon, B a rs 5010Forging andMechanica l Tubing

B a rs 5010 QQ-S -633

1117 S t eel - Ca rbon, B a rs, 5022Forging andMechanica l Tubing

B a rs MIL-S -16124, C1 1,comp A

B a rs 5022 QQ-S -633

Forgings MIL-S -10520

1137 S t eel - Ca rbon, B a rs, 5024Forging andMechanica l Tubing

2-17

Page 28: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 28/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLO YD E S IG N FORM/C OMMOD ITY AMS FE D E RAL MILITARY

1137 B a rs 5024 QQ-S -633 MIL-S -43(Continued)

B a rs MIL-S -16124, C1 2

Tubing, S ea mless QQ-S -643

2317 B a rs QQ-S -624

Wire (Alloy) QQ-W-405

2330 Ingot s MIL-S -20145

B a rs QQ-S -624

Wire (Alloy) QQ-W-405

Tubing QQ-S -629

2340 B a rs QQ-S -624

Tubing QQ-S -629

Wire (Alloy) QQ-W-405

Ingot s MIL-S -20145 G r V

2515 B a rs QQ-S -624

Wire (Alloy) QQ-W-405

3115 B a rs QQ-S -624

Wire (Alloy) QQ-W-405

B a rs, B illet s (For MIL-S -866carburizing)

3140 B a rs QQ-S -624

Wire (Alloy) QQ-W-405

B a rs, B looms, B illet s MIL-S -16974

3310 B a rs QQ-S -624 MIL-S -7397 comp 1

Wire QQ-S -405

3316 B a rs MIL-S -1393 comp 2

4037 B a rs, Wire 6300

B a r QQ-S -624

Wire QQ-W-405

4050 S t eel, Tool QQ-T-570 C1 1

4130 B a rs, Rods, Forgings 6370 QQ-S -624 MIL-S -6758(A/C Qua lit y)

2-18

Page 29: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 29/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLOYD E S IG N FORM/COMMOD ITY AMS FE D E RAL MILITARY

4130 P la t e, S heet S t rip 6350 MIL-S -18729(Cont inued) (A/C Qua lit y) 6351

B a rs, B looms, B illet s MIL-S -16974and S labs

Tubing, S ea mless 636063616362 MIL-T-6736

Tubing, Welded MIL-S -6731

Tubing, Mecha nica l 6371

P la t e (C ommercia l QQ-S -626Quality)

S heet , S t rips QQ-S -627

Wire (Alloy) QQ-W-405

4135 B a rs QQ-S -624

P la t e, S heet , S t r ip MIL-S -18733

Tubing, S ea mless 6365 MIL-T-6735 cond N

Tubing, S ea mless MIL-T-6735

B a rs, B looms MIL-S -16974

Tubing, S ea mless 6372

Tubing

17-22-A(V) B a r , Forging, 6303

Forging Stock

4137C 0 - Alt ern at e designa t ion: U nim uch UC X2, MX - 2, Rocoloy. S pecif ica tion:Mellon XMD R-2, S heet , S t eel.

4140 B a rs, Rods, Forgings, 6882 QQ-S -624 MIL-S -5626P la t es (Commercia l QQ-S -626Grade)

Tubing 6381

B a r , B looms, B illet s MIL-S -16974

Wire (Alloy) QQ-W-405

4150 B a r QQ-S -624

B a r (For S ma ll a rms MIL-S -11595 MRWeapons Barrels)

B a r (S pecia l B a r for MIL-S -12504 MRAF B ullet C ores an dShot)

2-19

Page 30: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 30/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLO YD E S IG N FORM/C OMMOD ITY AMS FE D E RAL MILITARY

52100 B a rs, Forgings 6440 MIL-S -7420

Tubing, Mecha nica l 6441

La dish D -6-A - Alterna te design a tion, D -6-A-V - and D -6-A-C.

Nit ra lloy 135 B a r , Forging, F orging S t ock 6470 MIL-S -6709, comp AB a r

(Nit riding) a ndForg-ings

Alterna te designa tions, N itra lloy Type G , Modif ied a nd ASTM-A355-57TC 1 A

Nit ra lloy 4330 B a rs a nd Forgings S t ock MIL-E -8699(Mod)

Nit ra lloy B a rs, Forging 6412- QQ-S -6244337 6475

Tubing, S ea mless 6413

Wire (Alloy) QQ-W-405

Ingot MIL-S -20145 G r U

4340 P la t e, S heet a nd S t r ip 6359

B a r , Forging a nd 6414Tubing

B a r , Forging a nd 6415 MIL-S -5000Tubing

B a r , Reforging MIL-S -8844 C 1 1

B a r QQ-S -624

B a r , Forging a nd 6428Tubing

S t rip a nd S heet QQ-S -627

B a r , Rod, P la te MIL-E -21515and Sheet

Wire (Alloy) QQ-W-405

B a rs, B looms, B illet s MIL-S -16974

4335 (Mod) B a rs, P la tes, S heet s MIL-S -21515and Str ips

H yTuf B a r , Forging a nd 6418 MIL-S -7108Mechanica l Tubing

4615 B a rs QQ-S -624

2-20

Page 31: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 31/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLOYD E S IG N FORM/COMMOD ITY AMS FE D E RAL MILITARY

4615 Wire QQ-W-405(Continued)

B a rs, B illet s MIL-S -866

4617 B a rs MIL-S -7493

4620 B a rs QQ-S -624 MIL-S -7493

Wire QQ-W-405

4640 B a rs, B looms, B illet s MIL-S -16974

B a rs 6312 QQ-S -624

B a rs a nd Forgings 6317 QQ-S -624C B a rs

Wire (Alloy) QQ-W-405

6150 S heet , S t rip MIL-S -18731

B a rs QQ-S -624 MIL-S -8503

B a r MIL-S -46033

B a rs, Forging 6448 MIL-S -8503

Wire

Wire, S pr ing 6450 QQ-W-428 comp D

B a rs, Wire (S pring) MIL-S -16410 comp 4

Ingot s MIL-S -20145 G r Z

S heet , S t rip (S pr ings) 6455 MIL-S -18731

S prings (H ighly 7301Stressed)

S heet , S t rip QQ-S -627

Wire MIL-W-22826

8615 B a rs, Forgings, Tubing 6270 QQ-S -624 (B a r)

Wire (Alloy) QQ-W-405

B a rs, B illet s MIL-S -866

B a rs, B looms, B illet s MIL-S -16974and S labs

Ca st ings 5333(8615mod)

8617 B a rs, Forgings, Tubing 6272 QQ-S -624 (B a r)B a r s

B a rs QQ-S -624

S heet a nd S t rip QQ-S -627

2-21

Page 32: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 32/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLO YD E S IG N FORM/C OMMOD ITY AMS FE D E RAL MILITARY

8617 Wire QQ-W-405(Continued)

8620 B a rs QQ-S -624

B a rs, F orgings, Tubing 6274 MIL-S -8690

P la t es (Commercia l QQ-S -626Grade)

S heet a nd S t r ip QQ-S -627

Wire QQ-W-405

B a rs, B looms, B illet s MIL-S -16974

8630 P la t e, S heet , S t r ip MIL-S -18728(A/C Qua lit y)

Tubing MIL-T-6732

B a rs QQ-S -624

B a rs, Forgings 6280 MIL-S -6050

Tubing 6281

Tubing, S ea mless 6530 MIL-T-6732 cond N

Tubing, Welded 6550 MIL-T-6734 cond N

S heet , S t r ip 6355

B a rs, B looms, B illet s MIL-S -16974Slabs

P la t e (Commercia l QQ-S -626Grade)

Wire (Alloy) QQ-W-405

S heet , S t r ip (H ot QQ-S -627Rolled)

B a rs, Rods, Forgings MIL-S -6050

8640 B a rs QQ-S -624

B a rs, B looms, B illet s MIL-S -16974Slabs

P la t e QQ-S -626

Tubing, S ea mless MIL-T-16690

Tubing

Wire (Alloy) QQ-W-405

8735 Tubing, S ea mless 6535 MIL-T-6733 cond N

Tubing, (Mecha nica l) 6282 MIL-S -6098

2-22

Page 33: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 33/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLOYD E S IG N FORM/COMMOD ITY AMS FE D E RAL MILITARY

8735 Tubing, rods, ba rs a nd MIL-S -6098(C ont inued) forging st ock (A/C

quali ty)

S heet , S t rip a nd P la t e 6357 MIL-S -18733

B a rs, Forgings 6320 MIL-S -6098

B a rs, Rods, Forgings MIL-S -6098

8740 B a rs, Forgings 6322 MIL-S -6049 cond C

B a rs QQ-S -624

B a rs, Forgings 6325 MIL-S -60496327

P la te, S heet and S tr ip 6358

Tubing, Mecha nica l 6323

P la t e (C ommercia l) QQ-S -626

Wire (Alloy) QQ-W-405

B a rs, Rods, Forgings MIL-S -6049

9250 B a rs, a nd Reforging MIL-S -8844S t ock C1 2/3

9620 B a rs QQ-S -624

B a r MIL-S -46033

Wire, S pr ing QQ-W-474, comp E

B a rs, Wire (S pring) MIL-S -16410, comp 5

S t eel, S t r ip MIL-S -17919, C1 6

9262 Wire, S pr ing QQ-W-428

B a r MIL-S -46033

B a rs QQ-S -624

S heet a nd S t rip QQ-S -627

9310 B a rs, Forgings, 6260 QQ-S -624 (B a r)Tubings

B a r , Forgings a nd 6265

TubingWire (Alloy) QQ-W-405

9315 B a rs 6263

Type 301 Ca st ing P rec Invest 5358(30301) (S ±)

S heet , S t rip, P la t e (S T) 5515 MIL-S -5059

2-23

Page 34: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 34/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLO YD E S IG N FORM/C OMMOD ITY AMS FE D E RAL MILITARY

Type 301 S heet , S t r ip, P la te 5517 MIL-S -5059(30301) (1/4 H )(Continued)

S heet , S t r ip, P la te 5518 MIL-S -5059(1/2 H )

S heet , S t r ip, P la te 5519 MIL-S -5059(Full H)

P la t e, S heet , S t r ip QQ-S -766Shape

Wir e, (S pr in g Tem per ) 5688 QQ -W-423 com p 502

302 B a rs (CD t o 100000 5636 QQ-S -763 CL 303(30302) tensile)

B ars (C D to 125000 5637 QQ-S -763 C 1 302tensile)

B a rs, F orgings QQ-S -763, C1 1

S heet , S t r ip 5516 MIL-S -5059 comp 302

P la t e, S heet , S t r ip MIL-S -5059

P ins, Cot ter 7210 FF-P -386 Type C

Rivet s (18CR 8N:) 7228

S t eel, S t a inless, B a r MIL-S -862 C 1 302and Billets (Reforg-ing Applica tions)

B a rs, Forgings MIL-S -7720

(60302) S t eel, Ca st ings 5358

Wire, Annea led QQ-W-423

Ca st ings MIL-S -17509, C1 1

P la t e, S heet , S t r ip QQ-S -682

P la t e, S heet , S t r ip QQ-S -766

Wire MIL-W-17481

Lockw ashers, H elica l 7241 FF-W-84 C 1 C

303 B a r , Forging 5640 QQ-S -763

B a r 5738

B a r , B illet s, MIL-S -862Reforging

B a rs, Forgings MIL-S -7720

B a r , Forging 5641(Swaging)

B a r , Forging 5642

2-24

Page 35: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 35/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLOYD E S IG N FORM/COMMOD ITY AMS FE D E RAL MILITARY

304 Tubing 5566 MIL-T-6845

Tubing 5567 MIL-T-8504

Ca st ings MIL-S -867 C1 1

P la t e, S heet , S t r ip MIL-S -4043

P la t e MIL-F -20138

P la t e, S heet , S t r ip QQ-S -766

Ca st ings, P recision 5370Invest

Ca st ings, S a nd 5371

Wire 5697 QQ-W-423

B a rs, Forgings, 5647Mechanica l Tubing

B a r QQ-S -763

P la t e, S heet , S t r ip 5511 MIL-S -4043

Tubing, B a r , Forging 5639 QQ-S -763 MIL-S -7720

Wire 5697 QQ-W-423

Tubing MIL-T-5695

B a rs, Forgings QQ-S -763

Tubing, S ea mless 5560 MIL-T-8506

Tubing, Welded 5565 MIL-S -8506

314 B a r , Forging, 5652Mechanica l Tubingand Rings

S heet , S t rip, P la t e 5522

316 Ca st ing, Invest ment 5360

Ca st ing, S a nd, 5361 MIL-S -867 (C1 I I I )Centr i fugal

S heet , S t rip, P la t e 5524 QQ-S -766 MIL-S -5059 comp 316

Tubing, S ea mless 5573

B a r , Forging, Tubing 5648 QQ-S -763 MIL-S -7720 comp MCR

Wire, S creen 5698

Wire QQ-W-423

E lect rode, Coa t ed, 5691Welded

B a r , Forging (Free 5649Machining)

2-25

Page 36: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 36/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLO YD E S IG N FORM/C OMMOD ITY AMS FE D E RAL MILITARY

316 Wire QQ-W-423(Continued)

P ipe, S ea mless a nd MIL-P -1144Welded

B a r , B illet s, MIL-S -862Reforgings

321 B a r , Forgings, 5645 QQ-S -763 C1 321Tubing Mechanical

P la t e, S heet , S t r ip 5510 MIL-S -6721, comp T1

P la t e, S heet , S t r ip QQ-S -766

Tubing, S ea mless 5570 MIL-T-8606 T1, G 321

Tubing, Welded, MIL-T-8887Thin Wall

Tubing, Welded 5576 MIL-T-6737, T 321

Tubing, F lexible MIL-T-7880

Wire, S creen 5689

P ins, Cot ter 7211

Tubing, H ydra ulic 5557

Tubing, Welded MIL-T-6737

B a r , Forgings QQ-S -763

Tubing MIL-T-8606

P la t e, S heet , S t r ip QQ-S -682Tubing, H ydra ulic MIL-T-8808

Tubing, Welded, 5559Thin Wall

347 Tube MIL-T-8606

Rivet s 7229

B a rs, F orgings, 5646 QQ-S -763 C 1 347Tubing

Ca st ings MIL-S -867 C 1 I I

S heet , S t r ip 5512 MIL-S -6721 Type

CB + TA) (CB )Ca st ing, S a nd 5363

Ca st ing MIL-S -17609 C1 I I

Tubing, S ea mless 5571 MIL-T-8606, Type1, G347

Tubing, S ea mless, MIL-T-8606Welded D raw n

2-26

Page 37: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 37/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLOYD E S IG N FORM/COMMOD ITY AMS FE D E RAL MILITARY

347 Tubing, Welded 5575 MIL-T-6737, Type 347

(Continued)Tubing, F lexible MIL-T-7880

Tubing, H ydra ulic 5556

Tubing, Welded 5558

P la t e, S heet , S t r ip QQ-S -682

Tubing, Welded MIL-T-6737

B a rs, Forgings QQ-S -763

P la t e, S heet , S t r ip MIL-S -6721

Ca st ings MIL-S -17509, C1 2

Rods, Welding MIL-R-5031P la t e, S heet , S t r ip QQ-S -766

Tubes, S ea mless MIL-T-16286(Marine BoilerApplication)

Tubes, H ydra ulic MIL-T-8808

Ca st ing, sa nd a nd 5362Centr i f

410 B a rs, Forgings, 5613 QQ-S -763 C1 410(51410) Mecha nica l Tubing

B a rs, Forgings, 5612Mechanica l Tubing(FerriteControlledModified)

410-MO B a rs a nd Forgings 5614

410-MOD B a rs a nd Forgings, 5609Mechanica l Tubing

410 P la t e, S heet a nd 5504 QQ-S -766 C1 410Str ip

410 P la t e, S heet a nd 5505Strip (Ferrite Modified/

controlled)

Change 1 2 -2 7

Page 38: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 38/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLO YD E S IG N FORM/C OMMOD ITY AMS FE D E RAL MILITARY

410 Ca st ing Invest ment 5350

(60410)Ca st ing, S a nd 5351 MIL-S -16933 C 1 I

Wire QQ-W-423 comp 410

B a rs MIL-S -861

B a rs, a nd B illet s MIL-S -862(For Reforging)

(51410) Tubing, S ea mless 5591

Tubing, F lexible MIL-T-7880

414 B a rs, F orgings 5615 QQ-S -763 C1 414

B a rs MIL-S -862

416 B a rs 5610 QQ-S -763 C 1 416 S e(51416F) (B a r)

B a rs a nd F orgings 5610

Bars and Bil le ts(Reforging) MIL-S -862 C 1 6

420 B a rs a nd B illet s (For MIL-S -862 C 1 5Reforging)

B a rs a nd F orgings 5620(Free Mach)

(51420) B a rs a nd F orgings 5621

B a rs 5621 QQ-S -763 C 1 420

P la t e, S heet a nd 5506 QQ-S -766 C1 420Str ip

Wire QQ-W-423

431 B a rs a nd B illet s (For MIL-S -862Reforging)

B a rs, B illet s, MIL-S -18732Forgings, Tubing

Ca st ings, S a nd 5372

B a rs, F orgings 5682 QQ-S -763, C1 431

431 MOD Ca st ings, P recision 5353Investment

440 C B a rs a nd F orgings 5630 QQ-S -763, C1 440C

440 A B a rs a nd F orgings 5631 QQ-S -763, C1 440A

2-28

Page 39: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 39/288

T.O. 1-1A-9

Tabl e 2-2. Specification Cross Reference 

COMP /ALLOYD E S IG N FORM/COMMOD ITY AMS FE D E RAL MILITARY

440 F B a rs a nd Forgings 5632 QQ-S -763, C1 440F

14-4P H Ca st ings, Invest ment 5340

15-7 MO B a r a nd Forging 5657

P la t e, S heet a nd 5520Str ip

17-4 P H B a r 5643

C ast ings - I nvest ment 5342(Heat Treated 130,000P S I )

C ast ings - I nvest ment 5343

(Heat Treated 150,000P S I )

C ast ings - I nvest ment 5344(Heat Treated)

E lect rode - Welding 5827

C ast ings - I nvest ment 5355

17-7 P H P la t e, S heet a nd S t r ip 5528 MIL-S -25043

S heet and S trip (P re- 5530cipitat ion Hardening)

B a r a nd Forgings 5644

Tubing, Welded 5568

19-9D L Ca st ing S a nd (S olut ion 5369Treated)

P la te, S heet and S tr ip 5526

P la te, S heet and S tr ip 5527(125000TS, Hot rolled,Stress Relieved)

B a rs (U p t o 1.5 inch) 5720

B a rs (U p t o 1 inch) 5721

B a rs a nd Forgings 5722

19-9D X B a rs, Forgings a nd 5723Rings

B a rs (U p t o 1 inch) 5724

B a rs (U p t o 1.5 inch) 5729

P la te, S heet and S tr ip 5538

Change 1 2 -2 9

Page 40: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 40/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLO YD E S IG N FORM/C OMMOD ITY AMS FE D E RAL MILITARY

19-9D X P la t e, S heet a nd S t r ip, 5539(C ont inued) (H ot rolled and St ress

Relieved 125,000TS)

B a rs, F orgings a nd 5723Rings

B a rs (U p t o 1 inch) 5724

B a rs (U p t o 1.5 inch) 5729

19-9 MOD E lect rode, Welding, MIL-E -13080Covered (Armorapplications)

AM350 B a r 5745

S heet a nd S t r ip 5540(Cold rolled)

S heet a nd S t r ip 5548 MIL-S -8840(High TempAnnealed)

B a r a nd F orgings 5745

Tubing, S ea mless 5554

Wire, Welding 5774

E lect rode, Coa ted 5775Wire

AM355 B a r 5743

C ast ings, Investment 5368

S heet a nd S t r ip 5547 MIL-S -8840

P la t e (S olut ion 5549Hea t Treated)

P la te (E qua lized a nd 5594Over-Tempered)

E lect rode, Coa ted 5781Welding

A286 B a rs, Forgings, 5734Mechanica l Tubing

B a rs, F orgings, 5735Mechanical Tubing andRings

2 -3 0 Change 1

Page 41: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 41/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLOYD E S IG N FORM/COMMOD ITY AMS FE D E RAL MILITARY

A286 B a rs, Forgings, 5736(C ont inued) Mecha nica l Tubing a nd

Rings (Sol Treat ed)

B a rs a nd F or gin gs a nd 5737Mechanica l Tubing(Annealedan d P recip Treated)

Rivet s , S t eel (An n ea led 72351650oF and par t ia l lyprecip treated)

Rene 41 B a rs a nd Forgings 5712(Solution Treated

B a rs a nd Forgings 5713

(Solution andPrecip Treated)

P la te S heet a nd S tr ip 5545(Solution HeatTreated)

G reek Ca st ings, Invest ment 5354Ascoloy

P la te, S heet and S tr ip 5508

B a rs, Forgings, 5616Mechanica l Tubingand Rings

Inconel 600 Wire, Annea led 5687 QQ-W-390

P la t e, S heet a nd S t r ip 5540 MIL-N-6840

B a rs, Forgings a nd 5665 MIL-N-6710Rings

Tubing, S ea mless 5580 MIL-T-7840

42 Inconel S heet a nd S t rip 5542 MIL-N-7786Alloy X750

Change 1 2 -3 1

Page 42: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 42/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLO YD E S IG N FORM/C OMMOD ITY AMS FE D E RAL MILITARY

42 Inconel B a rs a nd F orgings 5667Alloy X750(Continued)

B a rs a nd F orgings 5668 MIL-N-8550 Cond E

Inconel X750 Wire, No 1 Temper 5698 J AN-W-562, C1 1

Wire, S pr ing Temper 5699 J AN-W-562, C1 2

H a st elloy C Ca st ings, P rec 5388Invest

Ca st ing, S a nd 5389

S heet 5530 MIL-N-18088

B a r , Forgings 5750

H a st elloy W B a rs a nd Forgings 5755

Wire 5786 MIL-R-5031, C1 12

H a st elloy X Ca st ings, Alloy P rec 5390Invest

S heet 5536

B a r a nd F orgings 5754

Wire 5798

H NM B a rs, B illet , F orging, MIL-S -17759Wire

WAS P Alloy NONE NONE NONE

MIS C STANDARD S/SP EC IF IC ATIONS - METALPRODUCTS

St eel: Ch emical Composit ion an dH a rdena bilit y Fed S t d 66

Met a l Test Methods Fed S t d 151

Surface P ass iva t ion

Corrosion Resist a nt S t eel P a r t s QQP -35 MIL-S TD -753

2 -3 2 Change 1

Page 43: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 43/288

T.O. 1-1A-9

Tabl e 2-2. Specif icati on Cr oss Reference - Cont in ued 

COMP /ALLOYD E S IG N FORM/COMMOD ITY AMS FE D E RAL MILITARY

X-Ra y S ta nda rds for Welding

Electrode Qualification and Quality

Conforma nce Test Welds MIL-S TD -775

Ident if ica t ion of P ipe, H ose a nd Tube Lines MIL-S TD -1247for Aircraft, Missile Space Vehicles andAssociat ed Support Eq uipment an d F acilit ies

P repa ra t ion of Test Report s MIL-S TD -831

Ma rking of Aircra f t a nd Missile P ropulsion MIL-S TD -841System P ar ts , Fa br ica ted From Crit ica lHigh Temp Alloys

P rocedures for D et ermining MIL-S TD -1233P ar ticle Size, Distributionand Packed Density ofP owdered Mater ia ls

Alloy D esigna t ion S yst em for MIL-S TD -455Wrought Copper and CopperAlloys

Inspect ion Ra diogra phic MIL-S TD -453

Mecha nica l Test s for Weld MIL-S TD -418J oin t s

Qua lif ica t ion of Inspect ion MIL-S TD -410Personal Magnetic Particle

Alloy , Nomencla t ure a nd MIL-S TD -409Temper D esigna tion forMagnesium B ase Alloys

Tolera nces for C opper a nd FE D-S TD -146Copper Base Alloy MillProducts

Cont inuous Ident if ica tion FE D-S TD -183Marking of Iron and Steel

Ident if ica tion Ma rking of FE D-S TD -184Aluminum Magnesium andTitanium

Cont inuous Ident if ica tion FE D-S TD -185Marking of Copper and CopperBase Alloy Mill Products

Change 1 2 -3 3

Page 44: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 44/288

T.O. 1-1A-9

Table 2-2.  Specification Cross Reference - Continued

COMP/ALLOY DESIGN FORM/COMMODITY AMS FEDERAL MILITARY  

Identification of Pressed Bonds, FED-STD-187

Forms, Seams and Joints SheetMetal

Tolerance for Aluminum Alloy FED-STD-245and Magnesium Alloy WroughtProducts

Heat Treatment of Steels SAE-AMS-H-6875(Aircraft Practice) Process for

Steel Mill Products Preparation MIL-STD-163for Shipment and Storage

Tolerances for Steel and Iron FED-STD-48Wrought Products

2-34 Change 4

Page 45: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 45/288

T.O. 1-1A-9

2-74. GENERAL HEAT TREATING TEMPERATURES, Norma lize: 1700oF, air cool.COMPOSITION (CHEMICAL) AND CHARACTERISTICS Anneal: 1600oF, fu rna ce cool.OF VARIOUS STEEL AND STEEL ALLOYS. Carburize: 1600oF, quench in w at er, oil , or brine.

CARBO-NITRIDING See supplement data for chemical symbols.

1010. Low Ca rbon steel of this gra de is used for

Ha r d -ma nufacture of such a rt icles as safety w ire, cer- Temp Time Ca se D ept h ness C ool D ra w  tain nuts, cable bushings and threaded rod ends,an d other items w here cold formability is the pri-

1560 2.5 0.019 62 OQ 350ma ry requisite. Hea t treatment is frequently1650 2.5 0.018 59 OQ 350employed to improve ma china bility. Welding is

easily accomplished by all common welding For 1560F, use 35NH 3d 25CH 4 generator gas*.methods. For 1650 use 38NH 3 & 24CH 4

COMPOSITION RANGE *Gas - American Gas Assoc Class 302.

C% Mn% P % S % Fe% 1022. Low Ca rbon. This steel is simila r in con-0.08-0.13 0.3-0.6 0-0.04 0-0.5 B a la nce tent and heat treatment requirements to 1020.

Typical applications are case hardened rollerFORMS. See Specification Ta ble 2-2. chains, bearing races, cam shafts , etc.

HEAT TREATMENT COMPOSITION RANGE

C% Mn% S i% P % S % Fe%Norma lize: 1650o-1750oF, cool in still air.0.18-0.23 0.7-0.10 0-0.2 0-.04 0-.05 B a la nceAnneal: 1650oF.

Ha rden: 1650o-1750oF, Quench in oil (minimumFORM-SP EC IFI CATION. See Specifica tion Ta ble

ha rdness) Wat er, and B rine (ma ximum ha rdness).2-2.

1015. Low Car bon. This ma teria l is simila r in HEAT TREATMENTcontent a nd chara cteristics to 1010. Of low tensile

Norma lize: 1700oF, air cool.value, it should not be selected where strength isAnneal: 1600oF, fu rna ce cool.required.Carburize: 1550oF to 1650oF, w ater quench.

COMPOSITION RANGE Tensile: 130,000 psi.Yield: 78,000 psi.

C% Mn% P % S % Fe%

0.13-18 0.3-0.6 0-0.04 0-0.05 B a la nce 1025. L ow C arbon. Typica l a pplica tions a re bolt s,ma chinery, electrical equipment, a utomotive part s ,FORMS. See Specification Ta ble 2-2. pipe f lan ges, etc. With th is steel no ma rtensit e is

formed a nd tempering is not required. This mat e-HEAT TREATMENT

rial is not generally considered a carburizing type;however, it is sometimes used in this manner forNorma lize: 1650o-1750oFlarger sections, or w here greater case ha rdness isAnneal: 1600o-1650oFneeded.Ha rden: 1650o-1700oF

Quench w ith w at er, oil , brine. COMPOSITION RANGE

1020. Low Ca rbon. B ecause of the carbon range C% Mn% P % S % Fe%this meta l ha s increased s t rength a nd ha rdness 0.22-0.28 0.3-0.6 0-0.04 0-0.05 B ala ncebut r educed cold formability compared w ith t he

FORM-SP EC IFI CATION. See S pecif ica tion Tablelowest carbon group. It f inds wide application2-2.

where carburizing is required. It is suitable forwelding and brazing. HEAT TREATMENT

COMPOSITION RANGE Norma lize: 1600o-1700oF, fu rna ce cool.Hardening: 1575o-1650oF, w ater quench.

C% Mn% P % S % Fe% Carburize: 1650o-1700oF, w at er or brine quench.8-0.23 0.3-0.6 0-0.04 0-0.05 B a la nce Temperin g: 250o-400oF is optional.

Tensile strength: hot rolled 67000, cold rolledFORMS-SP EC IFI CATIONS. See specif icat ions80000.Ta ble 2-2.Yield strength: hot rolled 45000, cold rolled 68000.

H E AT TRE ATME NT This steel is rea dily w elded by common w elding

2-35

Page 46: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 46/288

T.O. 1-1A-9

met hods. S t ress relief a nnea l 900o-1150oF, a ir cool, 30 min-Temper: 1150oF for 70,000 psi. ut es t o 6 hours. Typica l room t empera t ures: t ensile

76,500, yield 53,000. For a rc weldin g, use low COR TEN L ow Ca rbon, Low Alloy. This steel is hydrogen electrodes E6015 (thin gauges) andnot heat treatable, but in the annealed or normal- E7015. For heliarc welding use dra wn f iller wireized condition it is stronger than plain carbon of MIL -R-5032. P erform spot w elding by pulsat ionsteel, is easily formed, welded an d ma chined. In method for heavier gauges; use post heat cycle foraddition, this alloy is 4-6 times more resistant to lighter gauges.atmospheric corrosion than plain carbon steel.

1035. Medium Ca rbon. This steel is selectedCOMPOSITION RANGE

where higher mechanical properties are neededsince it may be further hardened and strenghtenedC% Cr% Cu% Mn% Ni%by heat t reat ment or by cold w ork. Typical appli-0-0.12 0.30-1.25 0.25-0.055 0.2-0.5 0-0.65cations are gears, clutch pedals, f lywheel rings,

S i% P % S % Fe% crank shafts , tools and springs.0.25-0.75 0.07-0.15 0-0.05 B a la nce

COMPOSITION RANGEHEAT TREATMENT

C% Q Mn% P % S % F e%Norma lize: 1650oF, air cool.

0.32-0.38 0.6-0.9 0-0.04 0-0.05 B ala nceAnneal: 1550oF, furnace cool.

FORM-SP EC IFI CATION. See Specifica tion Table

St ress relief 1150

o

F, 1 hour per inch of maximum 2-2.section thickness. This alloy ca nnot be ha rdened.Tensile strength, annealed or normalized 67,000 HEAT TREATMENTpsi. Yield strength, annealed or normalized 47,000psi. This alloy is readily welded by the usual gas Norma lize: 1575o-1650oF, cool in still air.an d a rc methods with complete freedom from a ir Anneal: 1575o-1650oF, 1 hour per 1″  of section,ha rden ing. ASTM A233 or E 60 electrodes ar e rec- (P reheat ) Temper a t 900oF for 100,000 psi.ommended for shielded arc welding. For gas weld- Spheroidize: 1250o-1375oF.ing, high strength welding rods such as ASTM Ha rden: 1525o-1600oF, quench in wa ter or oil.A251, CA-25, are recommended. This steel may be (Brine or caustic may also be used for quenching.)resistance welded to itself or other resistance

Weldability is very good by all common weldingweldable ferrous a lloys, using t he sam e methodsmeth ods. Cold forma bility is poor, but hotapplied to plain carbon steel.forma bility is excellent. Tensile str ength , hot

NAXAC9115 Low C ar bon, Low Alloy. This ma te- rolled 85,000 psi, cold rolled 92,000 psi, yieldrial is usually in the stress relieved condition. strength, hot rolled 54,000 psi, cold rolled 79,000Moderate strength is maintained with high tough- psi, Brinill 183-201, respectively.ness up to approximately 800oF. Weldabilit y is

1040. Medium Ca rbon is selected where interme-excellent an d it ma chines better th an carbon steelsdiat e mecha nical properties are needed and ma yof the same t ensile strengths.be further hardened and strengthened by heat

COMPOSITION RANGE trea tment or cold work.

C% Cr% Cu% Mn% COMPOSITION RANGE0.1-0.17 0.5-0.75 0-0.35 0.5-0.8

C % Mn% S i% P % S % Fe%Mo% Ni% S i% Zn%

0.37-0.44 0.6-0.9 0-0.2 0-0.04 0-0.05 B a la nce0.15-0.25 0-0.25 0.6-0.9 0.05-0.15

FORM-SP EC IFI CATION. See Specificat ion Ta ble-P % S % Fe%

2-2.

0-0.04 0-0.04 B a la nceHEAT TREATMENTSPECIFICATIONS

Norma lize: 1575o-1650oF, air cool.AMS FORMAnneal: 1550o-1625oF, furnace cool. (Tensile

6354 S heet , st r ip, pla te. 79,000 psi, yield 48,000 psi annealed).6440 Wire. Ha rden: 1500o-1575oF, w at er or oil quench.

Temper: 1100o-1150oF, t o obta in t ensile 100,000HEAT TREATMENTpsi, yield 80,000 psi. For tensile 125,000 and yield

Anneal: 1625o-1650oF, furna ce cool. 85,000 psi t emper a t 700oF. Suitable heat t rea t-Norma lize: 1650o-1675oF , a ir cool. ment is required t o permit ma chining.

2-36

Page 47: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 47/288

T.O. 1-1A-9

1045. Medium Carbon . Forg ings such as connect - FORMS-SP ECIFICATIONS. See Speci f ica t ioning rods, steering arms, axles, axle shafts and Ta ble 2-2.tra ctor wheels ar e fabricat ed from this steel. Not

HEAT TREATMENTrecommended for welding.

Norma lize: 1550o-1650oF, air cool.COMPOSITION RANGEAnneal: 1550o-1575oF.

Harden: 1450

o

-1550

o

F, w at er or oil quench.C% Mn% P % S % Fe% Temper: 1250oF for 100,000 psi tensile, 1050oF for0.43-0.5 0.6-0.9 0-0.04 0-0.04 B a la nce125,000 tens ile, 600oF for 150,000 tensile.

FORMS-SP EC IFI CATION. See Specificat ion1060. High Ca rbon. See 1055 for a pplica tion a ndTa ble 2-2.characterist ics

HEAT TREATMENTCOMPOSITION RANGE

Norma lize: 1575o-1675oF, air cool.C% Mn% P % S % Fe%Anneal: 1550o-1600oF, furnace cool for maximum0.55-0.65 0.6-0.09 0-0.04 0-0.05 B a la ncesoftness.

Ha rden: 1475o-1550oF, quench, wa ter or oil. FORM-SP EC IFI CATION. See Specificat ion TableTemper: 1100oF for tensile 100,000 psi, yield 2-2.65,000 psi.

HEAT TREATMENTTemper: 1000oF for tensile 125,000 psi, yield

95,000 psi. Norma lize: 1525o-1625oF, air cool.Anneal: 1500o-1575oF (Tensile 104,000 psi, yield1050. Medium Ca rbon. This is a medium ca rbon54,000 psi annealed).type steel with high m echa nical properties whichHarden: 1450o-1550oF, w at er or oil quench.may be further hardened and strengthened byTemper: 1125oF for 130,000 tensile, 80,000 yield.hea t trea tm ent or by cold w ork. Applica tion isTemper: 1025oF for 139,000 tensile, 96,000 yield.simila r to 1045. Not recommended for welding.Temper: 925oF for 149,000 tensile, 99,000 yield.

COMPOSITION RANGE1070. High Ca rbon. See 1055 for a pplica tion a nd

C% Mn% P % S % Fe% chara cterist ics. In a ddit ion this alloy is used for0.46-0.55 0.6-0.9 0-0.04 0-0.05 B ala nce f lat springs and w ire form as coil springs.

FORMS-SP EC IFI CATION. See Specificat ion COMPOSITION RANGETa ble 2-2.

C% Mn% P % S % Fe%H E AT TRE ATME NT 0.65-0.75 0.6-0.9 0-0.04 0-0.05 B a la nce

FORM-SP EC IFI CATION. See Specificat ion TableNorma lize: 1550o-1650oF, air cool.2-2.Anneal: 1450o-1525oF, furn a ce cool (Tensile 90,000

yield 50,000 ann ealed.)HEAT TREATMENT

Ha rden: 1475o-1550oF, oil or w at er quench.Temper: 1250oF for 100,000 psi tensile, 75,000 for Norma lize: 1525o-1625oF, air cool, retard coolingyield. rate to prevent hardness.Temper: 1025oF for 125,000 psi tensile, 90,000 for Anneal: 1500o-1575oF, furna ce cool.yield. Harden: 1450o-1550oF, w at er or oil quenchTemper: 700oF for 150,000 psi tensile, 114,000 for (Preheat).yield. Hot Working Temperature: 1550o-1650oF .

Temper: 1250oF for 100,000 psi tensile.1055. High C a rbon. St eels of this type (1060,

Temper: 1100

o

F for 125,000 psi tensile.1070, 1080 are in same category) have similiar Temper: 1000oF for 150,000 psi tensile.characterist ics and are primarily used wherehigher carbon is needed t o improve wea r cha rac- The high carbon content of this steel causes diffi-terist ics for cutt ing edges, as well as for ma nufac- culties in arc or ga s welding processes. Weldingtur e of springs, etc. Not recommend ed for by the thermit process is sat isfactory. Hot formal-welding. ity is very good at 1550o-1650oF.

COMPOSITION RANGE 1080. High Ca rbon. See 1055 for a pplica tions a ndcharacterist ics.

C% Mn% P % S % Fe%0.50-0.60 0.6-0.9 0-0.04 0-0.05 B a la nce COMP OS ITION RANG E

2-37

Page 48: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 48/288

T.O. 1-1A-9

C% Mn% P % S % Fe% screw s, but not for pa r t s subject ed t o severe0.75-0.88 0.6-0.9 0-0.04 0-0.05 B a la nce st resses a nd shock.

FORM-SP EC IFI CATION. See Specification Table COMPOSITION RANGE2-2.

C% Mn% P % S % Fe%H E AT TRE ATME NT 0-0.13 ma x 0.7-0.9 0.07-0.12 0.16-0.23 B a la nce

Norma lize: 1550o-1650oF, a ir cool. FORM-S P E CIF ICATION. S ee S pecif ica t ion TableAnneal: 1475o-1525oF (Tensile 120,000, yield 2-2.66,000 psi annealed).

HEAT TREATMENTHa rden: 1450o-1550oF, quench oil.Temper: 1200oF for 129,000 tensile, 87,000 yield. May be surface hardened by heating in cyanide atTemper: 1100oF for 145,000 tensile, 103,000 yield. 1500o-1650oF, follow ed by sin gle or double quenchTemper: 900oF for 178,000 tensile, 129,000 yield. and draw . P reheat a nd soak a t 1500oF to 1650oF

an d quench in oil or wa ter; tempering is optional.1095. H igh Ca rbon. See 1055 for a pplica tions. Inadd it ion th ese steels ar e used for f lat spring appli- Tensile strengt h h ot rolled ba rs 65,000.cations and in wire form as coil springs.

Tensile strengt h cold dra wn 83,000.COMPOSITION RANGE

1117. Ca rbon (Free Cut ting Steel). This ma teria lC% Mn% P % S % Fe% is used where a combination of good machinability0.9-1.03 0.3-0.5 0-0.04 0-0.05 B a la nce an d uniform response to heat treat ment is needed.

It is suited for fabrication of small parts which areFORM-SP EC IFI CATION. See Specificat ion Tableto be cyanided or carbonitrided and may be oil2-2.quenched a f ter case hardening heat t rea t ing.

HEAT TREATMENTCOMPOSITION RANGE

OIL QUENCHC% Mn% P % S % Fe%

Norma lize: 1550o-1650oF, a ir cool. 0.41-0.2 1.0-1.3 0-0.04 0.08-0.13 B a la nceAnneal: 1425o-1475oF (Tensile 98,000 psi, yield

FORM-SP EC IFI CATION. See Specificat ion Table52,000 psi an nea led) furn a ce cool. To redu ce2-2.annealing time, furnace cool to 900oF a nd a ir cool.

Speroidize for m aximum sof tness w hen required. HEAT TREATMENTHa rden: 1425o-1550oF (oil quench).

Norma lize: 1650oF, air cool.Temper: 1100

o

F for 146,000 psi tensile, 88,000 Anneal: 1575oF, fur na ce cool (Tensile 68,000 psiyield.annealed)Temper: 800oF for 176,000 psi tensile, 113,000Harden: 1450oF, quench in w at eryield.

Temper: 600oF for 184,000 psi tensile, 113,000 SINGLE QUENCH AND TEMPE Ryield.

Carburized 1700oF for 8 hours.WATER QUENCH P ot Cool

Reheat to 1450oF.Norma lize: 1550o-1650oF, air cool.Quench in water.Anneal: 1425o-1475oF.Temper at 350oFHa rden: 1425o-1500oF, quench with w at er .Case depth 0.045.Temper: 1100oF for 143,000 psi tensile, 96,000Case hardness 65 RC.yield.

Temper: 800oF for 200,000 psi tensile, 138,000 1137. Ca rbon, Free Cut ting . This steel isyield. intended for t hose uses w here easy ma chining isTemper: 600oF for 213,000 psi tensile, 150,000 the prima ry requirement. It is cha racterized by ayield. higher sulphur content tha n compara ble car bon

steels, which result in some sacrifice of cold form-1112. Free Cutt ing. This steel is used as theing properties, weldability and forgingstandard for rat ing the machinability of othercharacterist ics.steels . It is easy to ma chine an d result ing surface

f inish is excellent . It ha s good brazing chara cter- COMPOSITION RANGEistics but is difficult to weld except with the low hydrogen elect rode E 6015 (AWS ). This a nd simi- C% Mn% P % S % Fe%la r g r a des a r e w idely u sed f or pa r t s f or b ol t s, n u ts , 0. 32-0. 39 1. 35-1. 65 0-0. 04 0. 08-0. 13 B a l a n ce

2-38

Page 49: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 49/288

T.O. 1-1A-9

FORM-SP EC IFI CATION. See Specificat ion Table 2330. Nickel Alloy. This is a hea t trea ta ble steel2-2. which develops high strength an d t oughness in

moderate sections. I t is used in h ighly stressedHEAT TREATMENT bolts, nuts, studs, turnbuckles, etc.

Norma lize: 1600o-1700oF, air cool.COMPOSITION RANGE

Anneal: 1400o-1500oF, fu rna ce cool.

Ha rden 1525

o

-1575

o

, oil or water quench. C% Mn% P % S % S i%0.28-0.33 0.6-0.8 0-0.04 0-0.04 0.2-0.35TYPICAL STRENGTH OF OIL QUENCHED

Ni% Fe%Temper: 1100oF for tensile 100,000 psi, yield3.25-0.75 B a l a n ce80,000 psi.

Temper: 825oF for tensile 125,000 psi, yield FORM-SP EC IFI CATION. See Specificat ion Table100,000 psi. 2-2.

TYPI CAL STRENG TH OF WATER QUE NCH ED HEAT TREATMENT

Temper: 1100oF for tensile 105,000 psi, yield Norma lize: 1600oF, preheat, cool in air.90,000 psi. Anneal: 1425o-1600oF, furna ce cool.Temper: 975oF for tensile 125,000 psi, yield Harden: 1400o-1500oF.100,000 psi. Quench with oil.Tensile strength: 85,000 psi, yield 50,000 psi in Temper: 1200oF-1250oF for tensile 100,000 psi,annealed condition. yield 90,000 psi.

Temper: 900oF for tensile 140,000 psi.2317. Nickel Alloy. These specif icat ions coverTemper: 700oF for 178,000 psi.steel castings for valves, f langes, fit t ings and

other pressure containing parts intended princi- WATE R QU EN CHpally for low temperature pa rts .

700oF - 190,000 psiCOMPOSITION RANGE

900oF - 150,000 psi1100oF - 124,000 psiC% Mn% P % S % S i% Ni% Fe%

15-0.2 0.4-0.6 0. 04 0. 04 0.2-0.35 3. 25 B a l a n ce2340. Nickel Alloy. This meta l is simila r to 2330,but has great er strength. It is an oil ha rdeningFORM-SP EC IFI CATION. See Specification Tablesteel.2-2.

HEAT TREATMENT COMPOSITION RANGE

Norma lize: 1600o-1700oF, air cool C% Mn% P % S % S i%Anneal: 1500o-1550oF 0.38-0.43 0.7-0.9 0-0.04 0-0.04 0.2-0.35Ha rden: 1375o-1525oF

Ni%Carburize: 1650o-1700oF, reheat to 1450oF t o3.25-3.751550oF, temper at 250o-300oF.

FORM-SP EC IFI CATION. See Specificat ion TableWATER QUENCH2-2.

Temper: 1100oF for tensile 100,000 psi, yield psiHEAT TREATMENT83,000.

Temper: 875oF for tensile 125,000 psi, yield psiNorma lize: 1600o-1700oF.

100,000.Anneal: 1450o-1600oF.

Temper: 750oF for tensile 150,000 psi, yield psiHarden: 1400o-1550oF, quench in oil.

124,000.Temper: 1100oF for 125,000 psi tensile, 105,000psi yield.OIL QUENCHTemper: 900oF for 150,000 psi tensile, 132,000 psi

Temper: 1025oF for tensile 100,000 psi, yield psi yield.83,000. Temper: 800oF for 182,000 psi tensile, 164,000 psiTemper: 850oF for tensile 125,000 psi, yield psi yield.88,000.

2515. Nickel Alloy. This steel is qu ite simila r toTemper: 650oF for tensile 150,000 psi, yield psiSAE 2512 and 2517, both in composition a nd108,000.response to heat t reatm ent.

This steel may be welded by common weldingprocedures. COMP OS ITION RANG E

2-39

Page 50: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 50/288

T.O. 1-1A-9

C% Mn% P % S % S i% 3140. Nickel C hrome Alloy . This is a medium0.12-0.17 0.4-0.6 0-0.04 0-0.04 0.2-0.35 deep ha rdening st eel ca pa ble of developing good

strength an d t oughness when oil quenched.Ni% Fe%

COMPOSITION RANGE4.75-5.25 B ala nce

C% Mn% P % S % S i%FORM-SP EC IFI CATION. See Specificat ion Table0. 37-0. 45 0. 6-0. 95 0-0.04 0-0.04 0.2-0.35

2-2.Ni% Cr% Fe%

HEAT TREATMENT1.0-1.5 0.5-0.8 B a la n ce

Norma lize: 1650o-1750oF FORM-SP EC IFI CATION. See Specificat ion TableAnneal: 1500oF 2-2.Quench: 1425o-1525oF, oil quench.

HEAT TREATMENTTemper: 1200oF for tensile 104,000, yield 80,000psi. Norma lize: 1550o-1700oFTemper: 900oF for tensile 125,000, yield 106,000 Anneal: 1475o-1550oF (Tensile 94,000 psi, yieldpsi. 66,000 psi annealed).Temper: 700oF for tensile 152,000, yield 125,000 Ha rden: 1475o-1550oF, oil quench.psi. Temper: 1200oF for tensile 125,000 psi, yield

105,000 psi.WATER QUENCH

Temper: 1000o

for Tensile 14,000 psi, yield 125,000psi.Temper: 1100oF for 116,000 psi.Temper: 800oF for Tensile 184,000 psi, yieldTemper: 900oF for 138,000 psi.178,000 psi.Temper: 700oF for 165,000 psi.Temper: 700oF for Tensile 200,000 psi.

3115. St eel Nickel Ch romiu m Alloy.3310. Nickel - Ch romiu m Alloy. This steel ha sexeceptiona lly high ha rdenability a nd is w ellCOMPOSITION RANGEsuited for heavy parts which must have high, sur-

C% Mn% P % S % face hardn ess combined with high a nd uniform0.11-0.2 0.37-0.63 0-0.048 0-0.058 properties when heat t reat ed. It is commonly used

in case hardened gears, pinions, etc. It is similarS i% Ni% Cr% Fe%

to Krupp Nickel Chromium except it contains0.18-0.37 1.05-1.45 0.52-0.78 B a la nce

more nickel.

FORM-SP EC IFI CATION. See Specificat ion Table COMPOSITION RANGE2-2.C% Mn% S i% Ni%

HEAT TREATMENT 0.08-0.13 0.45-0.6 0.2-0.35 3.25-3.75

Cr% P % S % Fe%Norma lize: 1625o-1725oF1.4-1.75 0-0.025 0-0.25 B a la nceAnneal: 1550o-1600oF

Ha rden: 1425o-1525oF, w ith oil.FORM-SP EC IFI CATION. See Specificat ion Table

Temper: 300oF for tensile, 125,000 psi, yield2-2.

86,000 psi.HEAT TREATMENT

CORE D RAW TE NS ILE YIE LDNorma lize: 1600o-1700oF, air cool.P ROP E RTIE S TE MP K S I KS IAnneal: 1475o-1575oF, furnace cool to 700oF, a ir

3115 300oF 125 88 cool.

B ox cooled Quench: 1500o

F-1550o

F, 0il, Cool Slowly1425oF Carburize: 1700oF, for 8 hours, reheat to 1500oF,3120 300oF 155 115 oil quench, t emper 300oF, for tensile 170,000 psi,3115 300oF 125 86 yield 142,000 ty pica l for 1/2″  diameter rod.

ReheatedP SI . Ef fective case depth 0.05″ .1475oF

3120 300oF 155 1154037. Molyden um Alloy. This steel is used for

3115 300oF 125 86such parts as gears, shafts , leaf and coil springs

Oil Quen-and hand tools.

ched 1525oF3120 300oF 155 110 C OMP OS ITION RANG E

2-40

Page 51: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 51/288

T.O. 1-1A-9

C% Mn% P % S % S i% Temper : 1100oF for 125,000 tensile psi.0.35-0.4 0.7-0.9 0-0.04 0-0.04 0.2-0.35 Temper: 1050oF for 150,000 tensile psi.

Temper: 850oF for 180,000 tensile psi.Mo% Fe%0.2-0.3 B ala nce 17-22A(V). Structural (Ultra High Strength) Low 

Alloy. This is a high strength, hea t resistan t steelFORM-SP EC IFI CATION. See Specification Table

with a 1000 hour rupture strength of 1100oF

2-2. (30,000 psi tensile strengt h). It is used in tu rbinerotors, and for components of guided missiles, inHEAT TREATMENTwhich high temperatures a re encountered for short

Anneal: 1500o-1600oF, fu rna ce cool. periods.Norma lize: 1600oF, cool in air.Ha rden: 1550oF, quench in oil. C OMP OS ITION RANG ETemper: 1225oF for 100,000 psi.

C% C r% Ce% Mn% Mo%Temper: 1100oF for 125,000 psi.0.25-0.3 1.0-1.5 0-0.5 0.6-0.9 0.4-0.6Temper: 975oF for 150,000 psi.

Ni% S i% V% P % S %4130. Ch romiu m - Molyden um Alloy. Typica l0-0. 5 0. 55-0. 75 0. 75-0. 95 0-0.04 0-0.04usages for this material is in the manufacture ofFe%gear shafts axles, machine tool parts , etc.Ba lance

COMPOSITION RANGE

FORM-SPECIFICATION. AMS6303 Bar, forging,C% Mn% P % S % S i% forging st ock.0. 26-0. 35 0. 3-0. 75 0-0.04 0-0. 05 0.15-0.35

HEAT TREATMENTCr% Mo% Ni% F e%

Norma lize: 1700o-1850oF, hold for 1 hour per inch0.75-1.2 0.08-0.25 0-0.25 B a la nceof thickness, air cool. Larger sections may be fan-

FORM-SP EC IFI CATION. See Specification Table cooled in order to a ccelera te cooling. All sections2-2. should be so placed as to provide access of air to

all surfa ces.HEAT TREATMENT

Anneal: 1450oF, hold at this temperat ure 1 hourHarden (austenitize): 1550o-1600oF, water quench,for ea ch inch of section thickness. Cool down 20oFfor oil quench 1575o-1625oF.per hour to 1100oF, then air cool.Austenitize Castings:1600o-1650oF,1 hour, oil

quench.Oil Quenching requires prior heating to 1750oF,

Spherodize: 1400o-1425oF, 6-12 hours, furnace cool. for each inch of thickness. Annealed bar s, 1 inchTemper: 1150oF for tensile 132,000, yield 122,000.

diameter have tensile strength 87,000 yieldTemper: 1025oF for tensile 151,000, yield 141,000.

strength, 67,800. P an cake forgings normalized atTemper: 950oF for tensile 163,000, yield 159,000.

1800oF + tempering at 1225oF, 6 hours have ten-SAE S teels: 8630 and 8730 have similar chara cter-

sile str ength 142,000, yield streng th 126,500,istics.

ha rdness B H N 311-321. This alloy ma y be weldedAnnealed: 1525o-1585oF (tensile 80,000 psi, yield

by any of the commercial methods in use. A weld-57,000 psi annealed), furnace cool.

ing rod corresponding to 17-22A(S) is available.Normalize: (cast) 1900oF, 1 hour, A.C. Ha rdening:

When pre-heating is required depending upon size1550o-1650oF, quench in oil.

of section and type of welding procedure, a temper-Norma lize: (w rought) 1600o-1700oF, air cool.

ature of 600oF is genera lly used. P ost heating orstress r elief is recommended.4135. Ch romium Molydenum Alloy.

4137CO. This ultra -high strengt h steel ha s yieldCOMPOSITION RANGE

str engt h in th e 230,000-240,000 psi ra nge. ItC% Mn% S i% Cr% forms a nd welds readily. It w as developed for use0.32-0.39 0.6-0.95 0.2-0.35 0.8-1.15 in high performances solid rocket motor cases.

Alternat e designat ions a re Un imach VC X 2, MX-Mo% P % S % F e%2, a nd Rocoloy. Ma chining cha ra cteristics a re sim-0.15-0.25 0-0.04 0-0.04 B a la nceilar to 4140.

HEAT TREATMENTCOMPOSITION RANGE

Norma lize: 1600o-1700oF, air cool.C% C r% Co% Mn%Anneal: 1525o-1575oF, fu rna ce cool.0.39-0.4 0.95-1.2 0.98-1.23 0.6-0.79Ha rden: 1550o-1625oF, quench in oil.

2-41

Page 52: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 52/288

T.O. 1-1A-9

Mo% S i% V% P % Annea l: 1550o-1600oF fu rna ce cool.0.22-0.35 0.97-1.19 0.14-0.16 0-0.015 H a rden: 1550o-1600oF 30 minutes, oil quench.

Spheroidize: 1400o-1425oF fu rna ce cool.S % Fe% Temper 4 hours to obta in desired str ength . See0-0.012 B a la nce table below.

SPECIFICATIONS: NoneDRAW TEMPERATURES

FORMS: S heet, str ip, plat e, bar, forging, wire. 1300oF - 100,000 psi1175oF - 120,000 to 140,000 psiHEAT TREATMENT1075oF - 140,000 to 160,000 psi

Norma lize: 1750oF, 30 minutes, air cool. 950oF - 160,000 to 180,000 psiSpheroidize: Anneal: 1420o-1460oF, 2 hours, fast 850oF - 180,000 to 200,000 psicool to 1235o-1265oF, hold 14 to 24 hours, air cool. 725oF - 200,000 to 220,000 psiResulting hardness RB95 maximum.

SAE 4330 V Mod. This st eel is 4330 impr oved byIntermediate stress relieve to restore ductility of the addit ion of vanadium, and is primarily usedformed parts, 1250oF for 10 minutes, air cool. heat treated to a tensile strength between 220 andSt ress relieve af ter w elding 1250oF, 30 minutes 240 KSI. It is highly shock resistant and has bet-minimum. ter w elding chara cterist ics than higher car bon

steels.Austenitize: 1700oF for s ections less t ha n 1/2 inch

1725

o

F for sections la rger t ha n 1/2 inch, 20 min- CHE MICAL COMPOSITIONutes minimum to 1 hour ma ximum per inch t hick-C% Mn% S i% P % S i% C r%ness, oil or salt quench at 400oF. Maximum t ime0.28-0.33 0.75-1.00 0.20-0.35 0.040 0.040 0.75-1.00in salt 12 minutes.

Ni% Mo% V% Fe%Double tem per 540o-560oF for two consecutive 21.65-2.00 0.35-0.50 0.05-0.10 B a l a n cehour periods with intermediate cooling to room

tempera tur e. Weldabilit y char a cteristics a re goodHEAT TREATMENT

using th e Tungst en-a rc-inert-gas process.

Norma lize: 1600o to 1700oF, air cool.4140. Medium Ca rbon Chromium - Molybdenun

Temper: normalized condition for machinability(Nitriding Grade). This steel is widely used where

1250oF ma ximum.the higher strength and higher hardenability of

Full anneal at 1525oF to 1575oF furnace cool or4340 is not required. It can be nitrided.

cool in ash or lime.Austenitize: 1550o to 1600oF 15 minutes per inchC% Mn% P % S % Cr%thickness, oil quench 75o to 140oF.0.38-0.43 0.75-1.0 0-0.040 mx 0-0.040 mx 0.80-1.1Temper: 180 to 200 KSI, 950o to 110oF, 4 hours.

Mo% S i% Fe% Temper: 200 to 220 KSI, 750o to 950oF, 4 hours.0. 15-0. 25 0. 2-0. 35 B a l a n ce Temper: 220 to 240 KSI, 600o to 750oF, 4 hours.

SPECIFICATIONS 4150. Chromium -Molybdenun. This meta l is usedfor such items a s gears, sha f ts , pistons, springs,TYPE 4140 

axles, pins, connecting rods.

COMPOSITION RANGEAMS FORM MILITARY

C% Mn% P % S % S i% Cr%5336 Pr e ci sion I n ves t men t 0.48-0.53 0.75-1.0 0-0.040 0-0.04 0.2-0.35 0.8-0.12

Cast ingsMo% Fe%5338 Pr e ci sion I n ves t men t

0.18 - 0.25 B a la nceCast ings6378 B a rs

FORMS-SP EC IFI CATIONS. See Specificat ion6379 B a rs

Ta ble 2-2.6381 He a vy Wa l l Tu bing6382 B a rs, Forgings, MIL-S - HEAT TREATMENT

F orgings, S tock 5626Norma lize: 1550o-1650oFAnneal: 1450o-1525oFHEAT TREATMENTHarden: 1475o-1525oF, oil quench

Norma lize: 1600o-1650oF (a ir cool) minimum 1 Temper : 1200oF for tensile 128,000 yield 116,000hour . Temper : 1100oF for tensile 150,000 yield 135,000

2-42

Page 53: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 53/288

T.O. 1-1A

Temper: 950oF for t en sile 180,000 y ield 163,000 An nea l: 1500o-1550oF, cool down at 50oF per houTemper: 800oF for t en sile 200,000 y ield 186,000 t o 1000oF.

Norma lize: 1600o-1650oF, 30 minutes, air cool.521000. H igh Ca rbon, High Ch romium Alloy.

Austenitize: 1550o-1575oF, 30 minutes, oil quencThis steel is used for anti-friction bearings and

Sections 1 inch or less in cross sections may be aother parts requiring high heat treated hardness

cooled.of approximately Rockwell C60, toughness and

Temper: 300o-1275oF, t ime and temperat uregood wea r resista nce qua lit ies. It is best ma chined depend on hardness desired.in the spheroidized annealed condition.

St ress r elieve: 1000o-1250oF one to tw o hours, aicool.COMPOSITION RANGE

TYPE LADI SH D-6-AC% Cr% Mn% S i% S % P %0.95-1.1 1.3-1.6 0.25-0.45 0.2-0.35 0-0.025 0-0.025

Fe% FORM U P TO 1″  THICK BARBa lance

Condit ion Va cuum remelt by consuma -FORMS-SP EC IFI CATIONS. See Specificat ion

ble electrode process.Table 2-2.

Norma lize 1650oAC 1550oF,HEAT TREATMENT

a ir cool + 600oF t emper.Norma lize: 1650o-1700oF air cool

Anneal: 1250o-1340oF hold 5 hours. Hea t to Tensile 282,000 psi1430o-1460oF, a t 10oF per hour, hold 8 hours.

Yield 255,000 psiCool to 1320oF a t 10oF per hour. Cool to 1250oFat furnace rate and air cool.

Nitra lloy 135 Mod. St eel ultra high strengthSpheroidize: Slow cool (a bout 5oF per hour) follow-(Nitrid ing G ra de). This alloy is w ell suited foring austenit izing by extended heating at a temper-case har dening by nitriding . This process pro-ature near the ACM point or by isothermal trans-duces a case of extreme hardness without apprecforma tion a t 1275oF following aust enit izing.ably changing core tensile strength or yieldHa rden: Quench in w at er from 1425oF-1475oF orstrength. It is also readily ma chined. Af terquench in oil from 1550o-1600oF, then temper tonitriding it may be used where high resistance tdesired hardness. The Rockwell hardness at vari-abra sion a nd mild corrosion resistan ce areous temperatures is listed below:required.

Temper: 400oF, RC60

COMPOSITION RANGETemper: 600o

F, RC55Temper: 800oF, RC48 A1% C 5 C r% Mn% Mo% S i%Temper: 100oF, RC40 0.95-1.3 0.38-0.43 1.4-1.8 0.5-0.7 0.3-0.4 0.2-0.4Temper: 1200oF, RC28

P % S % Fe%LADIS H D-6-A. Low Alloy High Streng th . This 0-0.04 0-0.04 B a la ncealloy is suitable for hot work die applications and

SPECIFICATIONSstructura l mat er ia l in a ircra f t and miss i les. I tmay be heat treated to strength levels up to

TYPE NIT RALLOY 135 MOD 300,000 psi, an d a t 240,000 has excellent tough-ness. At st rengt h levels below 220,000 psi it issuitable for elevat ed temperatur e a pplicat ions AMS FORMS MILITARbelow 900oF. It ma y readily be welded an d coldformed in the annealed or spheroidized condition. 5470 P la t es, Tubin g, Rods, B ar , MI L-S -

It also can be temper straightened. forgings st ock. 6701COMPOSITION RANGE

HEAT TREATMENTC% C r% Mn% Mo% Ni% S i% V% Fe%

Anneal: 1450oF, 6 h ours, furna ce cool.0.46 1.0 0.75 1.0 0.55 0.22 0.05 B a la nceNormalize by slowly heating to 1790o-1810oF, a i

SPECIFICATION. None. cool.Austenitize: 1700o-1750oF.

FORMS. Availa ble in most wrought forms andOil quench sections less than 2 inches thick.

forgings.Temper: 1000o-1300oF 1 hour minimum per inch

H E AT TRE ATME NT t hickness.

Change 1 2

Page 54: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 54/288

T.O. 1-1A-9

(NOTE: Temper 50oF minimum a bove nit riding or lime.tempera tures). H a rden: 1475o-1550oF, oil quench.Nitrid e: 930o-1050oF. S pheroidize Annea l: 1425oF, 2 hours, then furna ce

cool to 1210oF, hold 8 hours, furnace cool or airTYPE NIT RALL OY 135 MOD 

cool.Stress relief parts after straightening, machining,etc.

FORM B AR Temper: 1100oF for tensile 150,000 yield, 142,000.Temper: 900oF for tensile 190,000, yield, 176,000.C ondit ion 1725oF, oil quench sections lessTemper: 725oF for tensile 220,000, yield, 200,000.tha n 3 inches, wa ter quench sec-Temper: 400o-500oF for tensile 260,000, 2 hourstions greater th an 3 inches temperper thickness, 6 hours minimum.1200oF, 5 hours.

Parts heat treated to 260,000-280,000 psi tensileS IZE - LE S S 1 1/2 t o 3 t o 5 an d subsequently subjected to grinding, ma chiningD IA TH AN 3 inches inches or straightening should be tempered to 350o-400oF ,

1 1/2 4 hours minim um. Temperat ure should not exceedinches tempering temp or reduce the tensile strength

below 260,000 psi. Austenit ize 1475o-1575oF, 15Tensile 135,000 125,000 110,000 minut es for each inch of th ickness. Norma lize,

psi psi psi welded or bra zed par ts before austenit izing. Cool

a f ter a ustenit iz ing.Yield 100,000 90,000 psi 85,000 psips i

To heat trea t for regular ma chining, norma lize oraust enit ize, then h eat to 1200oF (maximum

In welding the major problem to avoid is loss of 1250oF) for 15-20 hours. Resulting ha rdnessaluminum and chromium in the weld area, the should be 229-248 BHN.loss of which would prevent subsequent nitriding.

Austenitize: 1575o-1625oF, oil quench.4337, 4340 Steel Nickel - Chromium Molybdenum

Tempering range is limited to 400o-600oF prefera -Alloy. These t wo alloys are similar except tha t

bly no higher tha n 550oF.carbon cont ent differs slightly. The ca rbon content

Temper: 600oF for 230,000 psi tensile, 194,000 psiof 4337 is min im um 0.35%, ma xim um 0.4%, good

yield.strength, high hardenability and uniformity are

Temper: 550oF for 234,000 psi tensile, 193,000 psichara cterist ics. It can be heat tr eated to strength

yield.va lues with in a w ide ran ge. At 260,000 to 280,000

Temper: 500

o

F for 235,000 psi tensile, 191,000 psipsi tensile this steel has been found superior to yield.other common low alloy steels as well as some of

Temper: 400oF for 239,000 psi tensile, 183,000 psithe recently developed more complex low alloy

yield.steels . It possesses fair forma bility w hen ann ealedand may be welded, by special processes, which This alloy is easily welded by conventional meth-require strict cont rol. No w elding shall be per- ods using low hydrogen electrode of similarformed on this alloy heat treated above 200,000 composition.psi unless specifically approved by design

4615. S teel Nickel Molybden um Alloy. This is aengineer.high gra de carburizing steel for use w here reliabil-

COMPOSITION RANGE ity and uniformity are required.

C% Mn% S i% P % S % Cr% COMPOSITION RANGE0.38-0.43 0.65-0.85 0.2-0.35 0-0.04 0-0.04 0.7-0.9

C % Mn% P % S % S i% Ni%Ni% Mo% Fe% 0.13-0.18 0.45-0.65 0-0.04 0-0.04 0.2-0.35 1.65-2.01.54-2.0 0.2-0.3 B a la n ce

Mo% F e%FORMS-SP EC IFI CATIONS. See Specificat ion0.2-0.3 B a la nceTa ble 2-2.

HEAT TREATMENTHEAT TREATMENT

Norma lize: 1600o-1700oF , 1 hour of ma ximum Norma lize: 1675o-1725oFt h ick nes s, a i r cool. Tem per , n or ma l iz e con dit ion An n ea l : 1575o-1625oFfor improved machinability 125oF ma ximum. H a rden: 1425o-1550oF oil quench.Anneal: 1475o-1575oF , fur na ce cool or cool in a sh C a rbur ize: 1425o-1550oF

2-44

Page 55: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 55/288

T.O. 1-1A-9

Wh er e ca s e h a r den in g is pa r a m ou nt , r eh ea t t o a n d s ma l l d is tor t ion in hea t t rea t m en t . I t s a ppl ica -1425o-1475oF quench in oil. Tempering 250o-350oF t ion is pr im a rily gea r s, splin e sh a f t s, ha n d t ools,is opt ion a l. I t is g en er a lly em ploy ed for pa r tia l a n d m a ch in e pa r ts .stress relief and improved resistance to cracking

COMPOSITION RANGEfrom grinding operation.

C% Mn% P % S % S i% Ni%4620. S teel Nickel Molybden um Alloy. This is a

0.38-0.43 0.6-0.8 0-0.04 0-0.04 0.2-0.35 1.65-2.0medium ha rdenability case steel. I ts hardena bilitychara cterist ics lie betw een t ha t of plain carbon Mo% Fe%steel an d the high alloy carburized steel. I t ma y 0.2-0.3 B a la ncebe used for a verage size case har dened aut omotivepa r t s su ch a s g ea r s , pi st on pins , cr a ck sh a f t s , et c. F O RM S -S PE CI F I CATI O NS . S ee S peci f ica t i on

Ta ble 2-2.COMPOSITION RANGE

HEAT TREATMENTC% Mn% P % S % S i% Ni%0.17-0.24 0.45-0.65 0-0.04 0-0.04 0.2-0.35 1.65-2.0 Norma lize: 1600o-1750oF

Anneal: 1450o-1550oFMo% Fe%Quench: 1450o-1550oF, oil quench, agita ted oil.0.2-3.0 B ala nceTemper: 1200oF for 100,000 psi.

HEAT TREATMENT Temper: 1100oF for 120 to 140,000 psi.Temper: 1000oF for 140 to 160,000 psi.

Norma lize: 1650o

-1750o

F Temper: 900oF for 160 to 180,000 psi.Anneal: 1550o-1600oFTemper: 800oF for 180 to 200,000 psi.

Quench: (High temperature) 1550oFTemper: 700oF for 200 to 220,000 psi.

Quench: (Low tempera tur e) 1425oFCarburize: 1650o-1700oF. 6150, 6152. Ch romiu m Van a dium Alloy. These

t wo steels are essentia lly the sa me, differing onlyRecommend practice for m aximum case ha rdness:in the amount of Va na dium. Alloy 6152 conta ins aDirect quench from pot.minimum of 0.1%Vana dium. Typical usa ges ar e

(1) Carburize: at 1700oF for 8 hours. for f lat springs un der 1/8 inch th ick, cold formed,(2) Quench: in agitated oil. a nd 1/8 inch a nd over h ot formed; oil qu enched,(3) Temper: at 300oF and drawn a t 725o-900oF to 44-48 or 48-52 RC,Case depth: 0.075. a nd for coil springs over l/2 inch dia meter w ithCase hardness: RC62 same heat treat ment. It is also used for valveSingle Quench and Temper: springs, piston rods, pump part s , spline sha f ts ,

(1) Carburize: 1700o

F for 8 hours. etc.(2) P ot cool.

COMPOSITION RANGE(3) Reheat: 1500oF.(4) Quench: in agitated oil. C% Mn% P % S % S i% Cr%(5) Temper: 300oF . 0.48-0.53 0.7-0.9 0-0.04 0-0.04 0.2-0.35 0.8-1.1Case depth: 0.075.Ca se ha rdness: RC62 V% F e%R ecom men ded pr a ct ices for ma xim um cor e t ou gh - 0.15 m in B a l a nceness: Direct quench from pot.

FORM-SP EC IFI CATIONS. See S pecif icat ion Table(1) Carburize: 1700oF for 8 hours.2-2.(2) Quench: in agitated oil.

(3) Temper: 450oF . HEAT TREATMENTCase depth: 0.06

Norma lize: 1625o-1750oF, fu rna ce cool.Case hardness: RC58

Anneal: 1500o

-1600o

F. (Tensile psi 90,000 yieldSingle Quench and Temper:58,000 psi a nnea led.)(1) Carburize: 1700oF for 8 hours.Harden: 1550o-1600oF, oil quench.(2) Pot C ool.Temper: 1100oF for tensile psi 150,000 yield psi(3) Reheat: to 1500oF137,000 psi.(4) Quench: in agitated oil.Temper: 800oF for tensile psi 210,000 yield psi(5) Temper: 450oF .194,000 psi.Case depth: .065Spheroidized an nea led to 183-241 BH N = 45%Case hardness: RC59

4640. S teel Nickel Molybdenum. This s tee l has 8615. S teel-Ni-Cr-Mo Al loy . This i s a t r ip le a l loyex cel len t ma china b il it y a t h ig h h a r d nes s l evel s, ca s e-h a r d en in g s t eel w i t h m ed iu m h a r d en a b il it y .

2-45

Page 56: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 56/288

T.O. 1-1A-9

I t is pr imar i ly used for d if feren t ia l p in ions , eng ine FORMS-SP ECIFICATIONS. See Speci f ica t ionpins, gears etc. Ta ble 2-2.

HEAT TREATMENTCOMPOSITION RANGE

Norma lize: 1600o-1750oF.C% Mn% P % S % S i% Ni% Cr%Anneal: 1575o-1625oF.0.13-0.18 0.7-0.9 0-.04 0-0.04 0.2-0.3 0.4-0.6 0.4-0.6

CARBURIZING:Mo% Fe%0. 15-0. 25 B a l a n ce

For ma ximum case ha rdness: Direct q uench frompot.FORMS-SP EC IFI CATIONS. See Specificat ion(1) Carburize: 1700oF for 8 hours.Ta ble 2-2.(2) Quench: in agitated oil.

HEAT TREATMENT (3) Temper: 300oF.Case depth: 0.075.P suedo-Ca rburize 1650o-1700oF, box cool, reheatCase hardness: RC64.1550oF, oil quench.Single Quench a nd t emper:Temper: 300oF for tensile 100,000 psi yield 72,500(1) Carburize: 1700oF for 8 hours.psi.(2) Pot cooled.Norma lize: 1650o-1725oF.(3) Reheat: to 1550oF.Anneal: 1575o-1650oF.(4) Quench: in agitated oil.Ha rden: 1475o-1575oF.(5) Temper: 300

o

F.8617. S t eel N i-C r -M o Alloy . Th is s teel i s v er y C a s e d ept h : 0.075sim ila r to 8615, bu t d ev elops som ew h a t gr ea t er C a se h a rd ness: R C64st rengt h. Recommended pra ct ices for ma ximum core t ough-

ness.COMPOSITION RANGE Direct quench from pot.

(1) Carburize: 1700oF for 8 hours.C% Mn% P % S % S i% Ni%(2) Quench: in agitated oil.0.15-0.2 0.7-0.9 0-0.04 0-0.04 0.2-0.35 0.4-0.7(3) Temper: 450oF.Cr%Case depth: 0.0500.4-0.6Case hardness: RC58

Mo% Fe% Single Quench and Temper.0. 15-0. 25 B a l a n ce (1) Carburize: 1700oF for 8 hours.

(2) Pot cool.

FORM-SP EC IFI CATIONS. See Specif icat ion Table (3) Reheat: to 1500oF.2-2.(4) Quench: in agitated oil.(5) Temper: 450oF.HEAT TREATMENTCase depth: 0.076.

Norma lize: 1650o-1725oF Case hardness: RC61.Anneal: 1575o-1650oF.

8630. St eel Ni-Cr -Mo Alloy This steel ha s cha ra c-Ha rden: 1474o-1575oFterist ics very similar t o 4130. It is used for air-Carburize: 1700oF for 8 hours, oil quench.cra f t engine mounts , and other a ircra f t par ts dueDraw a t 300oFto good properties when normalized in light sec-Tensile: 128,000 psi yield 94,000 psi.t ions , and i ts a ir ha rdening a f ter welding.

8620. Ni-Cr -Mo-Alloy. This steel is simila r toCOMPOSITION RANGE8615 a nd 8617 th ough stronger. It is used for ring

gears, transmission gears, cam shafts and for good C% Mn% P % S % S i% Ni%

core properties w ith high surface hard ness af ter 0.28-0.33 0.7-0.9 0-0.04 0-0.04 0.2-0.35 0.4-0.7case hardening. It is also used in the heat treatedcondition as chain, at about 100,000 psi yield Cr% Mo% F e%strength. It is classed as medium hardenable. 0.4-0.6 0.15-0.25 B a l a n ce

COMPOSITION RANGE FORMS-SP EC IFI CATIONS. See Specificat ionTa ble 2-2.

C% Mn% P % S % S i% Ni%0.18-0.23 0.7-0.9 0-0.04 0-0.04 0.2-0.35 0.4-0.7 HEAT TREATMENT

Cr% Mo% Fe% Norma lize: 1550o-1650oF.0.4-0.6 0.15-0.25 B a la nce Annea l: 1500o-1550oF (Tensile 90,000 psi, tensile

2-46

Page 57: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 57/288

T.O. 1-1A-9

60,000 a nnea led), furna ce cool. 8740. S t eel Ni-Cr-Mo. This steel is simila r t oHa rden: 1500o-1575oF , oil or w a ter q uench. 4140. I t m ay be sa t isfa ct or ily used for a xles, t oolTemper: 1000oF for 150,000 psi t ensi le, 140,000 join t s, bi t s, core dr il ls , r eamer bodies, dr i ll col la r s ,psi y ield st rengt h . pist on rods, a ircra f t engine bolt s, sha pes, tubingTemper: 700oF for 200,000 ps i t en sil e, 180, 000 ps i et c.yield strength .

COMPOSITION RANGE

8640. St eel Ni-Cr -Mo. Typica l uses, propeller C% Mn% P % S % S i% Ni%shafts , transmission gears, spline shafts , heavy

0.38-0.43 0.75-1.0 0-0.04 0-0.04 0.2-0.35 0.4-0.7duty bolts , etc. 4140 has h igher strength a nd duc-tility and slightly better machinability . Cr% Mo% Fe%

0.4-0.6 0.2-0.3 B a la n ceCOMPOSITION RANGE

FORMS-SP EC IFI CATIONS. S ee Specif icat ionC% Mn% P % S % S i% Ni%

Ta ble 2-2 .0.38-0.43 0.75-1.0 0-0.04 0-0.04 0.2-0.35 0.4-0.7

HEAT TREATMENTCr% Mo% Fe%

Norma lize: 1575o-1625oF.0. 4-0. 6 0. 15-0. 25 B a l a n ceAnneal: 1500o-1575oF (Tensile 103,000 psi, yield

FORMS-SP EC IFI CATIONS. See Specification 66,000 psi a nnea led)Ta ble 2-2. Harden: 1500o-1575oF (Quench in agitated oil)

Temper: 1100o

F for tensile 160,000 psi, yieldHEAT TREATMENT152,000 psi.

Norma lize: 1550o-1650oF. Temper: 900oF for tensile 190,000 psi, yieldAnneal: 1475o-1575oF. 183,000 psi.Ha rden: 1475o-1575oF, oil quench. Temper: 800oF for tensile 210,000 psi, yieldTemper: 1100oF for 145,000 psi tensile, 130,000 198,000 psi.psi yield. Temper: 725oF for tensile 220,000.Temper: 800oF for 200,000 psi tensile, 184,000 psi

9260, 9261, 9262. St eel S ilicon. These are simila ryield.a lloy spring steels, oil ha rdening ty pe. The quan -Temper: 700oF for 220,000 psi tensile, 205,000 psitities of chromium in each, constitutes the onlyyield.chemical va ria tions in these a lloys. Typical appli-

8735. S t eel N i-C r -M o. Th is m et a l is u sed for ca t ion s a r e coil a n d f la t spr in gs , a xl es , ch is el s,sh a pes , t ubin g, a ir cr a f t en gin e st ud s, kn uckles, bolt s. et c.

etc. It is similar in chara cterist ics to 8630 and COMPOSITION RANGE8640

C % Mn% P % S % S i%FORMS-SP EC IFI CATIONS. See Specification

9260 0.55-0.65 -0.7-1.0 0-0.04 0-0.04 1.8-2.2Ta ble 2-2.

C r% Fe%COMPOSITION RANGE

--- B a la nce

C% Mn% P % S % S i% Ni% C % Mn% P % S % S i%0.33-0.38 0.75-1.0 0-0.04 0-0.04 0.2-0.35 0.4-0.7 9261 0.55-0.65 0.75-1.0 0-0.04 0-0.04 1.8-2.2

Cr% Mo% Fe% C r% Fe%0.4-0.6 0.2-0.3 B a l a nce 0.1-0.25 B a l a nce

HEAT TREATMENT C % Mn% P % S % S i%9262 0.55-0.65 0.75-1.0 0-0.04 0-0.04 1.8-2.2

Norma lize: 1575

o

-1625

o

FAnneal: 1525o-1525oF. C r% Fe%Ha rden: 1525o-1600oF Oil quench. 0.25-0.4 B a l a nceTemper: 1200oF for tensile 119,000 psi, yield

FORMS-SP EC IFI CATION. See Specification93,000 psi.Ta ble 2-2.Temper: 1100oF for tensile 131,000 psi, yield

107,000 psi. HEAT TREATMENTTemper: 900oF for tensile 149,000 psi, yield127,000 psi Norma lize: 1600o-1650oF.Temper: 800oF for t ensile 170,000 psi Annea l: 1525o-1575oFTemper: 775oF for t ensile 200,000 psi H a rden: 1575o-1625oF quench in agitated oil.

2-47

Page 58: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 58/288

T.O. 1-1A-9

Temper: 1100oF for t en sile 165, 000 ps i, y ield Ty pe 301. S t eel Au st en it ic S t a in les s. Th is s teelbelongs t o the sub-family of 18-8 steels, w hich va ry144,000 psi.only slightly in chromium an d nickel a nd conta inTemper: 900oF for tensile 214,000 psi, yieldno other meta llic a lloying element. This alloy may192,000 psi.be strengthened to an exceptional degree by coldTemper: 600oF for tensile 325,000 psi, yieldwork. For best results, cold work should be fol-280,000 psi.lowed by stress relieving at 400o-800oF.

9310. St eel Ni Cr -Mo (Electric Furn a ce St eel).COMPOSITION RANGEThis is a high hardenability case steel, since it is a

high a lloy, both the case a nd core ha ve high C% Mn% S i% P % Cr% Ni% S %ha rdena bility. This type of steel is used part icu- 0.08-0.15 0-2.0 0-1.0 0-0.04 17.0-19.0 6.0-8.0 0-0.03larly for carburized part s ha ving thick sections

Cu% Fe%such as bearing races, heavy duty gears etc.0-0.05 B a la nce

COMPOSITION RANGEFORM-SP EC IFI CATION. See Specificat ion Table2-2.C% Mn% P % S % S i% Ni%

0.7-0.13 0.4-0.7 0-0.025 0-0.025 0.2-0.35 2.95-3.55 HEAT TREATMENT

Cr% Mo% Fe% Anneal: 1950o-2050oF,1 hour per inch thickness,1. 0-1. 45 0. 08-0. 15 B a l a n ce wa ter quench.

Cool to 800o

F within 3 minutes maximum.FORMS-SP EC IFI CATIONS. See Specificat ion To relieve the elastic characteristics and increaseTa ble 2-2. the compressive yield str ength of cold w orked con-

ditions, 400o-800oF, 36 to 8 hours maximumHEAT TREATMENT respectively. After forming in order to prevent

stress cracking, full annea l, or a lternat ely 600oF,Norma lize: 1625o-1725oF, air cool.

1/2 to 2 hours. This a lloy can be ha rden ed only byAnneal: 1475o-1575oF, fu rna ce cool.

cold work. Ma ximum tensile strengt h, 1/4 ha rdRecommended pra ctice for m aximum case ha rd-

125,000, 1/2 ha rd 150,000, ful l ha rd 185,000 psi.ness:

Full a nneal is ma nda tory w hen, exposed to corro-Direct quench from pot.

sive media, such as hot chlorides, etc. which may(1) Carburize: at 1700oF for 8 hours.

lead to stress corrosion cracking.(2) Quench: in agitated oil.(3) Temper: 300oF . Type 302. St eel Austenit ic St a inless. This alloy isCase depth: 0.047 inch

similar to Type 301 in composition and character-Case hardness: RC62 istics. It is inferior in strength t o 301, however,Single Quench and Temper: possesses superior corrosive resista nce. It is gen-(1) Carburize: 1700oF for 8 hours. erally used in t he a nnealed conditions(2) P ot cool.

COMPOSITION RANGE(3) Reheat: to 1450oF .(4) Quench: in agitated oil. C% Mn% S i% P % S % C r%(5) Temper: 300oF . 0.08-0.25 0-2.0 0-1.0 0-0.045 0-0.03 17.0-19.0Case depth: 0.047 inch

Ni% Fe%Case hardness: RC62.8.0-10.0 B a la n ceTo obtain maximum core toughness: Direct

quench from pot. FORMS-SP EC IFI CATIONS. See Specificat ion(1) Carburize: 1700oF for 8 hours. Ta ble , 2-2.(2) Quench in agitated oil.

HEAT TREATMENT(3) Temper: 450

o

F .Case depth: 0.039 inch.The heat treatment and result ing strength is simi-

Case hardness: RC54.lar to that recommended for type 301, except that

Single quench a nd temper:the temperatur e range for annea ling type 302

(1) Carburize: 1700oF for 8 hours.ran ges betw een 1925o-2075oF.

(2) P ot cool.(3) Reheat to 1450oF. Type 303, Type 303Se, Steel Austenitic Stainless.(4) Quench: in agitated oil. These va rieties of the 18-8 a ustenit ic sta inless(5) Temper: 450oF . family contain a ddit ions of sulphur a nd seleniumCase depth: 0.047 inch. for the purpose of improving machining character-Case hardness: RC59. istics. How ever the presence of th ese elements

2-48

Page 59: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 59/288

T.O. 1-1A-9

tend to decrease formability and corrosion resis-ta nce. Type 303 Se is superior to 303 in th ese TYP E 304 TYP E 304Lrespects. The cast form of 303Se is also known a s P E RCE NT P E RCE NTCF-16F. MIN MAX MIN MAX

ALLOY TYP E 303 TYP E 303S e C - 0.08 - 0.03

P E RCE NT P E RCE NT Mn - 2.0 - 2.0S i - 1.0 0.5 1.0Min Ma x Min Ma x

P - 0.04 - 0.04S - 0.03 - 0.03

C - 0.15 - 0.15Cr 18.0 20.0 18.0 20.0

Mn - 2.0 - 2.0Ni 8.0 11.0 8.0 11.0

S i - 1.0 - 1.0Mo - 0.5 - -

P - 0.04 .12 0.17Cu - 0.5 - -

S .18 0.35 - 0.04Cr 17.0 19.0 17.0 19.0 I ron B a l- B a la nceNi 8.0 10.0 8.0 10.0 a nceMo - 0.75 - 0.5Cu - 0.5 - 0.5S e - - 0.15 0.35 H E AT TRE ATME NTIron B a l- B a l-

Sa me as ty pes 303 a nd 303Se. This alloy can only(Fe) a nce a ncebe hardened by cold work.

HEAT TREATMENT TYP E 314. St eel-Austenit ic St a inless. This is anon-heat-treatable stainless steel generally used inAnneal or solution treat: 1900o-2050oF, air cool orthe ann ealed condition. It possesses high resis-quench, d epending on section t hickness, cool tota nce to scaling and carburizing and is used for800oF maximum within 3 minutes.parts and welded assemblies requiring corrosionBars, forgings: 1900o-1950oF , 1/2 hour per in ch ofand oxidation resistance to 2000oF. It is subject t othickness, wa ter quench.embrit t lement a f ter long t ime exposure to t emper-Sheet, tubing: 1900o-1950oF, 10 minutes, air coolature in the 1200o-1600oF ra nge.up to 0.064 thickness, w a ter Qu ench 0.065 inch

and thicker.COMPOSITION RANGE

Ca stings: 2000o-2100oF, 30 minutes minimum.This alloy may be hardened only by cold work. C% C r% Cu% Mn% Mo% Ni%Welding is not generally recommended. 0.12 23.0-25.0 0.50 1.0-2.0 0.50 19.0-22.0These steels a re subject to car bide precipita tion

S i% P % S % Fe%when subjected to temperature over 800oF.1.7-2.3 0.04 0.03 B a la nce

Type 304, Type 304L. S teel Aust enit ic St a inless.This steel is produced in two grades, type 304 with FORM-SP EC IFI CATION. See Specificat ion Table0.08 carbon (maximum) and type 304L with 0.03% 2-2.ma ximum car bon. They have properties similar to

HEAT TREATMENTType 302 but th e corrosion r esista nce is slight lyhigher. These meta ls are ava ilable as castings

Annea l (solution t reat ) 1900o-2100oF using rapidunder the designations CF-8 and CF-3 respec-air cooling for sheet and light plate and watertively. Welding may be read ily accomplished byquench for heavier sections. St ress relief a nd bestall common methods.corrosion resistance to high temperatures proper-

COMPOSITION RANGE ties is achieved by fina l an nealing a t 1900oF mini-mum. To restore ductility af ter embrit t lement ha soccurred, a nnea l 1900o-1950oF for 10-60 minutes.

This alloy may be hardened only by cold work.

2-49

Page 60: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 60/288

T.O. 1-1A-9

TYPE 314 

FORMS B AR P LATE S H E E T WIRE

HARDCOND ITION ANNE ALE D ANNE ALE D ANNE ALE D ANNE ALE D D RAWN

THICKNESS-IN 1 IN D IA 0.002 to 0.010 0.002 t o 0.010

Tensile 100,000 100,000 100,000 95,000-130,000 245,000-275,000

Yield 50,000 50,000 50,000 35,000-70,000 230,000-260,000

H a rdness RB 89 89 89 ------------- -------------

TYPE 316 a n d 317. S t eel Au st en it i c S t a in les s. f or m s a c a r bide of low s ol id solub il it y , t h e pos sibi l-Wrought products ar e readily formable and welda- ity of intergran ular precipita t ion and of the associ-ble. Ca stings are also weldable, an d the meta l ar c a ted intergra nula r corrosion is reduced. There-

meth od is most oft en used. These a lloys ha ve bet- fore, type 321 is used primarily either for partster corrosion resista nce th a n 30302 or 30304 types. fabricated by welding without postweld annealingor for service at 800o-1500oF. This steel is avail-

COMPOSITION RANGEable in all wrought forms. Welding rods and cast-ings are not produced in this type.C% Mn% S i% P % S % Cr%

0-.08 1.25-2.0 0-1.0 0-0.04 0-0.03 16.0-19.0

CORROSION RANGENi% Mo% Cu% Iron%11.0-14.0 2.0-2.5 0-0.5 B a la nce

C % Mn% S i% P % S % Cr%FORMS-SP EC IFI CATIONS. See Specificat ion 0-0.08 0-2.0 0.4-1.0 0-0.04 0-0.03 17.0-20.0Ta ble 2-2.

Ni% Mo% Ti% Cu% Iron (Fe)%HEAT TREATMENT8.0-13.0 0-0.5 *6XC -0.7 0-0.5 B a la nce

Anneal wrought products 1850o-2150oF, air cool or

quench d epending on section size. FORMS-SPE CI FIC ATIONS. See Specificat ionFor sheet a lloys, a nnealing t emperat ure 1950oF, Ta ble 2-2.minimum.Ca stings 1950o-2100oF, w at er or oil quench or a ir * 6 times columbian content.cool. Low side of temperat ure ra nge is used forCF 8M, (Cast Alloy) but CF 12M castings should HEAT TREATMENTbe quenched from a bove 2000oF.Stabilize for high temperature service 1625o-

Full anneal 1750o-1850oF, 1 hour per inch in1675oF, st ress relieve 400o-500oF, 1/2 to 2 h ours .

thickness, t wo hours minimum for plate furna ceThis alloy may be hardened only by cold work. In

cool or air cool. St a bilizing ann eal for serviceannealed condition, tensile 90,000 psi, yield 45,000

900o-1500oF, heat to 1500o-1650oF one hour perpsi.

inch thickness, 2 hours minimum for plate. Stressrelieve after fabrication 1300oF.TYP E 321. St eel Austenit ic St a inless.This is one

of t he t w o s ta b ili zed 18-8 s teels S in ce tit a n iu m Th is m a y be ha r den ed on ly by col d w or k.

2-50

Page 61: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 61/288

T.O. 1-1A-9

TYPE 321 

TENS ILE - YIELDFORM S H E E T, S TRIP P LATE B AR WIRE

SOFT TEMP ERC OND ITION ANNE AL ANN+ CD

TH IC KNE S S IN -- -- ALL 1 INCH 0.062 0.50

Tensile 90000 85000 85000 95000 115000 95000

Yield 35000 30000 35000 60000 85000 65000

F u ll a n n ea l or s t a bi li zing a n n ea l w i ll el im in a t e Welding . F u sion s w e ld in g of t h is a l loy i s com pa r a -sensit ized condit ions. ble t o t ype 304L. H ea vy sect ions ma y cra ck dur-

ing welding or subsequent heat ing. P ost weldTYP E S 347 a nd 348. St eel Austenitic St a inless is an nealing is not required, although a st ress reliefth e second of tw o sta bilized 18-8 steels (see type is recommend ed. This steel is subject to ca rbide321 for other). Sin ce columbia n forms a car bide of precipitation at temperatures in excess of 2150oF.very low solubility, the possibility of intergranular

Type 414. St eel Ma rtensit ic St a inless. This steelprecipita t ion and of the a ssociat ed intergranula r

ha s good resista nce to wea ther and wa ter. Itcorrosion are practically eliminated. Therefore,should be passiva ted. St ainless type 416 has simi-Type 347 is used principally for parts fabricated bylar mecha nical properties, workability a nd r esis-welding wit hout post weld a nnealing, or for longta nce to corrosion, however, corrosion resista nce isservice bet ween 800o-1500oF. Columbian is usu-not as good as t he 300 series stainless. It ha sally associated with the similar element tantalumbetter machinability but less weldability . Typewhich is included in the columbian analysis, speci-420 has higher mechanical properties, similarfying only th e tota l of both elements. Corrosionworkability and machinability .resistance of this alloy is similar to Type 302, how-

ever it ha s a greater tendency t o pit t ing corrosionCOMPOSITION RANGE

an d att acks in streaks. Intergra nular corrosion isabsent in this st eel unless it is overheat ed to C% Mn% P % S % S i% Cr%above 2150oF. At this temperat ure columbian car- 0.08-0.15 0-1.0 0-0.04 0-0.03 0-0.10 11.5-13.5bides are going in to solid solution and subsequent

Ni% Fe%rapid cooling, followed by heating to 1200oF, will

1.25-2.5 B a l a ncecause precipita t ion an d reduce the resistance tointergranular at tack. A stabilizing anneal will FORMS-SP EC IFI CATIONS. See Specificat ionrestore the corrosion resistance. Ta ble 2-2.

COMPOSITION RANGE HEAT TREATMENT

C% Mn% S i% P % S % Cr% Annealing: 1200o-1300oF.0-0.08 0-2.0 0.5-1.0 0-0.04 0-0.03 17.0-19.0 Hardening: 1800o-1900oF, cool rapidly.

Tensile strengt h in a nnea led condit ion 117,000Ni% Mo% Cb1% Iron (Fe%)yield, 98,000 psi.9.0-13.0 0-0.5 *10XC -1.1 B ala nceTensile strength in annealed cold drawn 130,000

*10 Times Columbian Content. yield, 115,000 psi.

FORMS-SP EC IFI CATIONS. See Specification TYP ES 403, 410, 416. St eel-Ma rt ensitic Sta inless.Ta ble 2-2. This is a free ma chining type of alloy. B est per-

formance is obtained if heat treated or cold workedHEAT TREATMENTto 180-240 B H N. It is ma gnetic in th e ha rdenedcondition and is not normally used in t he an nealedFull a nneal w rought products 1800o-1900oF, 1condition.hour per inch of thickness 2 hours minimum for

plat e, furna ce cool or a ir cool. Full an nea l ca stingsCOMPOSITION RANGE

1900o-2000oF 30 minutes minimum. St abilizinganneal for service 800o-1500oF, 1500o-1650oF, 1 C% Mn% P % S % S i% C r% Mo% Si%hour per inch thickness, 2 hours minimum for 0.15 1.25 0.06 0.15 1.0 14.0 0.6 0.6plate. St ress relieve af ter fabrication 1300oF .

Fe%Alloy ma y be ha rdened only by cold w ork. B a la nce

2-51

Page 62: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 62/288

T.O. 1-1A-9

F ORMS -S P EC IF IC ATI ON. S ee S pecif ica t ion C OMP OS ITI ON R ANG ETa ble 2-2.

C% Mn% S i% P % S % C r%H E AT TRE ATME NT 0.2 1.0 1.0 0.04 0.03 15.0-17.0

Ni%Anneal: 1500o-1650oF, furna ce cool 50oF per hour

1.25-2.5to 1100oF.Ha rden: 1700o-1850oF, cool ra pidly, oil a nd Fe%quench. B a la nce

Tensile - Yield st rengt h is a s follow s: F ORMS -S P EC IFICATIONS . S ee S pecif ica tionTa ble 2-2.

(1) Annealed - Tensile 75,000 psi, yield 40,000 psi.(2) H ea t Tr ea t ed - Ten sile 110,000 psi, y ield H E AT TR EATME NT85,000 psi.

Type 431 steel must be protected from contamina-(3) Tempered and Drawn - Tensile 100,000 psi,

t ion at furnace temperature by dry inert atmos-yield 85,000 psi. Weldability is poor except by use

phere (organ, helium) or vacuum in the furnaceof low-hydrogen electrodes.

working zones, except t ha t a ir or salt ba th fur-Temper: 400o-1300oF. Avoid 700o-1075oF t em per n a ces ma y be em ploy ed for tem per in g oper a tion s.ra nge. P a r t s sha ll be t ra nsferred from furna ce w orkingTemper: 1300oF for 100,000 psi. zones t o t he oil ba t h w it hin a 30-second int erva lTemper: 1075oF for 120,000 psi. pr ior to quenching. M a ter ia ls in t he solut ion-

Temper: 575o-600oF for 180,000 psi. t rea t ed condit ion (not more tha n 2 percen t segre-gat ed ferrite or aust enite in the microstructure)

TYP E 420. St eel Ma rtensit ic St a inless. This is amay be hardened by the following treat treatment.

medium carbon grade of ma rtensit ic stainlessw h ich in t h e pa s t h a s been in t en sively u sed in t h e HT-200 CO ND I TI ONcutlery industry. It ha s recently proved sat isfac-

Austenitize at 1850o±25oF for 30 minutes, quickly

tory for air w eapon a pplicat ion w here its hightra nsfer from furna ce to oil quenching bat h a t not

strength permits heat treatment for tensileover 100oF followed by refrigera tion at -

strength up to 240,000 psi. In the fully annealed100oF ±10oF for 2 hours, tempering at 550oF ±25oF

condition forma bility of this a lloy a lmost equalsfor 2 hours, air cool, and f inal t emper a t

th e 1/4 ha rd aust enitic sta inless steels. Sh earin g550o

±25oF for 2 hours; or austenitize 1850o±25oF

type opera tions such a s blanking a nd punching arefor 30 minutes, marquench into salt ba th a t 400oF,

not recommended. It ma chines best in condit ionsair cool to room temperature, refrigera te a t -

having approximately 225 BHN.100o

±10oF for 2 hours, temper 550o±25oF for 2

COMP OS ITION RANG E hours, a ir cool, t emper 550oF for 2 hours.

C% Mn% S i% P % S % Cr% H T-125 (125,000 t ensile)0.3-0.4 0-1.0 0-1.0 0-0.04 0-0.03 12.0-14.0

Austenitize at 1850o±25oF for 30 minutes, quickly

Ni% Mo% F e% tra nsfer from furna ce t o oil quench t o ba t h a t not0-0.5 0-0.5 B a la nce over 100oF, t emper 1200o

±25oF for 2 hours, aircool, t emper 1200o

±25oF for 2 hours.FORMS-SP EC IFI CATIONS. See SpecificationTa ble 2-2.

CAUTIONHEAT TREATMENT

Full a nneal 1550o-1650oF one hour per inch of Avoid tempering or holding withinthickness, furnace cool (50oF per hour) to 1100oF. range from 700o to 1100oF.Subcrit ical an neal 1300o-1350oF, 3 hours mini-

H T-115 (115,000 Tensile a nd Yield 90,000 P S I)mum , air cool. Austenit ize 1800o-1850oF oilquench, depending on section size. Heavy sections Hea t C ond A ma terial to 1800o-1900oF for 30 min-should be preheated at 1250oF. Temper 400o- utes, oil quench from furna ce, temper at a temper-1500oF, 3 hours minimum. Tempering bet ween at ure not lower t ha n 1100oF.600o-1000oF is not generally recommended due to

H T-175 (175,000 Tens ile a nd 135,000 Yield P S I)reduced ductility and corrosion resistance.

Hea t C ond A ma terial to 1850o-1950oF, quench inTYP E 431. St eel Ma rtensit ic St a inless. This a lloyoil from furna ce temper at a temperature notis suitable for highly stressed parts in corrosivehigher tha n 700oF.environment.

2 -5 2 Change 1

Page 63: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 63/288

T.O. 1-1A

17-4PH. S t e el , M a r t en si t ic S t a in les s, P r ecipi t a t ion h ou r , a i r cool t o 50o to 60oF w ithin 1 hour, hold H a rdening. Th is st a inless st eel possesses high 50o to 60oF 1/2 hour (cond it ion TO) + 1040o t ost ren gt h a n d good cor ros ion a nd oxid a tion resis - 1060oF , 1-1/2 hour. Age condi t ion A t o condit iontance up to 600oF. RH 950, 1735o to 1765oF, 10 minutes, refrigera te

(condition A 1750o) to -90o to -110oF 8 hours (conCOMPOSITION RANGE

dition R100), + 940o to 960oF, 1 hour. Age condition C of cold rolled sheet or cold drawn wire toC% Cb% Cr% Cu% Mn%condition CH 900, 890o to 910oF for 1 hour.0.07 ma x 0.15-0.45 15.5-17.5 3.0-5.0 1.0 ma xCondition A - 130 to 150 KSI ultimate, 55 KSI

Ni% P % S % S i% Fe% yield.3.0-5.0 0.04 ma x .03 ma x 1.0 ma x B ala nce Condition T - 125 to 145 KSI ultimate 75 to 100

KSI yield.SPECIFICATION: MIL-S-81506Condition RH950 - 200 to 215 KSI ultimate 180

HEAT TREATMENT 190 KSI yield.Condit ion RH 1050 - 180 to 200 KS I u ltima te 150To condition A-1900o

±25oF 30 minutes, air cool orto 185 KSI yield.oil quench below 90oF.Condition C - 200 to 215 KSI ultimate 175 to 18

From condition A to KSI yield.Cond it ion H 900(RH -C 40/47) 900o

± 10oF, Condition CH900 - 240 to 250 KSI ultimate, 2301 hour, air cool. 240 KSI yield.Cond it ion H 925(RH -C 38/45) 925o

± 10oF,

TYP E 440A, 440B, 550C, 440C. St eel Ma rt ensit4 hours, a ir cool.St a inless. These steels are similar except for ca rCond it ion H 950(RH -C 37/44) 950o

± 10oF,bon range, therefore they are grouped since heat4 hours, a ir cool.treat ment requirements are the sam e. TheseCond it ion H 975(RH -C 36/43) 975o

± 10oF,steels are used for cutlery, valves, etc.4 hours, a ir cool.

Cond it ion H 1000(RH -C 35/42) 1000o± 10oF, COMPOSITION RANGE

4 hours, a ir cool.C% Mn% S i% P % S %Cond it ion H 1025(RH -C 35/42) 1025o

± 10oF,440A4 hours, a ir cool.0.6-0.75 max 1.0 max 1.0 max 0.04 max 0.03 maCond it ion H 1050(RH -C 33/40) 1050o

± 10oF,4 hours, a ir cool. Cr% Mo% Fe%Cond it ion H 1075(RH -C 31/39) 1075o

± 10oF, 16.0-18.0 ma x 0.75 ma x B a lan ce4 hours, a ir cool.

C% Mn% S i% P % S % Cr% Mo%Cond it ion H 1100(RH -C 32/38) 1100o± 10oF,

440B4 hours, a ir cool.0.75-0.95 1.0 1.0 0.04 0.03 16.0-18.0 0.75Cond it ion H 1125(RH -C 30/37) 1125o

± 10oF,4 hours, a ir cool.

Fe%Cond it ion H 1150(RH -C 28/37) 1150o

± 10oF,Ba lance

4 hours, a ir cool.C% Mn% S i% P % S % Cr% Mo%

17-7PH . St eel Martensit ic Sta inless (P recipita t ion440C

H a rdening). This sta inless steel possesses good0.95-1.2 1.0 1.0 0.04 0.03 16.0-18.0 0.75

corrosion resistance, may be machined and formedin it s a nn ea led con dit ion , a nd is u sed up t o t em - F e%peratures of 800oF. B a la nce

COMP OS ITION RANG E FORMS -S P E CIFICATIONS . S ee S pecif ica t ionTable 2-2.

A% C% Cr% Mn% Ni%

0.50-1.0 0.10-0.12 16.0-18.0 1.00 6.0-8.0 H E AT TRE ATME NT

S i% P % S % Iron Annea l: 1550o to 1650oF .1.0-5.0 0.045 0.030 B a la nce Temper : 300o-800oF.

Harden: 1850o-1950oF, cool rapidly.SPECIFICATION: See MIL-S-25043.

440A, tensile 270,000 psi, yield 260,000 psi.

HEAT TREATMENT

Condit ion A. Solution annea l 1925o-1975oF, 30minut es per inch of thickness, air cool. Age condi-tion A to condition TH1050, 1375o to 1425oF, 1-1/2

Change 3 2

Page 64: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 64/288

T.O. 1-1A-9

440B , t en sile 280, 000 ps i, y ield 270,000 ps i. C on dit ion C H 900 - 265 K S I ul tim a t e, 260 y ield ,440C , t ensile 285,000 psi, y ield 275,000 psi. ha rdness RC 50.

Welding is not r ecommended. PH 14-8 MO. This alloy (sheet) is similar to PH15-7 MO except it has slightly lower tensile and

15-7-MO. St eel Ma rtensit ic St a inless. This a lloy yield st rength but considerable higher toughnessis a further development of 17-7PH alloy and due an d superior welding chara cterist ics. In genera l

to molybdenum content it can be heat treated to this alloy is unstable during exposure to tempera-high strength at room and elevated temperature tures exceeding 500oF, w hich is a common chara c-(up to 1000oF). The heat treat ment is identical to teristic of precipitation hardening stainless steels.17-7PH and other properties are identical or simi-lar to 17-7PH. FORMS AND CONDITIONS - available - sheet

and s t r ip.FORMS - sheet, str ip, plat e, bars a nd forgings.

Condition A - annealed C cold worker.SP EC IF IC ATION - AMS 5520, AMS 5657.

CHEMICAL CONDITIONCOMPOSITION RANGE

C% Mn% S i% P h% S % Cr%C% Mn% S i% P % S % Cr%

0.02-0-05 1.0 1.0 0.015 1.0 13.50-15.500.09 1.0 1.0 0.4 0.03 14.0-16.0

Ni%Ni%

7.50-9.506.50-7.75

Me% Al% Fe%Mo% A1% Fe%2.0-3.0 0.75-1.50 R em2. 0-3. 0 0. 75-1. 50 B a l a n ce

HEAT TREATMENTHEAT TREATMENT

Annea l t o Condition A, 1800o-1850oF, 30 minutesCondition A. Solution an neal sheet a nd strip,a ir cool. Age conditi on A to SR H condit ions, 1685o

1925o-1975oF, 3 minutes per 0.1 inch thickness, air1715oF, 1 hour, air cool and within 1 hour cool to -cool. Bar and forgings solution anneal 1925o-100oF, 8 hours + a ge 1 hour, air cool. Aging at1975oF, 30 minutes per inch thickness, water940o-960oF or 1040o-1060oF is generally used withqu ench. Age cond ition A to condit ion TH 1050,the higher temperature giving somewha t lower1375o to 1425oF, 1-1/2 hour (a ust enit e condit ion-strength but a ft er better toughness. Age colding), air cool to 50o - 60oF within 1 hour, hold atworked alloy, condition C, 890o-910oF or 1040o-50o - 60oF, 1/2 hour (condi t ion T) + 1040o - 1060oF,1060oF, 1 hour, air cool.1-1/2 hour, a ir cool. Age cond it ion A t o condit ion

RH 950, 1735o - 1765oF, 10 minutes (austenite MECH ANICAL P ROPE RTIES TYPIC ALconditioning), air cool (condition A 1750) ±90o t o

Condition A - 150 KSI ultimate, 65 KSI yield,110oF, 8 hours (cond ition R 100) + 940o to 960oF, 1hardness, RB100 max.hour, a ir cool. Age condition C , sheet cold rolledCondition SRH 950 - 220 KSI ultimate, 190 KSIor wire cold dra wn to condition CH 900, by heat-yield ha rdness RC40.ing 890o -910oF for 1 hour, air cool. TH a nd RH

conditions are a lso used with difference fina l ageCondition SRH1050 - 200 KSI ultimate, 180 KSIhardening temperatures, such as TH1150,yield, ha rdness RC38.RH1050, etc.

This alloy is subject to salt stress corrosion, how-TYPICAL PROPERTIES FOR VARIOUSever, early test indicat e it is superior in thisCONDITIONS:respect to 17-7PH and PH 15-7 MO.

Condit ion A - 130 to 150 KS I u ltima te, 55-65 KSIThis general w elding cha racterist ics is similar to

yield, hardness 90-100. 17-7 PH . Higher toughness ma y be obta ined byCondition T - 125 to 145 KSI ultimate, 75-90 KSIannealing a f ter welding and then heat t rea t ing.yield, hardness 28-30.

Condition TH1050 - 190 to 210 KSI ultimate, 170- 19-9 D L 19-9 DX. These sta inless st eels are not200 KSI yield, hardness RC40-45. heat treatable, but can be hardened to a limitedCondit ion RH 950 - 225 to 240 KSI ultima te, 200- extent by cold working or hot cold working. In225 KSI yield, hardness RC46-48. chemical composition 19-9DL conta ins columbiumCondition R100 - 180 KSI ultimate, 125 KSI yield, which was replaced by a higher molybdenum andhardness RC40. titanium conten in 19-9DX.Condition C - 220 KSI ultimate, 190 yield, hard-ness RC45. CH E MICAL COMP OS ITION OF 19-9D L:

2-54

Page 65: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 65/288

T.O. 1-1A-9

C% Mn% S i% P h% S i% Cr% condit ion S CT 850o, 825o - 875oF. Age to condition0.28-0.35 0.75-1.50 0.30-0.80 0.040 0.030 18.0-21.0 SC T 1000 975o to 1025oF. Double a ge either con-

dition H or condition-L to condition DA, 1350o -Ni% Mo% W% Cb+ Ta Ti% C u%

1400oF, 2 h ours, a ir cool to 80oF and heat to 825o -8.0-11.0 1.0-1.75 1.0-1.75 0.10-0.35 0.10-0.35 0.50

875oF, 3 hours. Thoroughly degreased an d cleanedprior to a nnealing t o avoid harm ful surface reac-Fe%tions and to fa cilita te subsequent pickling. Allow-Ba lancean ce must a lso be made for growt h w hich will

CH EMI CAL COMP OSITION 19-9DX: result from heat t reating. The expansion on agingfrom condition H to set amounts to 0.002 - 0.004C% Mn% S i% P h% S % Cr%inch per inch.0.28-0.35 0.75-1.50 0.30-0.80 0.040 0.030 18.0-21.0

AM-355. Steel - Age Hardening stainless ThisNi% Mo% W% Ti% Cu% Fe%alloy combines high strength a t t emperat ures up8.0-11.0 1.25-2.00 1.0-1.75 0.40-0.75 0.50 B a la nceto 850oF with the corrosive resistance of stainless

HEAT TREATMENT steel. This alloy differs from AM-350 by a lowerchromium a nd a higher carbon content. It pos-B ar an d forgings, 1800o to 2150oF (1/2 t o 1 hou r)sesses good formability in the high temperaturera pid air cool, oil wa ter q uench. Sh eet/str ip, 1650o

annealed condition. Corrosion resistance of thisto 1800oF (1/2 to 1 hour ) ra pid a ir cool. Avoidalloy is slightly lower than that of AM-350.higher temperatur es to prevent resolution a nd pre-

cipitation of carbides.

FORM-SP EC IFI CATIONS. See S pecif icat ion TableCa stings, 1950o to 2050o, 1/2 to 1 hour min imu m, 2-2.air cool.

HEAT TREATMENTSolution Treat : Same as anneal.St ress relief: 1175o to 1225oF (4 hours) air cool.

Anneal t o condition H for m aximum forma bilityThis treatment is applied to hot worked or hot cold

and s ta bili ty .worked material for service up to 1300oF. I t is

Anneal t o condition H: P late a nd forgings a talso a pplied t o cold w orked m at erials immediat ely

1925o-1975oF, 1 hour minimum per inch, wa teraf ter w orking to prevent stress cracking.

quench: sheet and welded tubing, 1850o to 1900oF,Age: Bar and forgings, 1200o to 1400oF, casting

3/4 hour minim um per inch, rapid a ir cool. B a r1575o to 1625oF, 8 hours minimum, air cool.

should not be annealed to condition H unless sub-sequently subjected to forgings. Anneal to Condi-NOTEtion L: 1685o-1735oF ---S heet a nd s tr ip, 3/4 hour

Int ergranula r corrosion m ay occur in per inch, a ir cool; pla te 3/4 hour inch, oil or w a ter

certa in environments un less annea led quench. Condition H plat e, if not subsequentlyat 1800oF, follow ed by r a pid cooling. severely cold formed, sh ould be equa lized beforean nealing to condition L a nd a ging to conditionAM-350. Steel - Age H a rdening S ta inless. ThisSC T. B ar forgings and tubing, 1 hour minimumalloy is one of a series of age hardening steelsper inch thickness, oil or water quench. Equalizewhich combines high strength at temperatures upan d a ge bar for best ma chineability , 1350o-1400oF,to 800oF a nd higher w ith t he corrosion resista nce3 hours, air cool to 80oF ma ximum + 1000o t oof stainless steels.1050oF, 3 hours. Resultin g should be approxi-

COMPOSITION RANGE mately RC38 Subzero cool and age condition L tocondition SCT, cool to -100oF, hold 3 hour mini-C% Mn% S i% P % S % Cr%mum, 850o to 1050oF for 3 hours minimum. Age0.08-0.12 0.5-1.25 0-0.5 0-0.04 0-0.03 16.0-17.0condition SCT 850, 825o to 875oF. Age to condi-

Ni% Mo% N% Fe% tion SCT 1000, 975o to 1025oF. Double a ge condi-4.0-5.0 2.5-3.25 0.07-0.13 B ala nce tion L to condition DA, 1300o to 1450oF 1 to 2

hours, a ir cool to 80oF, 825o to 875oF, 3 hours min-FORM-SPECIFICATION TABL E 2-2.imum. Homogenize sand a nd shell mold cast ings,2000oF, 2-4 hours, air cool up to 1 inch thick, oil orHEAT TREATMENTwater quench, section above 1 inch.

Anneal to condition H - 1900o to 1950oF, 3/4 hourm in im u m p er in ch of t h ick nes s, r a pid a i r cool t o HN M . S t eel - Ag e Ha r d en in g S t a in les s. Th is is a80oF. Annea l to condi tion L - 1685o to 1735oF , 3/4 pr ecipi t a t ion h a rd en in g a u s ten it ic s t eel , w i t h h ig hh ou r min im um , per in ch of t hickn es s, ra pid a ir r upt ur e a n d cr eep pr oper t ies in t h e 1000o-cool to 80oF . S ubzero cool a nd a ge con dit ion L t o 1400oan d not prone to overage at these tempera -condition SCT, cool to 100oF , h old 3 h ou rs m in i- t ur es . I n t h e s olu t ion a nn ea l ed con dit ion it ha s amum + 850o to 1050oF , 3 h ou rs m in im um Ag e t o B r in ell h a r dn es s of 201 m a xim um . I t h a s a low  

2-55

Page 66: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 66/288

T.O. 1-1A-9

ma gnet ic permea bilit y , a nd is suit a ble for t ra ns- C % Cr% Mn% Ni% P % S i% S % Ironformer pa rt s, non-ma gnet ic bolt s, a ircra f t st ruc- 0.30 18.5 3.5 9.5 0.25 0.5 0.025 B a la ncetura l, engine components, shaf ts an d gears. This

FORM-SP EC IFI CATIONS. See Specificat ionma terial is very susceptible to work hardening. ItTa ble 2-2.is somewhat inferior to regular 18cr-8ni stainless

types, however, ma chining requirements a re simi-HEAT TREATMENTlar r equiring heavy posit ive feeds and sharp cut-

ting t ools. Welding is not recommend ed, howeverAnneal 2000o-2150oF, 30 minutes, wa ter quench.brazing may be successfully accomplished by useS ections 5/8 inches thick ma y be air cooled. Theof ora ya cetylene torch a nd furna ce methods, usingoptimum solution treatment for best propertiesan alloy conforming to specification AMS 4755.af ter a ging is approximately 2050oF. Age 1300oF,

COMP OS ITION RANG E 16 hours, a ir cool.

AM355 

F ORM B AR S H E E T

C ondit ion S olut ion Trea t S olut ion Trea t S olut ion Trea t 15 S olut ion Trea t2050oF 30 minut es 2050oF 30 minutes minutes a ir cool 2050oF air cool &

oil quench Wa t er quench a ge 1300

o

F, 16 hrs

Tensile P S I 116,000 145,000 106,000 133,000

Yield P S I 56,000 92,000 55,000 90,000

Hardness

B H N 192 302

RB 87.5

RC 33

16-15-6. Steel - Iron - Chromium - Nickel - Alloy . V57. Steel - Nickel Chromium Sta inless (Austen-This a l loy was deve loped as a rep lacement for 16- i t ic). This a l loy has a good combina t ion of t ens ile25-6 a l loy and con ta ins les s n ickel . However , the and creep rupture proper t ies up to 1500oF a t h ighlow er nick el con t en t is ba l a nced by a dd it ion a l s tr es ses a n d is u sed for som e pa r t s of a i rcr a f t ga sm a ng a nese wh ich a llow s a n in cr ea se in t he nit ro- t ur bin es.gen content that can be retained during melting.

COMPOSITION RANGECOMPOSITION RANGE

A1% B % C% Cr% Mn% Mo% Ni% S i%C% Cr% Mn% Mo% Ni% S i% 0.25 0.008 0.06 15.0 0.25 1.25 25.5 0.550-. 07 15. 0-17. 5 6. 5-8. 5 5. 0-7. 0 14-0-17. 0 0-1. 0

Ti% V% S % P % IronN% P % S % Iron (Fe) 3.0 0.25 0.025 0.025 B a la nce0.30-0.40 0-0.03 .03 B a la nce

FORM. B ar , Forging.FORM. Bar, forging.

SPECIFICATION. None.SPECIFICATION. None.HEAT TREATMENT

HEAT TREATMENTAnneal 1700o-2300oF.

Anneal 1700o-2300oF . Solution treat 2125o-2175oF, air cool, water or oilSolution treat 2125o-2175oF, air cool, water or oil quench, depending on section size. Cold workquench, depending on section size. Cold work (about 20% redu ction) an d a ge (ba r up t o1/2 inch)(a bout 20% redu ction) an d a ge (bar up t o 1-1/2 1200oF-1300oF 2 to 8 hours.inch) 1200o-1300oF, 2 to 8 hours. At a t empera-ture of 1200oF a ten sile of 145,000 a nd yield of At a t em per at ur e of 1200oF a tensile of 145,000100,000 psi is obt a ined. a nd yield of 100,000 psi is obt a ined.

2-56

Page 67: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 67/288

T.O. 1-1A-9

S U P P E R ALLOYS H /L S P E C IFICATION. None.

V36. S teel Cobalt B a se - Ch romiu m-Nickel-Alloy. FORMS. Availa ble in ‘‘as cast condition’’.This is a solid solution - hardening alloy for ser-vice at 1300o-1800oF w here strength a nd corrosion HEAT TREATMENTresista nce is important . Used for guide van es ingas t urbines, a f ter burner par ts and high tempera- St ress relief: 1575o-1625oF, 2 hours , air cool. Age

ture springs. Chief ly furnished in sheet, but may ha rdening: Above 1200oF susceptible to age ha rd-be supplied in billet, bar, forging and wire. ening which increases a lloy str ength but causes

loss in ductility.COMPOSITION RANGE Tensile Strength: As cast, tensile strength 125,000

psi. Rockwell As ca st, RC 38.C% Cr% C1% Ta % Iron% Mn% Mo%0.25-0.33 24.0-26.0 1.5-2.5 0-5.0 0-1.2 3.5-4.5

HAYNES ALLOY NO. 151. Coba lt Ba se CorrosionResista nt Alloy. This alloy may be air melted orNi% S i% W% S % P % C oba ltair cast . I t is used as gas turbine blades and19. 0-21.0 0-1.0 1. 5-2. 5 0-0. 03 0-0. 03 B a l a n cerotors wit hin the hea t ra nge 1200o-1700oF.

SPECIFICATION. None.COMPOSITION RANGE

HEAT TREATMENT

B % C % Cr% Iron% Mn% NThis alloy is primarily solid solution hardened and

0.03-0.08 0.4-0.5 19.0-21.0 0-2.0 0-1.0 0-1.0only sma ll strength increases can be obtained bya ging. Solution treat ment for thick sections 2200o- S i% Ti% W% P % S % Coba lt %2275oF, 1 hour, wa ter quench. Age 1400oF for 16 0-1.0 0.05-0.5 12.0-13.5 0-0.03 0-0.03 B a la ncehours. St ress relieve cold worked alloy 900oF, 2hours. SPECIFICATION. None.

TYPE V36 FORMS. Availa ble as cast ings an d investmentcastings.

FORM S H E E THEAT TREATMENTCondition

S ol Trea t S ol Trea t S ol Trea t This ma terial is generally used in t he ‘‘as cas t ’’15 min + 20%, + 60%, condit ion. The best creep ruptu re properties are2250oF+ cool cool

in t he 1300

o

-1500

o

F range. Solution treat 2170

o

-a ge ra pidly ra pidly 2200oF 1 hour minimum, rapid air cool. This treat-ment reduces tensile properties below 1400oF a n dTensile 147,000 166,000 279,000lowers creep rupture strength.Yield 83,000 127,000 248,000Aging 1400oF 4 hours a ir cool af ter solution t reat-RC 25 --- ---ing, results in higher tensile properties than ‘‘a scast ’’ ma terial, but creep rupture properties a re

W152. St eel. Coba lt Ch romium Tungst en Corro- somewhat lower tha n the ‘‘as cas t ’’ alloy.sion Resista nt Alloy. This is a cast ing alloy gener-ally used in the ‘‘as-cast ’’condit ion. It is used for Hardenability . As-Cast hardness at room tempera-investment cast parts requiring high stress rup- ture RC 33.ture properties at elevated temperat ures, hasexcellent cast ability a nd foundry cha racterist ics. G MR-235. Nickel B a se Corrosive Resista nt Alloy.Primary use has been first-stage turbine vanes. GMR-235 and GMR-235D are nickel based alloysAlterna te Designa tions. Ha ynes Alloy No 152, precipitat ion h ard ening, high temperatur e alloysP WA 653, C F 239. developed for investment cast gas turbine wheels,

buckets and vanes, operating above 1400oF. TheyCOMPOSITION RANGE

are similar to Hastelloy R-235 but contain morealuminum. The composit ion w ith ma ximum a lumi-C% C r% C 1+ TA Iron% Mn% Ni%num and t itanium content is designated GMR-0. 40-0. 5 20. 0-22. 0 1. 5-2. 5 1. 0-2. 0 0-0. 5 0-1. 0235D.

S i% W% P % S % Coba lt0-0.5 10.0-12.0 0-0.04 0-0.04 B a la nce COMP OS ITION RANG E

2-57

Page 68: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 68/288

T.O. 1-1A-9

Solution t reatm ent 1950o-2000oF 1/2 hour, w a terquench. Mat erial treated at higher solution tem-G MR-235 G MR-235Dperature (2200oF) is subject to strain-age cracking.%Final heat t rea tment a f t er fabr ica t ion of sheet andMIN MAX MIN MAXba r depends upon properties desired. To obta inmaximum long time stress-rupture life, solutionA1 2.5 3.5 3.25 4.0treat at 2175o 2225oF, 15 minutes, wat er quench.

B 0.05 0.1 0.05 0.1 Then heat to 2025o-2075oF, hold at temperatureC 0.1 0.2 0.1 0.2for 30 minutes a nd cool in still a ir. To obtainC r 14.0 17.0 14.0 17.0maximum room and high temperature tensileC o 0.1 0.2 0 0strength or short t ime rupture st rength, solutionI ron 8.0 12.0 3.5 5.0treat at 1950o-2000oF hold at temperature for 30Mn 0 0.25 0 0.1minut es a nd a ir cool. Then age at 1385o-1415oFMo 4.5 6.0 4.5 6.0hold at temperature for 16 hours and air cool.S i 0 0.60 0 0.3

Ti 1.5 2.5 2.0 3.0 TYPE HASTEL LOY ALL OY R-235 Ni B a la nce B a la nce B a la nce B a la nce

FORM S H E E TSPECIFICATIONS. None.

Condit ion S ol Trea t S ol Trea tHEAT TREATMENT

Thickness-in 1975

o

F Wa ter 2200

o

F WaterSolution t reatm ent 2050oF 1 to 3 hours, air cool Q uen ch 0.021 Qu en ch 0. 70(GMR 235) Solution treatment 2100oF 2 hours, air

Tensile, Ma x 150,000 150,000cool (G MR-235D). For hea vier sections (of bothps ialloys) temperatures should be increased toYield, Ma x 95,000 95,0002150oF, 2 t o 4 hours, a ir cool. Aging a t 1800oF, 5psi RC-Ma x 27 25hours from t he ‘‘as cas t ’’ condition improves the

stress rupt ure life of th e alloy. These alloys pre-INC ONEL ALLOY 718. St eel Nickel Ch romiumcipitat ion ha rden ra pidly during a ir cooling a ndSt ainless Alloy. This is a relat ively new a lloy a ndaging treatments are usually unnecessary.heat treatment and fabrication procedures are st ill‘‘As-Cast ’’ room t emperat ures ha rdness for bothunder development. It ha s good properties up toa lloys is RC 36 ma ximum . Tensile 115,000 psi1300oF, slow response to age-hardening and goodyield 90,000 psi.ductility from 1200o-1400oF. It is readily weldedForm This ma terial is a vaila ble in w rought form

in either th e an nealed or a ged condition.only, except tha t G MR235 is ava ilable in castform.COMPOSITION RANGE

HASTEL LOY ALLOY R-235. Nickel Ba se Corro-A1% C% Cr% C 1%+ Ta % C u% Mn%sion Resista nt Alloy. This is a nickel base alum i-0. 4-1. 0 0-0. 1 17. 0-21. 0 4. 5-5. 75 0-0. 75 0-0. 50num-tita nium precipita t ion ha rdening alloy. It

possesses high strength up to 1800oF w ith good Mo% Ni% S i% Ti% S % Ironresista nce to oxidation an d overa ging in high t em- 2. 0-4. 0 50.0-55.0 0-0.5 .3-1.3 0-0.03 B a l a n ceperat ure service. This alloy is read ily fa bricat ed

SPECIFICATION. None.an d w elded in the solution t reated condition.

FORMS. Sheet , Str ip , Ba r , Investment Cas t ings .COMPOSITION RANGE

HEAT TREATMENTA1% B % C% Cr% Co% Iron%1.75-2.25 0-0.009 0-0.16 14.0-17.0 0-2.5 9.0-11.0

Both single age and double age treatments may beemployed, however, the latter is preferred for high-Mn% Mo% S i% Ti% P % S %est strength up to 1300oF. Solution treat rods,0-0. 25 4. 5-6. 5 0-0. 6 2. 25-2. 75 0-0. 01 0-0. 03bars an d forgings 1800o-1900oF. Somewha t higher

Ni% creep rupture properties are obtained at theBa lance higher temperatures. Solution treat sheet at

1725oF. Single age annea l alloy at 1325oF 16SPECIFICATION. None. hours, air cool. Double a ge annea l alloy a t 1325oF

8 hours, furnace cool, 20oF per hour to 1150oF a i rFORMS. Sheet , Str ip , P la te , B ar a nd Wirecool or 1325oF 8 hours, furnace cool, 100oF per

H E AT TRE ATME NT hour t o 1150oF, hold 8 hours, air cool. B oth of

2-58

Page 69: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 69/288

T.O. 1-1A-9

t h es e d ou ble a ge tr ea t m en t s a p pea r t o g iv e t h e h a rd en in g res ul ts a n d f or min g becom es di ff i cu lt .sa me result s . D ist or t ion is compa ra t ively low if ma t er ia l is sub-

sequently solution treated and water quenched.TYPE INCONEL ALLOY 718 

Best machinability is obtained in the fully agedcondition af ter either oil or w at er quenching fromsolution treat ing tempera ture. This alloy ma y beHOT ROLLED BAR 0.0500fusion welded if copper and gas backing with a

FORM IN D IA tight hold down is used. St art a nd finish shouldbe made on metal t ab of the sa me thickness usingConditionan inert ga s a tmosphere of 2 helium t o 1 argon.Annea l + AgeFollowing the torch with a water spray reduces the

1800oF 1 hour + 1325oF hardness and produces maximum ductility in theweld and heat affected zones.8 hour* 8 hour** 16 hour

COMPOSITION RANGETh ickn es s - in 0.500Tensile P SI 211,000 204,000 193,000

C% Mn% S i% Cr% Ti% A1%Yield P S I 174,000 173,000 154,000

0. 06-0. 12 0-0. 5 0-0. 5 18. 0-20. 0 3. 0-3. 3 1. 5-1. 8

*Furnace cool at temperature reduction of 100oF Mo% B % Co% Iron% Ni%per hour to 1150oF hold 8 hours a ir cool. 9.0-10.5 0-0.01 10.0-12.0 0-5.0 B a la nce** Furnace cool at temperature reduction of 20oF

SPECIFICATIONS: Noneper hour to 1150oF air cool.

FORMS: Sheet, Strip, Plate, Bar, Wire.UDIMET 700. Highly Alloyed Nickel Base Corro-sion Resista nt . This a lloy ha s higher elevat ed

HEAT TREATMENTtemperature t ensile an d str ess-rupture strengththa n most w rought cobalt or nickel based alloys. For ma ximum formability 1950o-2150oF 30 min-It also ha s superior creep resistance, fat igue utes, water quench or cool from 2150o to 1200oF instrength a nd high oxidat ion resista nce. Welding is 4 seconds maximum.generally not recommended. Solution treat 1950o-2150oF 30 minutes, quench or

air cool.COMPOSITION RANGE

Heat treatment for high short t ime strength: Solu-tion treat 1950oF 30 minutes, cool to 1200oF in 4A1% B % C% Cr%seconds maximum + 1400oF, 16 hours.3.75-4.75 0-025-0.035 0.03-0.1 14.0-16.0Hea t t reat for good ductility a nd high creep rup-

Co% C u% Iron Mn% Mo% S i% ture str ength, solution t reat 2150oF 30 minutes +17.0-20.0 0-0.1 0-4.0 0-0.15 4.5-6.0 0-0.2 1650oF 4 hours. Ha rdenability : Alloy must be

water quenched to retain soft solution treatedTi% Zr% S % Ni%conditions.2.75-3.75 0-0.06 0-0.015 B a la nce

TYPE RENE 41 SPECIFICATIONS. None

FORMS. Bars, Billets , Castings, ForgingsFORM ALL

HEAT TREATMENT

Condit ion 2150oF a ir 2150oF wa t erSolution annealing for castings 2075o-2125oF 2cooled quenchedhours a ir cool.

Solution annealing for forgings 2125o-2175oF 4 Tensile 195,000 130,000hours a ir cool. Yield 160,000 65,000

Solution treat. 1950o-2000oF 4 to 6 hours, air cool. Rockw ell RC43 RB 93Int ermediat e aging 1535o-1565oF 24 hours air cool. HardnessFina l aging 1385o-1415oF 16 hours air cool.Hardens by aging and cold working.

NICR OTUNG . Nickel B ase Corrosion Resista ntRE N E 41. N ick el B a s e Hea t Tr ea t a b le S t a in les s Al loy . Th is is a n ick el b a se inves t men t ca s t in gAlloy . This a l loy possesses except ional mechanica l a l loy which is s t rengthened by addit ion of cobalt ,properties at temperatures up to 1800oF . I t ca n be a lu min um a n d t it a niu m. I t h a s h ig h cr eepformed and a lso we lded in the annea led condit ion . s t reng th and exce llen t ox ida t ion res is t ance in theI f cooled a t a slow er ra t e t ha n specif ied , e.g. in h igh t em per a tu re r a ng e 1500o-1800oF combinedless tha n 4 seconds from 2150oF to 1200oF, a ge w it h good room tempera ture st rength .

2-59

Page 70: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 70/288

T.O. 1-1A-9

COMP OS ITION RANG E e. The st ruct ure of the steel t o be ma chined.

A1% B % C% Cr% C o% 2-77. The cut t ing tool angles (back rake, s ide3.75-4.75 0.02-0.08 0.08-0.13 11.0-13.0 9.0-11.0 cleara nce, front clear an ce, a nd side ra ke) ar e

highly important in th e machining of metals . TheTi% W% Zr% Ni%

ran ge of values based on general pra ctice for t he3.75-4.75 7.0-8.5 0.02-0.08 B ala nce

machining of steel and steel alloys, are as follows:

SPECIFICATIONS. Nonea . Ba ck r ake ang le, 8-16 degrees.

FORMS. Investment castings.b . S ide r ake ang le , 12-22 degrees.

HEAT TREATMENTc. Front cleara nce angle , 8-13 degrees .

Hea t t reatm ent is not recommended for this alloy.d . Side clearance angle , 10-15 degrees .This material has ‘‘as-cast ’’ ha rdness of RC 38-40.

NIMONI C 105. Nickel-Coba lt-Ch romium Corro- 2-78. Regard less of the ma ter ia l of wh ich thesion Resista nt Alloy. This alloy ha s excellent cutt ing tool is ma de, the cutt ing a ction is t heresista nce to creep at very high temperat ures. It sa me. The main dif ference is the cutt ing speed.is designed for use as turbine blades a nd rotors The carbon-steel tool cut s at low speed. The high-used in ga s turbines. Corrosion resista nce is good speed tool cuts at twice the speed of carbon-steel,an d resistance to oxidation under repeated hea ting the cast alloys at twice the speed of high-speed

a nd cooling is very g ood. steel, and the sintered carbides at twice that ofthe cast a lloys. The cutt ing speeds listed in Ta ble

COMPOSITION RANGE2-4 are approximate speeds using high-speed steeltools, and ar e to be used only as a basis fromA1% C% Cr% Co% C u% Iron%which proper speeds for a part icular pa rt m ay be4.2-4.8 0-0.2 13.5-16.0 18.0-22.0 0-0.5 0-1.0calculat ed. These speeds are bas ed on SAE 1112

Mn% Mo% S 1% Ti% Ni% steel, which is assigned a machinability rat ing of0-1.0 4.5-5.5 0-1.0 0.9-1.5 B a la nce 100%. In order to obta in an a pproxima te sta rt ing

speed for different steels, select the type of opera-SPECIFICATION. Nonetion, the width, depth or diam eter of cut an d

FORMS. Sheet , Str ip , Ba r . obtain the recommended cutting speed for SAE1112 from Ta ble 2-3 then refer to Ta ble 2-4 for t he

HEAT TREATMENT percent r at ing of the meta l to be machined, andmultiply the SFM value from Ta ble 2-5 by the ra t-For maximum stress-rupture life in range 1560o-

ing in Ta ble 2-4. The result is th e recommend ed1740oF, fully heat treat solution treat , and doublesurface feet per minute (SFM) for the cutting oper-age as follows: Solution treat 2102oF 4 hours, airat ion. For a known diam eter and surface feet percool. Double ag e 1922oF, 16 hours, air cool andminute (SFM) be used for an operation, the corre-1526oF, 8 hours, air cool. Where stress ruptur esponding revolution per minute (RPM) can bestrength above 1562oF is not th e importa nt prop-obtained from Ta ble 2-5.erty, but t ensile strength, elonga tion and impact

strength up to 1292oF is desired, the following2-79. The term cut t ing feed is used to express

heat treatment is recommended.the axial distance the tool moves in each revolu-tion. A course feed is usually used for roughingSolution treat 2104oF, 4 h ours, a ir cool.operations, and a f ine feed for f inishing opera -Age 1562oF, 16 hours, air cool.t ions. In general, the feed rema ins the same for

2-75. MACHINING OF STEELS (GENERAL). different cutting tool steels, and only the speed ischan ged. Approxima te cutt ing feeds a re listed in2-76. There are f ive bas ic factors a f fect ing

Ta ble 2-3. For tool corrections wh en impropermachinability as related to steel:machining on an operation is encountered, refer to

a . The capac it y and r ig id i t y of the mach ine Ta ble 2-6 for recommended checks.tool.

2-80. The use of a proper coolant (cut t ing f luid)b. C ut ting f luids. often results in an increase of cutting speed for

the same tool life, and also acts as a lubricant giv-c. Design compos it ion and hardness of theing better cutt ing action and surface f inish. Rec-cutting tool.ommended cutt ing f luids for steels are lard oil,mineral oils, sulphurized oils, and soluble or emul-d . Cut t ing condit ion w i th respect to feeds andsifiable oils.speeds.

2-60

Page 71: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 71/288

T.O. 1-1A-9

Table 2-3. Cutt in g Speeds and Feeds for SAE 1112 Using Standard H igh Speed T ools 

TOOL S IZE OF WID TH OR D E P TH S U RF AC E FE E D

NAME H OLE , IN. OF C U T, IN. FP M IN./RE V

Form -- Widt h - 0.500 165 0.0025

Circula r Widt h - 1.000 160 0.0020

or D ovet a il Widt h - 1.500 160 0.0018

Widt h - 2.000 155 0.0015

Widt h - 2.500 150 0.0012

Tw ist 0.250 105 0.0045

D rills 0.500 105 0.005

0.750 115 0.006

1.000 115 0.007

1.250 120 0.008

B ox D ept h - 0.125 165 0.007

Tools D ept h - 0.250 160 0.0065

B la de D ept h - 0.375 155 0.0055

D ept h - 0.500 150 0.0045

Threa ding Over 25 P it ch 30-40

a nd Ta pping 15 t o 25 P it ch 20-30

Less t ha n 15 P it ch 15-20

H ollow 0.062 150 0.010

Mills 0.125 140 0.008

0.187 135 0.007

0.250 130 0.0065

Rea mers U nder 1/2″  145 0.007

Over 1/2″  145 0.010

Cut Of f Widt h - 0.062 165 0.002

Widt h - 0.125 175 0.0025

Widt h - 0.187 180 0.0025

Widt h - 0.250 190 0.003

Tab le 2-4 . M ach inab i l i t y Rat ing of Var ious M eta ls 

S AE

D E S IG NATION RATING % B RINE LL H ARD NE S S

1010 50 131-170

1015 50 131-170

1020 65 137-174

1022 70 159-192

1025 65 116-126

1035 65 174-217

1040 60 179-229

1045 60 179-229

1050 50 179-229

1055 55 192-197

1060 60 183-201

2-61

Page 72: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 72/288

T.O. 1-1A-9

Table 2-4. M achinabi l i ty Rat ing of Various M etals - Cont inued 

S AE

D E S IG NATION RATING % B RINE LL H ARD NE S S

1070 45 183-241

1080 45 192-229

1095 42 197-248

1112 100 179-229

1117 85 143-179

1137 70 187-229

2317 55 174-217

2330 50 179-229

2340 45 187-241

2515 30 179-229

3115 65 143-174

3140 55 187-229

3310 40 170-229

4037 65 170-229

4130 65 187-229

4135 64 170-229

4137 60 187-229

4140 66 179-197

4150 50 187-235

4337 50 187-241

4340 45 187-2414615 65 174-217

4620 62 152-179

4640 55 187-235

5210 30 183-229

6150 50 197

8615 67 170-217

8617 63 170-217

8620 60 170-217

8630 65 179-229

8640 60 179-229

8735 55 179-229

8740 60 179-229

9260 45 187-255

9262 45 187-255

9310 40 207-217

2-62

Page 73: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 73/288

T.O. 1-1A-9

Tabl e 2-5. Conversion of Surface Feet Per M inu te (SFM ) To Revoluti ons Per M in ute (RPM ) 

D IAME TE R S U RF AC E FE E T P E R MINU TE

IN INC H E S 10 15 20 25 30 40 50 60 70 80 90 100 110

1/16 611 917 1222 1528 1823 2445 3056 3667 4278 4889 5500 6111 6722

1/8 306 458 611 764 917 1222 1528 1833 2139 2445 2750 3056 3361

3/16 204 306 407 509 611 815 1019 1222 1426 1630 1833 2037 2241

1/4 153 229 306 383 458 611 764 917 1070 1222 1375 1528 1681

5/16 122 183 244 306 367 489 611 733 856 978 1100 1222 1345

3/8 102 153 204 255 306 407 509 611 713 815 917 1010 1120

7/16 87 131 175 218 262 349 437 524 611 698 786 873 960

1/2 76 115 153 191 229 306 382 458 535 611 688 764 840

9/16 68 102 136 170 204 272 340 407 475 543 611 679 747

5/8 61 92 122 153 183 244 306 267 428 489 550 611 672

11/16 56 83 111 139 167 222 278 333 389 444 500 556 611

3/4 51 76 102 127 153 203 255 306 357 407 458 509 560

13/16 47 71 94 118 141 188 235 282 329 376 423 470 517

7/8 44 65 87 109 131 175 218 262 306 349 393 436 480

15/16 41 61 81 102 122 163 204 244 285 326 367 407 448

1 38 57 76 96 115 153 191 229 267 306 344 382 420

1 1/8 34 51 68 85 102 136 170 204 238 272 306 340 373

1 1/4 31 46 61 76 92 122 153 183 214 244 275 306 336

1 3/8 28 42 56 69 83 111 139 167 194 222 250 278 306

1 1/2 25 38 51 64 76 102 127 153 178 204 229 255 280

1 5/8 24 35 47 59 70 94 117 141 165 188 212 235 259

1 3/4 22 33 44 55 65 87 109 131 153 175 196 218 240

1 7/8 20 31 41 51 61 81 102 122 143 163 183 204 224

2 19 29 38 48 57 76 95 115 134 153 172 191 210

2 1/4 17 25 34 42 51 68 85 102 119 136 153 170 187

2 1/2 15 23 31 38 46 61 76 92 107 122 137 153 168

2 3/4 14 21 28 35 42 56 69 83 97 111 125 139 153

3 13 19 25 32 38 51 64 76 89 102 115 127 140

DIAME TE R S U RF AC E FE E T P E R MINU TE

IN INC H E S 120 130 140 150 160 170 180 190 200 225 250 270 300

1/16 7334 7945 8556 9167 9778 10390 11000 11612 12223 13751 15279 16807 18334

1/8 3667 3973 4278 4584 4889 5195 5500 5806 6111 6875 7639 8403 9167

3/16 2445 2648 2852 3056 3259 3463 3667 3871 4074 4584 5093 5602 6112

1/4 1833 1986 2139 2292 2445 2597 2750 2903 3056 3438 3820 4202 4584

5/16 1467 1589 1711 1833 1956 2078 2200 2322 2445 2750 3056 3361 3667

3/8 1222 1324 1436 1528 1630 1732 1833 1935 2037 2292 2546 2801 3056

2-63

Page 74: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 74/288

T.O. 1-1A-9

D IAME TE R S U RFACE F E E T P E R MINU TE

IN INCH E S 120 130 140 150 160 170 180 190 200 225 250 270 300

7/16 1048 1135 1222 1310 1397 1484 1572 1659 1746 1964 2183 2401 2619

1/2 917 993 1070 1146 1222 1299 1375 1451 1528 1719 1910 2101 2292

9/16 815 883 951 1019 1086 1154 1222 1290 1358 1528 1698 1867 2037

5/8 733 794 856 917 978 1039 1100 1161 1222 1375 1528 1681 1833

11/16 667 722 778 833 889 945 1000 1056 1111 1250 1389 1528 1667

3/4 611 662 713 764 815 866 917 968 1019 1146 1273 1401 1528

13/16 564 611 658 705 752 799 846 893 940 1058 1175 1293 1410

7/8 524 567 611 655 698 742 786 829 873 982 1091 1200 1310

15/16 489 530 570 611 652 693 733 774 815 917 1019 1120 1222

1 458 497 535 573 611 649 688 726 764 859 955 1050 1146

1 1/8 407 441 475 509 543 577 611 645 679 764 849 934 1019

1 1/4 367 397 428 458 489 519 550 581 611 688 764 840 917

1 3/8 333 361 389 417 444 472 500 528 556 625 694 764 833

1 1/2 306 331 357 382 407 433 458 484 509 573 637 700 764

1 5/8 282 306 329 353 376 400 423 447 470 529 588 646 705

1 3/4 262 284 306 327 349 371 393 415 437 491 546 600 655

1 7/8 244 265 285 306 326 346 367 387 407 458 509 560 611

2 229 248 267 287 306 325 344 363 382 430 477 525 573

2 1/4 204 221 233 255 272 289 306 323 340 382 424 467 509

2 1/2 183 199 214 229 244 260 275 290 306 344 382 420 458

2 3/4 167 181 194 208 222 236 250 264 278 313 347 382 417

3 153 166 178 191 204 216 229 242 255 286 318 350 382

Tab le 2-6 . Tool Correct ion Char t 

A. TOOL C H ATTE R

Ch eck: 1. Tool overha nd (reduce to m inimum )

2. Work Su pport (elimina te vibrat ion)

3. Nose radius (too large a ra dius may cause cha tter)

4. Tool cleara nce (be sure end cutt ing edge angle is suff icient )

5. Feed (increase feed if too light a feed has tendency to rub ra th er tha n cut)

6. Tool load (vary side cutting edge an gle to correct im proper load)

7. Ch ip brea ker (wid en breaker if chips a re too tigh t.)

2-64

Page 75: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 75/288

T.O. 1-1A-9

Table 2-6. Tool Correct ion Chart - Cont in ued 

B . C HI P P ING OF CU TTI NG E D G E

Check: 1. Edge sharpness (Hone or chamber slightly)

2. Ch ip B reaker (w iden breaker if tight chip ca uses chipping)3. Speed (Increa se)

4. Coolant (Hea ting a nd cooling of tip ma y cause chipping)

C . R AP I D TOOL WE AR

Ch eck: 1. Feed (Increas e)

2. Speed (Low a nd excessive speeds ca use tool wea r)

3. Relief a ngles (clea ra nce ma y not be suff icient )

4. Nose ra dius (decrease size)

D . U N S ATI S F AC TO RY F I NI S H

Check: 1. Speed (rough finishes can be eliminated by increasing speed)

2. Nose rad ius (too large a nose radius mat s finish)

2-81. M AC H I NI NG C OR ROS I ON RE S I STI NG d esig na t ed by a su ff ix t o t ype n um ber su ch a s 430S TE E L. F or S e. E xcept ions a re t ypes 416 a nd 303.

2-82. Th e cor rosion r esist in g st eels, es pecia lly 2-83. F or com pa r is on a n d a s a g en er a l g uid e t ot h e 18-8 g ra d es , a r e m or e d if f icu lt t o m a ch in e t h e m a ch in in g ch a ra ct er is ti cs of fr ee ma ch in in gt ha n t he ca r bon st eels a nd most ot her m et a ls. scr ew s tock gr a de B 1112 a s a n 100% m a ch in a bleEven t hough they ar e more diff icult to ma chine, ‘‘norm.’’ This ta ble is only intended a s a sta rt ingthe s ame genera l methods a re used w i th modi f ica- poin t and is not in tended to rep lace any in forma-t ion/compensa t ion for the individua l charac ter is- t ion accumula ted through exper ience or othert ics of ea ch ty pe or gr a de. To im pr ov e m a ch in in g a v a ila b le d a t a .

characteristics of some types, their chemical con-tent is modif ied by adding selenium (Se) and sul-fur (S). The modified alloys which are usua lly

Tabl e 2-7. General M achini ng Compar ison of Corr osion Resisti ng Steel T o Fr ee M achini ng Screw Stock B1112 

MACH INAB ILITY MACH INAB ILITYG RAD E /TYP E RATING G RAD E /TYP E RATING

G roup I 430F 80% G roup I I I 420 45%

416 75% 431 45%

420F 70% 440 45%

303 65% 442 45%

446 45%

347 40-45%

G roup I I 403 55% G roup IV 302 40%

410 50% 304 40%

430 50% 309 40%

440F 50% 316 40%

2-65

Page 76: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 76/288

T.O. 1-1A-9

2-84. I n m a ch in in g of t he cor ros ion r es is tin g (18-41) a n d Moly bd en um -Tu ng st en Ty pe M3 (6-6-s teel s, dif f icu lt y w il l b e exper ien ced fr om s eiz in g, 3).ga lling an d string ing. To overcome th ese problems

b . F or m e dium r u n s a t a p pr ox im a t el y 25%requires control of speeds, cutting tools, and lubri-high er s peed, us e Tung st en-Coba lt Type T5 (18-4-cant s. The follow ing general pract ices are recom-2-8) and Tungsten-Cobalt Type T4.mended for sh a ping/grindin g cutt ing t ools, equip-

ment, etc., for cutting corrosion resisting steel:c. For long product ion runs a t h igh speed , useTungsten Carbides. Cutting tool of these alloys cana . Select tools of proper a l loy/type and keep

be used a t a pproximat ely 100%fa ster speeds tha ncutting edges sharp, smooth, free of burrs, nicksthe Tungsten-Cobalt type.and scratches.

b . Avoid overhea t ing cu t t ing tool when grind-NOTEing to prevent surface and stress cracking.

Some types of tool steel are availablec. Gr ind tools w i th generous lip r ake and in ra w st ock in accorda nce with Fed-

with ample side and front clearance. eral S pecif icat ions, see paragraph 7-4.Prior to at tempting local manufactured . Speeds a re cr it ica l in mach in ing st a in less;of cut tin g tools, facilit ies/equipm entselect speed about 50%slower than those used formust be ava ilable to properly heatcarbon steels as a start ing point .trea t . In ad dit ion, from an economic

e . In genera l , use s low speeds and heavy feed standpoint , it is usually advisable toto reduce effect of work ha rdening. Avoid riding of obta in most cutt ing t ools prefinishedtool on work and intermittent cutt ing when to size, etc. , and heat treated.possible.

2-86. TU RN I NG O F THE CO RROS I O Nf. Apply proper lubr icant/coolant to cut t ing RESISTING STEELS.

tool to prevent overheating.2-87. Tools for turning the corrosion steels

g . Suppor t cu t t ing tool r ig id ly near work to should be ground w ith a heavy side ra ke cleara nceprevent lash an d other difficulty from use of heavy for maximu m cut freedom. The upper surfa ce ofcutting feeds. the t ool should be f inished w ith a f ine wheel or

hand stoned to prevent galling. For chip disposal2-85. Cut t ing Tools for Machining Corros ionor breakage a chip grove is usually necessaryResisting S teels. Selection of cuttin g tool is impor-except with the free ma chining grades. In a ddi-tant for machining stainless due to tough machin-tion, the chip breakage is a safety precaution toing chara cteristics. The following is a recom-prevent difficulty and hazards in breaking themended guide for selection of tools:expelled cutt ing. Do not allow t ools to become dull

a . F or gen er a l m a ch in in g a n d s hor t r un s u se t o pr ev en t su rf a ce h a rd en in g fr om ru bb in g a n dh ig h speed t ool st eel s s uch a s Tu n gs t en Ty pe T1 h a r d spot s w h ich a r e di ff i cu lt t o rem ove.

Tabl e 2-8. Suggested Cutt ing Speeds and Feeds 

ALLOY FE E D INC H CU TTING S P E E D S U RFACE TOOLTYP E /G RAD E 1/ FT.P E R MIN OP E R MATE RIAL

302, 304, 309, 0.020-0.040 20-40 Rough H igh S peed310, 314, 316 S teel

0.008-0.015 50-80 Finish H igh S peedSteel

0.020-0.040 40-60 Rough Tungst en-Cobalt

0.008-0.015 90-110 Finish Tungst en-Cobalt

0.010-0.030 150-200 Rough C a rbide

2-66

Page 77: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 77/288

T.O. 1-1A-9

Table 2-8. Suggested Cut ti ng Speeds and Feeds - Continu ed 

ALLOY F E E D INCH C U TTING S P E E D S U RFAC E TOOLTYP E /G RAD E 1/ FT.P E R MIN OP E R MATE RIAL

0.008-0.018 150-300 Finish Ca rbide

420, 431, 440, 0.015-0.040 20-40 Rough H igh S peed442, 446, 347, S t eel321

0.008-0.018 55-90 Finish H igh S peedSteel

0.015-0.040 40-80 Rough Tungst en-Cobalt

0.008-0.018 100-130 Finish Tungst en-Cobalt

0.015-0.030 165-220 Rough Ca rbide

0.005-0.015 165-330 Finish Ca rbide

430F, 416 0.015-0.040 30-60 Rough H igh S peedSteel

0.008-0.018 75-120 Finish H igh S peedSteel

0.015-0.040 60-105 Rough Tungsten-Cobalt

0.005-0.015 135-180 Finish Tungst en-Cobalt

0.010-0.030 225-300 Rough Ca rbide

0.005-0.015 225-450 Finish Ca rbide

420F 0.015-0.050 25-55 Rough H igh S peedSteel

303 0.005-0.015 65-105 Finish H igh S peedSteel

0.020-0.050 50-90 Rough Tungst en-Cobalt

2-67

Page 78: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 78/288

T.O. 1-1A-9

Tabl e 2-8. Suggested Cut tin g Speeds and Feeds - Contin ued 

ALLOY FE E D INC H CU TTING S P E E D S U RFACE TOOLTYP E /G RAD E 1/ FT.P E R MIN OP E R MATE RIAL

0.005-0.015 100-155 Finish Tungst en-

Cobalt

0.010-0.030 175-240 Rough C a rbide

0.005-0.015 195-350 Finish C a rbide

NOTE: 1/Feeds cited a re based on turn ing 1 inch stock or larger. Feeds for sma ller sizes should bereduced proportionally to size of material being turned.

Tab le 2-9 . Tool Ang les - Turn ing 

NOTE 200-240) for best ma chinin g. Another fact orrequiring consideration in ma chining st ainless isIn grinding chip breakers, allow forhigh co-efficient of thermal expansion which willchip to clear work or rough finish willnecessitate adjusting (slacking off) centers asresult .mat er ia l heats up.

2-88. The sof t er condit ion of s ta inless is not nec-essarily the easiest to cut . It is generally prefera -ble that material be moderately hardened (Brinell

2-68

Page 79: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 79/288

T.O. 1-1A-9

2-89. Th e r ecom men ded cu tt in g speed s, t ool su ccessively on a lt er na t e s id es a n d h a lf t hea ngles a nd feeds for tur nin g cor rosion resist in g bot tom .steel are cited in Tables 2-8 and 2-9.

2-94. Cut te r lands should be ground to na r row 2-90. M I LL I NG CO RROS I O N RE S I S TI N G width (0.020 to 0.025) with clearance (3o-10o pri-STEE L. The same genera l procedures/equipment ma ry a ngular) behind cutt ing lip to reduce fric-ar e used in w orking sta inless as t hose used with tiona l hea t resulting from rubbing. The exact

carbon steel. H owever more power a nd rigid sup- am ounts the land is ground w ill depend on diam-port of tool is required to accomplish cutting due eter of cutter, mat erial ha rdness, grade, etc. How-to inherent st rength a nd toughness of the va rious ever, in grinding t he lands, car e should be ta kensta inless a lloys. to avoid unnecessary weakening of support for cut-

ting edge. As a further measure aga inst rubbing,2-91. In mil l ing the corros ion res is t ing s teel , dif-

a secondary clearance of 6o-12o s t a r t ing a t theficulty will be experienced from heat build-up.

back of the land is recommended. On side cutter,Heat conduction of the chromium-nickel grades is

an gular cleara nce of 3o to 10o to avoid frictionala bout 50%slower tha n the carbon steels. This

heat an d rubbing is recommended.problem can be controlled in most cases by adjust-ing cutting speeds, tool angles, method of grinding,and use of proper lubricants in adequate quanti-

CAUTIONties. In close tolera nce work, contr olling of hea tbuild-up is of utmost importance to meet dimen-

B efore sta rtin g opera tion/equipment ,

siona l requirements. carefully check for proper set up,safety, r igid support of work and cut-2-92. Cut ters for Mill ing . High speed tool steelters, running condition of equipment,is used for most milling on sta inless. The oth era nd f low of coolan t/lubricat ion. Oncegrad es are used under certain conditions, such ascutt ing is sta rted, it should be car riedcemented carbides; however, capacity of equipmentto completion to a void the ef fects ofand cost of tooling for specific uses requireschanges in meta l temperature. Nat u-consideration.rally the continuous operation will

2-93. All the sta ndard cut ter des igns used for depend on satisfactory operation ofcutt ing carbon steel can be used t o cut sta inless equipment a nd other fa ctors.but preferred design is those with helical (spiral)t eet h . Th e u se of h el ica l cu t t er m in im iz es vibr a - 2-95. Th e r ecom m en d ed cu t t in g s peed s, tool s,t ion and chat ter especia l ly when cut ter/cut exceeds angles, and feeds for mill ing are ci ted in tables1 inch. Chip removal a nd loading of cutter can be 2-10 a nd 2-11. The informa tion in these ta bles is

a ided when mil ling s lot s by s t aggering teeth to cu t on ly provided as a s t a r t ing poin t , or a s a gu ide.

Table 2-10. Suggested M il l in g Cutt ing Speeds and Feeds 

FE E D INCH S P E E DALLOY TYP E /G RAD E 1/ S FP M TOOL MATE RIAL

301, 302, 304, 309, 0.002-0.005 35-70 H igh S peed S t eel310, 314, 316, 321,347, 17-4P H , 17-7P H ,420, 431, 440, 442, 0.002-0.007 30-95 H igh S peed S t eel446

403-410, 430 0.002-0.008 35-90 H igh S peed S t eel

440F 0.002-0.008 35-70 H igh S peed S t eel

303 0.002-0.008 50-100 H igh S peed S t eel

430F, 416 0.002-0.006 50-130 H igh S peed S t eel

420F 0.002-0.006 35-80 H igh S peed S t eel

1/Use heavy feeds for rough cuts an d light feeds for f inishing.

2-69

Page 80: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 80/288

T.O. 1-1A-9

Table 2-11. Suggested Tool Angles - Mil l in g 

TOOL MATERIALTOOL ANG LE S H IG H S P E E D S TE E L CE ME NTE D CARB ID E /C ALLOY

Ra ke Ra dia l 1/ 10o-20o Use lower angle

Ra ke Axia l 1/ 30o-50o Use lower angle

C lea ra nce 4o-8o Approximately same

La nd Widt h 1/64″ -1/16″  Approximately same

1/Saws, form relieved cutters, and miscellaneous profile cutters, etc., are sometimes usedwith rake angle as low as 0 degrees.

2-96. Lubrica t ion for Mill ing. The lubr ica t ion ofTable 2-12. Dr i l l ing Speeds for Corrosion Resist ing Steel 

milling cutter is very important to control genera-tion of heat wh ich is considerable in cutt ing a llgrades of stainless, and to prevent seizing of chips S P E E D S F P Mto cutt ing edges. The cutting oils used should be G RAD E TYP E (AP P ROX)applied in la rge qua ntit ies directly on th e cutter

a nd zone of cut. The sulphurized oils diluted to 301, 302, 304, 310 20 - 40desired viscosity w ith pa raf f in oil are usua lly 303 40 - 80satisfactory. 309, 316, 321, 347 30 - 50

403, 410 35 - 752-97. D RI L LI N G CORROS I O N RE S I S TI N G416, 420F, 430F 60 - 95STEEL. High speed s tee l dr il ls a re commonly420 AB & C 20 - 40used for drilling sta inless. Special types a re used442, 446 30 - 60for drilling grades (420, 440, etc.) that are abrasive

due to high carbon content. Speeds for drilling thehigh car bon ty pes ar e usua lly red uced 25-50%o in NOTEcomparison to the other grades.

Do not let drill ride on work to pre-vent work hardening and heat da m-2-98. Dril ls for use with the corros ion res is t ingage to drill . On lar ger diam eter drillssteels ar e prepared wit h different cutt ing a nglesuse chip curling grooves to help expelth an u sed with ca rbon steel. Dr ill point/tips for

an d prevent chip accumulat ion inuse with the chromium-nickel grades are usuallyarea of hole being drilled.ground with 135o-140o (included) angle and 8o-15o

lip cleara nce. The webb support for the point2-100. Lubrica t ion for Dr i l ling Sta inless . The

should be as heavy as possible; however, thinningrecommended lubrication for general use and light

of the webb at the point will relieve point pres-drilling is soluble oil, and for heavy work,

sure. When drilling the free ma chining 400 seriessulphurized mineral or fat ty oils . Ut ilization of

grades the angle is reduced to 118o-130o. For gen-adequate lubrication/coolant is of utmost impor-

eral illustration of point designs see Fig ure 3-2.tance in drilling stainless due to poor heat conduc-tion of this material.2-99. Speeds used for dr i l ling the corros ion

resisting steels should be closely cont rolled t o pre-2-101. RE AM I NG CO RROS I O N RE S I S TI N G

vent ha rdening of meta l an d excessive drill dam-STEE L. The recommended reamer for the corro-

a ge from hea t. For suggested drilling speed usingsion resist ing steels is the spira l f luted type which

high speed steel drill bits, see Ta ble 2-12.is ma de from high speed st eel/carbide tipped.

These spira l f luted rea mers a re used to help alle-viate chatter and chip removal that are associatedwith th e s t ra ight f luted reamers .

2-102. Due to the work hardening chara cter is t icsof the corrosion resisting steel, it is advisable toleave sufficient st ock to insure that cutt ing w illoccur behind the work ha rdening surface result ingfrom drilling. The recommended material to be leftfor reaming is 0.003-0.007 inch, and feed perrevolut ion sh ould b e 0.003-0.005 for holes u p to 1/2

2-70

Page 81: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 81/288

T.O. 1-1A-9

in ch a n d 0.005-0.010 for r ea m er s u p t o 1 in ch t a ps for sm a ll holes . F or in st a n ce m od if i ca t ion ofdiameter. ta ps can be a ccomplished by grinding longitudina l

grooves along the lands, omission of cutting edges2-103. Reamers for cut t ing sta inless should have

on alternate threads and relieving cutt ing edgesa 26o-30o s tar t ing chamfer with a s l ight lead angle

will reduce binding an d frictiona l dra g. Thesebehind the chamfer of 1o-2o for a bou t 1/8-3/16 in ch

modificat ions w ill also aid in distribution of lubri-on the land t o reduce initia l shock of cuttin g. The

cation to cutt ing a rea, provide addit iona l cleara nceland should be ground w ith a cleara nce of 4

o

-7o

for chips and compensate for the swelling which is(and width should not be reduced below 0.010-

encountered with t he sof ter temper material. The0.012 inch) to reduce rubbing and frictional heat.

modification is usually accomplished as follows:2-104. Speeds for reaming wil l vary according to

a . Long itud ina l grooves a re g round down thetype of mat erial being cut. The recommendedcenter of each la nd a bout 1/3 to 1/2 th rea d dept hspeed for reaming types 301, 302, 304, 316, 321,a nd 1/3 to 1/2 appr oxima tely of lan d w idt h.347, 403 and 410 is 20 - 75 surface feet per min-

ute; for 430F, 420F, 416, 440F and 303 --35 - 100b. Cut t ing edges a re rel ieved by gr ind ing a 2o-S FP M; a nd for 309, 310, 430, 431, 440, 442, 426 -

5o radial taper on each land.20-60 SF P M. Tria l should be conducted to deter-mine best cutting for indivldua1 operations.

c. L a n d s a r e na r r ow e d b y rem ov in g a b ou tha lf the threa ding area from each land. The por-2-105. TAPP I N G CO RROS I O N RE S I S TI N Gtion removed should trail the foremost cuttingS TE E L . Con ven t ion a l or s t a n da r d t y pe t a ps a r e

edge. Also, cutt ing edge should be ground to haveused with sta inless; however, better results canposit ive h ook/ra ke 15o-20o for softer material andsometimes be obtained by modification of taps (in

shop) a s required and by use of t w o f luted type 10o-15o for harder material.

Tabl e 2-13. Tappi ng All owances (Hole Size to Screw Si ze) 

TH RE AD /S C RE W D RILL S IZE TH RE AD D E P THS IZE MAJ OR D IA. MINOR D IA. D E CIMAL & NR P E RCE NT

4-40 0.1120 0.0871±0.002 0.0810-46 95

0.827-45 90

0.0860-44 80

0.0890-43 710.0960-41 49

6-32 0.1380 0.1100±0.004 0.0995-39 95

0.1040-37 83

0.1100-35 72

0.1160-32 54

6-40 0.1380 0.1144±0.0035 0.1065-36 97

0.1130-33 77

0.1200-31 65

8-32 0.1640 0.1342±0.004 0.1250-1/8″  96

0.1285-30 87

0.1360-29 69

0.1405-28 57

2-71

Page 82: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 82/288

T.O. 1-1A-9

Tabl e 2-13. Tappi ng All owances (Hole Size to Screw Size) - Contin ued 

TH RE AD /S CRE W D RILL S IZE TH RE AD D E P THS IZE MAJ OR D IA. MINOR D IA. D E C IMAL & NR P E RC E NT

10-32 0.1900 0.1593±

0.003 0.1520-24 930.1562-5/32″  83

0.1610-20 71

0.1660-19 59

0.1695-18 50

1/4-20 0.2500 0.2010±0.005 0.1850-13 100

0.1875-3/16″  96

0.1935-10 87

0.1990-8 78

0.2090-4 63

1/4-24 0.2500 0.2143±0.003 0.1960-9 100

2031-13/64″  86

0.2090-4 75

0.2130-3 68

1/4-28 0.2500 0.2193±0.002 0.2090-4 88

0.2130-3 80

0.2187-7/32″  67

5/16-24 0.3125 0.2708±0.0032 0.2610-G 95

0.2656-17/64″  86

0.2720-1 75

0.2770-J 65

3/8-24 0.3750 0.3278±0.002 0.3281-2 1/64″  86

0.3320-Q 70

0.3390-R 66

1/2-24 0.5000 0.4579±0.003 0.4531-29/64″  86

0.4687-15/32″  57

2-106. I n a dd it ion t o t h e a b ov e, th e t a p b a sica l ly 2-107. D u e t o h ig h s tr en gt h a nd poor er cu t ti ngshould ha ve a t a per/cham fer of about 9o w it h q ua lit y of t he st a inless ser ies st eels, holes for t ap-cen t er line on t h e s t a r t in g en d t o f a ci li t a t e en t r y p in g a r e u su a ll y m a d e a s l a rg e a s pos sible con si s-in t o h ole. Th e t a per sh ou ld be h eld sh or t (1s t t en t w it h f i t s peci f ied b y d ra w i ng or ot h er da t a .t h r ea d ) f or bl in d holes , a n d on t h rou gh h oles , i t Act u a ll y d u e t o t h e h ig her st r en g t h of th is ma t e -ma y extend over 3 or 4 t hrea ds r ia l less t hrea d a rea or enga gement is required in

comparison to most other meta ls . Due to theabove and the fact that less cutt ing is required,75%thread depth is generally used as maximum

2-72

Page 83: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 83/288

T.O. 1-1A

unless otherwise speci f ied . Higher percen tages of ba r s , tub ing , e t c. With the power hack saw ,thread depth a re necessa ry in ma teria l when s tock deeper cu t s a re made a t rela t ive ly low speed . Tis not th ick enough to permi t the requ ired number deeper cu t s a re used to get under work hardeneof t h r ea d . F or ta p ping a l low a n ces of s om e s iz e s ur fa ce r es ul t in g f rom pr ev iou s cu t (s t rok e). Thscrew s/bolt s see Ta ble 2-13. t eet h per inch for sa w bla des a vera ge 8-12 a nd

speed of saw travel usually ranges from 50-1002-108. The decreased thread depth a lso reduces

feet per minute depending on type and temper otendency to gall and seize, power required to drive ma teria l being cut. Coolant /lubricat ion is essen-tap, tap wear, and effect of swelling in soft

t ia l to prevent excess blad e dama ge from hea t .mater ia l .

Lubrica tion recommend ed is soluble oil/wa termixed a bout 1 part oil to 4 par ts w at er for heavy2-109. Tapping S peeds Corros ion Resis t ing S teel .work, and for light w ork, a light gra de cutt ing oTa pping speeds used for sta inless should be slower

than those used for carbon steel. The 18-8 (3002-114. B a n d S a w in g. B a n d s a w s a r e w e ll s ui t

series) are usually tapped at 10-25 SFPM exceptfor low speed (stra ight line/contour) saw ing of

for th e free machining types which ar e ta pped atsta inless/corrosion resistin g steel w ithin prescrib

15-30 S FP M. The st ra ight -chromiu m 400 serieslimitat ion. The saw ma nufacturer ’s recommend

generally is tapped at 15-25 SFPM, except the freetions should be followed for cutting speed, saw 

ma chining gra des, which ar e ta pped at 15-35selection, etc. How ever, speeds usually vary wit

S F PM .th e physical propert ies, temper, et c., of type/gra dbeing cut. As genera l guide, speeds ra nge from2-110. Lubrication for Tapping. The lubricat ions

100-125 feet per m inut e for ma teria l un der 0.06recommended for ta pping a re sulphurized m ineraland 60-100 FPM for thickness over 0.062 inch.oils with pa ra ff in and lard oil. The lubrican tSa w blades must be kept in sha rp condition forserves to prevent overheat ing a s w ell as lubrica-effective low speed sawing.tion, and if applied under pressure, aids in chip

removal. Oil f low/a pplica tion should be a pplied2-115. For f a s ter cu t t ing w i th the band saw , th

before tapping commences to prevent initial con-friction cuttin g method ma y be employed. In

gestion of cuttings.utilizing the frict ion m ethod, the ban d sa w velocra nges from 5000 FP M for cuttin g f lat 1/32 inch2-111. S AWI NG .ma teria l to a bout 10,000 FP M for 1/2 inch an d

2-112. Ha ck saws (hand) for cut t ing corros ion 14,000 for 1 inch material; tubing material is ruresisting steel should be of high speed steel with at slightly higher speed. Feed for this method capproximately 32 teeth per inch for light work and be considerably higher than is used for slow speeapproximately 24 teeth per inch for heavy work. cutt ing, rat es range from about 100 FP M for lighThe teeth area should be of wavy construction to

ga uge to 15-18 FP M for 1/2 inch ma teria l. Sa w increase w idth of cut a rea to prevent binding. As teeth per inch varies from 18 for material below with cutt ing other metal, th e blade should not be 1/8 inch thick to 10 per inch for thicknesses ovea llowed to dra g/ride on th e return str oke, espe- 1/2 inch .cially with the 300 series types to prevent work

2-116. Heavy pressure to ma int a in cut i s notha rdening. The hack saw bla de should be lightlyusually necessary. P ressure should be just suff ilubricat ed w ith lar d oil/other cutt ing oil for bestcient to creat e proper heat ing an d softening a t cresults.point wit hout forcing the saw . Lubricants shoul

2-113. Ha ck saws (mechanica l dr ive). P ower not be used.hack saws are used for heavy cross-cutting section

P a ra gra ph 2-117 thr ough 2-227 deleted.Ta bles 2-14 th rough 2-33 deleted .Figures 2-2 and 2-3 deleted.Pages 2-75 through 2-120 deleted.

Change 1 2 -73 / ( 2 -74 bl a

Page 84: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 84/288

Page 85: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 85/288

T.O. 1-1A

2-228. (D eleted) rea ding, a ssembly , et c., in a ccorda nce w ith scoperelat ion to fabr icat ion process. Also, th ese perso

2-229. (D e let ed )nel must keep consta ntly a breast of adva ncingprocesses for ma ximum ef f iciency/prof iciency.2-230. (D e let ed )

2-236. The section of steel for design or a pplica2-231. (D e let ed )tion to equipment an d component is usua lly base

2-232. (D e let ed ) on the following:2-233. (D e let ed ) a . S t r en gt h a n d w eigh t r eq u ir em en t of pa r t

equipment to be fabricated.2-234. FABRICATION OF FERROUS ALLOYS. Theinformation furnished in this section is provided as b . Method to be used for f abr ica t ion , i .e .,a guide to aid personnel engaged in t he use and welding, forming, ma chining, heat trea t , etc.a pplica tion of the ferrous a lloys. Due to va ried

c. Corros ion res ista nce to cer ta in chemicalsusage of steel products, deta ils and rules relat edenvironments.will not f it every applicat ion. In ma ny instan ces,

experimentation trial and further study will bed . Tempera tures to which par t w i ll be

required.subjected.

2-235. P ersonnel ass igned to accomplish des igns ,e . Fat igue proper t ies under cycl ic loads , etc

application and fabrication must be well trained inf un d a m en t a l s of m et a l f or m in g pr a ct i ces , a n a ly si s, 2-237. Th e fol low in g gen er a l r ules s hou ld b e

pr op er t ies , cor r os ion con t r ol , m a ch in in g, pl a t in g, em ploy ed in ha n d ling a n d for m in g :welding, beat treat , r iveting, paint ing, blue print

Change 1 2 -1

Page 86: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 86/288

T.O. 1-1A-9

a . S heet , s hea r ed /sa w ed st rips a n d bla n k sof t con dit ion /low er t em per r a nge. Th e h ea t tr ea t -s ha l l b e h a n d led w i t h ca r e t o pr even t cu t t in g a n d a b le a ll oy s a r e u su a ll y f or m ed in t h e a n n ea led orother pa r t s of t he body. norma lized condit ion a nd hea t t rea t ed if required/

specified af ter forming. Some diff iculty will beb . Sheared or cu t edges sha l l be sanded, f i led , encountered from warping due to treat treating

or polished prior to formin g. The remova l of rough and precautions must be taken when forming theand sharp edges is also recommended prior to material to prevent sporadic or uneven stress inaccomplishing other machining operations to th e work piece. Also, par ts w ill require jigs orreduce hazards in handling. close control during the heating and cooling phase

of heat t reat ment. The use of heat t reated formedc. Form materia l across the gra in when possi-sheet metal parts on aerospace craft are usuallyble using correct or specified bend ra dii. Also pro-an exception in par t due to a bove and m ost m at er-vide bend relief in corner when required.ials a re used in the normalized or a nnealed

d . Observe load capac it y of equ ipment such as condition.brakes, presses, rolls, drills, lathes, shears, mills,

2-239. Springback a l lowa nce wil l vary accordingetc.to the t ype and t emper of ma terial being formed.The use of sharp bend radii on parts for aeronauti-cal a pplicat ion sha ll be avoided a nd other a pplica-CAUTIONt ion where the pa rts w ill be subjected to f lexing(cycle) or concentrated stresses, due to possibleMachines rat ed for carbon steel shall

fa tigue or stress corrosion failure. For recom-not be used over 60%of rated capac-mended General Bend Radii for use on Aerospaceity w hen cutt ing, forming or ma chin-w eapon/equipm ent (see Ta ble 2-34 for Low Car-ing stainless steel unless approved bybon/low a lloy st eel an d Ta ble 2-35 for Corrosionresponsible engineering activity.Resistant Steel.)When in doubt inquire.

2-240. I n ut iliz ing Tab le 2-34 a nd Ta ble 2-35 it ise . Tool and equ ipment sha l l be ma in t a inedrecommended tha t in pra ctice bend a rea besmooth, free of nicks, rust, burrs and foreign mate-checked for str a in, grain, or bend cra cking. Ifr ial. In a ddit ion to above, dies, wa ys, etc. , sha ll beparts show presence of above, increase radius bychecked for alignment tolerances, etc., periodically/one thickness or more until difficulty does noteach set-up.exist. Other details, inspection requirements, etc.,

f . Sur faces of ma ter ia l , especia l ly f in ished shall be used when specified.sheet, shall be protected from scratching, foreign

2-241. D RAW F OR MI NG . C on tr ol of diepar ticles, etc. These surfaces ca n be protecteddesign, and material from which dies are made,using n on-corrosive paper, t a pe, other a pproveda re essentia l to successfully draw form steel. Formaterial and good cleaning procedures. Polishedlong production runs, high carbon, high chromiumsheet ma terial should be protected when formingsteel is recommended to ma nufacture dra wing d iesto prevent die tool marking.because of wear resista nce an d hardness. For

g. Aft er forming/machining is completed, medium a nd sh ort production runs, Kir ksite/caseremove all cutting lubrication, etc., by cleaning, zinc alloy can be used with drop hammer hydrau-degreasing, pickling, prior to an y heat treat , plat- lic press if the dra w is not severe. Ha rdwood an ding or painting process. phenolic can be used in some cases for piece pro-

duction where draws are shallow.

2-242. Success ful drawing of steel wil l dependCAUTIONon :

Avoid handling parts, especially corro-a . Radi i used for forming or bending . Use

sion resistant steel, with bare hands moderate radii, usually equal to 3-6 times thick-after cleaning and subsequent to heat

ness of material depending on specific require-treating/passivation because finger

ments, and the severity of draw.prints will cause carburization andpitt ing of surface, wh en heated. b . F in ish of d ie-a l l scr a t ches and surface

roughness should be removed.2-238. B E N D I N G (S I N G L E CU RVATU RE ).Th e ben din g of m os t st eel s heet a nd th in ba r st ock c. B l a nk h old dow n pr essu re a n d d ra w in gcan be read i ly accomplished provided tha t equip- r ings . Ho ld down pressure should be su f f icien t tom en t w it h a d eq u a t e b en d in g a n d cu t t in g ca p a ci t y p reven t w r in kl in g of ma t e ri a l, bu t not t o t h ei s a va i la b le a n d i f t h e m a t er ia l s a re for m ed in t h e ex ten t t h a t w ou ld pr even t f l ow of t h e m et a l in t o

2-122

Page 87: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 87/288

T.O. 1-1A-9

the fema le por t ion of the d ie . Drawing rings r ad i i and sur face f r ict ion which hinders f low of meta ls hou ld be 4-8 t im es m et a l t hickn es s a n d sm oot h ly in t o d ie.polished.

2-243. The sur face condit ion of the blank a lsod . Clea rance betw een punch and d ie - Gener- ha s a n effect on dra wing. A slightly r oughened

a lly pu nch clea ra nce should be a bout 1 1/4 to 1 1/2 surface, such as obtained by pickling (dull surface)times thickness for the init ial draws, and about improves control of metal under hold down pads

1 1/8 to 1 1/4 times for t he following dra w s. If an d the holding lubrican ts. On the other ha nd,part s show signs of galling, cleara nce (dra wing) the roughened surface may be less desirableshould be increased when clearance is increased, because of greater friction, especially where freesize requirement must be considered. f lowing dra wing methods ar e used (with out hold

down).e . Temper-drawing should be s t a r ted w i than nealed/normalized mat erial a nd intermediat e 2-244. Where faci li t ies are a va i lable, cold form-a nnea ling a ccomplished a s required. The require- ing of some steels (primarily straight chromiumment for a nnealing (intermediat e) usually is stainless such as 410, 416,430, 442, 446) can beneeded after reduction exceeds 30-35%for stain- improved by prehea ting dies a nd blanks. Theless/20-25% carbon st eel on t he init ial dra w , a nd preheat ing tends to reduce work hardening a ndwh en r eduction exceeds 8-15% on ea ch followin g the requirement for intermediate annealing duringdra w. P art s should be cleaned removing all lubri- the drawing operation.cation and other contaminate prior to annealing

an d desealed af ter an nealing. In insta nces wh ere 2-245. When forming involves more than onedraws exceed 22-25%annealing is recommended draw, the first operation should be a moderateafter completion of the drawing operation followed draw with punch diameter equal to 60%of blanksby descaling a nd passivat ion (stainless). Restriking dia met er a nd red uction of 15-25%. The secondon final stage die to remove distortion after final and subsequent draws should be made withan neal is permissible wit hout further heat punches a bout 20%. It is recommend ed tha t par tt rea tment . be cleaned an d a nnealed following ea ch draw .

Excessive distortion ma y result from f inalf . Draw ing Speed - Genera l ly a speed of 20-

an nealing af ter last dra w. This problem can be55 feed per minute is sat isfactory. Dra wing using

overcome in most instances, by reducing the sever-a hydraulic powered press in lieu of a cam oper-

i ty of the las t dra w or res tr iking a f t er f ina lated or toggle type press is usually the most

an nealing on last sta ge die for t he purpose ofsatisfactory,

removing distortion.g . Lubr ican t - Compounds used should be of

heavy consistency capa ble of wit hsta nding hightemperature and restating pressure necessary to CAUTIONform ma terial. One heavy bodied lubrican t used islar d oil, sulfur (one pound of sulfur to 1 ga llon of Parts shall be cleaned of all contami-oil) to which lithopone is added in equal parts nates, lubrication, filing, other foreignuntil consistency equals 600W engine grease, or as material, etc., before heating ordesired. Oth er compounds such a s ta llow, mixture annealing and upon completion ofof minera l oil an d soft soap, powdered gra phite forming or draw ing operat ion. Fa il-mixed to thin paste with lightweight oil can be ure to clean th e parts w ill result inused. pit t ing and carburization, which will

damage the surface.h . B lank s ize and prepara t ion - A good prac-

tice is to use minimum size required to meet 2-246. S TR E TC H F OR MI NG . S t ret ch for m in gdimensiona l size of part s a nd for hold down. is a process where material, sheet or strip, is

When trimming, consideration must be given to stretched beyond t he elastic limit unt il perma nentthe fact that on rectangular parts , the majority of set w ill t ake with a minimum amount ofdrawings will occur on wider portions of the rec- springback.ta ngle aw a y from th e corners. To overcome th ispr ob lem , t h e r a d iu s of t h e ver t ica l cor n er sh ou ld 2-247. Th e s t ret ch for m in g i s u su a ll y a ccom -be approx ima te ly 10%of the w id th . Tr ia l, us ing a p lished by gr ipping ends of ma ter ia l (b lank) andver y du ct i le m a t er ia l t o d et er m in e b la n k si ze a n d a p plying for ce b y a s epa r a t e ra m ca r r y in g t hes t ress a reas pr ior to st a r t ing the forming opera t ion forming d ie . The r am pressure su f f icien t to causeis recommended . Af ter size i s determined by t r ia l , the ma ter ia l t o s t ret ch and wrap to con tour of thee tc. , the blank should be f i led/pol ished to prevent d ie form blank is app lied perpendicu la r to thecr a ck in g in w r in kle/s tr es s a r ea s , h a n dlin g h a za r d b la n k (s ee Figure 2-4). This method of forming is

2-123

Page 88: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 88/288

T.O. 1-1A-9

u su a ll y limi t ed t o pa r t s w i t h la r g e r a d ii of cu r va - s om e ca s es , it w i ll b e n eces sa r y t o us e a com b in a -tion of han d forming shr inking/str etching usingture and shallow depth, such as shallow dishing,supplemental machinery and pressing to completereverse curves, a nd curved pan shaped par ts con-forming by this m ethod.t a in ing f l a t a reas .

2-251. D ROP H AMM ER F OR MI NG . D ies for2-248. The t r imming of edges and removal ofdrop hammer forming are usually made by castingnicks and scratches is important to prevent start-

meta ls such as kirksite. These dies ca n be ra pidlying points for concentrated stress, which, underproduced; are more economical than permanenttension loa ds, would tea r. The direction of majordies; can be melted a nd recast ; a nd can be rein-tension (stretch) and direction of grain is alsoforced at selected points of wear by facing withimporta nt . It is recommended in forming tha t theharder material, such as tool steel for long produc-major tension be transverse to the direction oft ion runs.grain. Lubrication aids in uniform distribution of

stress an d th e lubrican t sha ll be applied uniformly2-252. Normally , drop hammer forming is accom-

to work piece to avoid distortion which could resultplished without benef it of hold down . The meta l is

from unequa l fr ict ion when ma terial is slidingslowly forced in shape by controlling the impact of

across the forming die during stretching.blows. In ma ny insta nces, it is necessary to usedra wings, r ings, 2 or 3 stage dies, supplementa l2-249. Forming dics/blocks for general productionequipment, and hard forming such as bumpinga re ma de from kirk sit e/zinc, a lloy; for piece pro-hammer, wooden mallet to remove wrinkles, etc.duction from phenolic a nd ha rdw ood. Some types

To successfully complete forming operations,and kinds of plastic with good hardness and highanother aid that may be necessary is to annealimpact strengths a re also used. The rubber padmaterial between die stages and intermediately forhydra ulic press is used to form relatively f latsingle stage die forming.parts ha ving f langes, beads, lightening holes, an d

for very light drawing of pan shaped parts havinglarge radii.

CAUTION

2-250. Form blocks are usually manufacturedP art s should be cleaned prior tofrom steel, phenolic (mechan ical gr a des), kirksite/an nealing to protect f inish. Ca rezinc cast alloy, and some types of ha rd moldingshould be taken to remove all tracesplastic wit h high impact strength . The work isof zinc that may be picked up fromaccomplished by setting the form block on thekirksite forming dies, as fa ilure tolower press plate or bed, and the blank is placedremove the zinc will result in penetra-on the block. The blank is held in place on the

tion of the steel (stainless) whenblock by locating pins (holes are drilled throughtreated and will cause cracking.the blank and into the form block for the insertion

of th e locat ing pins). These holes a re referred to2-253. S P I N NI NG . Th os e s teel s t h a t ha v e l ow  

a s ‘‘tooling holes,’’ which prevent slippage of blankyield strengt hs in th e sof t/a nnea led condition, and

when pressure is applied. If tooling holes are notlow rates of work hardening are the best grades

allowed, another method of alignment a nd holding for spinning. To overcome w ork ha rdeningof bla nk must be utilized. The sheet meta l blan k problems, intermediate annealing and 2-3 or moreshould be cut to size (allow suff icient ma terial t o sta ge spinning blocks a re used. Annea ling of theform f lange), deburred, and f iled prior t o pressing. par t a t in tervals a lso a ids the opera tor w hen man-After the block is prepared and placed on the ual spinning, because less pressure is required toplate, the r ubber pad f illed press head is lowered form meta l an d springback is lower.or closed over the block, and as the hydraulic pres-sure (applied by a ra m t o the head) increases, the 2-254. Form blocks for spinning are usuallyrubber envelopes the form block forcing the blank

made of phenolic, hard wood, or carbon steel.to conform to th e form block contour or shape. It Man ual spinning is usually a ccomplished on ais recommended th at addit iona l rubber be supple- lathe specifically adapted and fit ted for that pur-ment ed in t he form of sheet s (usuua lly l/2 - 1 inch, pose. The main requirements are tha t requiredhardness of 70-80 durometers) over the form block speed be mainta ined without vibra tion; clampingand blank to prevent damaging the rubber press pressure is suff icient to hold part ; fa cilit ies a repa d. The design of form blocks for hy dropress provided to apply pressure at a uniform ra te; an dforming requires compensation for springback. tools a re of proper design. Norma lly, spinningThe form for forming f lan ges on ribs, stif fners, tools are the roller or round nose type designed inetc., should be und ercut a pproxima tely 2-8 degrees such a manner that high pressure can be applieddepending on the alloy, hardness, and radius. In w ithout bending . Where local design of tools are

2-124

Page 89: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 89/288

T.O. 1-1A-9

requ ired , raw ma ter ia l for manufacture i s ob t a ina- used for w ire and rod for cold upset t ing appl ica-ble u nd er QQ-T-570, Ty pe D 2, h a rd en ed to t ion s, su ch a s bolt s. Th e h ig her ca r bon gr ou ps,Rockw ell C40-50. such a s 1040 a re of t en cold dra w n t o required

physical properties for use w ithout heat treat ment.2-255. S H E AR IN G AN D B LAN KI NG . To pr e-

2-262. Alloy St eels - 1055 through 1095. Thisvent damage to shear, and to assure clean, accu-alloy group is used w here wear resista nce result-ra te cuts, clearan ce betw een shear blades should

ing from high carbon content is needed, and isbe approxim a tely one-t w ent ieth (5%) th ickness ofheat trea ted before use in partically everyma teria l to be cut. Also, blad es or knives must beapplication.ma inta ined in shar p condition, clean, a nd free of

nicks. Where only one shear is available, a clear- 2-263. 1100 Ser ies Steel . Steels in this groupance of 0.005 to 0.006 could be used for general are generally used where easy machining is theshea ring of sheet stock up to 0.125 inches thick. primary requirement. The main use of theseExcessive blade clearance should be avoided to steels is for screw stock.prevent w ork hardening of cut a rea w hich

2-264. 1300 Series Alloy Steel. The basic adva n-increases susceptibility to stress corrosion and bur-tages of this group is high strength coupled withring. Lubrication such a s light weight engine oil orfair ductility and a brasion resistan ce. The majorsoap should be applied a t r egular intervals t o pre-use is in th e ma nufacture of forgings.vent galling and to clean blades for prolonged

shear blade life.2-265. 2300 Series Nickel Alloy Steels . The addi

tion of nickel has very little effect on machinabil-2-256. B L ANK IN G AND P U NC H ING . B la nk- ity and greatly increases elasticity and strength.ing and punching requires close control of dieThis ma terial is n ormally ma chined in the forged,clea ra nce, shearin g a ction of punch/blan king die.annealed, and normalized condition, and heatCleara nce for bla nking a nd punching should be 5%treated a f t er fabr ica t ion.of thickness and closely controlled for all gauges.

In designing dies and punches, it is important thatshear action be incorporat ed to equalize a nd NOTEreduce load. Double shear should be used when

These grades not currently being pro-possible to minimize off balance condition and

duced. Listed for reference only.load. P unches and dies should be ma inta ined inclean sha rp condition and lubricated by sw abbing 2-266. 2500 Series Nickel St eel. This seriesor spra ying ma terial t o be punched with light- almost w ithout exception, is a carburizing grad eweight lube oil to prevent galling a nd t o aid in with extremely high strength core. However, thekeeping punch/die clea n. case is not as hard as obtained with other carbu-

rizing steels. This steel is used for part s requiring2-257. GENERAL FABRICATING a high strength core and good wear r esista nce.CHARACTERISTICS.

2-258. P LAIN CARBON AND ALLOY STEELS. NOTE

These grades not currently being2-259. P la in Ca rbon St eel - 1006 through 1015.produced.This gr oup of steels is used wh ere cold forma bility

is the main requirement, and have good drawing 2-267. 3100, 3200, and 3300 Series Nickel Chro-qua lities. This series is not used where great mium st eels. This series of steels is char a cterizedstrength is required. The strength a nd hardn ess by good w ear resistan ce an d tough core and sur-of these grades will vary according to carbon con- face. The 3300 series is used prima rily in thetent a nd a mount of cold w ork. form of forgings and bars w hich are required to

meet rigid mechanica l properties. This steel is2-260. P la in Carbon Steels - SAE 1016 throughmore difficult to handle in fabrication and heat

lO30. This group of steels is commonly known a s treat ment t ha n lower nickel - chromium a lloys.the carburizing or case hardening grades. Theadd ition of man gan ese improves machining qua li- 2-268. 4000 Series Molybdenum St eels. Thisties but reduces the cold formability characteris- group of steels have good impa ct strength an dtics. This group is widely used for forged stock. require close control of heat treatment practices to

obtain the required strength and ductility .2-261. P la in Ca rbon St eels - 1030 through 1050.Th is gr ou p (m ed iu m ca r b on t y pes ) i s u sed w h er e 2-269. 4100 S er ies Chr om iu m - M olyb den u mh ig h er m ech a n ica l pr op er t ies a r e r eq u ir ed . Th e S t eel s. Th is ser ies h a s g ood w or king pr oper t ies ,low er ca r bon a n d m a n ga n es e t y pes a re u sed for r es pon se t o h ea t t r ea t m en t , a n d hig h w ea r r es is -m os t cold f or m ed pa r t s . Al loy s 1030 - 1035 a r e t a n ce. Th is gr ou p i s ea s il y f a br ica t e d b y f or ging

2-125

Page 90: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 90/288

T.O. 1-1A-9

a n d r ol ling . Af t e r w elding a n d cold f or m in g, in t er - 2-278. Th e s t ra i gh t ch r om iu m gr a d es su ch a s410, 416, 430, 442, and 446 react similar to carbonnal stresses produced should be relieved and losssteel and a re somewha t less ductile tha n th e 300in strength regained by normalizing.series sta inless. The tensile str ength a re higher

2-270. 4130 G rade Steel . This grade is used than carbon steel and consequently will standextensively in aircraft construction in the form of higher loads before rupture. Yield strengths a resheet, bar, rod and tubing. This grade has very also higher which means t ha t more power isgood cold forming cha ra cteristics. Forming an d required for bending and forming. B ecause of thewelding operations are accomplished utilizing ductility fa ctor of this series dra wing an d formingannealed material, and heat treated or normalized should be limited to 20 -25%reduction.after these operations are completed. 4130 sheet

2-279. The 301, 302, 304, 305 an d 316 types can(MIL -S-18729 ca n be cold bent in the a nnea ledbe dra w n ba sed on a r educti on of 35 to 50%, i.e., acondition to an angle of 180o with a radius equalshape 8 inches in dia meter a nd 4 inches in depthto the th ickness of th e sheet. In th e norma lizedcould be drawn in one operation, based on a 50%condition, a ra dius equal t o 3 t imes the thicknessreduction.is recomm ended.

2-280. The s t ra ins set up by severe reduct ions2-271. 4140 Series St eel. This steel is used for (above 45%with chromium-nickel types and 20%stru ctura l, ma chined an d forged part s over 1/2 with straight chromium types) should be relievedinch thick. It is usually obta ined in the norma l- by annealing immediately after the operation isized condition. Forgings ar e alwa ys normalized or

completed, especially if using type 301. If th isheat t rea t ed a f ter fabr ica t ion. material is not relieved in 2 - 4 hours, it maycrack.

2-272. 4300 Series Nickel - Chromium - Molybde-num S teels. These steels a re used to meet condi- 2-281. Springback a l lowa nce should be about 2tions in w hich other a lloy steels ha ve insuff icient to 3 t imes th e am ount a llowed for carbon steel,strength. P reparat ion for machining or forming and naturally will vary according to the type ofmust be by a suitable an nealing cycle. ma teria l being formed. The use of sha rp radii

shall be a voided where part s a re subjected to f lex-2-273. 8000 Series Molybdemum St eels. These ing or concentrated stresses due to possible fatiguesteels a re chara cterized by their high impa ct or str ess corrosion fa ilure.strength a nd resista nce to fat igue. They are easy

2-282. Recommended bend radii for use withto forge and machine, and are stable at highsta inless is shown in Ta ble 2-35.temperatures.

2-283. Draw Forming . S t a in less steels should be2-274. 8600, 8700, 9300, 9700, 9800, a nd 9900 annealed for draw forming, and hardness shouldSeries Steels. These steels have approximately the

not exceed Rockwell B90. The bea t dra w ingsame characteristics as the 4300 series steele.

gra des are of the 18-8 series. In selecting t he typefor dra wing, w elding of the finished part s , if2-275. CORROSION RESI STANT (STAINLES S)required, shall be considered.AND HEAT RESISTANT STEELS.

2-284. Drop Ha mmer Forming. The most com-2-276. The fabr ica t ion of s ta inless s teel requires mon types of corrosion resistant steel used for dropthe use of modified procedures in comparison to hammer forming are 301, 302, 304, 305, and stab-those used for carbon steels. lized grades 321 and 347. 301 work hardens more

ra pidly and is subject to str a in cra cking. The con-2-277. Forming Sheet Stock. The corros ion

dition of material for best forming should beresisting series, i.e., types 301, 302, 304, 305, 316,

a nnea led. It is possible to form some type (301321, 347, 410, 430, 431, etc., generally have good

a nd 302) in 1/4 an d 1/2 ha rd condit ion. H owever,forming a nd dra wing qua lit ies. Some types (302,

the severity of the forming operation must be304 and 305) have forming characteristics superiorreduced to compensate for the prehardened

to plain carbon steel because of the wide spreadmater ia l .

between tensile and yield strength, and higherelonga tion. H owever, more power is required toform these types than is required for carbon steelbecause of higher tensile strengths a nd t he facttha t yield strength increases rapidly during form-ing or bending.

2-126

Page 91: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 91/288

T.O. 1-1A-9

F igu re 2 -4 . S t ret ch Forming 

2-127

Page 92: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 92/288

T.O. 1-1A-9

Table 2-34. Cold Bend Radi i ( Inside) Carbon/ Low Al l oy Steels 

Temper, S heet Thickness = T (Inches)

Alloy Temper 0.016 0.020 0.025 0.032 0.040 0.050 0.063 0.125 0.187

1020/1025 2T 2T 2T 2T 2T 2T 2T 2T 2T

4130 Annea led 2T 3T 2 1/2T 2T 2 1/2T 2T 2T 2T 2T

4130 Norma lized 2T 3T 2 1/2T 3T 3T 3T 3T 3T 3T

8630 Annea led 3T 3T 2 1/2T 3T 2 1/2T 2T 2T 2T 2T

8630 Norma lized 3T 3T 2 1/2T 3T 3T 3T 3T 3T 3T

Table 2-35. Cold Bend Radi i ( Inside) Corr osion Resistant Steel Al l oys 

Sh eet Thickness = T (Inches)

Alloy Temper 0.012 - 0.051 0.051 - 0.090 0.190 - 0.250

201, 202 Annea led 1-2T 1T 1 1/2T

301, 302 1/4 H a rd 1-2T 1 1/2T 2T

305, 304 1/2 H a rd 2T 2T 2T

309, 310 3/4 H a rd 2T 3T --

316, 321, 347 H a rd 3-4T 4-5T --

405, 410, 430 Annea led 1T 1T 1 1/2T

17-7P H Annea led 1T 1 1/2T 2T

Tabl e 2-36. Forging Temperat ur e Ranges For Corrosion Resistant St eel 

HEAT TREATEDTYP E /G RAD E P RE H E AT oF F ORG ING TE MP E RATU RE oF

S TARTING FINIS H ING

301 1500-1600 2050-2200 1600-1700 S E E H E AT TRE AT

DATA FOR ANNEAL-

302 1500-1600 2050-2200 1600-1700 ING AND S TRE S S

RELIEF, S EE TABLE

303 1500-1600 2050-2200 1700-1800 2-3.

304 1500-1600 2050-2200 1600-1700

305 1500-1600 2100-2200 1600-1700

308 1500-1600 2100-2200 1600-1700

316 1500-1600 2150-2250 1600-1700

321 1500-1600 2100-2200 1600-1700

374 1500-1600 2100-2200 1650-1750

2-128

Page 93: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 93/288

T.O. 1-1A-9

Table 2-36. Forgin g Temperatur e Ranges For Corrosion Resistant St eel - Conti nued 

HE AT TRE ATE DTYP E /G RAD E P RE H E AT oF FORG ING TE MP E RATU RE oF

S TARTING F INIS H ING

AIR HARDENING

403 1400-1500 1900-2100 1600-1700 These gra des sha ll be

promptly annealed af-

410 1400-1500 1900-2100 1600-1700 t er forging beca use

they a ir ha rden in-

414 1400-1500 2050-2200 1600-1700 t ent ly if a llow ed t o

cool from forging

416 1400-1500 2100-2250 1600-1700 t empera t ures. S ee

Heat Treat D ata Table

420 1400-1500 2000-2100 1600-1700 2-3 for temperatures.

431 1400-1500 2050-2150 1600-1700

440 1400-1500 1950-2100 1950-2100

NON-HARDENING

405 1400-1500 1900-2100 1750-1850 P ost a nnea ling re-

quired. See Heat Treat

430 1400-1500 1900-2100 1350-1450 D a t a Ta ble 2-3 for

temperatures.

442 1400-1500 1900-2000 1300-1400

446 1400-1500 1800-2000 1300-1500

2-285. S p in n in g. S p in n in g p roced ur es for st a in - ei t her ca s e, th is is a ccom pl is hed by fu ll yless are similar to those used for other metals. annealing.Difficulty and variat ions depend on individualcharacteristics of grade to be worked, i.e., yieldstrength, ult imate strength, ductility , hardness CAUTIONa nd rea ction to cold working. The best grad es forspinning are those that have low yield strength in Difference in temper of raw materialsoft /a nnea led condition an d low ra te of w ork hard - will result in varia t ion of preheat ing,ening s uch a s 304, 305, 403, 410 an d 416. The especially with the air hardeningstra ight chromium gra des respond to spinning grades. The air hardening grades insimilar to carbon steel, however, more power is tempers other than annealed mayrequired. Mild wa rming above 200oF improves crack from thermal shock upon load-performa nce of th e stra ight chromium gra des. ing into a hot furna ce.

2-286. S h ea r ing a n d B l a n king . S h ea r in g a n d2-288. Hot forming by methods other than forg-

blanking of corrosion resisting steels as with othering is accomplished at somewha t lower tempera-

fabrication processes requires more power in com-tur es. The unsta bilized chromium-nickel gra des

parison to shearing carbon steel and m ost other

ma y be formed a t t empera tures up to 800

o

F a n dmeta ls . Shea rs and other equipment rat ed for car- the extra low carbon grades up to 1000 oF. The usebon steel should not be used above 50 - 70%ofof temperatur es higher tha n t hose cited a boverated capacity when cutt ing stainless.should be avoided to prevent subjection of material

2-287. Hot Forming. Hot forming is used to form to the carbide precipitation heat zone.shapes in sta inless tha t can not be accomplished by

2-289. The stra ight chromium (type 400 series)cold forming and for forging parts economically. Inare more responsive to hot forming than the chro-using heat for forming, it is important that tem-mium-nickel gra des. The reaction of these metalsperature be closely controlled. Also, finished partsto hot forming in similar to ca rbon steels. U ponshould be relieved of residual stress and carbide

precipi t a t ion which a f fect s cor ros ion res is t ance . In hea t ing to 800o-900oF, th eir tensile strength is

2-129

Page 94: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 94/288

T.O. 1-1A-9

lowered cons iderab ly and a t the s ame t ime duct i l- provide envelope or anodic protect ion . P orousit y begins to increa se. coa t ings of t he more noble met a ls such a s silver ,

copper, platinum and gold, tend to accelerate the2-290. Forming of the a i r ha rden ing grades t ype

corrosion of steel. For processing instr uctions,403, 410 is accomplished in two temperature

refer t o T.O. 42C2-1-7. The follow ing ga lva nicra nges as follows:

series ta ble and dissimiliar meta l definit ion inaccordance with MS33586 are for use as a guide ina . Low tempera ture forming up to 1400oF.the selection of the most suitable plating for partsThe adva nta ge of forming a t t his temperature issubject to uses where galvanic corrosion would betha t pa rts can be stress relieved at 1350o - 1450oFa prime factor.to restore strength uniformity, a nd scaling is held

at a minimum.2-294. DEFINITION OF DISSIMILIAR MET-ALS. Dissimil ia r meta ls and a l loys , for the pur-b . High t em per a t u re for m in g a t 1525o - 1575o

pose of aircraft and aircraft parts construction areF. Forming at this temperature is somewhat easiersepara ted into four groups in a ccordance withbecause str ength is low a nd ductility is higher.MS33586. Metals classified in the sam e group areUpon completion of forming at this temperature,considered similar t o one another a nd ma terialsparts shall be fully annealed under controlled con-classified in different groups are considered dis-ditions by heating to 1550oF a nd holding, slowlysimila r to one a nother. The metal/ma teria lcooling to 1100oF (at approximat ely 50oF per hour)referred to in the groups is the metal on the sur-an d th en cooling in a ir .face of the part; e.g., zinc includes all zinc parts

Grades 403, and 410 are not subject to loss of such as castings as well as zinc coated parts ,corrosion resistance due to the forming ofwhether the zinc is electro deposited, applied by

intergranular carbides at grain boundaries.hot dipping, or by metal spraying over similar ordissimiliar meta l par ts . The four groups are as2-291. When it is required tha t t he non-harden-follows:ing grades 430, 442, and 446 be hot formed, the

recommended temperature for forming is 1400o -a . G RO U P I - M a g nes iu m a n d it s a l loy s. Alu-

1500oF. This temperat ure is recommend ed in view minum alloys 5052, 5056, 5356, 6061 and 6063.

of the followin g:

b . G RO U P I I - Ca d m iu m , z in c, a n d a lu m in u ma . He a t in g t hes e g ra d es a b ove 1600oF pro-an d th eir alloys (Including the aluminum alloys inmotes grain growth wh ich can only be corrected byGroup I).cold w orking.

c. G RO U P I I I - I r on , l ea d , a n d t in a n d t h ei rb . For t ypes 442 and 446, the 1400o-1500oFa lloys (except st a inless st eels).temperature is below t he scaling limit a nd very

close to being below t he scaling limit for type 430. d . GROUP IV - Copper, chromium, n ickel , si l-ver, gold, platinum, t itaniam, cobalt , rhodium and2-292. STEEL SURFACE FINISHES.rhodium alloys; stainless steels ; and graphite.

2-293. Meta l pla t ing is a process where an i temis coated with one or more thin layers of some NOTEother meta l. This is th e type of finish es genera lly

The above groups do not apply toused on ferrous par ts , other tha n organic f inishes.s tanda rd a t ta ching par ts such as r iv-It is usually specified w hen there is a need forets , bolts , nuts and washers which aresurface cha ra cterist ics that the ba sic meta l doescomponent parts of assemblies, whichnot possess. The most comm only used types ofwill be painted prior to being placedplating a re: Ca dmium plat e; zinc plat e; nickelin service unless other wise specifiedplate; chromium plate; copper plate; tin plate; andby specifications MIL-F-7179, or otherphospha te coa tings. The thickness of th e plat edapproved data.

coating is important since its protective value isprimarily dependent on its thickness. The type of 2-295. TYPE S O F PL ATI N G .plated coat ings is generally dependent on t he char-a ct er is tics d es ir ed . F or pr ot ect ion a g a in st cor ro- 2-296. C AD M IU M P L ATI N G (QQ-P -416). Th es ion when appearance i s un impor t an t , ei ther cad- primary purpose of cadmium p la t ing is to ret a rd orm iu m or z in c coa t in gs is u su a lly u sed . F or pr ev en t su rfa ce cor rosion of pa r ts. U n less ot her -a p pea r a n ce, n ick el , ch r om iu m , a n d s il ver p la t in g w i se sp eci f ied , t he pl a t in g sh a l l b e a p pl ied a f t era r e th e m os t com m on ly u sed . F or h a r dn es s, w ea r a l l m a ch in in g, br a z in g , w e ld in g, for m in g a n d p er -r es is t a n ce, a n d bu ildu p of w or n pa r t s , n ick el a n d f or a t in g of t he it em h a s been com plet ed . P r operchromium pla t ing a re used . Ef fect iveness of mos t sa fety precau t ions should be observed in the eventother meta l l ic coa t ings depends on their ab i li t y to any we ld ing or soldering opera t ions a re requ ired

2-130

Page 95: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 95/288

T.O. 1-1A-9

on ca dm ium pla ted pa rt s beca use of da nger from a ddit ion high st rengt h st eels are sus-t oxic va pors during such opera t ions. C admium cept ible t o det rim ent al hydrogencoa t in gs sh ould n ot be used on pa rt s subject ed to em br it tlem en t w hen elect ro pla t ed .temperatures of 450oF or higher . All st eel pa rt s All steel ha ving a n ult ima te st rengt hh avin g a h ar dn ess of R ockw ell C 40 (180,000 P S I ) of 220,000 P S I or a bove sh all n ot beand higher shall be baked at 375o

± 25oF for 3 elect ro pla t ed w it hout specif ich ou rs m in im um a f t er pla t in g for hy dr og en em br it - a ppr ov a l of t he pr ocu rin g ser vice ort lem en t r elief. All st eel pa rt s h avin g a n u lt im at e r espon sible en gin eerin g a ct ivit y.tensile strength of 220,000 PSI or above shall not

2-298. Nickel P lat ing (QQ-N-290). This coat ingbe plat ed, unless otherw ise specif ied. When per-is divided into tw o classes. Cla ss I , plat ing ismission is gra nted, a low embrit t lement cadmiumintended for decorative plating, a nd C lass lI , plat -plating ba th sha ll be used. Federal S pecif icat ionsing is intended for wear and abrasion resistance.QQ-P -416 should be used for ca dmium plat eUn less otherwise specif ied, the plating shall berequirements. C rit ical parts should beapplied a f t er a l l base meta l heat t rea tments andmagna f luxed a f ter pla t ing.mecha nical operat ions such as ma chining, bra zing,welding, forming a nd perforat ing on the a rt icle2-297. Zinc P lat ing (QQ-Z-325). The primaryhave been completed, all steel parts shall be givenpurpose of zinc coatings is to retard or prevent thea stress relief at 375o

±25F(191o± 14C) for 3 hoursforma tion of corrosion products on exposed sur -

or m ore prior t o cleaning a nd pla ting, a s required,faces. Un less otherwise specif ied, the platingto relieve residual tensile caused by machining,shall be applied after all machining, brazing, weld-

grinding or cold forming. St eel parts ha ving aing, forming and perforating have been completed.ha rdness of Rockwell C40 and higher sha ll beAll parts having a hardness greater than Rockwellbaked at 375o

± 25F for 3 hours or more andC40 and higher sha ll be baked a t 375o± 25oF for 3

with in eight (8) hours a f ter plat ing to providehours af ter plating for hydrogen embrit t lementembrit t lement relief. P ar ts shall not be reworkedrelief. Zinc sha ll be deposited directly on the ba sicf lexed or subjected to any form of stress loadsmetal without a preliminary plating of otheraf ter placing and prior to the hydrogen embrit t le-metal, except in the case of parts made from corro-ment relief treat ment. The general r equirementssion resist ing steels on w hich a preliminary plat-for nickel plating are specified in QQ-N-290.ing of nickel is permissib le. Zinc pla tin g (Type 1)Nickel shall be used for the following applicationshould not be used in the following applications:only in a ccordan ce wit h MIL-S-5002:

a . Pa r t s which in serv ice a re subjected to aa . Where temperatures do not exceed 1,000oFtemperature of 700oF or higher.

an d other coating w ould not be adequa te or

suitable.b . Pa r t s in con t a ct w i t h s t ru ct u r a l f a br icstructure.

b . To min imize the ef fect o f d is s imi la r meta lconta cts , such a s mild st eel w ith un plated corro-c. Pa r t s in funct iona l con tac t where goug ingsion resisting steel.or binding may be a factor or where corrosion

might int erfere with normal functions. c. As an undercoa t for other funct iona lcoatings.d . Grounding con tac t s where the increased

electrical resistance of zinc plated surfaces would d . To r es t or e dimen sion s.be objectional.

2-299. Chromium P lating (QQ-C-320). This coat -e . Surfaces where free circula t ion of a ir does ing is of tw o classes; Class I , intended for use a s a

not exist and condensation of moisture is likely to decorative coat ing; and Cla ss II , for wear resis-occur. For add itiona l informa tion, refer to QQ-Z- ta nce a nd corrosion protection. Hea vy chromium325.

electro deposits (0-1-10 MILS) are often used tosalva ge under ma chine part s . Un less otherw isespecif ied, the plat ing shall be applied a f ter a llbasic metal heat treatments and mechanical oper-CAUTIONat ions such as m achining, brazing, w elding, form-

C hr om iu m a n d n ickel elect ro d eposit s in g a n d per for a tin g h a ve been com plet ed . H y dr o-severely r educe t he fa t igue st ren gt h gen em brit tlem en t r elief sh all be in accor da nceof high st rengt h st eels. All st eel w it h blue print s a nd /or a pplica ble specief ica tions.pa rt s ha ving a tensile st rengt h of All pla ted pa rt s w hich a re designed for unlimit ed180,000 P S I or a bov e sh ou ld be sh ot - life u nd er d yn a mic loa d s sh a ll be sh ot peen ed inpeened pr ior t o elect ro pla t ing. I n a ccorda nce w it h m ilit ary S pecif ica t ion MI L-S -

2-131

Page 96: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 96/288

T.O. 1-1A-9

13165 pr ior to pla t in g. All pa r ts w it h a h a rd ness of e. G r a de B . Wit hou t su pplem en ta r yR ockw ell C 40 (180, 000 P S I ), a f t er s hot peen in g t a r nis hr es is ta n t t r ea t m en t .and plating, shall be baked at 375o

±25oF for 32-303. Intended Use. The fol lowing applica t ionshours for hydr ogen embrit tlement relief. It isof thicknesses are for information purposes only:extensively used as an undercoating for nickel and

chromium plating. a. 0.0005 - for corrosion protection of nonfer-

rous base metal.2-300. Tin P lat ing (QQ-T-425). Tin plat ing isused where a neat appeara nce, protective coating b. 0.0003 - for ar t icles such as terminalsan d easy solderability a re of prime importa nce. which are to be soldered.The base metal for tinplate shall be low carbon

c. 0.0005 to 0.010 - for electrical conta cts ,cold steel.depending on pressure, friction and electrical load.

2-301. P hospha te Coat ing (MIL-P -16232). Thed. 0.0005 - for increas ing the electr ica l con-description of phosphat e coa tings herein is speci-

ductivity of base metals .f ied as ‘‘heavy ’’coat ings. Light phosphate coatingsused as a paint base a re covered by specification e. On fer rous sur faces , the tot a l p la ted th ick-TT-C-490. Type ‘‘M’’ (Man ganese) coatings a re ness shall not be less than 0.001inch. After allresista nt t o alkaline environments an d should not base-metal heat treatments and mechanical opera-be exposed to temperatures in excess of 250oF. tions such a s ma chining, brazing, welding, formingExcept for special purpose applications, phosphate and perforating of the article have been com-

coat ings should be used w ith a suitable supple- pleted,if the type is not specified, any type ismenta ry trea tment. Type ‘‘Z’’ (Zinc) coatings a ccepta ble. All steel par ts subject to consta nt f lex-should not be used in conta ct with alka line materi- ure or impact ha ving a Rockwell hardn ess of RC40als or temperature in excess of 200oF. For the or greater shall be heated at 375o

±25oF for 3different classes of coatings and required supple- hours for stress relief prior to cleaning andment a l treat ment s, refer to MIL -P -16232. This plating.coat ing should be applied a ft er all ma chining,

2-304. Hardened par t s which have been hea tforming, welding and heat treatment have beentreated at less than 375oF shall not be heated ascompleted. P ar ts having a ha rdness of Rockwellnoted above, but sha ll be treated by a ny methodC40 or higher sha ll be given a suita ble heat treatapproved by the contracting a gency.stress relief prior to plat ing a nd sha ll be baked

subsequent to coating as follows:2-305. For complete informat ion per ta ining tosilver plating, refer to Federal Specification QQ-S-a . Type ‘‘M ’’ shall be baked a t 210o - 225oF for

365.1 hour.2-306. SURFACE TREATMENTS FOR CORRO-

b. Type ‘‘Z’’ shall be baked a t 200o - 210oF forSI ON AND H EAT-RES ISTING STEE LS AND

15 minutes (embritt lement r elief).ALLOYS. Normally the corros ion-resis t ing andheat resist ing alloys are unplated unless a coating2-302. Silver P lating (QQ-S-635). Silver platingis necessary to minimize the effect of dissimiliar(electro deposits) has high chemical and oxidationmeta l conta cts . When a plating is required it shallresistance, high electrical conductivity and goodbe in a ccordan ce with specif ication MI L-S-5002Abearing properties. Silver is of ten used as a n ant i-or other approved t echnical engineering da ta .sieze and for preventing fretting corrosion at ele-Where a plat ing is required, steel part s platedvat ed temperatures. Silver plating shall be of thewit h ha rd coat ing, such a s nickel and chromium orfollowing types an d gra des:combinations thereof, shall be processed as follows

a . Type I , Ma t te . Depos it s w i thout lus ter , in a ccordan ce wit h MIL -S-5002A:normally obtained from silver-cyanide plating solu-

a . P la ted par t s be low Rockwel l C40 hardnesstions operated without the use of brighteners.and subject to static loads or designed for limitedlife under dynamic loads, or combinations thereof,b . Type I I , Semi-B right . Semi-lus trous depos-need not be shot peened prior to plating or bakedits normally obtained from silver-cyanide platingaf ter pla t ing.solutions opera ted w ith brightener.

b . P la ted par t s below Rockwel l C40 hardnessc. Type m, Br igh t . Somet imes obta ined bywhich are designed for unlimited life underpolishing or by use of ‘‘brighteners’’.dynamic loads shall be shot peened in accordance

d . G r a de A. Wit h su pplem en ta r y t a rn is h w it h s pecif ica t ion MI L-S -13165 pr ior t o pla t in g.resist ant t rea tm ent (chroma te t rea ted). U nless ot herw ise specif ied, t he shot peening sha ll

2-132

Page 97: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 97/288

T.O. 1-1A-9

be accomplished on all surfaces for which the coat-ing is required a nd on all immediat ely adjacent CAUTIONsurfaces when t hey conta in notches, f illets or otherabrupt changes of section size where stresses will Excessive time shall not be used, asbe concentrated. dam age to part s ma y occur. In addi-

tion the t imes and temperatures shallc. P l a t e d pa r t s w hich h a ve a h a r d nes s of

be selected according to the alloyRockwell C40, or above, and are subject to static involved.loads or designed for limited life under dynamicloads or combination thereof, shall be baked at TYP E S OF TE MP E RATU RE TIME375o

±25oF for not less than three (3) hours after P ROC E S S (Minutesplating. Minimum)

I 70-90 30d . P l a t e d pa r t s w h ich ha ve a h a r d nes s of

I I 120-130 20Rockwell C40, or above, and are designed for I I I 145-155 10unlimited life under dynamic loads, shall be shot

For parts ma de of ferrit ic or a ustenit ic stainlesspeened in accordance with specification MIL-S-use process Type I, II or III . For part s ma de of13165 prior to platin g. U nless otherw ise specif ied,martensitic stainless steel, use process Type II orthe shot peening shall be accomplished on all sur-III . Within 15 minutes af ter above treat ment,faces for w hich the coat ing is required a nd a llthoroughly rinse in hot water (140oF - 160oF ).immediately adjacent surfaces when they contain

Within 1 hour af ter hot wa ter rinse, immerse innotches, fillets, or other abrupt changes of section an agueous solution containing 4 - 6%sodiumsize wh ere str esses will be concentra ted. Af terdichromat e (by w eight) at 140 - 160oF for 30 min-plating, the parts shall be baked at 375o

± 25oF forutes, and rinse thoroughly with water and dry.not less than three (3) hours.

2-307. P ASSIVATION OF STAINLESS STEELS.NOTE

The sta inless steels ar e usually passivat ed af terAfter the parts are passivated theyfabricating into parts to remove surface conta mi-shall be ha ndled the minimum neces-nates, which may cause discoloration or corrosivesary consistant with packaging,at ta ck af ter the parts a re placed in use. The pro-a ssembly/insta llat ion. P a rts forcess is primarily a cleaning operation whichinstallat ions in high temperatureremoves the conta mina tion an d speeds up t he for-areas sha l l not be handled with barema tion of th e protective (invisible) oxide f ilmhands because finger prints willwhich w ould occur nat ura lly but slower in t hecause car burization a nd pit t ing of sur-presence of oxygen in a norma l at mosphere. Theface when heated.protective f ilm forma tion is inherent w ith t he

stainless steels in normal air when they are clean.2-310. VAP O R D E P O S I TE D C OATI NG . Va p ordeposited coating ’s are applied by exposing the2-308. The foreign mat er ia ls are removed frombase meta l to a hea ted va porized metallic coatingstainless to provide for uniform surface contactsuch a s cadmium and a luminum in a high vac-with oxidizing agents (Air or Acid) which formsuum. The meta l coatin g forms by condensa tion ofthe protective f ilm or passive surface. In t his casethe vaporized coating metal on all exposed sur-after the film has formed the material is placed infaces of the base meta l. Vapor-deposited coa ting sa condition approaching tha t of maximum corro-can be obtained by processes in which a volatilesion resista nce. Any a rea s to wh ich oxygen con-compound of the coating is reduced or thermallytact is prevented by contaminants or other meansdecomposed upon the heated surface of the basetends t o remain a ctivated a nd subject to corrosionmeta l. Vapor deposited coa tings a re used to pro-a t t ack .vide good corrosion r esista nce for st eel and elimi-

2-309. P r ior to accomplishing the pass iva t ion na te sources of hydr ogen embritt lement. Specifictreatments the parts shall be cleaned, all grease, requirements for coat ing, aluminum vacuumoil, wax, which might contaminate the passivation deposited, are cited in specification MIL-C-solution a nd be a detriment to the passiva tion 23217A; and for coating, cadmium vacuum depos-treat ment sh all be removed. Sur faces will be con- ited, in specification MIL-C-8837.sidered suff iciently clean w hen a wett ed surface isfr ee of wa t er br ea ks. Af t er clea n in g t he pa r ts w ill 2-311. ME C H AN IC AL -S U RF AC E F IN IS H . Th eb e pa s s iva t ed by im m er sing in a solut ion of 20- f ol low in g pa r a g r a ph s a r e con cer n ed w it h m ech a n i-25% (Volum e) n it r ic a cid (S p. gr 1. 42) plus 1. 5 - ca l s ur fa ce f in is h of t h e g eom et r ica l i rr eg ul a r it i es2. 5% (Weigh t ) s od iu m dich r om a t e w i t h p roces s of su r fa ces of sol id m a t er ia l s a n d es t a bl is hed cl a s-t imes a nd t empera tures a s follow s: sif ica tion for va rious degrees of roughness a nd

2-133

Page 98: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 98/288

T.O. 1-1A-9

w a vin ess. Th e s ur fa ce r ou gh ness of a pa r t is a 2-313. D esig na t ion of S ur fa ce F in ish . S ur fa cemeasurement r a t ing of the f inely spaced i r regu la r - f in ish should be speci f ied for product ion par t s on lyi t ies, such as the surfaces produced by mach in ing on those surfaces which must be under funct iona la n d a b r a d in g (a b r a sive h on in g , g r in d in g , f i li ng , con t r ol . F or a l l ot h er s ur fa ces t h e f in is h r es ul t in gs a nd in g, et c. ) Th e r ou gh nes s h eig ht r a t in gs a r e f rom t h e m a ch in in g met h od r eq uir ed t o ob ta i nspeci f ied in microinches a s the a r i thmet ic average dimens iona l accuracy is genera l ly s a t i s fac tory .of the absolute devia t ions from the mean sur face. The sur face chosen (un less a lready des igna ted) forPro f i lometers and other inst ruments used to mea- a speci f ic appl ica t ion w i ll be determined by i t ssur e sur fa ce h eigh t if ca libr at ed in RMS (R oot r eq uir ed fun ct ion . Ta ble 2-38 gives t he typicalM ea n S q ua r e) a v er a ge w ill rea d a ppr oxim a t ely n or ma l r a ng es of su rf a ce rou gh nes s of fu nct ion a l11% h ig her on a g iv en su rf a ce t h a n th os e ca l i- pa r t s. Th e v a lu es cit ed a r e m icr oi nch es , f or exa m -brat ed for ar ithmetic average. Also associat ed ple

63= 63 Microinches or 0.000063 inches

with roughness high is roughness width , usually average deviation from mean.specif ied in inches a nd t he ma ximum permissiblespacing of surface irregularit ies. As the a rithmeticavera ge of the a bsolute diviations from t he meansurface. Waviness height ra t ing (wh en required)ma y be specified in inches as t he vertical d istan cefrom peaks to valleys of the w aves, wh ereas wa vi-ness width is the dista nce in inches from peak t opeak of the w aves. Figure 2-5 shows the meaningof each symbol defined.

2-312. The symbol used to des ignat e sur faceirregular it ies is the check mark a s shown below.

*When wa viness widt h va lue is required, the valuema y be placed to the right of the wa viness heightvalue.

**Roughness w idth cutoff va lue, when required, isplaced imm ediately below the r ight-ha ndextension.

Table 2-37. Galvanic Seri es of M etals and Al loys 

CORRODED END - ANODIC (LEAST NOBLE)

Ma gnesium TinMa gnesium Alloys Nickel (a ct ive)Zinc Inconel (a ct ive)Aluminum - 7075 C la d B ra ssAluminum - 6061 C la d CopperAluminum - 5052 B ronzeAluminum - 2024 C la d Tit a niumAluminum - 3003 MonelAluminum - 6061 - T6 S ilver S olderAluminum - 7075 - T6 Nickel (P a ssive)Aluminum - 7178 Inconel (P a ssive)

C a dmium S ilverAluminum - 2017 - T4 G ra phiteAluminum - 2024 - T6 G oldAluminum - 2014 - T6 P la t inumS teel or I ron P rotect ed E nd - Ca t hodicLea d (Most Noble)

2-134

Page 99: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 99/288

T.O. 1-1A-9

Figure 2-5. Surface Roughness 

2-135

Page 100: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 100/288

T.O. 1-1A-9

Table 2-38. Surface Roughness and L ay Symbols 

2-136

Page 101: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 101/288

T.O. 1-1A-9

SECTION III

ALUMINUM ALLOYS

3-1. C LAS S IFICATION. a ssigned consecut ively a s needed indica t es specia l

cont rol of one individua l impurity. Thus 10403-2. Aluminum alloys are produced and used in indicat es 99.40%minimum aluminum with out spema ny sha pes and forms. The common forms a re cial control on individual impurities and 1140,casting, sheet, plate, bar, rod (round, hex, etc.), 1240 etc. indicate same purity with special controlan gles (extruded a nd r olled or dra wn ), chann els on one or m ore impurities.an d forgings. The inherent adva nta ges of this

3-5. The las t t wo of the four digi ts in a l loyma terial a re light weight, corrosion resistan ce togroups 2XXX thr ough 8XXX ha ve no specia l signif-the a tmosphere and ma ny va rieties of chemicals ,icance except that they serve to designate the alloytherma l a nd electrical conductivity, ref lectivity forby its former number, i.e., 243, 525, 758, etc.radiant energy of all wave lengths and ease of

fabrication.3-6. Experimenta l a l loys are, a lso, designated bythis system except t ha t t he 4 digit number is3-3. The above factors plus the fact tha t somepref ixed by a n X.alloys of this ma terial can be formed in a sof t con-

dit ion and heat treated to a temper comparable toTable 3-2. Alum inum All oy Designat ion and Conversions to 4structural steel make it very adaptable for

Di git System fabricating various aircraft and missile parts .

3-4. CO MM E RCI AL AN D M I L I TARY D E S I G - MAJ OR ALLOYINGNATIONS . The present syst em utilized to identify OLD NE W E LE ME NTaluminum alloys is the 4 digit designation system.

2S 1100 None (AluminumThe major alloy element for each type is indicated99.00X)

by the f irst digit (see Ta ble 3-1) i.e., 1XXX indi-3S 3003 Ma nga nesecates aluminum of 99.00%minimum, 2XXX indi-

cates a n a luminum a lloy in w hich copper is the 4S 3004 Ma nga nesema in alloying element, etc. Although most a lumi- 11S 2011 Coppernum alloys contain several alloying elements only

14S R301 2014 C opperone group the 6XXX designate more than oneCore

a lloying element. See Ta ble 3-1 for complete

17S 2017 Copperlist ing.A17S 2117 Copper (S pecia l cont rol

Table 3-1. Designat ions for Al l oy Groups  of impurities)

18S 2018 Copper

24S 2024 Copper1XXX - - - Aluminum 99.00%of minimumand greater 19S 2219 Copper

32S 4032 S ilicon2XXX - - - Copper

50S 5050 Ma gnesium3XXX - - - Mangenese

52S 5052 Ma gnesium4XXX - - - Silicon

56S 5056 Ma gnesium5XXX - - - Magnesium 61S 6061 Ma gnesium & S ilicon

6XXX - - - Magnesium and Silicon 62S 6062 Ma gnesium & S ilicon63S 6063 Ma gnesium & S ilicon7XXX - - - Zinc

MA15 7050 Zinc8XXX - - - Other element-- 7475 Zinc

9XXX - - - U nu sed s eries72S 7072 Zinc

75S 7075 ZincThe second digit of the destination indicates modi-78S 7178 Zincf icat ion in impurity limits . If the second digit is 0

it indicates that there is no special control on the79S 7079 Zinc

impurities, while numbers 1 - 9 which are

3-1

Page 102: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 102/288

T.O. 1-1A-9

NOTE 3-11. Alloys a lclad 2014, 2024, a lclad 2024, 6061,7075, alclad 7075 and 7178 are classed as heatCladding which is a sacrificial alumi-tr eat a ble. The mecha nical properties of thesenum coating applied to an aluminumalloys is improved by heat treat ment or by a com-a lloy core for t he purpose of increas -binat ion of heat t rea tment a nd s t ra in hardening.ing corrosion resistance is designatedThe tempers for these alloys is designated by sym-as alclad 2024, alclad 2014, alcladbols, W, T, T2, T3, T4, T5, T6, T7, T8, T9, T10, F

7075, etc. an d O. Following is a summ ar y of these symbols.3-7. Aluminum alloys for mili tary use are ident i-

-F As fabricatedf ied by milita ry a nd federal specif icat ions w hich-O Annealedare comparable to commercial specifications and-W Solution heat treated - unstable temperdesigna tions. The followin g ta ble is a general list-T Trea ted t o produce sta ble tempers other th a n -Fof the commonly used military an d federal specifi-

or -Ocations according to the commercial designation-T2 Annealed (cast products only)and forms of material.-T3 Solution heat treated and then cold worked

3-8. M E CHAN I CAL PRO PE RTI E S . P r ior t o -T4 Solution heat treatedpresenting factua l da ta on mecha nical properties -T5 Artificially aged onlythe tempers (hardness) and methods of designation -T6 Solution heat t reat ed and then a rt if iciallyshould be expla ined. For nomina l mechan ical agedproperties see Ta ble 3-4. -T7 Solution heat treated and stabilized

-T8 Solution heat treated, cold worked and then3-9. The tempers of a luminum alloys are pro-ar t i f icia l ly agedduced essentia lly by th ree meth ods. These meth -

-T9 Solution hea t t reat ed, art ificially aged, a ndods are cold w orking (stra in ha rdening), heatthen cold workedtreat ment and a combina tion of the tw o. The var i-

-T10 Artificially aged and then cold workedous alloys of aluminum a re either classed as hea t-trea ta ble or non-hea t-tr eat a ble. Alloys 1100, 3003,

Added numbers to the above denotes a modifica-alclad 3003, 3004, alclad 3004, 5050 and 5052 are

tion of sta nda rd t empers. Exa mple: The numeralclassed a s nonhea t-trea ta ble. The tempers of

‘‘6’’ following ‘‘T3’’ indicates a different amount ofthese alloys are designated by symbols H 1, H2,

cold work then used in ‘‘T3’’ such a s 2024-T36.H3, H4, F & O.

The numbers added to indicate modification or sig-nif icant a l ternat ion of the s tanda rd temper a re3-10. A second number added to the above indi-ar bitra rily assigned and specif icat ion for the alloycates the degree of stra in ha rdening-actua lshould be utilized to determine specific data.temper.

E xa mple: 2= 1/4 ha rd (2/8) - H 12, H 22, H 32 3-12. The fol lowing s tandard modif ica t ion digi ts4= 1/2 ha rd (4/8) - H 14, H 24, H 34 ha ve been a ssigned for wrought products in all6= 3/4 ha rd (6/8) - H 16, H 26, H 36 alloys: TX-51 - Stress-Relieved by Stretching:8= Fu ll H a rd (8/8) - H 18, H28, H 38 Applies t o products wh ich a re st ress-relieved by

stretching the following am ounts af ter solutionAs previously pointed out the above tempers desig-

heat t rea tment :nation symbols are hyphen (-dash) suffixed to the4 digit a lloy designa tion. E xam ple: 1000-H 12, P la te 1 1/2 to 3% perma nent set5052-H 24, 3004-H 34 etc. The gener a l sym bols

Rod, B a r a nd S ha pes 1 to 3% perma nent setused for the nonheat -treat able alloys are a sfollows:

Applies directly to plate and rolled or cold finishes-F As fabricated rod and ba r. These products receive no further-O Annealed stra ightening af ter stretching. Applies to

-H21 Str ain ha rdened only extruded rod, bar and shapes which receive minor-H2 Strain hardened then partial annealed straightening after stretching to comply with stan--H3 Strain hardened then stabilized da rd tolerances.

-TX510 - Applies to extruded rod, bar and shapesNOTE which receive no further stra ightening

At tempt should not be ma de to a lt er a f t er st ret ching.the t emper cha racterist ics of the ‘‘H ’’ -TX511 - Applies to extruded rod, bar and shapesser ies of a luminum a lloys other t ha n w hich receive minor st ra igh tening a f t erin emergencies. This sha ll be limited st ret ching to comply w ith st a nda rdt o a nnea ling opera t ion on ly. t olera nces.

3-2

Page 103: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 103/288

T.O. 1-1A-9

Tab le 3-3 . Federa l and M i l i ta ry Speci f i cat ions 

ALLOY FORM (COMMOD ITY) AMS F E D E RAL MILITARY

1100 B a rs Rolled 4102 QQ-A-411, QQ-A-225/1 -

Bar, rod, wire and shapes,rolled or dra w n QQ-A-411, QQ-A-225/1 -S heet a nd P la te 4001B ,4003B QQ-A-561, QQ-A-250/1 -Tubing 4062C WW-T-783 (Old), WW-T- -

700/1* - - MIL-A-148

E xt rusion (Impa ct ) - - MIL-A-12545

1360 Wrought P roduct - - MIL-A-799

2011 B a r a nd Rod - QQ-A-365, QQ-A-225/3 -

2014 B a r , Rod a nd S ha pes

E xt ruded 4153A QQ-A-261, QQ-A-200/2

Ba r , Rod and Sha pesRolled or D ra w n 4121B QQ-A-266, QQ-A-225/4

Forgings 4134A,4135H QQ-A-367

E xt rusions (Impa ct ) (S ee QQ-A-367 & 367-1) MIL-A-12545

Alcla d QQ-A-255, QQ-A-250/32014 P la t e a nd S heet

2017 B ar , Rod, Wire a nd Sha pes,

Rolled or D ra w n 4118 QQ-A-351, QQ-A-225/5

WIRE - ROD QQ-A-430 MIL-W-7986

FORG ING S QQ-A-367

2018 Forgings 4140 QQ-A-367

2020 S heet a nd P la te QQ-A-250/16 MIL-A-8882

2024 B a r , Rod a nd S ha pes 4152 QQ-A-267, QQ-A-200/3

Extruded

Ba r , Rod and Sha pesRolled or D ra w n 4120 QQ-A-225/6, QQ-A-268

2024 P la t e a nd S heet 4035 QQ-A-355, QQ-A-250/44037

3-3

Page 104: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 104/288

T.O. 1-1A-9

Table 3-3. Federal and M il i tary Specif icat ions - Cont inu ed 

ALLOY F ORM (C OMMOD ITY) AMS FE D E RAL MILITARY

Alclad2024 S heet a nd P la t e 4040 QQ-A-362, QQ-A-250/5

40414042

2024 Tube D ra w n 4086 WW-T-785 (Old),4087 WW-T-700/34088

2025 F orgings 4130 QQ-A-367

2218 F orgings 4142 QQ-A-367

2219 P la t e a nd S heet MIL-A-8720

S heet a nd P la t e 4031 QQ-A-250/304090

S heet a nd P la te, 4094Alcla d 4095

4096

E xt rusions 41624163

3003 B a r, Rod, S ha pes QQ-A-200/1, New  E xt ruded QQ-A-357, Old

B ar, R od, Wire andS ha pes QQ-A-225/2 (New )

Rolled or D ra w n QQ-A-356 (Old)

P la t e a nd S heet 4006 QQ-A-359, QQ-A-250/24008

Tube D ra w n 4065 WW-T-786 (Old)4067 WW-T-700/3

4032 F orgings 4145 QQ-A-367

5052 B a r, Rod, Wire QQ-A-225/7 (New )a nd S ha pes D ra w n 4114 QQ-A-315 (Old)

5052 P la t e a nd S heet 4015 QQ-A-3184016 QQ-A-250/84017

Tube, D ra w n 4070 WW-T-787 (Old),4071 WW-T-700/4

5056 B a r, Rod a nd Wire 4182 MIL-C-915Rolled or D ra w n (S hips)

3-4

Page 105: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 105/288

T.O. 1-1A-9

Table 3-3. Federal and M il i tary Specif icat ions - Cont inu ed 

ALLOY FORM (COMMOD ITY) AMS F E D E RAL MILITARY

5056 B a r , Rod, S ha pes- QQ-A-200/7 MIL-C -6136(Cont ) E xt ruded

P la t e S heet QQ-A-250/9

Wire Rod MIL-W-7986

Welding Rod QQ-R-566 C1FS-RA156

5083 B a r , Rod a nd S ha pes QQ-A-200/4 (New ) MIL-A-19005

P la t e a nd S heet QQ-A-250/8 (New ) MIL-A-87001MIL-A-17358

5086 P la t e a nd S heet QQ-A-250/7 (New ) MIL-A-19070

5154 P la t e a nd S heet 4018 MIL-A-173574019

6061 B a r , Rod a nd S ha pesE xt ruded 4150 QQ-A-270

B a r , Rod a nd S ha pes QQ-A-225/8 (New )Rolled or D ra w n QQ-A-325 (Old)

6061 Forgings 4127 QQ-A-367d-1

P la t e a nd S heet 4025 QQ-A-3274026 QQ-A-250/11 (New )4027

Tube, D ra w n 4080 WW-T-789/WW-T-700/64082

Tube, H ydra ulic 4081 MIL-T-7081

Alclad6061 S heet a nd P la te 4021

40224023

6062 B a r , Rod a nd S ha pes 4155 QQ-A-270 (Old)E xt ruded QQ-A-200/8 (New )

Tube, D ra w n 40914092

4093

Tube, H ydra ulic MIL-T-7081

6063 B a r , Rod a nd S ha pes QQ-A-200/9 (New )E xt ruded 4156 QQ-A-274 (Old)

6066 B a r , Rod a nd S ha pesExtruded

3-5

Page 106: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 106/288

T.O. 1-1A-9

Table 3-3. Federal and M il i tary Specif icat ions - Cont inu ed 

ALLOY F ORM (C OMMOD ITY) AMS FE D E RAL MILITARY

6151 F orgings 4125 QQ-A-367

7050 P la te 40504201

E xt rusion 434043414342

D ie Forging 4107 MIL-A-46118D(Armor)

H a nd F orging 4108

7075 B a r, Rod a nd S ha pes QQ-A-225/11

E xt ruded 4154 QQ-A-277B ar , Rod, Shapesa nd Wire, Rolled QQ-A-225/9or D ra w n 4122 QQ-A-282

F orgings 4139 QQ-A-367E xt rusions (Impa ct ) 4170 MIL-A-12545

P la t e a nd S heet 4044 QQ-A-2834045 QQ-A-250/12

Alclad7075 P la t e a nd S heet 4048 QQ-A-287

4049 QQ-A-250/13

Pla te and SheetAlcla d one side QQ-A-250/13 MIL-A-8902

7076 F orgings 4137 QQ-A-367 MIL-A-11352

7079 F orgings 4138 QQ-A-367

P la t e a nd S heet QQ-A-250/17

Pla te and SheetAlcla d one side QQ-A-250/18

7475 S heet a nd P la t e 42074202

Rod MIL-A-63547

7178 B a r a nd S ha pesE xt ruded 4158 MIL-A-9186

P la t e a nd S heet 4051 QQ-A-250/14 MIL-A-91804052

8280 S heet MIL-A-11267(ORD)

3-6

Page 107: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 107/288

T.O. 1-1A-9

Table 3-3. Federal and M il i tary Specif icat ions - Cont inu ed 

ALLOY FORM (COMMOD ITY) AMS F E D E RAL MILITARY

99.75% Ingot QQ-A-45199.5%

99.3%99.0%

43 Foundry Ingot QQ-A-371108A108113122A132

142 Foundry Ingot QQ-A-371195B195214220

319355356

XB 216 Foundry Ingot MIL-A-10937(ORD)

43 S a nd Ca st ings QQ-A-601

108 S a nd Ca st ings QQ-A-601

113 S a nd Ca st ings QQ-A-601

122 S a nd Ca st ings QQ-A-601

142 S a nd Ca st ings 4222 QQ-A-601

195 S a nd Ca st ings 4230 QQ-A-6014231

B 214 S a nd Ca st ings QQ-A-601

XB 216 S a nd Ca st ings MIL-A-10936(ORD)

220 S a nd Ca st ings QQ-A-601

319 S a nd Ca st ings 4240 QQ-A-601

355 S a nd Ca st ings 4210 QQ-A-60142124214

356 S a nd Ca st ings 4217A612 S a nd Ca st ings MIL-A-10936

(ORD)

ML S a nd Ca st ings MIL-A-25450USAF

43 P erma nent Mold Ca st ings QQ-A-596

A108 P erma nent Mold Ca st ings QQ-A-596

3-7

Page 108: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 108/288

T.O. 1-1A-9

Table 3-3. Federal and M il i tary Specif icat ions - Cont inu ed 

ALLOY F ORM (C OMMOD ITY) AMS FE D E RAL MILITARY

113 P erma nent Mold Ca st ings QQ-A-596

122 P erma nent Mold Ca st ings QQ-A-596A132 P erma nent Mold Ca st ings QQ-A-596

B 195 P erma nent Mold Ca st ings 4282 QQ-A-5964283

XB 216 P erma nent Mold Ca st ings MIL-A-10935(ORD)

319 P erma nent Mold Ca st ings QQ-A-596

355 P erma nent Mold Ca st ings 4280 QQ-A-5964281

356 P erma nent Mold Ca st ings 4284 QQ-A-5964286

750 P erma nent Mold Ca st ings 4275 QQ-A-596

ML P erma nent Mold Ca st ings

13 D ie Ca st ings 4290 QQ-A-591 MIL-A-15153Ships

43 D ie Ca st ings QQ-A-591 MIL-A-15153Ships

218 D ie Ca st ings QQ-A-591 MIL-A-15153Ships

360 D ie Ca st ings 4290 QQ-A-591

A360 D ie Ca st ings QQ-A-591 MIL-A-15153

Ships

380 D ie Ca st ings QQ-A-591

A380 D ie Ca st ings 4291 QQ-A-591 MIL-A-15153Ships

Misc STAND ARD /SP EC IF IC ATIONS

-TX52 - S t ress-R eliev ed by C om pr essin g: Applies a t t a in mech a nica l pr oper ties dif fer en t fr omt o product s w hich a re st ress-relieved by t hose of the -T6 t emper.*compressing after solution heat treatment.

*Exceptions not conforming to these definitionsa re 4032-T62, 6101-T62, 6062-T62, 6063-T42 a nd-TX53 - Stress-Relieved by Thermal Treatment.6463-T42.

3-13. The following t wo digit - T temper designa - 3-14. For addi t iona l in forma t ion on hea t t rea t ingtions have been assigned for wrought products in aluminum alloys, see paragraph 3-22.all a lloys:

3-15. Chemical composit ion nominal plus genera luse data are given in Ta ble 3-4 and nominal-T42 - Applies to products solution heat treated bymecha nical properties at room t empera ture a rethe user which a tta in mechanical propertiesgiven in Ta ble 3-5. The values cited are generaldifferent from those of the -T4 temper.*an d int ended for use a s comparisons values. For

-T62 - Appl ies to product s solut ion hea t -t rea ted speci f ic va lues the speci f ica t ion for the a l loya nd ar t if icia lly aged by the user which should be ut ilized.

3-8

Page 109: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 109/288

T.O. 1-1A-9

3-9

  T a

  b  l e  3

 -  4 .

  C  h

 e m  i c

 a  l   C

 o m p o s

  i  t  i o n

  N o m

  i n a

  l  a n

  d  G

 e n e r a

  l   U s

 e  D

 a  t a  1  /

 

   1   N   O

   M   I   N   A   L   C   O   M   P   O   S   I   T   I   O   N  -    %

   F   L   A   T   A   N   D

   A   L   L   O   Y

   S   I

   C   U

   M   N

   M   G

   C   R

   Z   N

   A

   L

   C   O   I   L   E   D

   S   H   E   E   T

   P   L   A   T   E

   S   H   A   P   E   S

   T   U   B   E

   P   I   P   E

   C   H   A   R

   A   C   T   E   R   I   S   T   I   C   S

   R   O   D   S

   A   N   D

   B   A   R   S

   E   C

  -  -

  -  -

  -  -

  -  -

  -  -

  -  -

   9   9

 .   4   5

   X

   E   l   e   c   t   r   i   c   a   l   c   o   n   d  u   c   t   o   r

   1   0   6   0

   0 .   2   5

   0 .   0   5

   0 .   0   3

   0 .   0   3

  -  -

   0 .   0   5

   9   9

 .   6   0

   X

   G   o   o   d   c   o   r   r   o   s   i   o   n   r   e   s   i   s  -

   t   a   n   c   e ,

   e   l   e   c   t   r   i   c   a   l   c   o   n  -

   d  u   c   t   i  v   i   t  y ,   f   o   r   m   a   b   i   l   i   t  y

   a   n   d  w   e   l   d   a   b   i   l   i   t  y .

   1   1   0   0

   1 .   0

   0 .   2   0

   0 .   0   5

  -  -

   0 .   1   0

   0 .   1   0

   9

   9 .   0

   X

   X

   X

   X

   E  x   c   e   l   l   e   n   t   f   o   r   m   a   b   i   l   i  -

   t  y ,   r   e   a

   d   i   l  y  w   e   l   d   e   d

   a   n   d   b   r   a  z   e   d ,   c   o   r   r   o   s   i   o   n

   r   e   s   i   s   t   a

   n   t .

   1   1   4   5

   0 .   5   5

   0 .   0   5

   0 .   0   5

  -  -

  -  -

  -  -

   9   9

 .   4   5

   X

   E  x   c   e   l   l   e   n   t   f   o   r   m   a   b   i   l   i   t  y

   c   o   m   b   i   n   e   d  w   i   t   h   h   i   g   h

   e   l   e   c   t   r   i

   c   a   l   a   n   d   t   h   e   r  -

   m   a   l   c   o

   n   d  u   c   t   i  v   i   t  y   a   n   d

   c   o   r   r   o   s   i   o   n   r   e   s   i   s   t   a   n   t .

   2   0   1   4

   0 .   8

   4 .   5

   0 .   8

   0 .   4

   0 .   1   0

   0 .   2   5

   R   E   M

   X

   X

   X

   H   i   g   h   s   t   r   e   n   g   t   h   a   l   l   o  y .

   E   l   e   c   t   r   i   c   r   e   s   i   s   t   a   n   c   e

  w   e   l   d   a   b   i   l   i   t  y   e  x   c   e   l   l   e   n   t

   f  u   s   i   o   n

  w   e   l   d   a   b   i   l   i   t  y

   l   i   m   i   t   e   d .

   2   0   2   4

   0 .   5

   4 .   5

   0 .   6

   1 .   5

   0 .   1   0

   0 .   2   5

   R   E   M

   X

   X

   X

   P   o   p  u   l   a   r   s   h   e   e   t   a   l   l   o  y

   f   o   r   a   i   r

   c   r   a   f   t   s   i   m   i   l   a   r

   t   o   2   0   1

   4 .

Page 110: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 110/288

T.O. 1-1A-9

3-10

  T a

  b  l e  3

 -  4 .

  C  h

 e m

  i c a

  l   C o

 m p o s

  i  t  i o n

  N o m

  i n a

  l  a n

  d  G

 e n e r a

  l   U

 s e

  D a  t a

  1  /

  -   C

 o n

  t  i n u e

  d

   1   N   O

   M   I   N   A   L   C   O   M   P   O   S   I   T   I   O   N  -    %

   F   L   A   T   A   N   D

   A   L   L   O   Y

   S   I

   C   U

   M   N

   M   G

   C   R

   Z   N

   A

   L

   C   O   I   L   E   D

   S   H   E   E   T

   P   L   A   T   E

   S   H   A   P   E   S

   T   U   B   E

   P   I   P   E

   C   H   A   R

   A   C   T   E   R   I   S   T   I   C   S

   R   O   D   S

   A   N   D

   B   A   R   S

   2   2   1   9

   0 .   1

   6 .   2

   0 .   3

   0 .   0   1

  -

   0 .   0   5

   R   E   M

   X

   X

   X

   X

   S   t   r  u   t  u

   r   a   l  u   s   e   s   r   e  -

   q  u   i   r   i   n   g   h   i   g   h

   s   t   r   e   n   g

   t   h  u   p   t   o   6   0   0

   d   e   g   r   e   e

   s   F  ;   h   i   g   h

   s   t   r   e   n   g

   t   h  w   e   l   d   m   e   n   t   s .

   3   0   0   3

   0 .   6

   0 .   2   0

   1 .   2

  -  -

  -  -

   0 .   1   0

   R   E   M

   X

   X

   X

   X

   S   t   r   o   n   g

   e   r   t   h   a   n   1   1   0   0

  w   i   t   h   g

   o   o   d  w   e   l   d   a   b   i   l   i   t  y

   a   n   d   f   o

   r   m   a   b   i   l   i   t  y ,   h   i   g   h

   r   e   s   i   s   t   a

   n   c   e   t   o   c   o   r   r   o  -

   s   i   o   n .

   3   0   0   4

   0 .   3   0

   0 .   2   5

   1 .   2

   1 .   0

  -  -

   0 .   2   5

   R   E   M

   X

   X

   S   t   r   o   n   g

   e   r   t   h   a   n   1   1   0   0

   a   n   d   3   0   0   3  w   i   t   h   f   a   i   r

  w   o   r   k   a   b   i   l   i   t  y   a   n   d   g   o   o   d

   c   o   r   r   o   s   i   o   n   r   e   s   i   s   t   a   n   c   e .

   5   0   0   5

   0 .   4   0

   0 .   2   0

   0 .   2   0

   0 .   8

   0 .   1   0

   0 .   2   5

   R   E   M

   X

   X

   S   i   m   i   l   a

   r   t   o   3   0   0   3   i   n

   s   t   r   e   n   g

   t   h .   G   o   o   d   a   n   o  -

   d   i  z   i   n   g

   c   h   a   r   a   c   t   e   r   i   s  -

   t   i   c   s ,   f   o

   r   m   a   b   i   l   i   t  y   a   n   d

   r   e   s   i   s   t   a

   n   c   e   t   o   c   o   r   r   o  -

   s   i   o   n .

   5   0   5   0

   0 .   4   0

   0 .   2   0

   0 .   1   0

   1 .   4

   0 .   1   0

   0 .   2   5

   R   E   M

   X

   X

   G   o   o   d   a   n   o   d   i  z   i   n   g

   s   t   r   e   n   g

   t   h ,   f   o   r   m   a   b   i   l   i   t  y ,

  w   e   l   d   a   b   i   l   i   t  y ,   a   n   d   c   o   r  -

   r   o   s   i   o   n

   r   e   s   i   s   t   a   n   c   e .

Page 111: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 111/288

T.O. 1-1A-9

3-11

  T a

  b  l e  3

 -  4 .

  C  h

 e m

  i c a

  l   C o

 m p o s

  i  t  i o n

  N o m

  i n a

  l  a n

  d  G

 e n e r a

  l   U

 s e

  D a  t a

  1  /

  -   C

 o n

  t  i n u e

  d

   1   N   O

   M   I   N   A   L   C   O   M   P   O   S   I   T   I   O   N  -    %

   F   L   A   T   A   N   D

   A   L   L   O   Y

   S   I

   C   U

   M   N

   M   G

   C   R

   Z   N

   A

   L

   C   O   I   L   E   D

   S   H   E   E   T

   P   L   A   T   E

   S   H   A   P   E   S

   T   U   B   E

   P   I   P   E

   C   H   A   R

   A   C   T   E   R   I   S   T   I   C   S

   R   O   D   S

   A   N   D

   B   A   R   S

   5   0   5   2

   0 .   4   5

   0 .   1   0

   0 .   1   0

   2 .   5

   0 .   2   5

   0 .   1   0

   R   E   M

   X

   X

   H   i   g   h   e   s   t   s   t   r   e   n   g   t   h   o   f

   n   o   n  -   h   e   a   t  -   t   r   e   a   t   a   b   l   e

   a   l   l   o  y   s .   G   o   o   d   c   o   r   r   o  -

   s   i   o   n   r   e   s   i   s   t   a   n   c   e   a   n   d

   f   i   n   i   s   h   i   n   g   c   h   a   r   a   c   t   e   r  -

   i   s   t   i   c   s .

   5   0   8   3

   0 .   4   0

   0 .   1   0

   0 .   8

   4 .   5

   0 .   1   5

   0 .   2   5

   R   E   M

   X

   X

   H   i   g   h  w   e   l   d   j   o   i   n   t   e   f   f   i  -

   c   i   e   n   c  y

  w   i   t   h   b   a   s   i   c

   g   o   o   d   s

   t   r   e   n   g   t   h   a   n   d

   r   e   s   i   s   t   a

   n   c   e   c   o   m   b   i   n   e   d

  w   i   t   h   g

   o   o   d   f   o   r   m   a   b   i   l   i  -

   t  y .

   5   1   5   4

   0 .   4   5

   0 .   1   0

   0 .   1   0

   3 .   5

   0 .   2   5

   0 .   2   0

   R   E   M

   X

   X

   G   o   o   d   s   t   r   e   n   g   t   h   a   n   d

   e  x   c   e   l   l   e

   n   t  w   e   l   d   a   b   i   l   i   t  y .

   5   2   5   4

   0 .   4   5

   0 .   0   5

   0 .   0   1

   3 .   5

   0 .   2   5

   0 .   2   0

   R   E   M

   X

   G   o   o   d   s   t   r   e   n   g   t   h ,  w   e   l   d  -

   a   b   i   l   i   t  y

   a   n   d   c   o   r   r   o   s   i   o   n

   r   e   s   i   s   t   a

   n   c   e .

   5   3   5   7

   0 .   1   2

   0 .   0   7

   0 .   3

   1 .   0

  -  -

  -  -

   R   E   M

   X

   E  x   c   e   l   l   e   n   t   b   r   i   g   h   t   f   i   n  -

   i   s   h   i   n   g

   c   h   a   r   a   c   t   e   r   i   s  -

   t   i   c   s .

   5   4   5   4

   0 .   4   0

   0 .   1   0

   0 .   8

   2 .   7

   0 .   2

   0 .   2   5

   R   E   M

   X

   X

   X

   E  x   c   e   l   l   e   n   t   s   t   r   e   n   g   t   h   a   t

   e   l   e  v   a   t   e   d   t   e   m   p   e   r   a   t  u   r   e

   (   1   5   0  -   3   0   0   F   )   p   l  u   s

  w   e   l   d   a   b   i   l   i   t  y .

   5   4   5   6

   0 .   4   0

   0 .   2   0

   0 .   8

   5 .   3

  -  -

  -  -

   R   E   M

   X

   X

   H   i   g   h   s   t   r   e   n   g   t   h   a   n   d

   c   o   r   r   o   s   i   o   n   r   e   s   i   s   t   a   n   c   e ,

  w   e   l   d   a   b   l   e .

Page 112: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 112/288

T.O. 1-1A-9

3-12

  T a

  b  l e  3

 -  4 .

  C  h

 e m

  i c a

  l   C o

 m p o s

  i  t  i o n

  N o m

  i n a

  l  a n

  d  G

 e n e r a

  l   U

 s e

  D a  t a

  1  /

  -   C

 o n

  t  i n u e

  d

   1   N   O

   M   I   N   A   L   C   O   M   P   O   S   I   T   I   O   N  -    %

   F   L   A   T   A   N   D

   A   L   L   O   Y

   S   I

   C   U

   M   N

   M   G

   C   R

   Z   N

   A

   L

   C   O   I   L   E   D

   S   H   E   E   T

   P   L   A   T   E

   S   H   A   P   E   S

   T   U   B   E

   P   I   P   E

   C   H   A   R

   A   C   T   E   R   I   S   T   I   C   S

   R   O   D   S

   A   N   D

   B   A   R   S

   5   4   5   7

   0 .   0   8

   0 .   2   0

   0 .   3

   1 .   0

  -  -

  -  -

   R   E   M

   X

   S  u   p   e   r   i   o   r   b   r   i   g   h   t   f   i   n  -

   i   s   h  w   h

   e   n   a   n   o   d   i  z   e   d .

   5   5   5   7

   0 .   2   5

   0 .   6

   R   E   M

   X

   G   o   o   d   b   r   i   g   h   t   f   i   n   i   s   h  -

   i   n   g   c   h   a   r   a   c   t   e   r   i   s   t   i   c   s .

   G   o   o   d  w   e   l   d   a   b   i   l   i   t  y   a   n   d

   f   o   r   m   a   b   i   l   i   t  y .

   5   6   5   2

   2 .   5

   0 .   2   5

   R   E   M

   X

   E  x   c   e   l   l   e   n   t   s   t   r   e   n   g   t   h

  w   i   t   h   g

   o   o   d   f   i   n   i   s   h   i   n   g

   c   h   a   r   a   c

   t   e   r   i   s   t   i   c   s   a   n   d

   c   o   r   r   o   s   i   o   n   r   e   s   i   s   t   a   n   c   e .

   6   0   6   1

   0 .   6

 .   2   5

   0 .   1   5

   1 .   0

 .   2   5

   0 .   2   5

   R   E   M

   X

   X

   X

   X

   B   e   s   t  w

   e   l   d   a   b   i   l   i   t  y   o   f

   h   e   a   t   t   r   e   a   t   a   b   l   e   a   l   l   o  y   s ,

   g   o   o   d   f   o   r   m   a   b   i   l   i   t  y   a   n   d

   c   o   r   r   o   s   i   o   n   r   e   s   i   s   t   a   n   c   e .

   6   0   6   2

   0 .   6

 .   2   5

   0 .   1   5

   1 .   0

 .   0   6

   0 .   2   5

   R   E   M

   X

   X

   G   o   o   d  w   e   l   d   a   b   i   l   i   t  y

  w   i   t   h   f   o   r   m   a   b   i   l   i   t  y   b   e   t  -

   t   e   r   t   h   a   n   6   0   6   1 .

   6   0   6   3

   0 .   4

   0 .   1   0

   0 .   1   0

   0 .   7

   0 .   1   0

   0 .   2   5

   R   E   M

   X

   X

   X

   G   o   o   d   f   i   n   i   s   h   i   n   g   c   h   a   r  -

   a   c   t   e   r   i   s   t   i   c   s   a   n   d   r   e   s   i   s  -

   t   a   n   c   e   t   o   c   o   r   r   o   s   i   o   n .

   G   o   o   d  w   o   r   k   a   b   i   l   i   t  y

  w   i   t   h   m

   o   d   e   r   a   t   e

   s   t   r   e   n   g

   t   h .

Page 113: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 113/288

T.O. 1-1A-9

3-13

  T a

  b  l e  3

 -  4 .

  C  h

 e m

  i c a

  l   C o

 m p o s

  i  t  i o n

  N o m

  i n a

  l  a n

  d  G

 e n e r a

  l   U

 s e

  D a  t a

  1  /

  -   C

 o n

  t  i n u e

  d

   1   N   O

   M   I   N   A   L   C   O   M   P   O   S   I   T   I   O   N  -    %

   F   L   A   T   A   N   D

   A   L   L   O   Y

   S   I

   C   U

   M   N

   M   G

   C   R

   Z   N

   A

   L

   C   O   I   L   E   D

   S   H   E   E   T

   P   L   A   T   E

   S   H   A   P   E   S

   T   U   B   E

   P   I   P   E

   C   H   A   R

   A   C   T   E   R   I   S   T   I   C   S

   R   O   D   S

   A   N   D

   B   A   R   S

   7   0   5   0

  -

   2 .   3

  -

   2 .   2   5

  -

   6 .   2

   R   E   M

   X

   X

   X

   X

   H   i   g   h   t   e   n   s   i   l   e   p   r   o   p   e   r  -

   t   i   e   s ,   g   o   o   d   e  x   f   o   l   i   a   t   i   o   n

   c   o   r   r   o   s   i   o   n   r   e   s   i   s   t   a   n   c   e

   g   o   o   d   s

   t   r   e   s   s  -   c   o   r   r   o   s   i   o   n

   c   r   a   c   k   i   n   g   r   e   s   i   s   t   a   n   c   e .

   7   0   7   5

   0 .   5   0

   1 .   6

   0 .   3   0

   2 .   5

 .   3

   5 .   6

   R   E   M

   X

   X

   X

   2   /   E  x   t   r   a   h   i   g   h

   s   t   r   e   n   g

   t   h   a   n   d   h   a   r   d  -

   n   e   s   s .   E   l   e   c   t   r   i   c   r   e   s   i   s  -

   t   a   n   c   e  w   e   l   d   a   b   i   l   i   t  y   b  u   t

   l   i   m   i   t   e   d   f  u   s   i   o   n  w   e   l   d   a  -

   b   i   l   i   t  y .

   7   0   7   9

   0 .   3   0

 .   6

 .   2

   3 .   3

 .   2

   4 .   3

   R   E   M

   X

   S   i   m   i   l   a

   r   t   o   7   0   7   5   b  u   t

   m   a  x   i   m

  u   m   s   t   r   e   n   g   t   h

   i   n   t   h   i   c

   k   s   e   c   t   i   o   n   s .

   7   1   7   8

   2 .   0

   0 .   3   0

   2 .   7

 .   3

   6 .   8

   R   E   M

   X

   X

   H   i   g   h   s   t   r   e   n   g   t   h   a   l   l   o  y

   f   o   r   a   /   c

   a   p   p   l   i   c   a   t   i   o   n   s ,

   h   o  w   e  v

   e   r   i   t   i   s   n   o   t   c   h

   s   e   n   s   i   t   i  v   e .

   7   4   7   5

   0 .   0   5

   1 .   5

   0 .   0   3

   2 .   2   5

   2 .   1

   5 .   7

   R   E   M

   X

   X

   A   e   r   o   s   p   a   c   e   a   p   p   l   i   c   a  -

   t   i   o   n   s   r

   e   q  u   i   r   i   n   g   h   i   g   h

   s   t   r   e   n   g

   t   h ,   t   o  u   g   h   n   e   s   s

  u   p   t   o   3   0   0   d   e   g   r   e   e   s   F

   r   e   s   i   s   t   a

   n   c   e   t   o   s   t   r   e   s   s  -

   c   o   r   r   o   s   i   o   n   c   r   a   c   k   i   n   g .

   S   I  =   S   i   l   i   c   o   n   M   N  =   M   a   n   g   a   n   e   s   e   C   R  =   C   h   r   o   m   i  u   m   A   L  =   A

   l  u   m   i   n  u   m   C   U  =   C   o   p   p   e   r   M   G  =   M   a   g   n   e   s   i  u   m   Z   N  =   Z   i   n   c

   1   /   N   o   m   i   n   a   l   C   o   m   p   o   s   i   t   i   o   n   D   o   e   s   N   o   t   I   n   c   l  u   d   e   A   l   l   A   l   l   o  y   i   n   g

   E   l   e   m   e   n   t   s   T   h   a   t   M   a  y   P   e   r   t   a   i   n ,   S   p

   e   c   i   f   i   c   a   t   i   o   n   S   h   o  u   l   d   B   e   U   t   i   l   i  z   e   d   W

   h   e   n   S   p   e   c   i   f   i   c

   D   a   t   a   R   e   q  u   i   r   e   d .

   2   /   7   0   7   5  -   T   7   3   I   s   C   o   m   p

   l   e   t   e   l  y   R   e   s   i   s   t   a   n   t   T   o   S   t   r   e   s   s   C   o   r   r   o   s   i   o   n   C   r   a   c   k   i   n   g .

Page 114: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 114/288

T.O. 1-1A-9

Table 3-5. M echanical Propert i es - Typical 

Yield E longa t ion, P er B r inellAlloy Tensile S t rengt h Cent in 2 in . H a rdness S hea ringa nd S t rength (Of fset = S heet S pecimen 500-kg Loa d S t rengt h

Temper P S I 0.2%) P S I (1/16 in . Thick) 10 MMM B a ll P S I

1100-0 13,000 5,000 35 23 9,0001100-H 12 16,000 15,000 12 28 10,0001100-H 14 18,000 17,000 9 32 11,0001100-H 16 21,000 20,000 6 38 12,0001100-H 18 24,000 22,000 5 44 13,000

3003-0 16,000 6,000 30 28 11,0003003-H 12 19,000 18,000 10 35 12,0003003-H 14 22,000 21,000 8 40 14,0003003-H 16 26,000 25,000 5 47 15,0003003-H 18 29,000 27,000 4 55 16,000Alcla d 3003

3004-0 26,000 10,000 20 45 16,0003004-H 32 31,000 25,000 10 52 17,0003004-H 34 35,000 29,000 9 63 18,0003004-H 36 38,000 33,000 5 70 20,0003004-H 38 41,000 36,000 5 77 21,000Alcla d 3004

Alcla d 2014-0 25,000 10,000 21 -- 18,000Alcla d 2014-T3 63,000 40,000 20 -- 37,000Alcla d 2014-T4 61,000 37,000 22 -- 37,000Alcla d 2014-T6 68,000 60,000 10 -- 41,000

2024-0 27,000 11,000 20 47 18,0002024-T3 70,000 50,000 18 120 41,000

2024-T36 72,000 57,000 13 130 42,0002024-T4 68,000 47,000 20 120 41,000Alcla d 2024-0 26,000 11,000 20 -- 18,000Alcla d 2024-T3 65,000 45,000 18 -- 40,000Alcla d 2024-T36 67,000 53,000 11 -- 41,000Alcla d 2024-T4 64,000 42,000 19 -- 40,000Alcla d 2024-T81 65,000 60,000 6 -- 40,000Alcla d 2024-T86 70,000 66,000 6 -- 42,000

2219-0 25,000 11,000 18 -- --2219-T42 52,000 27,000 20 -- --2219- 52,000 36,000 17 96 33,000T31,T3512219-T37 57,000 46,000 11 110 37,0002219-T62 60,000 42,000 10 113 37,0002219- 66,000 51,000 1 123 41,000T81,T8512219-T87 69,000 57,000 10 128 40,000

5005-0 18,000 6,000 30 28 11,0005005-H 32 20,000 17,000 11 36 14,0005005-H 34 23,000 20,000 8 41 14,0005005-H 36 26,000 24,000 6 46 15,0005005-H 38 29,000 27,000 5 51 16,000

3-14

Page 115: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 115/288

T.O. 1-1A-9

Table 3-5. M echanical Propert i es - Typical - Cont inued 

Yield E longa t ion, P er B r inellAlloy Tensile S t rength Cent in 2 in . H a rdness S hea r inga nd S t rengt h (Of fset = S heet S pecimen 500-kg Loa d S t rengt h

Temper P S I 0.2%) P S I (1/16 in . Thick) 10 MMM B a ll P S I

5050-0 21,000 8,000 24 36 15,0005050-H 32 25,000 21,000 9 46 17,0005050-H 34 28,000 24,000 8 53 18,0005050-H 36 30,000 26,000 7 58 19,0005050-H 38 32,000 29,000 6 63 20,000

5052-0 28,000 13,000 25 47 18,0005052-H 32 33,000 28,000 12 60 20,0005052-H 34 38,000 31,000 10 68 21,0005052-H 36 40,000 35,000 8 73 23,0005052-H 38 42,000 37,000 7 77 24,000

5154-0 35,000 17,000 27 58 22,0005154-H 112 35,000 17,000 25 63 ---5154-H 32 39,000 30,000 15 67 22,0005154-H 34 42,000 33,000 13 78 24,0005154-H 36 45,000 36,000 12 83 26,0005154-H 38 48,000 39,000 10 87 28,000

5357-0 19,000 7,000 25 32 12,0005357-H 32 22,000 19,000 9 40 13,0005357-H 34 25,000 22,000 8 45 15,0005357-H 36 28,000 26,000 7 51 17,0005357-H 38 32,000 30,000 6 55 18,000

6061-0 18,000 8,000 25 30 12,000

6061-T4 35,000 21,000 22 65 24,0006061-T6 45,000 35,000 12 95 30,000

7050-T74, 74,000 65,000 13 142 ---T7451,T7452

7075-0 33,000 15,000 17 60 22,0007075-T6 83,000 73,000 11 150 48,000Alcla d 7075-0 32,000 14,000 17 -- 22,000Alcla d 7075-T6 76,000 67,000 11 -- 46,000A1cla d 7079-T6 70,000 60,0007178-0 40,000 21,000 107178-T6 83,000 72,000 67079-T6 72,000 62,0007475-T7351 73,000 63,000 14 -- --

3-15

Page 116: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 116/288

T.O. 1-1A-9

Table 3-6. Physical Propert i es-Standard Al loys 

ALLOY S P E CIFI C WE IG H TS AP P ROX E LE CTRICAL CON-G RAVITY P ER C U.IN. ME LTING RANG E D UCTIVITY % COM-

D E G RE E S F P ARE TO COP P E RSTANDARD

1100-0 2.71 0.098 1,190-1,215 59

1100-H 18 57

3003-0 50

3003-H 12 2.73 0.099 1,190-1,210 42

3003-H 14 41

3003-H 18 40

3004-0 2.72 0.098 1,165-1,205 42

3004-H 38 4250

2014-0 2.80 0.101 950-1,180 4030

2024-0 2.77 0.100 935-1,810 50

2024-T3 30

2219 2.84 0.102 1010-1190 44

5050-0 2.69 0.097 1,160-1,205 50

5050-H 38 50

5052-0 2.68 0.097 1,100-1,200 35

5052-H 38 35

5357-0 2.70 0.098 1,165-1,210 43

5357-H 38 43

6061-0 2.70 0.098 1,080-1,200 45

6061-T4,T6 40

7050 2.83 0.102 890-1175 45

7075-0 2.80 0.101 890-1,180 --

7075-T6 30

7475 2.80 0.101 890-1175 46

B RAS S 8.4-8.8 0.304-0.319 -- 26-43

C opper 8.94 0.322 1981 100

Monel 8.8 0.318 --- 4

Nickel 8.84 0.319 2645 16

S teel(low a lloy) 7.6-7.8 0.276-0.282 2800 3-15

S teel(18.8 st a inless) 7.92 0.283 2500-2650 2-4

Tin 7.3 0.265 449 15

Zinc 7.1 0.258 787 30

3-16

Page 117: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 117/288

T.O. 1-1A-9

Table 3-7. H eat Treat ing (Soaking) Temperatur es 

SOLUTION HEAT TREATALLOY D E S IG NATION TE MP E RATU RE (D E G RE E S F ) TE MP E R

WROU G HT ALLOYS

Except forgings alloys2014 925-945 2014-T4

2017 925-945 2017-T4

2117 925-950 2117-T4

2024 910-930 2024-W

2219 985-1005 2219-T4

6061 960-1010 6061-T4

6062 960-1010 6062-T4

6066 960-980 6066-T4

7050 880-900 7050-W

7075 (rolled or dra w n) 860-930 7075-W

7075 (E xt ruded) 860-880 7075-W7075 (S heet .051 in t hickness or less) 910-930 7075-W

7178 (rolled or dra w n) 860-930 7178-W

7178 (E xt ruded) 860-880 7178-W

*7079 820-840 7079-W

*7079 Other temperature may be required for certain sections and conditions.

7475 880-970 7475-W

FORGING S ALLOYS

2014 925-950 2014-T4

2017 925-950 2017-T4

2018 940-970 2018-T4

FORGINGS

2025 950-970 2025-T4

4032 940-970 4032-T4

6151 950-980 6151-T4

6061 960-1010 6061-T4

7075 360-890 7075-W

7075 Other temperatures may be required for certain sections and conditions.

7079 820-840 7079-W

7079 Other temperatures may be required for certain sections and conditions.

SAND CAST ALLOYS122 930-960 T4

142 950-980 T4

195 940-970 T4

220 800-820 T4

319 920-950 T4

355 960-990 T4

356 980-1010 T4

3-17

Page 118: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 118/288

Table 3-7. Heat Treating (Soaking) Temperatures - Continued

ALLOY DESIGNATION

SOLUTION HEAT TREAT

TEMPERATURE (DEGREES F) TEMPER  

40E Solution heat treatment not required. PERMANENT MOLD CAST ALLOYS 122 A132 142 B195 355 356

 930-960 940-970 950-980 935-965 960-990 980-1010

 T4 T4 T4 T4 T4 T4

TO 1-1A-9

-16. PHYSICAL PROPERTIES. Commercially pure alu-

minum weights 0.098 pounds per cubic inch, corresponding to

specific gravity of 271. Data for standard alloys are shown in

Table 3-6. The approximate weight for aluminum, including

ts alloys, is one-tenth of a pound per cubic inch (see Table 3-

).

-17. HEAT TREATMENT OF ALUMINUM ALLOYS.

NOTE

SAE-AMS-2770, Heat Treatment of wrought alumi-

num alloy parts, & SAE-AMS-2771, Heat Treatment

of aluminum alloy castings, will be the control docu-

ments for heat treatment of Aluminum Alloys used

on aerospace equipment. For complete description of 

aluminum alloy heat treat requirements, refer to latest

issues of SAE-AMS-2770 & SAE-AMS-2771.

-18. GENERAL. There are two types of heat treatment

pplicable to aluminum alloys. They are known as solution

nd precipitation heat treatment. Some alloys such as 2017

nd 2024 develop their full mechanical properties as a result

f solution heat treatment followed by 96 hours (natural pre-

ipitation) aging at room temperature. Other alloys, such as

014, 7075, and 7178 require solution heat treatment and

ging (precipitation heat treatment) for specific length of time

t a definite temperature (see Table 3-11).

NOTE

Additional Heat Treatment information is discussed

in Section IX.

-19. Solution heat treatment is a process where the alloying

lements enter into solid solution in the aluminum at critical

emperatures. It has been found that those alloying elements

which increase the strength and hardness are more soluble in

solid aluminum at high temperature than at low. To complete

the solution often the metal is held at high temperatures for 

sufficient time; it is then quenched rapidly in cold water to

retain this condition. Immediately after quenching, the alloy is

in an unstable condition, because it consists of a supersatu-

rated solid solution of the hardening agent. Upon standing at

room temperature the hardening constituent in excess of thatwhich is soluble at room temperature precipitates. The precipi-

tate is in the form of extremely fine particles which due to

their “keying” action, greatly increase their strength. This is in

effect a method where the molecules of the aluminum and

alloying elements are realigned to increase the strength and

hardness of some aluminum alloys.

3-20. PRECIPITATION (AGE) HARDENING. This phase

of heat treatment consists of aging material previously sub-

 jected to solution heat treatments by natural (occurs at room

temperature) or artificial aging. Artificial aging consists of 

heating aluminum alloy to a specific temperature and holding

for a specified length of time. During this hardening and

strengthening operation the alloying constituents in solid solu-

tion precipitate out. As precipitation progresses, the strength

of the material increases until the maximum is reached. Fur-

ther aging (overaging) causes the strength to decline until a

stable condition is obtained. The strengthening of the material

is due to the uniform alignment or formation of the molecule

structure of the aluminum and alloying element.

3-21. Artificial aged alloys are usually slightly “overages” to

increase their resistance to corrosion, especially the high cop-

 per content alloys. This is done to reduce their susceptibility to

intergranular corrosion caused by under-aging.

3-22.  Natural aging alloys can be artificially aged, however,

it increases the susceptibility of the material to intergranular 

corrosion. If utilized it should be limited to clad sheet, extru-

sions and similar items. For aging treatment, temperature and

times, see Table 3-11.

3-18 Change 5

Page 119: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 119/288

TO 1-

3-23. SOLUTION HEAT TREATMENT. As previously

 pointed out it is necessary that solution heat treatment of alu-

minum alloys be accomplished within close limits in reference

to temperature control and quenching. The temperature for 

heat treating is usually chosen as high as possible without

danger of exceeding the melting point of any element of the

alloy. This is necessary to obtain the maximum improvement

in mechanical properties.

3-24. If the maximum specified temperature is exceeded

eutectic melting will occur. The consequence will be inferior 

 physical properties, and usually a severely blistered surface. If 

the temperature of heat treatment is low, maximum strength

will not be obtained.

3-25. Heating Time. The heating time commonly called the

“soaking time” required to bring about solution increases with

the thickness of the section or part to be heat treated. Solution

heat treatment should be held to the minimum time required to

obtain the desired physical properties. In many instances the

above will require sample testing to determine the exact solu-tion time. For the recommended approximate soaking time for 

various alloys see Table 3-8.

3-26. The time at temperature (soaking time) is measured

from the time the metal reaches the minimum limit of the

temperature range. In the case of thick material the controlling

factor would be when the center (core) reached the minimum

temperature. The soaking period will vary from 10 minutes for 

thin sheet to approximately 12 hours for the thicker materials,

such as heavy forgings. A general guide to use is approxi-

mately one hour for each inch of cross-sectional thickness. It

is recommended that thermocouple be placed in the coldest

 part of the load to determine the period required to bring the

load to the correct temperature (soaking temperature).

3-27. The soaking temperature required is selected to put all

of the soluble elements into solid solution. With clad materi-

als, prolonged heating may defeat the purpose of the cladding

 by excessive diffusion of copper and other soluble elements

into the cladding.

3-28. RE-SOLUTION HEAT TREATMENT. The bare

heat-treatable alloys can be solution heat treated repeatedly

without harmful effects other than high temperature oxidation.

The oxidation can be retarded by using either sodium or potas-sium fluoborate during the heating cycle.

3-29. For clad sheet the number of solution heat-treatment is

limited due to the increased diffusion of the core and cladding.

See Table 3-12 for the recommended reheat-treatment times.

3-30. QUENCHING. The basic purpose of quenching

 prevent the immediate re-precipitation of the soluble con

ents after heating to solid solution.

3-31. To obtain optimum physical properties of alum

alloys, rapid quenching is required. The recommended

interval between removal from the heat and immersion

seconds or less. Allowing the metal to cool before quenc promotes intergranular corrosion and slightly affects the

ness. This is caused by re-precipitation along grain bound

and in certain slip planes. For specific quench delay see T

3-10.

3-32. There are three methods employed for quenching

one used depends upon the item, alloy and properties desi

3-33. Cold Water Quenching. Small articles made

sheet, extrusions, tubing and small fairing are norm

quenched in cold water. The temperature before quenc

should be 85°F or less. Sufficient cold water should be c

lated within the quenching tanks to keep the temperatureunder 20°F. This type of quench will insure good resistan

corrosion and particularly important when heat-treating

and 2024.

3-34. Hot Water Quenching. Large forgings and heavy

tions can be quenched in (150° - 180°F) or boiling water.

type of quench is used to minimize distortion and crac

which are produced by the unequal temperatures obtained

ing produced by the unequal temperatures obtained durin

quenching operation. The hot water quench will also re

residual stresses which improves resistance to stress corr

cracking.

3-35. Spraying Quenching. Water sprays are used to qu

 parts formed from alclad sheet and large sections of

alloys. Principal reasons for using this method is to mini

distortion and to alleviate quench cracking. This system i

usually used to quench bare 2017 and 2024 due to the e

on their corrosion resistance. The parts quenched by

media should pass the test for corrosion required for the

involved; (see specifications SAE-AMS-2770 & SAE-A

2771).

3-36. STRAIGHTENING OF PARTS AFTER SOLUT

HEAT TREATMENTS.It will be necessary to straigsome parts after heat treating due to warping produced b

 process. These

Change 5

Page 120: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 120/288

T.O. 1-1A-9

pa r t s a r e u su a ll y s tr a ig ht en ed b y r es tr ik in g or is a ccom pl is hed . A t em per a t ur e of 32oF or below f or min g. I t is d es ir a ble t o pla ce t h es e pa r t s in w ill d ela y or ret a r d n a t ur a l a g in g f or a ppr oxi -r efr ig er a tion im med ia t ely a f t er qu en ch in g t o m a tely 24 h ou rs, low er tem per a tu res w ill dela yr et a r d na t u ra l a gin g un t il su ch t im e s tr a ig ht en in g t h e a g in g lon ger .

Figure 3-1 . Head to Al loy Ident i f i cat ion M ethod 

3-37. H E AT TRE ATME NT OF RI VE TS . The d. 1100 a nd 5056 Rivet s. These do not req uirehea t -t rea t a b le a l loys commonly used for r ivet s a re hea t t rea tment , inst a l l a s received. See Fig ure 3-1,2117, 2017, a nd 2024. it em A a nd 3-1, it em B for ident if ica t ion.

a . 2117 Rivets . I f supplied in T-4 temper nofurther t reatm ent is r equired. The rivet is identi- CAUTIONfied by a dimple in the center of the head (seeFig ure 3-1, item AD for head identification). Rivets wh ich ha ve been a nodically

oxide coated should not be reheat-b. 2017 or 2017-T4 (D) Rivets . Heat t rea ttreat ed in direct contact w ith moltenprior t o installat ion by h eating to 940oF ± 10oF forsalts more than 5 t imes.30 minutes in a circulating a ir furna ce, 1 hour in

still air furna ce, or 30 minutes in a molten sa lt e . 7050 (E) Rivets . These do not require heatbath and quench in water. These rivets must be treat ment, insta ll as received. See Fig ure 3-1,driven within 20 minutes af ter quenching or item E for head identification.refrigerate at 32oF or lower w hich will delay the

f . D/DD Rivets . These may be s tored inaging time 24 hours. If either time is exceededrefrigerators which ensure that the rivet tempera-reheat treatment is required. See Figure 3-1, itemture does not rise above minus 10oF. Rivets h eldD for head identification. It is noted the D rivetsat minus 10oF or below can be retained for usema y a lso be used in the a ge hard ened condition.indefinitely. When th e rivets a re tra nsported,

c. 2024-0 or 2024-T4 (DD ) Rivets. The sa me their temperature will be maintained at minusconditions apply for these rivets as for the 2017 10oF or below by being carried in refrigerated(D) except heat treat at 920oF ± 10oF. See Figure boxes.3-1, item DD for head identification.

3 -2 0 Change 2

Page 121: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 121/288

T.O. 1-1A-9

(1) Q ua l it y con t r ol sh a l l b e r es pon sible f or a n d im m ed ia t e ly per for m t he f or m in g or d ra w in gper iodica lly checking the t em pera ture of ea ch opera t ion.refrigerator and for prohibiting the use of rivets in

3-42. Recommended t imes and temperatures forany box when the temperature becomes excessive.

an nealing var ious a lloys a re as follows:(2) Each ref r igera to r sha l l have the r ivet s

a . Annealing of Work-Ha rdened Alloys . All ofremoved an d be th oroughly clean ed a t least once

these alloys except 3003 are annealed by heatingevery six months. A ta g or placar d tha t denotes to 650oF and no higher than 775oF, holding atthe next cleaning date shall be attached to each

temperature unt il uniform t empera ture ha s beenrefrigerator.

established throughout th e furna ce load, an d cool-(3) R iv et s w h ich rem a in ou t of r efr ig er a - in g in a ir or in th e fu rn a ce. An nea l in g t em per a -

t ion for 30 minut es or m ore sha ll be rehea t t ure sha ll not exceed 775oF to prevent excess oxi-t rea ted . These r ive t s can be rehea t t rea ted a max i- da t ion and gra in growth . The 3003 a l loy ismum of t hree t imes. a nnea led by hea t ing to 775oF a t a rela t ively rapid

rate and holding at the minimum soaking period3-38. ANNEALING. Aluminum a l loys a re necessary to at tain temperature uniformity andannealed to remove the effects of solution heat then cool as cited above.treatment and strain hardening. Annealing is uti-

b. Annealing of heat-t rea ted a l loys (wrought).lized to help facilitat e cold working. P ar ts workThese a lloys (except 7075) are a nnea led by h eat inghardened during fabrication are annealed at vari-to 775oF for not less tha n 1 hour and m ostous stages of the forming operation so that compli-insta nces 2-3 hours. Ma teria l is th en cooled a t acat ed sha pes can be formed. Dur ing prolongedrate of no greater than 50oF per hour until theforming or stamping operations the metal becomestemperature is 500oF or below. Ra te of coolingstrain hardened (commonly called ‘‘work hard-below 500oF is not restricted; cool as desired.ened ’’ an d upon t he performance of ad dit iona lAlloy 7075 is fully annealed by heating to 775 oF -work it w ill split or cra ck.) When th e above is850oF (higher t empera ture utilized for ma terialencountered it is usua lly necessary t o annea l thehaving smaller amount of cold work), soaking for 2part one or more times at progressive stages of thehours at temperature, cooling in a ir , reheat ing toforming operation, if the part is to be successfully450oF, holding at this temperat ure for 6 hours andcompleted.then cooling to room tempera tur e. Alterna te 7075annealing methods:

CAUTION (1) I f forming is to be accomplished imme-diately after annealing, heat to 775oF, 2-3 hours;

Annealed aluminum parts shall notair cool.be used for parts or f it t ings on air-

(2) I f a l loy is to be stored for an extendedcraft or missiles unless specified byperiod before forming , hea t to 670oF - 775oF, 2drawings or other approved engineer-hours; cool in air; reheat to 450oF; hold a t t h ising da t a .temperature for 4 hours a nd t hen cool in a ir .

3-39. Time a t temperature . This factor will vary(3) In termedia te annea l dur ing cold work-depending upon the type of anneal (partial or full),

ing of ‘‘O ’’ condition ma terial; hea t to 670o - 700oF,meta l, thickness, method of furna ce cha rging a nd1/2 hour ma ximum , or hea t t o 910o - 930oF unt i lsimila r factors. Avoid excessive time at tempera -uniform temperature is at t ained; cool in air . Ature to prevent growth, diffusion and discoloration,part shall not be ann ealed using the 910o - 930oFespecially w hen a nnealing clad a lloys.temperature more than 3 t imes.

3-40. When fully annealing, no a t tempt should c. Annea l ing of cas t a l loys . Cas t ings a rebe ma de to shorten the a nnealing cycle becau se an nealed by heat ing to 650o - 750oF holding forthe soluble constituents go into solution as the approximately 2 hours, and cooling to room tem-temperature is increased. If the materia l is then perat ure. The purpose of such a nnea ling ar e forcooled rapidly the soluble constituents remain in the relief of stresses and a tt ainment of dimen-solution and the material does not at tain fully sional stability .an nealed m echa nical properties.

d . Pa r t ia l a n n ea l in g of h ea t -t r ea t e d ma t e ri a l.3-41. An nea lin g a nd subseq uen t for min g of Wh en hea t -t rea t ed ma t er ia ls a re a nn ea led a s spec-mater ia l p revious ly hea t t rea ted should be avoided i f ied for annea l ing of the work-hardened a l loys ,i f condit ions and t ime permit . The recommended the e f fect of hea t -t rea tment is reduced cons idera-m et h od i s t o r epea t t h e s olut ion hea t t r ea t m en t b ly , b ut not com plet el y. Th e pa r t i a ll y a n n ea led

Change 1 3 -2 1

Page 122: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 122/288

O 1-1A-9

material is only to be utilized when moderate but not secure

perations are to be performed. If difficulty is experienced

with forming partially annealed material, recommend that “O”

ully annealed material be utilized.

-43. Heat treating temperatures and times. Aluminum alloy

hould be heat treated at the temperature given in Table 3-7.

he load should be held within the heat-treatment range (after he coldest part has reached the minimum of the range) for a

ufficient time to insure that specified properties will be devel-

ped. In some cases sample testing will be required to ascer-

ain that specified properties are developed. Suggested soaking

eriods are given in Tables 3-8 and 3-9 for the common alloys.

n instances where new alloys are involved it will be necessary

o consult the specification for the alloys, Specifications SAE-

AMS-2770 & SAE-AMS-2771 or the manufacturer for the

ppropriate heat treat data. In case of conflict the correct Mili-

ary/Federal specification will be the governing factor.

-44. QUENCHING. To effectively obtain the desired quali-

es in aluminum alloys it is necessary that the intervaletween removing the charge from the furnace and immersion

n the quenching water be maintained at the absolute minimum

See Table 3-10).

-45. Wrought alloy products must be quenched by total

mmersion in water or by a drastic spray quench. Forgings of 

014, 2017, 2117, and 7075 are quenched in water at tempera-

ures in excess; of 100°F. 7079 forgings are generally

uenched in water at temperatures less than 100°F to obtain

ptimum mechanical properties, however a hot water quench

180°F) should be used whenever possible providing the lower 

trength associated with the quench is satisfactory. The hot

water quench lowers the residual stresses considerably. This is

esirable from the point of view of reducing stress corrosion

usceptibility.

-46. Charging of furnace and baths. Individual pieces of 

materials or parts should be racked or supported to prevent

istorting if possible and permit free access to the heating and

quenching medium. The above is necessary to maintain the

form of the material involved and to facilitate heating to the

specified temperature and quenching rapidly. To prevent dis-

tortion it is necessary in some cases to provide jig and fixture

support for complex contoured (formed) parts. However, the

 jig used shall be so constructed that it will not restrict the

contact required with the heating medium of the part being

treated.

NOTE

Parts formed that are unavoidably distorted should be

reformed immediately after quenching.

3-47. When heat treating clad sheet material, the size and

spacing of the load will be arranged to permit raising to the

heat treatment temperature range in the minimum time. The

mixing of different thicknesses of clad material when charging

heat-treatment furnaces will be avoided, in order to help pre-

vent diffusion of the cladding, especially in the case where

very thin to thick materials are involved.

Heat-treating operations will be performed on the

complete individual part or piece of material never on

a portion only. This should be accomplished in such a

manner that will produce the utmost uniformity.

Maximum quench delay for immersion quenching is

shown by Table 3-10.

3-48. Wrought alloy products may be quenched using highvelocity, high volume jets of cold water where the parts are

effectively flushed in a specially constructed chamber pro-

vided that the parts will pass the test for corrosion set forth in

Specifications SAE-AMS-2770 & SAE-AMS-2771, Metal

Specification and the mechanical property requirements of the

applicable material specification.

-22 Change 5

Page 123: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 123/288

T.O. 1-1A-9

Table 3-8. Soaking Tim e for Solut ion Heat Treatment of Al l Wrought Products 

TH ICKNE S S (INC H E S ) S OAK ING TIME (MINU TE S )(MIN. TH ICKNE S S OF S ALT B ATH AIR F U RNACE

TH E H E AVIE S T S E CTION) MIN MAX (Alcla d Only) MIN MAX (Alcla d)

0.016 a nd under 10 15 20 250.017 - 0.020 10 20 20 30

0.021 - 0.032 15 25 25 35

0.033 - 0.063 20 30 30 40

0.064 - 0.090 25 45 35 45

0.091 - 0.125 30 40 40 50

0.126 - 0.250 35 45 50 60

0.251 - 0.500 45 55 60 70

0.501 - 1.000 60 70 90 100

1.001 - 1.500 90 100 120 130

1.501 - 2.000 105 115 150 1602.001 - 2.500 120 130 180 190

2.501 - 3.000 150 160 210 220

3.001 - 3.500 165 175 240 250

3.501 - 4.000 180 190 270 280

3-49. C a st ings a nd forgings q uenching. C ast ing la st por t ion of t he loa d is imm ersed inshould be quenched by tota l immersion in w at er at the (wa ter) quench tank. The maxi-150o to 212oF. Forgings should be quenched by mum quench delay may be exceededtotal immersion in water at no more than 180 oF. (usually confined to large sections orForgings and impact extrusion supplied in T41 or loads) if temperature will be aboveT61 should be quenched in boiling wa ter. H ow- 775oF when quenched.

ever, if conditions wa rra nt castings or forgings Table 3-9. Soaking Tim e for Solut ion Treatment of Cast Al l oysmay be quenched by complete immersion in coldwa ter .

ALLOY TIME (H OU RS )3-50. Smal l pa r t s such as r ive t s, fa s teners , wa sh-SAND CAST ALLOYSers, spacers, etc., should be quenched by dumping122 6-18into cold wa ter.142 2-10195 6-18S 195 (105) 6-24CAUTION220 12-24319 6-18Rivets, fasteners, washers and other355 6-18small parts which have been anodi-356 6-18cally oxidecoated should not be heat

treat ed indirect conta ct with molten P ER MANENT MOLDsalts or more than 5 t imes by this CAST ALLOYSmedium. 122 6-18

A132 6-18NOTE

142 2-10Quench delay t ime begins at the B 195 4-12instant furnace door begins to open or 355 6-18at the instant any portion of a load 356 6-18emerges from a sa l t ba t h a nd when

3-23

Page 124: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 124/288

T.O. 1-1A-9

Table 3-10. Recomm ended M aximum Quench Delay, Wrought  stretch or roll the material in order to produceAl loys (For Immersion Type  th ese condit ions.

Quenching) 

3-56. HE AT TREATING EQUIP MENT. Equip-ment and heating media used are divided into two

N OM IN AL TH I C K NE S S M AXI MU M TI ME distinct groups. They are liquid bat hs an d con-(INCH E S ) (S E COND S ) trolled atm osphere. Eit her method has certain

up t o 0.016 5 advantages over the other and it generally is0.017 t o 0.031 7 advisable to weigh the advantages desired and0.032 t o 0.091 10 consider environmental conditions.0.091 a nd over 15

3-57. The above are heated by gas , e lectr ici tyan d oil regardless of th e method utilized it must3-51. HE AT TREATMENT.be demonstrated that satisfactory results are

3-52. P REC IP ITATION (ARTIFICI AL AGE ) obtained and the material is not injured.HEAT TREATMENT. Precipitation heat treatmentof many a luminum a lloys is necessary t o obta in 3-58. AIR FURNACES. Air furnaces a re idea lh e required properties. H eat ing of some a lumi- for precipita t ion (aging), thermal t reatm ents a nd

num alloys bare or alclad at an elevated tempera- a nnea ling. These furna ces a re also used for solu-ure, but well below the annealing temperature, t ion heat t reating. The init ial cost of these type

after solution heat treatment will result in tensile furnaces is higher than for the salt bath types, but

an d yield strength w ell above those obta ined by they are usually more economical to operate, safer,oom temperat ure aging. The a bove will also clea ner an d more f lexible. Air furna ces used for

apply to alloy 2024. However, this process will heat treatment of aluminum alloy should be of theeduce the elonga tion factor of the ma terial a nd recirculat ing air type. The heated air in this typencrease resista nce to forming. Therefore, most furnace is recirculated at high velocities to obtainorming operations should be performed prior to a rapid heating cycle and uniform temperatures.his stage of treatment. The products of combustion must be excluded from

the furna ce at mosphere to help avoid high temp3-53. Mechanica l proper t ies obta ined from pre-

oxidat ion a nd a tmosphere conta mina tion.cipitation (aging) are dependent on the amount ofcold work present in th e mat erial at the t ime of 3-59. SALT BATHS. The sa l t ba t he method hasa ging. The selection of mat erial for va rious uses certain advantages over the air furnace. However,will therefore be governed by, the severity of the the advantages are usually confined to solutioncold work to be performed, strength and condition heat treat ment only. Associat ed ad vant ages ar e

of the mat erial required. uniform temperature w ithout excess danger ofhigh temperature oxidation and faster heating3-54. Annealing or solut ion heat t rea t ing wil lwh ich reduces the t ime required to bring t he loademove any properties developed as a result of coldto tempera tur e. This method is a da pta ble for solu-working the ma terial. Subsequent heat treat menttion heat treating small parts , large thin sectionsan d a ging of annealed ma terial or aging of solutionan d missed load s. The above adva nta ges ma y beheat treated material will result in T-6 condition,completely nullified by the slower quench causedprovided the material is not cold worked prior toby the necessary arrangement of equipment, f irea ging. The higher str ength condit ions can only beand explosion hazards, and decomposition of theobtained by a controlled amount of cold work priorsodium nitra te w hich when dissolved in quenchingo a ging . Cond itions T-81 or T-86 would necessi-wa ter forms a compound tha t a t ta cks a luminumate a cold work percentage of approximately 1%a lloys. The a ddition of pota ssium dichroma teor T-81 and 6%for T-86 after solution heat(approxima tely 1/2 ounce per hu ndr ed pounds ofreated and prior to aging.nitrate) tends to inhibit the attack.

3-55. Field accomplishment of the cold work3-60. Hollow core cas t ing or pa r t s where theequired to produce the higher strength conditionssalts are likely to be difficult or impossible tos considered impra ctical. This is due to theremove should not be treated by ba th sa lt .am ount an d types of equipment n ecessary to

3-24

Page 125: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 125/288

T.O. 1-1A-9

Table 3-11. Precip i tat i on (Aging) Treat ing Temperatur es, Tim es and Condit ions 

ALLOY & TE MP E R OR AG ING TIME AG ING TE MP TE MP E RCOND B E F ORE AG ING (H OU RS )2/ (D E G RE E S F)2/ AFTE R AG ING

WROU G HT ALLOYS(EXCLUDING FORGINGS)

2017 - a s quenched(w ) 96 room 2017-T4

2117 - a s quenched(w ) 96 room 2117-T4

2024 - a s quenched(w ) 3/ 96 room 2024-T4

6061 - a s quenched(w ) 96 room 6061-T4

6061-T4 71/2 - 81/2 340-360 6061-T6

2020-W 18 310-360 2020-T6

2024-T4 1-T42 16 370-380 2024-T6 1-T62

2024-T4 (Alt erna te for sheet ) 11-13 370-380 2024-T6

2024-T3 11-13 370-380 2024-T81

2024-T36 7 - 9 370-380 2024-T86

2014-T4 1-T42 8 - 12 305-330 2014-T6 1-T62

2014-T4 (Alt erna te for P la t e) 17-20 305-330 2014-T6

2219-T31/T351 17-19 350 2219-T81/T851

2219-T4 35-37 375 2219-T62

2219-W 96 room 2219-T4

6066-T4 71/2 - 81/2 340-360 6066-T6

6061-T4 71/2 - 81/2 340-360 6061-T6

7050-W 6-8 250 follow ed by 7050-T74350, 6-8 hours

7075-W 1/ 22 Minimum 240-260 7075-T6

7178-W 22 Minimum 240-260 7178-T6

6063-F 1-2 440-460 6063-T5

7079 - a s quenched(w ) 5 da ys a t roomtemperaturefollowing 48hours at 230-250 degrees F

7475-W, P la t e 24-25 250 7475-T6

7475-W, S heet 3-5 250 follow ed by 7475-T61315, 3-3.25 hours

FORGING ALLOYS

2014-T4 5-14 340-360 2014-T6

2014 - a s quenched 96 Minimum room 2014-T4

2017 - a s quenched 96 Minimum room 2017-T6

Change 1 3 -2 5

Page 126: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 126/288

T.O. 1-1A-9

Tabl e 3-11. Precipi tati on (Aging) Treating T emperatur es, Ti mes and Condi tions - Conti nued 

ALLOY & TE MP E R OR AG ING TIME AG ING TE MP TE MP E RCOND B E FORE AG ING (H OU RS )2/ (D E G RE E S F)2/ AFTE R AG ING

2018-T4 4-12 330-350 2018-T6

2025-T4 6-14 330-350 2025-T6

4032-T4 4-12 330-350 4032-T6

6151-T4 4-12 330-350 6151-T6

7075-W 22 Minimum 230-260 7075-T6

X7079 5 da ys a t room X7079-T6temperature fol-lowed by 48 hoursa t 230-250 degreesF

SAND CAST ALLOYS

142-T41 1-3 400-450 142-T61

195-T4 1-3 300-320 142-T6

S 195-T4 1-4 300-320 S 195-T6

220-W 96 Minimum room 220-T4

319-T4 1-6 300-320 319-T6

335-T4 1-6 300-320 335-T6

356-T4 1-6 300-320 356-T6

356-F 6-12 430-450 356-T6

40 9-11 345-365 40-E

40- 21 da ys room 40-E

PERMANENT MOLD CAST ALLOYS

142-T41 1-3 400-450 142-T61

B 195-T4 1-8 300-320 B 195-T6

319-T4 1-6 300-330 319-T6

355-T4 1-6 300-320 355-T6

356-T4 1-6 300-320 356-T6

A132-T45 14-18 300-350 A132-T65

1/Alternate aging treatment for 7075-W sheet only; in thicknesses less than 0.500 inch: Heat at 230o-

250oF for 3-4 hours, then heat 315o-335oF for 3-4 hours. The temperature may be raised directly fromthe lower to the higher t empera ture, or load ma y be a llowed t o cool betw een t he t wo steps of thetrea tment .

2/Time is soa k tim e a f ter recorder is a t tempera tur e, for 0.500 inch t hickness or less. Add 1/2 hour foreach a ddit ional 1/2 inch of t hickness.

3/The 96 hour minimum aging time required for each alloy listed with temper designation W is notnecessary if a rt if icial a ging is to be employed to obta in tempers other t ha n t ha t derived from roomtempera tur e agin g. (For exam ple, nat ura l a ging (96 hours) to a chieve the -T4 or -T42 temper for 2014alloy is not necessary prior to artificial aging to obtain a -T6 or -T62 temper.)

3 -2 6 Change 1

Page 127: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 127/288

T.O. 1-1A-9

Table 3-12. Reheat Treatment of Alc lad Al loys  test locat ions wit hin th e furnace load area shouldbe checked, one in ea ch corner, one in th e centerand one for each 25 cubic feet of air furnace vol-

TH ICKNE S S MAXIMU M NO. OFume up to the maximu m of 400 cubic feet. For

(INCH E S ) RE H E AT TRE AT-salt bat h th e same a s a bove except one test loca-

MENT PERMISSI-tion for ea ch 40 cubic feet of air volume, 40 test

B LEloca tions are recommended. Other size furna cesshould be checked with a ratio of test locations in

0.125 a nd less 1accordance with those previously cited. A monthlysurvey should be made after the init ial survey,

over 0.125 2unless separate load thermocouples are employed,to record actua l meta l temperatur es. However,periodic surveys shall be made as outlined for theNOTEinitia l survey. The mont hly survey should be

Heat treatment of a previously heat- ma de a t one operating temperature for solutiontreated material is classified as a treatment and one for precipitat ion heat treat-reheat trea tment. Therefore, the f irst

ment . There should be a minimum of 9 test loca-heat treatment of material purchased

tions with at least one for each 40 cubic feet ofin the heat trea ted condition is a

heat tr eating volume. For all surveys, the fur-reheat t rea tment . Insofar as this

naces should be allowed to heat to point of stabili-chart is concerned a nnealing a nd pre-

za tion before commencing the survey. The tem-cipitat ion t reatm ents a re not consid-perature of all test locations should be determined

ered heat t rea tments .at 5 to 10 minute intervals a f ter insertion of the

3-61. Sa l t ba ths must be opera ted w ith cau t ion temperature sensing elements in the furna ce.to prevent explosions a s an y w at er on th e mat erial Tempera ture readings should be ta ken for a suff i-being treated is instantly transformed to steam cient length of t ime after thermal equilibrium toupon imersion in t he salt ba th. determine the recurring temperatur e patt ern.

Af ter a ll tempera ture sensing elements ha ve3-62. Ni t ra te charged sa l t ba ths should not be

reached equilibrium, the maximum t emperat ureused to heat-treat aluminum alloys types 5056 and

variation of all elements shall not exceed 20oF a n d220 due to the fact tha t t he bat h compound w illat no t ime after equilibrium is reached should theat tack the a l loy .temperature rea dings be outside the solution h eat

3-63. Tempera ture Cont rol and Uni formi ty. treat ing or precipita t ion ra nge being surveyed.Good temperature control is essential to produce

3-66. Temperature measur ing ins truments usedthe exacting temper requirements for superiorq u a li t y m a t er ia l . U p on b ring in g a ch a n g e t o t em - f or f ur n a ce con t r ol sh a l l n ot b e u sed t o r ea d t h epera ture, the furna ce and t he load should be con- temperature of the test t empera ture sensingtrollable with ±5oF of the required tempera ture elements.ra nge. The design a nd const ruction of the fur-

3-67. Furnace thermocouple and sensing elementnaces and baths should be such that during theshould be repla ced periodically. This is necessa ryrecovery a nd soaking period, the air a nd meta ldue to oxidation and deterioration of the elements.(load) temperature a t a ny point in th e working or

soaking a rea sha ll not exceed the ma ximum soak-3-68. Sa lt Ba th Test ing - Temperature uniform-ing temperature (see Ta ble 3-7) for t he specificity in a salt bath may be determined by use of aalloy being heat treated.temperature sensing element enclosed in a suita-

3-64. Furnace tempera ture survey . Furnace ble protected tube. The temperat ure sensing ele-equipment sha ll be insta lled w ith t he necessary ment should be held in one position until thermalfurnace control, tempera ture mea suring, and equilibrium has been substantially reached andrecording instruments to assure and maintain

read ing made. The tempera tur e sensing elementaccurate control.

should then be placed in a new locat ion a nd t heprocedure repeated. These operat ions should be3-65. Upon the in it i a l ins t a l la t ion and a f t e r eachrepeated until the temperature in all parts of thechange is made in the furnace which might affectbat h have been determined. The maximum varia -the operational cha racterist ics a temperatu re sur-tion indicat ed by rea ding from the va rious loca-vey should be ma de. The temperat ures should betions in the load zone shall not exceed 20oF and nochecked at the maximum and minimum requiredreading shall be outside the heat treating rangefor solution a nd precipita t ion heat treat ment for

w h ich t h e f ur n a ce i s t o b e u sed . A m in im u m of 9 s peci f ied for t h e m a t e ri a ls in volved .

3-27

Page 128: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 128/288

T.O. 1-1A-9

3-69. At th is poin t it sh ould be expla in ed t ha t a b. P r ovid e clea n sm oot h (rust fr ee) a nd ada pt -s ub st a n t i a l a m ou n t of t he d if f i cu lt i es en cou n ter ed a b le f or m in g eq u ipm en t .in heating aluminum alloys is due to improper or

c. Sheared or cu t edges sha l l be s anded andinadequa te temperatur e control an d circulat ion offiled or polished, prior to bending or forming.heat ing medium. When difficult ies ar ise the func-

tion of th ese units should be checked prior t o per- d . Use on ly s t r a igh t and smooth forming diesforming other system test .

or brake leafs of the correct radius which are freeof nicks, burrs a nd sha rp edges.3-70. F AB RI CATI ON .

e . Form mater ia l across the d i rect ion of g ra in3-71. This portion is intended to provide some of f low when possible.the informat ion required to fabricate t he var ious

f . Ma ter ia l should be of the cor rect t emper,aluminum products into par ts a nd a ssemblies.thickness and alloy in the ra nge of ‘‘formable’’Aluminum is one of the most workable of all themater ia l .common meta ls . It can be fabricated into a va riety

of shapes by conventional methods.3-77. For intr ica te forming opera t ions i t is neces-sary to use annea led (Con ‘‘O’’) mat er ia l and f ina l3-72. The formabil ity var ies considerably withstrength developed by heat treating after thealloy an d t emper. S pecif ic application usuallyforming ha s been a ccomplished. Hea t-tr eat eddepends on the shape, strength a nd t emper of thealloys can also be formed a t room tempera turea lloy. The preceeding will necessita te tha t the

immediately after quenching (‘‘W’’temper), whichmecha nic be well trained to cope with t he vari- is much more forma ble than the fully heat -treat edables associated with this material especially whentemper. The part is th en aged to develop fullthe end use of the item is an aircraft or a missile.streng th. The formin g operat ion should be per-

3-73. F ORM IN G S HE E T M E TAL . formed as soon after quenching as possible, inview of the natural aging that occurs at room tem-

3-74. GE NERAL. The forming of a luminum pera ture on all the heat t reat able alloys. The nat-(1100) is relatively easy, using approximately the ural aging can be delayed to a certain extent bysame procedures as those used for common steel placing th e part in a cold storage ar ea of 32o orexcept tha t car e must be ta ken to prevent scra tch- lower. The lower the temperat ure the longer th eing. Do not ma rk on a ny meta l surface to be used delay to a point where maximum delay isas a structural component with a graphite pencil obtained.or any type of sharp pointed instrument. Use pen-

3-78. BE NDING. Bending i s cla s si f ied a s singlecil, Aircraft Marking, Specification MIL-P-83953,curvature forming. Upon bending sheet meta l, barNS N 7510-00-537-6928 (B la ck),7510-00-537-6930

or rod, the ma terial a t t he bends f lows or deforms(Yellow), a nd 7510-00-537-6935 (Red ). All shopi.e. , the ma terial a djacent to the other surface ofequipment, tools and work area should be keptthe bend is under tension a nd th e length issmooth, clean and free of rust and other foreignincreased due to stretching and the material adja-ma t te r .cent to and on the inner surface is under compres-

3-75. Alloyed a luminum (2024, 7075, 7178, etc.) sion a nd t he length is decreased.are more difficult to form, and extensive control is

3-79. The most common problems encountered inrequired to prevent scratching a nd ra dii cra cking.practice are springback and cracking within theScrat ching will make forming more difficult plus itbend ar ea. P roblems associat ed with bend cra ck-provides an easy path for corrosion attack, espe-ing a re usually a result of improper bend radii,cially on clad ma teria ls. The cla d coat ing refer-rough edges of material being formed or formingenced is usually a sacrificial corrosion resistingequipment and bending parallel to direction ofaluminum alloy coating sandwiched metalurgicallygrain f low. For the approximate bend radius toto an a lloyed core ma teria l. The thickness of th e

use in bending various thicknesses and types ofcoating will depend on the thickness of the sheetaluminum see Ta ble 3-13. Actual pra ctice ma yor plat e. The nomina l cla dding th ickness is 4%ofreveal tha t a larger or a smaller ra dius may becomposite thickness for material under 0.063 inch;used in some insta nces. If t ighter bend radii is2.5%for m a teria l in t he ra nge of 0.063 - 0.187 inchrequired, then fabricators should proceed withand 1.5%for material 0.188 inch and thicker.addit iona l caution a nd if needed, should seek

3-76. The fol lowing genera l rules should be assistance of engineering or laboratoryemployed in the ha ndling a nd forming operat ion: metallurgists .

a . P r ov id e clea n a rea ; fr ee of ch ips, gr it a nd 3-80. D if f icu lt ies en cou nt er ed w it h spr in gba ckdirt a nd other foreign ma t er ia l. a re most commonly a ssocia ted w it h bending of t he

3-28

Page 129: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 129/288

T.O. 1-1A-9

s t ronger a l loys , especia l ly those having h igh y ie ld requ ired . Other means of reducing spr ingback iss t reng th . Spr ingback problem associa ted w i th th is to bend the ma ter ia l in the sof t condit ion (Condi-m a ter ia l ca n be over com e t o a cert a in d egr ee by t ion ‘‘O’’) or immediately after quenching andover forming . The amount of over forming ut i li zed reducing the th ickness or the r ad ius if a l lowed .w i l l depend on the temper and the a l loy ; the sof te r Avoid reducing r ad i i t o the poin t tha t g r a in sepa-t he ma t er ia l th e less spr in gba ck com pen sa t ion r a tion or ben d cr a ckin g r esu lt s.

Table 3-13. Cold Bend Radi i ( Inside) for General A ppl icat ions 

Alloy a nd Temper S heet Thickness = T (Inches)

0.016 0.032 0.040 0.063 0.125 0.1875 0.250

1100-0 0.02 0.03 0.03 0.06 0.125 0.187 0.250

3003-0 0.03 0.03 0.06 0.06 0.160 0.187 0.250

5052-0 0.03 0.03 0.06 0.06 0.160 0.187 0.250

6061-0 0.03 0.03 0.06 0.06 0.16 0.1875 0.250

2014-0 0.03 0.06 0.09 0.09 0.19 0.312 0.44

2219-0 0 0 -- 0.5-1.5T 0.5-1.5T 0.5-1.5T 1-2T

7075-0 0.03 2T 2T 2T 2T 21/2T 3T

7178-0 0.03 2T 2T 2T 2T 21/2T 3T

1100-H 12 0.02 0.03 0.03 1T 1T 11/2T 11/2T

3003-H 12 0.03 0.03 0.03 1T 1T 11/2T 11/2T

5052-H 32 0.03 0.06 0.06 11/2T 2T 21/2T 2T

1100-H 16 0.03 0.06 2T 2T 2T 21/2T 3T

3003-H 16 0.03 0.06 2T 2T 21/2T 4T 5T

5052-H 36 0.03 0.06 2T 2T 21/2T 4T 5T

0.016 0.032 0.064 0.125 0.1875 0.250

1100-H 18 0.03 2T 2T 21/2T 3T 31/2T

3003-H 18 0.03 2T 2T 21/2T 3T 41/2T

5052-H 38 0.03 2T 3T 4T 5T 6T

6061-T4 0.03 2T 2T 2T 3T 4T

6061-T6 0.03 2T 2T 2T 3T 4T

2219-T4 0-1T 0-1T 1-2T 1-2T 1.5-2.5T 1.5-2.5T

2219-T62,T81 2-3.5T 2.5-4T 3.5T 4-6T 4-6T 5-7T

2024-T4 0.06 4T 4T 5T 6T 6T

2024-T3 0.06 4T 4T 5T 6T 6T

2014-T3 0.06 3T 4T 5T 6T 6T

7075-T6 0.06 5T 6T 6T 6-8T 9-10T

7178-T6 0.06 5T 6T 6T 6-8T 9-10T

7050-T7 -- -- -- 8T 9T 9.5T

7475 -- -- -- -- -- --

3-29

Page 130: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 130/288

T.O. 1-1A-9

3-81. D RAW F OR MI NG . D ra w forming is good sprea d bet w een yield a nd t ensile st rengt h.defined a s a method where a m ale die (punch) and Most of the common alloys are formed in thea female die is used to form a sheet bla nk into a a nnea led condit ion. It is possible to stretch formhollow shell. Draw forming is accomplished by the heat treatable alloys in tempers T4 or T6,forcing the male die and the metal blank into the where the shape is not too deep or where narrow female die. G enerally mecha nical press either width ma terial is used. For the deeper curvedsingle or double action and hydraulic presses are shapes, the material is formed in the annealedused to perform the dra wing operat ion. Results ‘‘O’’temper, heat t reat ed and reformed, to elimi-will depend on die design, radii of die forming sur- na te distortion result ing from heat trea tment. Asfaces, finish of die, surface clearance between previously sta ted t he ma terial should be reformedpunch and female die, blank hold down pressure, as fas t a s poss ible a f ter heat t rea tment . In someshape of blank, ma terial a llowa nce on blan k, elon- instances the material is formed immediately aftergat ion fa ctor of mat erial, temper, shape of part heat tr eating an d quenching. Selection of a sys-being formed, draw ing speed, and lubrican t. tem or condition of material to be utilized willOptium results u sually requires experimenta tion require experimenta tion an d t he subsequent utili-and adjustment of one or more of these factors. zat ion of the system tha t gives the best results .Drawing of very deep shells require more experi-

3-86. HYD RAU L I C PRE S S F ORM IN G . Th e r ub -menta tion an d t he utilization of a succession ofber pad hydr opress can be utilized to form ma nylimit dra ws. B ecause of the work ha rdeningvarieties of parts from aluminum and its alloysresulting from each draw, reduction in successivewith relat ive ease. P henolic, masonite, kirksitedra ws must be less. In severe conditions an inter-an d some types of hard sett ing molding plast icmediate a nneal is sometimes used. Condition ‘‘O’’have been used successfully as form blocks tomaterial of the heat treatable alloys can be heatpress sheet metal parts such as ribs, spars, fans,t rea ted a f ter draw ing to obta in higher s t rengthetc. The press formin g operat ions a re usuallyan d to relieve the effect of work hard ening. How-accomplished by setting the form block (normallyever, th e non-heat treat able a lloys can only bema le) on the lower press platen a nd placing a pre-annealed to relieve the effect of work hardening.par ed sheet meta l blank on th e block. The blankThis ma terial should not be a nnealed if highis located on the block with locating pins, to pre-strength is t he ma jor requirement.vent shif t ing of blank w hen the pressure is applied

3-82. The recommended mater ia l to manufacture (the sheet meta l blank should be cut t o size anddra wing dies is hardened t ool steel for la rge scale edges deburred prior to pressing). The rubber padproduction; kirksite and plastic for medium or filled press head is then lowered or closed over theshort run production; a nd phenolic and ha rdwood form block and the rubber envelope, the form blockfor piece production.

forcing the blank to conform to the form blockscont our. This type forming is usua lly limit ed to3-83. STRETCH FORMING. This process

rela t ively f la t par t s having f langes, beads a ndinvolves stretching a sheet or strip to just beyondlightenin g holes. How ever, some types of la rgethe elastic limit where permanent set will takerad ii contoured parts can be formed w ith a combi-place with a minimum amount of springback.na tion of ha nd forming a nd pressing operations.Stretch forming is usually accomplished by grip-It is recommended tha t a ddit iona l rubber be sup-ping two opposite edges fixed vises and stretchingplemented in the form of sheets when performingby moving a ram carrying the form block againstthe a bove to prevent da ma ge to the rubber pressth e sheet. The ra m pressure being suff icient topad. The rubber sheet used should ha ve a shorecause the material to stretch and wrap to the con-ha rdn ess of 50-80 dur ometers . The design of foamtour of t he form block.block for hyd ropress formin g requ ire compensa tionfor springback even t hrough the ma terial norma lly3-84. Stretch forming is normally res tr icted toused is Condition ‘‘O’’ or an nealed. Norma l prac-relatively large parts with large radii of curvature

tice is to under cut the form block 2-7o

dependinga nd sha llow depth, such a s contoured skin. Theon the alloy and radii of the form block.advantage is uniform contoured parts at faster

speed than can be obtained by hand forming with3-87. DROP HAMMER FORMING. The dropa yoder ham mer or other mea ns. Also, th e condi-ha mmer can be used to form deep pan shaped a ndtion of the material is more uniform than thatbeaded type parts . Kirksite with a plastic surfaceobta ined by hand forming. The disadva nta ge isinsert is satisfa ctory for male a nd female dies.high cost of init ial equipment, which is limited t oThe surface of kirksite dies used without plasticAMA level repair fa cilities.insert should be smooth to prevent galling andscrat ching of the alumin um surface. When form-3-85. Mater ia l used for s t retch forming should being deep pans a nd complicat ed shaped part s it islimited to alloys wit h fa irly high elongat ion a nd

3-30

Page 131: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 131/288

T.O. 1-1A-9

of ten necessa ry to use drawings r ings, pads or 2-3 remova l of buckles and wr inkles in drawn shel lsta ge dies. An intermediat e an neal is sometimes sha ped objects.used to relieve the hardened condition (cold work)

3-91. Forming by spinning is a fa ir ly simple pro-resulting from the forming operation.cess, an aluminum disc (circle) is placed in a lathe

3-88. J OGG LING. A jogg le is an o f fset formed to in conjunction with a form block usually made ofprovide for an overlap of a sheet or angle which is hardwood; as the disc and form block are revolved,

projecting in t he sam e pla in. The inside joggle the disc is molded to the form block by applyingra dii should be approximately th e same a s used pressure wit h a spinning stick or tool. Aluminu mfor stra ight bending. J oggle run out or length a s a soap, ta llow or ordinary soap can be used as anormal rule should be three t imes the depth of the lubricant.joggle for the medium strength alloys (2024, 2014,

3-92. The best adapted mater ia ls for spinningetc.) and approximately four times the depth forare the softer alloys i.e., 1100, 3003, 5052, 6061,the higher strength alloys (7075, 7178, 7079 etc).etc. Other alloys can be used where the shape toWhere deep and tight joggles are required,be spun is not excessively deep or where the spin-annealed material should be used with heat treat-ning is done in stages and intermediate annealingment to follow.is utilized to remove the effect of strain hardening

3-89. HOT-FORMING. Hot forming is not gen- (work hardening) resulting from the spinning oper-erally recommended, however, it is sometimes a tion. H ot forming is used in some inst a ncesused where it is not possible to form an article by when spinning the heavier gauge materials and

other methods. Accomplishment sha ll not be harder alloys.at tempted unless adequate facilit ies are available3-93. BLANKING AND SHE ARING. Accura teto cont rol tempera tur e requirement s. Actua lshearing w ill be affected by t he thickness of mat e-forma bility w ill depend on the temperat ure tha trial, type of shear or knife blades, condition ofva rious a lloys are heat ed. The higher the temper-material, adjustment and sharpness of blades, sizea tur e the ea sier formed. E xcessively high temper-of cut a nd t he relationship of the w idth of the cutature shall not be used, as considerable loss into sheet thickness.str ength a nd corrosion resistan ce will occur. Fre-

quent checks should be made using a n a ccura te3-94. Normal ly mos t a luminum a l loys can be

contact pyrometer. Ta ble 3-14 cites th e recom-shea red 1/2 inch a nd less in t hickness except for

mended t imes a nd t emperat ure (accumulative) forth e ha rder a lloys i.e., 7075-T6 an d 7178-T6. These

th e va rious a lloys. The losses in strengt h as aalloys have a tendency t o crack in t he vicinity of

result of re-heating at the t empera ture cited bythe cut especially if the sheer blades are dull or

th is ta ble will not exceed 5%. Eq ua l forma bilitynicked. The a bove w ill na tur a lly require tha t tool-

will be obtained w ith shorter periods of heating in ing used be designed to handle the thickness ofmost cases and t he minimum times should bema terial to be cut. Correct cleara nce betw een

used. It should be understood tha t th is table citedshea r blades is importa nt for good shearin g. Too

the maximum accumulative t imes at citedlit t le cleara nce will quickly dull or otherwise dam -

temperature.age the blades or knives; too much will cause thematerial to be burred, or even to fold between3-90. S P I N N I NG . S pinn in g i s a n a r t a n d ma k esblad es. Norma l cleara nce is from one-tent h to oneexacting demands upon the skill and experience ofeighth th e sheet thickness. B lad e life w ill be pro-the mechanic performing the operation. For thislonged by occa sionally lubricatin g. When thereason ma ss production of par ts is impra ctical.capacity of shear is doubtful the shear ma nufac-However, it can be used to adva nta ges where onlyturer should be consulted.a few pa r ts are required and to ass ist in t he

3-31

Page 132: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 132/288

T.O. 1-1A-9

Table 3-14. M aximum Accumu lat ive Reheat Ti mes for H ot Form ing H eat Tr eatable Al l oys at D if ferent T emperatur es 

ALLOY 450oF 425oF 400oF 375oF 350oF 325oF 300oF

2014-T6 To Temp To Temp 5-15 Min 30-60 Min 2-4 H rs 8-10 H rs 20-50 H

2024-T81 5 Min 15 Min 30 Min 1 H r 2-4 H rs - - - 20-40 H2024-T86 5 Min 15 Min 30 Min 1 H r 2-4 H rs - - - 10-20 H

6061-T6 5 Min 15 Min 30 Min 1-2 H rs 8-10 H rs 5-100 H rs 100-200 H

7075-T6 No No Temp 5-10 Min 30-60 Min 1-2 H rs 2-4 H rs 10-12 H

*2014-T4, 2014-T3 No No No No No No No

*2024-T4, 2024-T3 No No No No No No No

* These mat erials should not be hot formed unless subsequently a rt if icially a ged.

3-95. B L AN KI NG . B la n kin g is usu a lly a ccom - r eq uir ed a nd in su ch m a nn er t ha t w ill red uce loa dplished ut i li zing a b lanking d ie in a lmos t any t ype on equ ipment . Commonly tw o or more h igh poin t sof pu n ch pr es s eq u ip men t . Th e es sen t ia l fa c tor s a r e gr ou n d on d ie to k eep side t hr u st on t h e pu n chr eq u ir in g con t r ol a r e d ie cl ea r a n ce, sh ea r ing ed ge a t a m in im u m . L u br ica t i on i s es sen t ia l in b la n k -lead , and s t r ipping ac t ion . The shear ing principle ing opera t ions . Su i t ab le lubr ican t s a re eng ine oi l,i s primar ily the s ame as tha t encountered w i th the kerosene and la rd oi l wh ich a re norma l ly used ins qu a rin g s hea r . H ow ev er , t h e m et h od of g rin din g m ixed f or m .punch dies w ill vary according t o the results

Paragraphs 3-96 through 3-155 deleted.Ta bles 3-15 th rough 3-16 deleted.Pages 3-33 through 3-38 deleted.

3 -3 2 Change 1

Page 133: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 133/288

Page 134: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 134/288

T.O. 1-1A-9

3-156. D elet ed. 3-165. Rivet s in a luminum a lloys 1100(A),5056(B), 2117(AD) are used in the condition

3-157. D el et ed .received Alloys 2017(D) and 2024(DD) oftenreferred to a s ‘‘Ice Box Rivets ’’ require heat t rea t -3-158. D el et ed .ment prior to use (see par a gra ph 3-43). Rivets in

3-159. D el et ed . alloy 2017 and 2024 should be driven immediatelyafter quenching with a maximum delay of 20 min-

3-160. D el et ed . utes or refrigerat ed to delay a ging. The customary3-161. D el et ed . procedure (unless only a few rivets are involved) is

to place the rivets under refrigeration immediately3-162. RIVETING. Rivet ing is the most commonafter heat treatment The t ime the rivets may bemethod of assembling components fabricated fromused will depend on refrigeration equipment ava il-aluminum. Typical a dvan ta ges of this method ofable. Cooling to 32oF wil l reta rd natura l aging tomecha nical fa stening a re simplicity of a pplicat ion,the extent that the rivets may be driven up to 24consistent joint uniformity, easily inspected (X Rayhours. Cooling rivets + 0-10oF and below willand other type equipment not required.), low cost,retard na tura l a ging to the extent tha t the r ivetsand in many cases lighter weight.ma y be retained for use indefinitely.

3-163. The r ivets used in US AF Weapon System3-166. Rivets ut i lized with extended dr iving t imestructures require that the alloys and shapes beshould be closely inspected after upsetting forclosely cont rolled by specif icat ion/sta nda rds, t ocracks. If inspection reveals tha t r ivets areassure structural integrity and uniformity. These

cracked, discontinue use, r emove defective rivetsrivets are presently classif ied as solid sha nk, hi-an d obtain reheat trea ted rivets prior to continu-shea r, blind (stru ctura l-non-stru ctura l) explosive/ing th e assembly opera tion.chemical expanded. They are ava ilable in a var i-

ety of sha pes, a lloys, sizes, length s and ty pes. The 3-167. I f for some reason i t is necessary to deter-most common a lloys ut ilized ar e aluminum mine if a r ivet has been heat treated this may bebecause th e structure alloys are normally a lumi- done by Rockwell Ha rdness testin g. Test by sup-num. In a ddit ion some of the aluminum rivet porting r ivets in a vee block a nd ha rdness readingcharacterist ics can be changed by heat treating ta ken wit h a 1/16 inch ba ll 60 kilogra m load . Awhich facilitates application (see paragraph 3-37.) ha rdness of over 75 will indicat e a h eat treat ed

rivet .3-164. All of the a luminum alloys could be usedto manufacture rivets; however, due to some alloyshaving superior properties they have been selectedas s t andard . S ee Ta ble 3-17 for alloys head, iden-

tif ication, MS /AN st a nda rd cross references, etc.,for general rivets used on AF weapons systems.

( 3 -39 bl ank) / 3 -40 Change 1

Page 135: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 135/288

T.O. 1-1A-9

corrosion from dissimilar meta l conta ct a nd t oa ssure structurely sound assemblies. The follow-CAUTIONing ta bles a re provided as a genera l guide forselection of rivet alloy vs assembly alloy.Heat treatment and most other opera-

tions requiring use of heat will be 3-171. The formula P s = Sb AC can be used toaccomplished prior to installing riv- determine failure in bearing strength. P s = ult i-ets , s ince heating after rivets are mate bearing strength of the joints (lbs), Sb =installed will cause warping and pos- specif ied ult imate bearing st rength of the platesible corrosion if salt bath is used. (psi) a nd AC = projected crushing a rea (bearingThe salt from th e bath will conta mi- area) of rivet, or diameter (sq in) see table 3-20 forna te cracks a nd crevices of the a ssem- typical bearing properties of aluminum alloy plates

bly a nd complete removal can n ot be and shapes .assured.3-172. Rivet hole prepara t ion is one of the key

3-168. Shear s t rength (ult imate) of a dr iven r ivet factors in controlling successful upsetting of rivetcan be determined by the formula P s= SsAN. head, material separation and buckling whichP s= ultima te shear strength (pounds), Ss= specif ied wea kens the structural st rength of the rivet joint ,shea r str ength of the dr iven rivet (psi), A= cross and corrosion attack of r ivets and material aftersectional (area of the driven rivet , normally equa l equipm ent is pla ced in service/use. The rivet h oleto hole cross section (squar e inch) a nd N= num ber should be drilled, punched/rea med t o size tha tof shear planes. For shear str ength of protruding allows the minimum clearance (apprximately 0.003and f lush head r ivets see Ta ble 3-19. for thin sheet and up to about 0.020 for 0.750 -

1.000 inch thick material) required to insert rivet3-169. The load required to cause tensile fa i lurewit hout forcing. Theoretical rivets holes should beof a plate in a rivet joint ca n be determined by thecompleted i.e., drilled, reamed to size, deburred,formula Ts= P + (D-A) Tp. Ts= ultim a te tensile

chips removed t ha t ma y lodge or be t ra pped instr ength (pounds), PT = specif ied ultima te tensile betw een surfa ce of meta l an d trea ted (an odizedstr ength of the plat e (psi), D= pitch of th e rivetsetc.) before sta rtin g to rivet a ssembly. The above(inch) - pitch is the distance between the center ofcannot a lwa ys be a ccomplished especially w heretwo adjacent rivets on the same gauge line,the a ssembly is large a nd requires the a pplicat ionA= dia meter of hole (inch) and Tp= th ickness ofof a large amount of rivets due to hole toleranceplate.a nd va ria tions in holding clamping/pressures. To

3-170. R ivet S elect ion . U n les s ot h er w i se s peci - over com e t h es e pr ob lem s r eq u ir es t ha t h oles bef ied r ive t s should be selected tha t have compara- p ilot dr il led end reamed to s ize a t t ime r ivet i s t ob le s t ren gt h a n d a l loy a s m a t e ri a l b eing a s sem - b e ins t a ll ed . Th is m et h od h a s a t w o fold pu r pos e:b led . Th is is a n impor t a n t fa c tor in pr even t in g (1) a l low s ea s y in ser t ion of r ivet s , (2) pr even t s

3-41

Page 136: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 136/288

T.O. 1-1A-9

e longa t ion of r ivet holes and resu lt ing weakening chromate primer or other approved ma ter ia l. Twoof r ivet joint . methods for coa t ing rivet s a nd improving prot ec-

tion of hole surfa ces from corrosion a re:3-173. Rivet holes dr i l led/reamed a f ter assemblyis started should be treated by coating with zinc

Table 3-17. General Rivet (Alum ) Ident i f icat ion Chart 

S U P E RS E D ING H E AD AND H E ATOLD AN/ MS S TD FORM MATE R- NU ME RICAL COND ITION TRE AT

S TD IAL ID E NTCODE

AN456 MS 20470 B ra zier H ea d S eeS olid Modif ied AN470

U S AF460 S ee MS 20601 1000 Flush H ea d S eeB lind Type I I MS 20601Class 2

U S AF461 S ee MS 20600 P rot ruding H ea d S eeType I I C la ss I MS 20601Blind

U S AF463 S ee MS 20600 S a me S a me

NAF1195 S ee MS 20600 S a me S a me

AN470 MS 20470 1100 A-P la in F NoUniversa l H eadSolid

5056 B -Ra ised F NoCross

2117 AD -D imple T-4 No

2017 D -Ra ised T-4 YesD ot

2024 D D -Ra ised T-4 YesD a s h

MS 20600 5056 B F NoProtrudingHead-Blind

2117 AD T-4 NoType II,Class I Monel M No

MS 20601 5056 B F No100o FlashHead Blind

2117 AD T-4 NoType II,Class 2 Monel M No

MS 20602 5056 B F NoProtrudingHead BlindChemicallyExpanded Type

2017 D T-4 NoI, Class I ,Styles A & B

3-42

Page 137: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 137/288

T.O. 1-1A-9

Table 3-17. General Ri vet (Alum) Id ent i f i cat ion Chart - Cont in ued 

S U P E RS E D ING H E AD AND H E ATOLD AN/ MS S TD FORM MATE R- NU ME RICAL COND ITION TRE AT

S TD IAL ID E NTCODE

MS 20604 5056 B F NoUniversa l H eadBlind Class I

2117 AD T-4 NoNon Struct

Monel M or NoMP (MP =Monel Plated)

MS 20605 5056 B F No100o FlashHead Blind

2117 AD T-4 NoClass 2, NonStruct Monel M or No

MP (MP =Monel Plated)

MS 20606 5056 B F NoModifiedTrusshead

2117 AD T-4 NoBlind Class 3Non-Struct Monel M or No

MP (MP =Monel Plated)

MS 20613 1010 Recessed NoUniversa l H eadTriangleSolidAnnealed

302 C-None Annea led No

MS 20615 Copper CW NoUniversa l H eadAnnealedSolid

Monel Ra ised Cla ss NoD ot s A

NOTE: Copper, steel, and monel listed for information purposes only. For special rivets see manufactur-ing d ra w ing, d a ta , specifica tion, et c. For other inform a tion on r ivets s ee T.O. 1-1A-8/1-1A-1.

3-43

Page 138: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 138/288

T.O. 1-1A-9

Table 3-17. General Ri vet (Alum ) Ident i f i cat ion Chart - Cont inu ed 

S U P E RS E D ING H E AD AND H E ATOLD AN/ MS S TD FORM MATE R- NU ME RICAL COND ITION TRE AT

S TD IAL ID E NTCODE

AN426 MS 20426 1100 A-P la in F NoCountersunk100o

5056 B -Ra ised F NoCross

2117 AD -D imple T-4 No

2017 D -Ra ised D ot T-4 Yes

2024 D D -Ra ised T-4 YesDashes

NOTE: S ee para gra ph 3-44 for heat treat da ta .

AN427 MS 20427 1006/ Recessed A NoCountersunk1010 Tria ngle100o

Copper C-None F- A No302/304 Recessed A No

D a s hMonel M M-None

AN430 MS 20470 Round Hea d repla ced by universa l S ee AN470 + M520470

AN435 MS 20435 1006 H ea d Ident A NoRound H eadRecessedSolidTriangle

NOTE : List ed for Reference only. Copper C-None A No

302/304 F -H ea d A No

IdentNone

Monel M-None

AN441 U se MS 20435 S ee AN435

AN442 U se MS 20470 S ee AN70+MS20470

AN450 MS 20450 1006/ B la nk/ A NoCountersunk &1010/ Noneoval tubular1015

Not e: List ed for Reference only . Copper C -None A No

2117 AD -None T-4 No

B ra ss B -None G ra de B No

MONE L M-None A No

AN455 MS 20470 B ra zier H ea d S eeS olid S uperse- AN470ded by Univer-sa l .

3-44

Page 139: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 139/288

T.O. 1-1A-9

Table 3-18. General Alum inum Rivet Select ion Chart (Rivet Al loy vs Assembly Al loy) 

Rivet Alloy Assembly Alloy

1100 1100, 3003, 3004, 5052

2117-T4 (AD ) 3003 - H 16 a nd H -18, 5052 - H 16and H18, 2014, 2017, 2024, 6061,7075, and 7178

2017-T4 (D ), 2024T4 (D D ) 2014, 2017, 2024, 5052, 6061,7075 and 7178

5056-H 32 (B ) 5052 a nd ma gnesium a lloys, AZ31B , et c.

a . S pra ying holes w it h prim er a f ter drilling a . Allow more spa ce for chips t o be form edand expelled from tool than allowed for steel.an d immediat ely preceding insta llat ion of r ivet .

b . Design tools (gr ind tool) so tha t chips andb . Dipping r ivet in zinc chromate pr imer andcuttings are expelled away from the work piece.installing while st ill wet.

c . Keep cut t ing edges of tools sharp, smooth,3-174. For addit ional informat ion on r ivets free of burrs, wire edges and scratches.(streng ths, fa ctors, etc.) see MIL -HD B K-5, T.O.’s 1-

d . Use h igh mach in ing speeds , modera te feeds1A-8 a nd 1-1A-1.an d depths of cut .

3-175. MACH INING. The resis tance encoun- e. Apply lubr icant /coolant in large quant i t iestered in cutt ing a lminum a lloys is low in compari- to tool w hen cutt ing.son to other meta ls . In fact most of the aluminum

3-178. The higher speeds ut i lized for machiningalloys will ma chine approximately 10 t imes fast eraluminum requires:th a n steel. This factor combined with other

properties, i .e. , s trength, hea t t reata bility , w eight, a . Mach ines be f ree of vibra t ion and los tcorrosion resistance, etc. makes aluminum a pre- motion.ferred material in many instances for fabrication

b . Rigid suppor t o f t ool near cu t t ing edge toof parts by ma chining. B ra ss (free ma chining) isminimize clatter and vibration.the only other material with comparable machin-

ing properties. c. Secure clamping of work to mach ine toavoid distortion or slippage.

3-176. P ersonnel accomplishing the work shouldbe pr oper ly t ra in ed in m ach in in g a lum in um a s d . U se of pr oper lubr ica n t, cut tin g com poun d

or coolant s to prevent overhea ting , w a rpa ge/distor-with other types of metals . Due to various circum-tion and to provide adequa te lubricat ion t o cutt ingsta nces personnel familiar w ith ma chining steeltool.products are required to machine aluminum with -

out proper t ra ining/informa tion on speeds, feeds,3-179. CUTTING TOOLS FOR MACHINING

tools etc., required to effectively accomplish a spe-ALU MINU M. There are four general types of tool

cific ta sk. The purpose of this section is to providesteel material that can be used to machine alumi-

a general guide for selection of tools, machining,num. They should be selected in accorda nce wit h

speeds, etc. availability and scope of job to be accomplished.The followin g is a suggested guide for selection of

3-177. The tools used for machining a luminumtools:

will normally require more rake side-top and oper-a tion at higher/feeds tha n used for steel. The a . High ca rbon tool steel is adequa te foramount of rake required will depend on composi- machining a small number of parts or where cut-tion, physical form (cast or wrought) and temper. ting speed required is relat ively low. This ma te-The more ductile or softer the alloy the more rake rial will exceed the performance of some of therequired. The followin g general pra ctices are rec- other types of tools when used for fragile toolsommended for shafing, grinding and maintaining such as drills, taps, etc., because it does not breaktools for cutt ing a luminum: as easily as the other types. St ock ma terial is

3-45

Page 140: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 140/288

T.O. 1-1A-9

ob t a in a b le in a ccor d a n ce w i t h F ed er a l S peci f ica - l a r d oi l s uch a s S p eci f ica t i on C-O -376 or m iner a ltion QQ-T-580 where required for local fabrication oil, Specification VV-O-241 is recommended. Inof high ca rbon t ools etc. practice it will be found tha t some ma chining oper-

ations can be performed dry.b. High speed tool steel is the most common

type used for machining except on the higher 3-182. Tables 3-22 an d 3-23 cite suggested turn-silicon a lloys. ing speeds, tool a ngles a nd feeds. Tool projection

in relation to w ork should be set at or slightly(1) Ava i lab i li t y , r easonable cos t . a bove work piece center line. St urdy const ructionof tools and holders is essential to minimize vibra-(2) Hea t resist ance (w i ll r et a in cu t t ingtion/chat ter a t th e high speeds alumin um a lloysedge up to about 950oF dull red).are machined.

(3) Pe r m it s u se of la r g e r a k e a n g lerequ ired. Fed era l Specif icat ion QQ-T-590 a pplies

NOTEto stock ma ter ia l. All th e va rious classes (T1, T2,

P art ing tools should ha ve less topT3, etc.) may be used for machining aluminum.ra ke tha n turning tools. RecommendClass T1 (18-4-1) general purpose type is the mosttop rake angles of 12o - 20o and frontwidely used.clearances of 4o - 8o grind face con-

c. Where long product ion runs are involved cave (slightly) and so that cornercement ed ca rbide (solid or t ipped) tools give bet ter adjacent to work will lead opposite

service. The carbide tools ha ve been known t o las t corner by 4o - 12o or as required forth irty t imes longer tha n high speed tool steel. The best results .carbide tools are also recommended for cutting

3-183. MILLING - ALUMINUM. Mil ling of a lu-high silicon cont ent alloys. B ecause of the britt le-minum alloys should be a ccomplished a t high cut-ness of the cemented carbide tool the cutting angleter speeds. The limit a tions will usually depend onshould be greater than those recommended forth e ma chine a nd type cutt ers used. The rea son forhigh car bon/high speed steels.the higher cutter speeds is that at low speeds the

d . Diamond t ipped tools should on ly be used cutters will ha ve a t endency to load an d gum. Thisfor light finishing cute or special finishing opera- will norma lly clear as the speed is increased.tions. Norma l cutt ing of 75o - 90o are used withtop rake angles of 6o - 10o. Tool projection (or set) 3-184. The tooling for milling should be selectedshould be slightly above center line (CL) of the a ccording t o the operat ion an d du ra tion/size of jobwork. to be performed. The cutt ers should ha ve few er

teeth a nd should be ground with more top and side3-180. TURNING . To proper ly per form the turn- ra ke th a n those used for milling steels. Most oper-ing operation firmly attach the work to the at ions can be accomplished w ith spira l cutters.ma chine (lat he) chuck, collet or fa ceplat e. The Nick tooth cutters are used when reduction in sizework should be held in the best ma nner to mini- of chips is required. Solid-tooth cutt ers with la rgemize distortion from chuck or centrifugal force helix angles are used where free-cutting tools areaction during the turning opera tion. Long rods/ required. When cutters w ith la rge helix an gles arestock should be supported by ball or roller bearing used it is of ten necessary tha t t wo interlockingta ilstock centers which ar e more sat isfactory th an cutters of opposite h elixes be employed t o allevia tesolid or fixed centers in resisting thrusts from axia l thrust .centrifuga l force an d therma l expansion. Soft lin-ers may be used between work and machine jaw  3-185. Tool alloys should be selected for millingfaces to prevent jaw teeth from da ma ging/ma rring aluminum as follows:work piece. When it is necessary th a t w ork be

held by clamping from inside diameter outw ar d a . For shor t runs h igh ca rbon s tee l i s nor-the tightness of jaws should be checked frequently mally satisfactory.to be sure tha t w ork is not being released a s a

b . For product ion runs of extended dura t ionresult of thermal expansion.high speed steel is recommended.

3-181. The recommended cut t ing f luids are thec. Where climb mill ing/high speeds are ut i-soluble oil emulsion w hich combine the fun ctions

lized, carbide tipped tools are recommended forof cooling and lubricating for general purpose use.extended r uns.For heavy cutt ing especially when speeds are low,

3-46

Page 141: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 141/288

T.O. 1-1A-9

Table 3-19. Shear Strength of Protrudin g and Flu sh Head Alumi num A lloy Rivets, Inch Pounds 

S ize of Rivet (In D ia ) 1/16 3/32 1/8 5/32 3/16 1/4 5/16 3/8

Alloy + dr iven t emper 99 203 363 556 802 1,450 2,290 3,2805056 FS U = 28 KS I

2117-T321, FS U = 30 KS I 106 217 388 596 862 1,550 2,460 3,5102017-T31, FS U = 34 KS I 120 297 442 675 977 1,760 2,970 3,9702017-T3, FS U = 38 KS I 135 275 494 755 1,090 1,970 3,110 4,4502024-T31, FS U = 41 KS I 145 296 531 815 1,180 2,120 3,360 4,800

FSU = Average Shear St rength of alloy in specif ied temper.

KS I = 1000 lbs squa re inch exam ple: 34 KS I = 34,000 lbs per squar e inch.

Single shear rivet strength correction factor (resulting from use in thin plates and shapes).

Sheet thickness (in)

0.016 0.0964

0.018 0.0984

0.020 0.0996

0.025 1.000 0.972

0.032 1.000 0.964

0.036 0.980

0.040 0.996 0.964

0.045 1.000 0.980

0.050 0.996 0.972

0.063 1.000 1.000 0.964

0.071 0.980 0.964

0.080 0.996 0.974

0.090 1.000 0.984

0.100 0.996 0.972

0.125 1.000 1.000

0.160

0.190

0.250

Double shear rivet strength correction factor (result ing from use in thin plates a nd sha pes)

SIZE OF RI VETS

S heet Thick Inch 1/16 3/32 1/8 5/32 3/16 1/4 5/16 3/8

0.016 0.688

0.018 0.753

0.020 0.792

3-47

Page 142: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 142/288

T.O. 1-1A-9

Table 3-19. Shear Str ength of Protrudi ng and Flush H ead Alu mi num All oy Rivets, Inch Pounds - Cont in ued 

0.025 0.870 0.714

0.032 0.935 0.818 0.688

0.036 0.974 0.857 0.740

0.040 0.987 0.896 0.792 0.688

0.045 1.000 0.922 0.831 0.740

0.050 0.961 0.870 0.792 0.714

0.063 1.000 0.935 0.883 0.818 0.688

0.071 0.974 0.919 0.857 0.740

0.080 1.000 0.948 0.896 0.792 0.688

0.090 0.974 0.922 0.831 0.753

0.100 1.000 0.961 0.870 0.792 0.714

0.125 1.000 0.935 0.883 0.818

0.160 0.987 0.835 0.883

0.190 1.000 0.974 0.935

0.250 1.000 1.000

Note: Values (lbs) of shear streng th should be mult iplied by th e correction fa ctor w henever t he D /T =rivet dia meter/plat es sheet or sha pe thickness rat io is lar ge enough t o require correction. Exa mple:Rivet dia met er 1/8 (a lloy 2117 - T3) inst a lled in 0.040 sheet, sh ea r fa ctor is 388 lbs corr ection fa ctor0.996 =

3880.996

23283492

3492386.448 corrected shear pounds

Table 3-20. Bearin g Propert i es, Typical , of Alu mi num All oy Plates and Shapes 

E dge D ist a nce = 1.5 E dge D ist a nce = 2.0XX Rivet D ia met er X Rivet D ia met er

Alloy Yield S t rengt h U lt ima t e S t rengt h Yield S t rengt h U lt ima t e S t rengt h

1100 - 0 10,000 21,000 12,000 27,000

1100 - H 12 18,000 23,000 21,000 29,000

1100 - H 14 22,000 24,000 23,000 31,0001100 - H 16 23,000 16,000 26,000 34,000

1100 - H 18 27,000 19,000 32,000 38,000

3003 - 0 12,000 22,000 15,000 34,000

3003 - H 12 21,000 27,000 24,000 36,000

3003 - H 16 28,000 34,000 33,000 42,000

3003 - H 18 32,000 38,000 38,000 46,000

3-48

Page 143: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 143/288

T.O. 1-1A-9

Table 3-20. Bearing Pr opert i es, Typical , of Al umi num All oy Plates and Shapes - Cont in ued 

E dge D ist a nce = 1.5 E dge D ist a nce = 2.0XX Rivet D ia meter X Rivet D ia met er

Alloy Yield S t rength U lt ima te S t rength Yield S t rengt h U lt ima t e S t rengt h

2014 - T4 56,000 93,000 64,000 118,000

2014 - T6 84,000 105,000 96,000 133,000

2024 - T3 64,000 102,000 74,000 129,000

Alcla d 2024-T-3 60,000 96,000 69,000 122,000

2024 - T36 80,000 110,000 91,000 139,000

Alcla d 2024-T36 74,000 100,000 85,000 127,000

5052 - 0 25,000 46,000 30,000 61,000

5052 - H 32 37,000 54,000 42,000 71,000

5052 - H 34 41,000 59,000 47,000 78,000

5052 - H 36 47,000 62,000 54,000 82,000

5052 - H 38 50,000 66,000 58,000 86,000

6061 - T4 29,000 56,000 34,000 73,000

6061 - T6 56,000 72,000 64,000 94,000

7075 - T6 101,000 123,000 115,000 156,000

Alcla d 7075-T6 94,000 114,000 107,000 144,000

3-186. Mil ling cu t ter s should be incl ined to work The s lower cu t t ing speeds can be overcome toand beveled on lead ing corner (leas t bevel for f in- some ex ten t by securely anchor ing the work to theish cut s) t o minimize cla t t er . ma chine a nd using hea vy rough cut t ing feeds.

The tools used for rough cut should be (round3-187. The cut t ing f luids for mill ing a luminum nose) of heavy construction and properly ground toshould combine cooling a nd lubricat ion properties. operat e eff icient ly. Rough cut tools should beCoolant lubrication should be applied under pres- ground with moderat e am ount of rake to providesure (at omized spray if a vaila ble) in large qua nti- ma ximum cutting edge support. Finish tool shouldties to tool and w ork. The recommended cutting have more top rake and an extra large amount off luids ar e wat er base cutt ing f luids such as solu- side ra ke. Finishing tool shall be used with f ineble oils and emulsions, mixed 1 part to 15 for high feeds only due to the a ddit iona l side and top rakespeeds and 1 part to 30 for low speed cutting. (finish cut should not exceed 0.018 inch).

3-190. Most cut t ing opera t ions by shaping and3-188. Tables 3-24 an d 3-25 cite suggestedplanning can be accomplished w ithout cutt ingspeeds, contour and tool angles, for milling alumi-f luids, however f ine finishing can be improved bynum . The best combina tion of cuttin g speeds, feedlubricat ion. Recommend ed cuttin g compounds a reand cut for a given job will depend on design of

kerosene, mixture of 50-50 lard-oil and soluble oil.tool/cutt er, kind of t ool ma ter ia l, cond ition ofmachine, machine power, size, clamping method3-191. Tables 3-26 an d 3-27 cite suggested turn-

and type material being worked.ing speeds, tool angles an d feeds. Secure clam pingof work is re-emphasized especially when heavy3-189. SHAPING AND PLANING. The speed a tcutting feeds are to be used.which aluminum alloys can be cut by planing and

shaping is somewhat slower in comparison to otherma chining methods, due to equipment design a ndlimitations.

3-49

Page 144: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 144/288

T.O. 1-1A-9

Table 3-21. Standard R ivet H ole Sizes with Correspondin g Shear and Bearin g Areas for Cold D ri ven Al umi num All oy Rivets 

3-192. D RI L LI N G AL U M I NU M AL L OY. S t a n - m a ch in e/d r il l m ot or t o b e u t il iz ed . Th e f ol low in gd a r d t y pe t w i s t dr il ls ma y b e u sed sa t i sf a ct or il y i s a g en er a l g uide f or t h e s elect ion of dr il ls a n dfor m a ny dr illin g oper a t ion s in a lu mi nu m a l loy s. r ecom m en ded speed s:However, better results can be obtained w ith

a . D rill press.improved designed drills where sof t ma terial a nddrilling of thick material or deep holes are P oint Angle: 118o - 140o for general w ork and 90o -involved. These drills are usually designed havin g 120o for high silicon.more spiral twists per inch (see f igur e 3-2). The Spiral Angle: 24o - 28o for th in stock a nd mediumaddit iona l spiral t wist gives more worm action or depth holes up to 6 times drill diameters, 24 o - 48o

force to drill causin g th e drill to cut/feed fast er a nd for deep holes over 6 times drill diameter.is helpful in r emoving chips, especially in deephole drilling operations.

3-193. G enera l ly a dr i l l for a g iven job should beselected according to the thickness, type alloy and

3 -5 0 Change 3

Page 145: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 145/288

T.O. 1-1A-9

Table 3-22. Tur ning Speeds and Feeds 

CUTTINGALLOY TYP E CU T INCH E S S P E E D FE E D , IN./RE V OP E R TOOLAND TE MP E R F P M MATE RIAL

S of t S er ies, 0.250 Ma ximum 700 - 1600 0.050 Ma ximum Rough P la in high1100 All t emp ca rbon/high

speed

5052-H 12, H 14 0.040 Ma ximum 1500 - 3500 0.004 - 0.015 Finish P la in highca rbon /hig hspeed

2011-2024-0 0.250 Ma ximum 4000 - 7000 0.012 Ma ximum Rough Ca rbide

5056-0-6061-0 0.020 Ma ximum 6000 - 8000 0.010 Ma ximum Finish Ca rbide

7075-0, 113 0.010 Ma ximum At Minimum 0.002 - 0.005 Finish only D ia mondvibration

138, 214, 212

750, 220, 122

H ARD S E RIE S 0.200 Ma ximum 400 - 650 0.007 - 0.020 Rough P la in highca rbon /hig hspeed

108, 319, 43 0.020 Ma ximum 600 Ma ximum 0.002 - 0.004 Finish P la in highca rbon /hig hspeed

5052-H 34, H 36, 0.200 Ma ximum 500 - 1300 0.010 Ma ximum Rough Ca rbideH 38

T4, 2024-T3 0.020 Ma ximum 700 - 2500 0.010 Ma ximum Finish Ca rbide

7075-T6, 7178- Not recom- Rough D ia mondT6 mended t ipped

6061-T4, T6, 0.006 Ma ximum At minimum 0.002 - 0.004 Finish D ia mondetc. vibra t ion t ipped

H IG H S ILICON 0.120 Ma ximum 600 Ma ximum 0.007 - 0.020 Rough P la in highS E RIE S ca rbon/high

speed

0.020 600 Ma ximum 0.002 - 0.004 Finish P la in highca rbon /hig hspeed

4032, 333, 0.120 Ma ximum 500 - 1000 0.008 Ma ximum Rough Ca rbide

A132, 132, 356 0.020 Ma ximum 500 - 1500 0.004 Ma ximum Finish Ca rbide

3-51

Page 146: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 146/288

T.O. 1-1A-9

Table 3-22. Tur ning Speeds and Feeds - Cont inu ed 

CUTTINGALLOY TYP E CU T INC H E S S P E E D FE E D , IN./RE V OP E R TOOLAND TE MP E R FP M MATE RIAL

et c NOT RE COM- Rough D ia mondME ND E D t ipped

0.006 At minimum 0.001 - 0.003 Finish D ia mondvibra t ion t ipped

Tab le 3-23. Tool Ang les - Turn ing 

P LAIN H IG H CARB ON/HIG HTOOL ANG LE S S P E E D C ARB ID E D IAMOND

C ut t ing Angles 30o - 50o 52o - 80o 74o - 88o

Top Ra ke 30o

- 53o

0o

- 32o

10o

- 0o

S ide Ra ke 10o - 20o 5o - 10o 0o - 6o

F ront C lea r 7o - 10o 6o - 10o Nose Ra dii0.06 - 0.10

S ide C lea r 7o - 10o 6o - 10o ---

Table 3-24. M i l l ing - Speeds and Feeds 

CU TTE R TOOLALLOY CU T S P E E D FE E D OP E R MATE RIAL

Temper Inches Ft /minut es Ft /minut es Inches per

tooth

S of t 0.250 700 - 2000 10 Ma ximum 0.005 - 0.025 Rough H ighMa ximum ca rbon/

HighSpeed

S of t 0.020 5000 10 Ma ximum 0.005 - 0.025 Finish ″ ″ 

Ma ximum Ma ximum

H a rd 0.200 500 - 1500 10 Ma ximum 0.005 - 0-025 Rough ″ ″ 

Maximum

H a rd 0.020 4000 10 Ma ximum 0.005 - 0.025 Finish ″ ″ 

Ma ximum Ma ximum

S of t 0.300 3000 - 15000 20 Ma ximum 0.004 - 0.020 Rough C a rbideMa ximum Tipped

S of t 0.020 3000 - 15000 20 Ma ximum 0.004 - 0.020 F inish ″ ″ 

Maximum

3-52

Page 147: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 147/288

T.O. 1-1A-9

Table 3-24. M i l l ing - Speeds and Feeds - Cont in ued 

CU TTE R TOOLALLOY CU T S P E E D F E E D OP E R MATE RIAL

H a rd 0.250 3000 - 15000 20 Ma ximum 0.004 - 0.020 Rough Ca rbide

Ma ximum Tipped

H a rd 0.020 4000 - 15000 20 Ma ximum 0.004 - 0.020 F inish ″ ″ 

Maximum

Lip C leara nce (lip relief): 17o for soft alloys 15o formedium and hard alloys, 12o for silicone alloys

WARNINGSpeed: 600 ft /min, w ith h igh speed drills an d up to2000 ft /min w ith carbide t ipped dr ills.Feed: 0.004 - 0.012 inch per revolution for drills When operat ing an y ma chinery a ll3/8 in ch d ia met er, 0.006 - 0.020 in /rev for safety precautions must be observed,3/8 - 1 1/4 inch d ia met er a nd 0.016 t o 0.035 in/rev i.e., safety goggles shall be worn whenfor drills over 1 1/4 inch dia met er. When us ing grinding/drilling. Machinery shall becarbide tipped drill, feed should be slightly less.

inspected to insure that safety guardsFeed also may be determined by the formula r are in place/for safe operation etc.feeds = sq ua re root of drill diamet er (inches) prior to operat ing. Work sha ll bedivided by 60 feet = Dr ill diam eter (IN) + 0.002. securely clamped to prevent slippage.

Consult safety officer w hen in doubtb . L a t h e/s cr ew -m a ch in e.about th e safety of an opera tion.

P oint Angle: 118o - 140o

Spiral Angle: 0o - 28o3-194. The dri l ling of th in mater ia l normally

Lip C leara nce (lip relief): 15o - 20o

does not requ ire coolan t/lubricat ion however a de-S peed f t/min up t o 1500 qua te lubricat ion is essential t o drill life and holeFeed in ches/revolut ion 0.004-0.016.

qua lity wh en drilling holes of 1/4 inch depth ormore. Soluble oil emulsions a nd lar d oil mixturesc. P or ta ble Dri l ls Electr ic/Air Driven. Due toa re sa tisfa ctory for genera l drilling. The lubrica-variables involved no set factors can be given.tion sh ould be applied by forced feed spra y/f low However, factors given for drill press should bewhere possible and t he drill should be withdra wnused as a guide. Feed should be a djusted in accor-at intervals to be sure lubricant f lows t o the drilldance with speed of motor to prevent tip heatingtip (fill holes completely) when drill is withdrawn.a nd a lso to sat isfy opera tion/opera tor.

Tab le 3-25. Tool Ang les - M i l l i ng 

TOOL ANG LE S H IG H CARB ON/H IG H S P E E D CARB ID E

Cut t ing Angle 48o - 67o 68o - 97o

Top Ra ke 20o - 35o 10o - 15o

Clea ra nce 3o - 7o P rima ry 3o - 7o Pr imary

7o - 12o S econda ry 7o - 12o Secondary

H elix 10o - 50o 10o - 20o

Tooth S pa cing Course - S uf f icient for chip Approxima tely 1 t oothClea ra nce. per inch of dia meter .

3-53

Page 148: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 148/288

T.O. 1-1A-9

Table 3-26. Shaping and Plani ng-Speeds and Feeds 

CU TTING FE E D TOOLME TH OD C U T INCH E S S P E E D (INCH E S ) OP E R MATE RIAL

S ha ping 1/4 Ma ximum Ma ximum 0.008 - 0.031 Rough H igh C a rbon/speed of RAM H igh S peed

S ha ping 0.005 - 0.014 Ma ximum 0.094 - 0.156 F inish H igh C a rbon/speed of RAM H igh S peed

P la ning 3/8 Ma ximum Ma ximum 0.020 - 0.100 Rough H igh C a rbon/speed of Ta ble H igh S peed

P la ning 0.005 - 0.018 Ma ximum 0.050 - 0.375 F inish H igh C a rbon/speed of Ta ble H igh S peed

Tab le 3-27. Shaping Tool Ang les 

TOOL MATERIALOPERATION

ROU G H FINIS H H IG H CARB ON/H IG H S P E E D

Top ra ke 19o - 10o 43o - 52o HIG H CARBON/HIG H SP EED

B ot t om C lea r 7o - 9o 8o - 10o HIG H CARBON/HIG H SP EED

S ide Ra ke 30o - 40o 50o - 60o HIG H CARBON/HIG H SP EED

S ide C lea r 7o - 9o 0o - 0o HIG H CARBON/HIG H SP EED

C ut t ing Angle 64o - 71o 30o - 37o HIG H CARBON/HIG H SP EED

3-54

Page 149: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 149/288

T.O. 1-1A-9

Figure 3-2. Dr i l l Designs and Recommended Cutt ing Angles 

3-55

Page 150: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 150/288

T.O. 1-1A-9

Table 3-28. Thr ead Constant for Various Standard Thr ead Form s 

PERCENT OF FULL THREAD DESIRED

TH RE AD FORM 75% 80% 85% 90%

America n S t d Course S er ies C = 0.9743 1.0392 1.1042 1.1691

Whit w ort h C = 0.9605 1.0245 1.0886 1.1526

B rit ish Ass’n S t d C = 0.9000 0.9600 1.0200 1.0800

Amer Std 60o S t ub C = 0.6525 0.6960 0.7395 0.7830

Amer S t d S q C = 0.7500 0.8000 0.8500 0.9000

Amer Std 10o modif ied 0.7500 0.8000 0.8500 0.9000S q S q C =

3-195. TAP P I NG . Th e t a ps used for t hrea din g e. Ta ppin g Allow a nce: D rill d ia met er for gen -era l ta pping should be from 0.005 to 0.006 inchesaluminum alloys should be of the spiral f lutedper inch larger than standard for the same threadtype for best results . St raight f luted ta pe can bein steel or in accordance with the following.used but have a tendency to clog and tear the

threa ds during the ta pping opera tion. SpiralC

f luted taps for cutt ing right-handed threads Drill D iameter = (1.005 X tap dia meter)-threa d per inchshould ha ve a right-ha nd spiral of a bout 40o angle

C = Thread consta nt for various threa d forms a ndwith a generous back off t aper a nd highly polishedpercenta ges of th read depth required as given inf lutes .Ta ble 3-28.

3-196. Sp ir a l - P oin ted or ‘‘G un Taps ’’ (straightf . Lubrica t ion : For h igh speed t apping usef luted except they ha ve a short spiral on the start -

lar d oil/minera l oil an d for han d ta pping a m oreing end) cut a luminum more freely tha n t he otherviscous lubricant is recommended such as heavytypes. With th is type ta p the ma jor portion ofgrea se/oil, whit e lead, et c.cutt ing occurs at t he spira l end and curls ahead of

th e ta p. The use of th e ‘‘Gun Tap’’ is therefore 3-198. F IL ING .limited to tapping holes which have room for the

3-199. Hand f i les of the s ing le cu t t ype havingcuttin gs ahea d of the tool. This spira l pointed ta pmilled t eeth usually give th e best results for f ilingshould not be used for cutting tapered thread ora luminum . The ma in considera tion in file design/for bottoming t aps.selection for aluminum is to provide ample chip

3-197. The fol lowing procedures and tools are space clea ra nce. The cuttin gs genera ted are largerecommended for t apping a luminum a lloys: an d ha ve a t endency to powder, pack an d clog

bet w een f ile teet h. To overcome clogging problema. Cut t ing Speed: 40 to 130 feet/minute use

chip space is increased, grooves are cut deeper andlower speed for hard alloys and higher speed for

teeth a re cut w ith generous side and t op rake.sof t a lloys.

3-200. For f in ish f i l ing a long ang le mi ll f i leb. Tap Type Select ion: For bl ind holes and (single) (cut) with tooth spacing of 14-24 teeth per

bottoming use spira l f luted; for semi-blind use spi- inch with side rake an gle of 45o to 55o is recom-ral pointed (gun taps); and for hole through work mended. In a bsence of the preferred file the sa meuse spiral pointed (gun taps).

effect can be obta ined using standa rd mill cut f ilesby a djusting a ngle of f iling incidence to the metalc. Thread Type : Rounded or f l a t t ened (turnw orked. The file is of ten a djusted until force orcoated) thread contour for general use.motion applied is parallel to the work piece for

d. Tool Angles : Spira l f lute-gr ind a lead spira l best results. A good general purpose file is theextending one full thread beyond chamfer on curved tooth type (often called ‘‘vixen ’’) havingstra ight f luted ta p. To ma ke gun tap and spiral a bout ten deeply cut teeth per inch. It can be usedf lute ta p should be 28o to 40o; cutt ing a ngel 40o t o for heavy an d f inish cuts. Lightly double cut f iles45o; top rake 45o to 50o; back rake 4 - 8o; cutter having tooth spacing of 14 - 20 per inch can bea rea (included a ngles); 2 f lute 36o to 72o and 3 used for light duty rough cutt ing and finishingflutes 24oto 48o. w hen w orking the ha rder a lloys. U ser should be

3-56

Page 151: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 151/288

T.O. 1-1A-9

ca r ef ul n ot t o d r a g f i le a cr os s w or k on ba ck s t rok e 3-204. S AWI N G . I t sh ou ld be em ph a s iz ed t ha ta s w i t h a n y f i ll in g op er a t ion . F i les sh a l l b e k ept t h e s a m e pr in ciples w h ich g over n t he sh a pe of cu t -clea n a n d fr ee of r us t. C logg ed f iles ca n be t in g t ools for a lu min um s hou ld be a pplied , a s fa rcleaned by w ire brush ing . The use of cha lk or t a lc as prac t icab le to s aws for a luminum.on file will help prevent clogging.

3-205. B a n d S a w s . B a n d s a w bl a d es of s pr in gtemper steel having a tooth spacing from 4 to 113-201. Machine f i l ing us ing rota ry f i les (minia-

teeth per inch and with amply radiused gullets areture milling cutters ha ving spira lled sha rp teethrecommend ed for a luminum a lloys. Cur ved or cop-with smooth deeply cut f lutes) ar e opera ted a ty ing cuts are made with band saw s . In any typehigh speed. The rota ry f iles a re opera ted up toof w ork, high blade speed are desirable with a10,000 RPM for small diameter and to 2,000 maxi-speed r a nge from 1,500 to 5,000 feet per minut e.mum periphera l feet/min for the la rger dia meter.For heavy sections th e saw teeth should be fairlyThe t eeth sh ould be coa rse (about 14 teeth percoarse with a slight set and a slight amount ofinch) wit h deep polished f lute a nd spira l notchedfront rake, the restricted chip space requires thedesign.use of coarser tooth spacing of about four teeth perinch to a void clogging an d binding. Also th e f lexi-ble back type of saw with teeth hardened to theCAUTIONbottom of the gullet is used for heavy work.

Wear goggles or face shield when fil- Blades having as many as 14 teeth per inch areing w ith rota ry f iles to protect eyes. sat isfactory for t hin ma terials . A good and simple

genera l rule to follow w hen saw ing aluminum is3-202. REAMING. Genera l ly mos t of the d i f fer -that the spacing of the teeth on band saws for

ent type reamers ma y be used for a luminum, but aluminum should be a s coar se as is consistentfor best results the spiral f luted reamers a re rec- with the thickness of the material being sawed.ommended - solid, expansion or a djusta ble. The The softer alloys require appreciably more bladespiral should be opposite to the rotation to prevent set than do the harder, heat treated alloys. Usu-reamer from feeding and hogging into the hole. ally an alternate side rake of about 15o and a topHoles to be finished by reaming should be drilled rake or ‘‘hook ’’ of 10o to 20o proves quite sa tisfac-sufficiently under-size to assure positive cutting

tory. This am ount of hook, how ever, requires arather than scraping and swedging (indication of

power feed and securely clam ped work. For handoversize drilled h oles a nd im proper feed is t he pro-

feeds the top rake must be reduced considerably tojection of a lip around hole diameter a f ter th e

a void overfeeding.rea ming operat ion is a ccomplished). Finish ream -ers should be maintained with exceptionally keen 3-206. The band saw b lades mus t be wel l sup-

cutting edges and highly polished f lutes for ported by side rollers and back support both imme-smooth work. diately below the saw table and about 2 or 3inches above th e work. The top bla de supports ar e

3-203. The fol lowing procedures a nd tools are placed slightly in advance of those below therecommended for rea ming a luminum a lloys: ta bles a nd th e blade should be allowed to vibrat e

freely to elimina te excessive sa w brea ka ge. As aa . Tool ma ter ia l : High ca rbon s teel for genera lgeneral rule, a noisy band saw is cutt ing moreuse; high speed st eel/or carbid e tipped for du ra bil-efficiently tha n the saw t ha t cuts quietly. Quietity and continued production jobs.smooth cutt ing ba nd sa ws usually produce smooth

b . Tool t ype: S t r a igh t/spir a l w i th 10o spiral burnished surfaces accompanied by excessive heatf lute and solid teeth. and consequently decreased blade life.

c. Clea rance and r ake ang les : Top r ake 5o t o 3-207. Ha ck S a w s . Ha ck s a w bl a des of t h e8o; cleara nce angle prima ry 4o t o 7o, secondary wavyset type are well suited for cutt ing aluminuman gle 15o to 20o; cutt ing a ngle 84o to 90o. by hand. The wa vy set type of blade ha ving 5 to

15 teeth per inch has sufficient chip space to avoidd . Machine speed and hole reaming a l low-

clogging and binding on aluminum alloys. Fora nce: Cut ting speeds up to 400 f t/min for stra ight

extremely f ine work a jewelers blade ma y be used.holes, tapered hole should be somewhat slowera bout 300 - 350. The des ired feed in inch es/rev olu- 3-208. Specia l rou t ing mach ines a re ava i lab letion is 0.003 to 0.010. H ole to be rea med should which cut va ried prof iles from a luminum sheet orbe undersize 0.005 - 0.015 inch diameter (reaming plate rapidly and efficiently.allowance).

3-209. Lubr ican t s and coolan t s . Power hacksawse. C u tt in g f l uid s: S ol ub le oil/m ixt u re of ker - a n d ha n d sa w s r eq uir e a c ut t in g lu br ica n t for m os t

osen e a n d la r d oil, ligh t w eigh t ma ch in e oil. oper a tion s in volv in g t hick sect ion s. S olu ble oil

3-57

Page 152: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 152/288

T.O. 1-1A-9

cut t ing compounds and neutra l minera l-base lubr i- gr inding, while copious quant i t ies of a low viscos-cating oils applied to the sides of the blade aid in ity coolant type grinding compound are essentialminimizin g friction a nd gullet clogging. Light a nd recommended for finish grindin g. Soluble oilapplications of heavy grease or paraffin wax will emulsions of the proportions of 30 or 40 to 1 areprovide ample lubrication for some work. A wide most suita ble.selection of lubricants exists, ranging from tallow 

3-216. POLISHING . Po lish ing or f in ish ing a lu-or grease stick to kerosene-thinned mineral baseminum a nd most of its a lloys, by th e applicat ion oflubricat ing oil. St ick type lubrican ts should beproper machining procedures, gives it a smootha pplied very frequent ly. Experience ha s revealedlustrous f inish. Aluminum an d its alloys ar e pol-in most cases it is more convenient a nd a dapta bleished in the same manner as other metals , but ato use the f luid type lubrican t applied freelylower w heel-to-meta l pressure is used forthrough a recycling system directly to the blade

a nd w ork st ock. a luminum.

3-210. GRINDING . The gr ind ing charac ter ist ics 3-217. P olishing is the act of removing marks ,of the various aluminum alloys vary in many scratches or a brasion on the meta l result ing frominsta nces. The ha rder free-cuttin g a luminu m previous handling a nd operat ions; it m ust bealloys may be ground sat isfactorily with free cut- understood th at a more gentle cutt ing a ction orting commercial silicon carbide grinding wheels, f iner abra sives a re used for polishing aluminumsuch as crystalon, carborundum and natalon. th a n used for steel. The var ious opera tions cov-Rough grinding operations are usually performed ered under the polishing category include rough-by use of resin bonded wheels of medium harden- ing, greasing or oiling, buffing and coloring.ers an d grit sizes of 24 to 30. Also th e alumin um These operat ions are brief ly described in the fol-abrasives from No. 14 to No. 36 have been found lowing paragra ph.to be satisfactory for rough grindings.

3-218. ROUGHING . This i s a t erm used to3-211. Common a l loys , par t icular ly in their

describe the preliminary finishing operation orsof ter tempers ha ve a tendency t o clog the w heels

process, used to prepare aluminum surfaces hav-and do not finish to as bright and smooth a sur-

ing deep scratches gouges or unusually rough sur-face as the harder ma ter ia ls .

fa ces, for subsequent polishing procedures. Rough-ing is not required on smooth undented or3-212. Ca ut ion should be ta ken in select ing theunscratched surfaces. The preliminary f inishingproper grade of each commercial make of wheel.or roughing process usua lly employs a f lexible alu-Once the grinding wheel has been selected thereminum oxide paper disc, a semi f lexible bondedare three var iables tha t a f fect the quali ty o f a f in-

is h; t hes e a r e t h e w h eel speed , w or k s peed a n d m us lin or ca n va s w h eel , f a ced w it h su it a b le a b ra -grindin g compound. E xperienced opera tors have sives. U sua lly 50 - 100 grit a bra sives a re for thisproven tha t t heir own good judgement is a deter- process an d a re set in a n a dhesive in a ccordancemining factor as t o the correct wheel and work w ith sta nda rd practice. The peripheral speed ofspeeds, however, wheel speeds of about 6,000 feet these discs runs around 6,000 feet per minute;per minute have given good results. fast er wh eel speeds would cause heat ing or ridging

of the sof t meta l surface. Hea ting is also reduced3-213. For f inish work, a sof t s i licon carbide

by sma ll applicat ions of ta llow or a t allow oilwheel of 30 to 40 grit in a vitrified bond have

mixture.proven to be very satisfactory. A grinding com-pound of soluble cutting oil and water works well. 3-219. GREASING OR OILING. This i s aHowever, the fine grindings of aluminum must be refined or gentle roughing procedure for finishingstrained from the compound before reusing in a luminum surfa ces. Applica tion is visua llyorder to prevent deep scratches on the finished employed by a soft wheel faced with 100 to 200surface.

grit a luminum oxide emery, plus a light coat oftallow or beeswax lubricant to prevent excessive3-214. Specia l care should be exercised whenheat ing. Here aga in, peripheral speeds of aboutgrinding castings and wrought alloy products that6,000 FPM are used.ha ve been heat trea ted, since their greater resis-

ta nce to cutt ing or grinding generat es a considera-3-220. Greas ing or oi ling is a necessary opera t ion

ble amount of heat which may cause warping andin finishing coatings and other fabricated workdama ge to the mat er ia l .wh ich ha s been ma rred by previous operat ions.Excess aluminum pick-up on the wheels as results3-215. Lubricants and Coolants . Generous appli-from overheating will cause deep scratches in thecations of stick grease are recommended to preventmeta l .clogging of the grinding wheels during rough

3-58

Page 153: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 153/288

T.O. 1-1A-9

3-221. B U FF ING . This is a t erm used to m et hod of inspect ion is not accept able for inspec-tion of parts subject to internal defects, i.e. inclu-describe a finishing procedure employed to obtainsion in castings a nd forging or a ny par t subject toa smooth high luster on an aluminum surface.internal stress, etc.This high luster f inish is obta ined by use of a f ine

abra sive, such as t r ipole powder mixed w ith a3-230. Defects are indica ted by darkening of

grease binder, which is applied to the face of thecracked or void areas after the anodic treatment.

wh eel. These wheels usua lly consist of muslinInsufficient r insing in cold water after anodizingdiscs sewed together, turned at a peripheral speedproduces sta ins w hich may be confused with

of 7,000 FPM.defects . In case of doubt strip film from part an dreanodize. If the indicat ions do not reappear t he

3-222. Many factors , such as , the thread count ofdefects sha ll be considered a bsent a nd pa rt should

the buff, t he pressure applied t o the buff a gainstnot be rejected for that reason.

the work, the buffing compound used, the speed ofthe buff or wheel and the skill and experience of

NOTEthe opera tor must be considered in obta ining a sat -

For addit iona l general informa tion onisfactory and quality type finish.inspection and testing see SectionVIII of this technical order.3-223 . HARDNESS TESTING.

3-231. ALUMINUM ALLOY EFFEC TS ON3-224. Ha rdness is the resist ance of a meta l t o

SCRATCHES ON CLAD ALUMINUM ALLOY.deforma tion by scratching penetra tion or indenta -

The purpose of t he followin g informa tion on t hetion, and is usually a good indicat ion of strength.effects of scratches on aluminum alloys is to assist

Metal hardness can be measured accurately by thein eliminating controversy in depots a nd f ield

B rinell, Rockwell or Vickers P rocess.inspection, regarding serviceability of aluminumalloy, sheet, skin and aircraft structural parts

3-225. BRINELL HARDNESS. The Br inel l t ech-which have been scratched, abraded or discolored

nique is usually used to obta in the ha rdness offrom the stand point of corrosion resistance and

aluminum a nd aluminum alloys. This ha rdnessfatigue strength.

value is obtained by applying a load through a ballindenter and measuring t he perma nent impression 3-232. In some ins tances , serviceable a luminumin the mat erial. To obta in the hardn ess value of a alloy parts and sheets, have been disposed of duema terial, divide the a pplied load in kilogra ms by to lack of knowledge by inspection personnel as tothe spherical a rea of the impression in sq uare m il- the effect of various depth scratches on thelimeters. Ha rdness value of aluminum alloy is strength and corrosion resistance of the clad alloy.

tested by applying a load of 500 kilograms to a Also, attempts have been made to removeball ten millimeters in diameter for 30 seconds. scratches from aircraft skin by sanding, buffing,or polishing resulting in removal of much of the

3-226 . NON-DESTRUCTIVE TESTING/ INSPECTION. cladding material and causing decrease in strengthand corrosion resistance.

3-227. Aluminum and a luminum a l loys a re sus-3-233. AL L OWAB L E D E F E CTS .ceptible to stress risers resulting from notching,

nicking or scratching. A very close visual inspec- a . The fol lowing sur face defects are thosetion is required of all raw material prior to any which do not affect the strength or corrosionforming or machining operations. Before any resistance.fabrication commences it is n ecessary t ha t a ll

(1) Scra t ches which penet r a te the surfacescratches, nicks and notches be removed by sand-layer of clad a luminum a lloy sheets or part s but doing, polishing and f iling.not extend beneat h t he cladding a re not serious ordetrimental.

3-228. AN OD I ZI N G PROCE S S F OR I N S PE C-TION OF ALU MINU M ALLOY PARTS. P ar ts for(2) The presence of small corroded areas

which anodic coating is applicable in accordancewill not materially affect the strength of clad

with MIL-A-8625 Type I, can be anodized for theunless the corroded pitted area extends through

inspection of defects as cited in Specification MIL- the cladding down to or into the bare metal CleanI-8474. corroded a reas thoroughly by aut horized m ethods

(See P ara gra ph 3-242).3-229. The par ts a re examined visually for indi-cations of cracks, forging laps or other defects. (3) St a ins a re not g rounds for re ject ionP ar ts inspected by th is method shall be limited to since they a ffect n either the strength nor the cor-sheet stock a nd surfa ce defect of forgings. This rosion resistance.

3-59

Page 154: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 154/288

T.O. 1-1A-9

then ea sier t o determine wh ether the residuewh ich rema ins is black or w hite.CAUTION

3-239. B e for e m a k in g t h e ‘‘spot ’’ test, the sheetNo att empt will be made to removear ea w ill be cleaned a nd degreased with solventscratches or other surface defects byFedera l S pecif icat ion P -D-680, Type II , or othersanding or buff ing since the protec-suitable solvent, so tha t the caust ic solution w ill

tive layer of cladding will be removed react properly.by such operations.

3-234. HARMFUL SCRATCHE S. Scra t ches 3-240. Ca ut ion wil l be exercised to make surewhich extend through the cladding and penetrate tha t a ll of the caust ic solution is removed from thethe core material act as notches and create stress sheet by thorough rinsing, since the caustic solu-concentra tions which w ill cause fa t igue failure if t ion is very corrosive to aluminum an d a luminumthe part is highly stressed or subjected to repeated a lloys. Ca re wi11 be ta ken not to use excessivesmall stress reversals . However, sheets so am ounts of the caust ic solution for the sa me rea-scratched may utilized for non-stressed son and it is preferable that only one drop be usedapplications. for ea ch test. The caust ic solution will be pre-

pared fresh for each series of tests to be made.3-235. INSP ECTION. Assemblies fabr ica t edfrom clad aluminum-alloy sheets will not be

3-241. D I S PO S I TI ON O F S CRATCHE Drejected by inspection personnel, unless t he defect

S H E E TS/P ARTS .is of suff icient depth to a dversely a ffect t hemechanical properties or cover sufficient area to

a . Al l s cr a t ched clad a luminum-a l loy shee t simpair the corrosion resistance of the assembly.w i11 be utilized to th e fullest extent . ServiceableScrat ches or abra sions w hich penetrat e the clad-portions of dama ged sheets w ill be used in theding will not affect corrosion resista nce. Scra tchesmanufacture of smaller parts and assemblies.result ing from t he normal ha ndling an d processingOnly that portion of sheet that is scratched andof clad aluminum-alloy sheet rarely extendotherwise dam aged beyond serviceability will bethrough the cladding a nd penetrat e the core.ad ministra tively condemned.

3-236. TEST FOR DEPTH OF SCRATCHE S.Since it is very diff icult t o measure the depth of a b . P a r t s (a i r weapon) sha l l be closelyscratch on a sheet wit hout cross sectioning the inspected as cited and they do not meet specifiedsheet, it has been found convenient (on clad mate- requirement shall be condemned an d replaced a srial) to use a ‘‘spot ’’ test t o determine wh ether or directed.

not a scratch extends through the cladding.3-242. CL E AN I NG O F AL U M I NU M AL L OY

3-237. On a l loys except 7075 and 7178 the ‘‘spot ’’SH EE T (STOCK ).

test is made by placing a drop of caustic solution(10%by weight of sodium hydroxide, NaOH, in

3-243. Solvent Cleaning. Stubborn or except ion-wa ter) on a portion of the scra tch, and allowing itally oily sheets may be cleaned by using solvent,to react for 5 minut es. The ca ustic solution willFedera l S pecif icat ion P -D-680, Type II , beforethen be rinsed off the sheet with water, and theclea ning wit h alka li solution. The clea ning will bespot a llowed to dry. If a bla ck residue remains inaccomplished by brushing, soaking, scrubbing andthe ba se of the scratch a t t he spot t ested, it indi-wiping. Mat erial or equipment that w ould scrat chcates tha t the scratch extends to the core. If noor abra de the surface sha ll not be used. Alsoblack color is visible and only a white residuematerial shall not be stored after solvent cleaningremains in t he base of the scrat ch, it indicat esand prior to alkaline cleaning, unless solvent isthat the scratch does not penetrate through thecompletely removed from the surfaces of the metal.

claddin g. For a lloys 7075 and 7178 a d rop of 10%cadmium chloride solution will produce a dark dis-

3-244. Alkali Cleaning Solut ion. Composit ion ofcolora tionm wit hin t wo minutes if th e scrat ch pen-solution is 4 to 6 oz of clean er specif ication MI L-C-etra tes the clad. The cadm ium chloride a pplied as5543 to one gallon of wa ter. The ma teria l isabove will not cause 2024 to discolor within twocleaned by immersing in the solution (as preparedminutes.by instructions cited in paragraph 3-245) for 4-6minutes, thoroughly rinsing in wa ter (fresh ta p)3-238. Wh en m a king t he ‘‘spot ’’ test t o determinea nd t hen completely drying. Never pile/storewheth er a scrat ch extends to the core, it is advisa-ma teria l while da mp, wet or moist. Refer to T.O.ble for comparison purposes to spot test an adja-00-85A23-1 for packaging and storage.cent a rea in which there ar e no scratches. It is

3-60

Page 155: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 155/288

T.O. 1-1A-9

9 gallons of wa ter.

CAUTIONb. Pa r t s sha l l be immersed for 3 to 5 minutes

in cold acid (50o - 105oF ).Do not use strong alkali solutionbecause it w ill etch the a luminum. 3-248. Aft er removing from the acid, the par t s

shall be wa shed in fresh hot or cold running w at er3-245. P repara t ion . Use wa ter hea ted to a t em-for a suff icient length of t ime t o thoroughlyperature of 170oF (77oC). Add not more th a n oneremove th e a cid. Dilut ed solution of sodiumpound of cleaner at a t ime. P repare the solutiondichromate (Na 2Cr2 O7) 12 to 14 ounces per gallonin the following ma nner:of water, shall be added to the rinse water as acorrosion inhibit or. The rinsing tim e dependsa . Fil l the task 1/2 to 2/3 full of wa ter .upon the freshness of the solution, size of the part

b . Care fu l ly d is solve the a lka l ine cleaner . an d the am ount of solution circulated. One halfhour or less should be suff icient . P ar ts shall thenc. Add wa ter to opera t ing leve l and s t i r thor-be completely dried by blasting with compressedoughly w ith a wooden paddle or other mea ns.air or other approved method.

3-246. Mainta in solut ion in the fol lowingmanner :

NOTE

a . Add t ap wa ter to ba lance-up solut ion loss . The sheet w ill stain w hen rinsed with

sodium dichromat e. The str onger th eb . M a ke a d di t ion a s r eq u ir ed t o m a int a in t hesolution t he dar ker the sta in. A light

active alka li concentra tion between 4 an d 6 ozdetectable stain is desired on corroded

alka line cleaner for each ga llon of wa ter a ddedarea s. If the sta in is dar k reduce the

and stir thoroughly.am ount of sodium dichroma te a ddedto rinse water.c. P r e pa r e a n ew s olut ion w h en con t a m in a -

tion impares the cleaning ability of the solution.3-249. Corros ion Removal a nd Treatment of Alu-minum S heets When Immersion Is Not P ra ctical.d . Clean the t ank thoroughly before prepar ing

a new solution.3-250. The sur face shall be cleaned with wa ter

3-247. Corros ion R emoval from Aluminum Alloy ba se cleaner, Specificat ion MIL -C-25769, Type II .Sh eets. Corrosion is removed by immersing the

a . Heavily soi led a reas . Dis solve the con tent ssheet in the following acid cleaning solution:

of two 5-pound packages in 10 gallons of water.St ir wit h a wooden paddle until fully dissolved.

CAUTIONb. Light ly soi led areas . Dissolve four 5-pound

packages in 50 gallons of water (a 55 gallon drumWhen using acid solution wearis suitable for this purpose). Agita te thoroughlyapproved clothing, acid resistingwith wooden paddle to insure proper mixture.gloves, a prons/covera lls, face shields

or respirat or. If solution is splash edc. Applica t ion. Apply the solut ion by spray-

into eyes, f lush thoroughly wit hing, or wit h a mop, sponge, or brush. Allow t o

water immediately, and then report toremain on t he surface for several minutes w hile

dispensary. For special instructions,agita t ing with a brush. Rinse thoroughly with a

contact local safety officerspray or stream of wa ter. Do not a llow solution todry before rinsing as less effective cleaning willa . Nitr ic-Hydrof luor ic Acid Cleaning. Theresult .solution shall consist of 1 gallon technical nitric

acid (58-62%HNO3) (39.5o Be).3-251. Corrosion Removal. To remove corrosionproducts use a meta l conditioner a nd bright ener,1/2 pint t echnica l hyd rof luoric acid (48oHF) (1.15Specification MIL-C-38334.Sp).

3-61

Page 156: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 156/288

T.O. 1-1A-9

38334 shall be treated with Specification MIL-C-5541. Most solutions conforming to Specificat ion

WARNING MIL-C-5541 leave a stain. A clear SpecificationMIL -C-5541 coat ing is a va ilable (reference QP L5541) and should be used w hen a bright meta l f in-When using acid solution wearish is desired.approved clothing, acid resistant

gloves, a prons/coverall s, fa ce shieldsor respirator. If solution is splashedinto eyes, f lush thoroughly with WARNINGwater immediately, and then report todispensary. For special instructions . Conversion coating is a toxic chemicalconta ct local safety officer.

and requires use of rubber gloves bypersonnel during its a pplica tion. Ifacid, a ccidentally contacts t he skin orCAUTIONeyes, f lush immediat ely with plentyof clear wa ter. Consult a physician ifMetal conditioner a nd bright ener iseyes are affected or if skin is burned.for use only on aluminum alloys, and

it sha ll not be used just for the sake . Do not permit Specification MIL-C-of improving the appearance of mate-5541 ma terial t o conta ct paint t hin-rial. Mat erial in storage shall not bener, acetone or other combustibletrea ted with t his mater ia l more thanma terials . Fire ma y result .one time.

a . Mix the solut ion in a s t a in less s tee l, rubbera . Prepare the br igh ten ing solut ion by mixingor plastic container; not in lead, copper alloy orSpecificat ion MIL-C-38334 compound w ith a nglass.equal amount of water, in a rubber pail.

b . M ix in a ccor d a n ce w it h m a n u fa c t ur er sb. Apply enough diluted br ightener to com-instructions.pletely cover the a rea being treat ed with a non-

meta llic brist le brush. c. Apply the convers ion coat ing (l ight) byusing a f iber brist le brush or a clean, soft cloth.c. Agit a te the br igh tener by scrubbing w i th aKeep the surface wet w ith th e solution unt il anon-metallic bristle brush. Depending on the ambi-coat ing is formed w hich may ta ke from 1 to 5 min-ent temperature and amount of corrosion depositsutes depending on the surface condition of thepresent, allow approximately 5 to 10 minutes from

metal .a pplica tion of brightener before rinsing. Whenusing brightener at high ambient temperature(above 80oF) leave brightener on for shorter peri-

NOTEods of time. Do not leave bright ener on the sur-

Do not permit excess conversion coat-face longer than necessary to dissolve theing to dry on the metal surfacecorrosion.because t he residue is difficult to

d . Rinse the br igh tener from the surface f lush of f with wa ter .(using approximately 50 gallons of water per min-

d . Rinse w i th clea r wa ter, or sponge the a reaute. Insure tha t a ll traces of brightener have beenwit h a clean, moist cloth, frequently rinsing th eremoved (shown by no foaming or bubbles whilecloth in clear w a ter. Thorough rinsing is required.rinsing).

3-252. C hr om a te C on ver sion C oa t in g S pecif ica - e. Allow th e surfa ce t o a ir dr y. To speed d ry -t ion MIL-C-5541, for a luminum a l loys . Aluminum ing the surface may be b lown dry w i th warm cleana l loy s w h ich a r e t r ea t e d w i t h S p eci f ica t i on MI L -C- a i r (140oF maximum).

3-62

Page 157: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 157/288

T.O. 1-1A-9

been cleaned and treated for corrosionin accordance with T.O. 1-1A-9 Sec-

WARNING t ion III , date . . . . . .’’ If origina lmarkings are removed as a result ofthe clean ing an d trea tment process,Any a bsorbent ma terial used inthe material shall be remarked (stag-a pplying or w iping up M IL-C-5541gered) at each end and in the middle

material shall be rinsed in water wit h t he S pecif icat ion, size/th ickness,before discard ing. They are extremetemper an d type or grad e. The mark-fire hazards if allowed to drying may be applied with Black paintotherwise.S pecif ica t ion TT-L-50, MIL -E -7729 or‘‘Magic Marker ’’ manufactured bySpeeddry P roducts Inc., RichmondCAUTIONHill, N.Y. or ‘‘E q u a l’’. A felt tip pen

Avoid brush ing or rubbing t he new ly ma y a lso be used.applied chemical conversion coating,

3-253. For Pa ckag ing , Packing, . and S torage ofsince it is sof t a nd can be easily

Aluminum Alloy Sheets and Plates Refer to T.O.rubbed off the surface before com-

00-85A-23-1.pletely drying.

3-254. ANODIC COATINGS FOR ALUMINUM.NOTE

Anodizing is the anodic process of treating alumi-num a lloys; a t hin f ilm of art ificially produced. A light (just visible to the naked eye)oxide is formed on the surface of the metal by elec-evenly dispersed conversion coa ting istrochemical reaction. Milita ry Specificat ion MI L-all tha t is required. It is recom-A-8625 lists the requirements of aluminum anodiz-mended that a test panel be prepareding, and TO 42C2-1-7 gives the anodizing process.and subjected to complete cleaning/

treating procedure before applying3-255. Mili tary Specif ica t ion MIL-C-5541 lis ts

ma terial to a sheet. The test panelthe requirements for corrosion protection and

shall be used to determine the dwellpaint base of aluminum by the use of chemical

tim e of MIL -C-5541 ma ter ia l. Whenf ilm. These chemical f ilms are substitut es tha t

clear material is being used, no con-ma y be used in lieu of an odic films, and ma y be

trol of discoloration is necessary.applied by spray, brush, or immersion as specifiedby QP L-5541. The an odizing method is prefer-. After the procedures cited inrable to chemical films on aluminum parts whereparagraphs 3-252 th rough 3-263 ha vefacilities are ava ilable. For process proceduresbeen complied with, an AF Form 50Aapplying to chemical films, refer to Technicalwill be attached to each sheet with aOrd ers 1-1-8 a nd 1-1-2.s t a tement tha t , ‘‘This material has

3-63/ (3-64 blank)

Page 158: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 158/288

Page 159: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 159/288

T.O. 1-1A-9

SECTION IV

MAGNESIUM ALLOYS

4-1. CLAS S IFICATION. of st ress, mea sured in pounds per squa re inch, a t

which permanent d eforma tion results from ma te-4-2. Magnesium al loys are produced and used in rial failure. The dat a in Ta bles 4-4, 4-5 and 4-6ma ny sha pes a nd forms, i .e. , castings, extruded lists the nomina l yield strengths of va rious a lloys.bars, rods, tubing, sheets a nd plate a nd forgings. The yield point in magnesium is not reachedThey are suitable for varied stress and non-stress abrupt ly , but ra ther a gra dual y ielding when theaerospace applications. Their inherent strength, metal is stressed above the proportional limit.lightweight, shock and vibration resistance are Tensile and yield strengths decrease at elevatedfactors which ma ke their use adva nta geous. The temperatures.weight for an equal volume of ma gnesium isa ppr oxim a tely t w o-t hir ds of t ha t for a lu min um 4-7. TE MP E R is th e con dit ion pr od uced in t hea nd one-f if t h of tha t for steel. a lloy by mecha nica lly or therma lly t rea t ing it t o

alter its m echa nical properties. Mechanical4-3. The current sys tem used to ident i fy magne- includes cold rolling, cold working, etc.; thermalsium alloys, is a t wo letter , tw o or th ree digit includes an nealing, solution a nd precipita t ion heatnum ber designa tion in tha t order. The letters des- trea t a nd s tabil iza t ion t rea t ing. See paragra ph 4-ignat e the ma jor a lloying elements, (ar ra nged in 12 for temper designations.decreasing percentage order, or in alphabeticalor der if th e elem en ts a re of eq ua l a mou nt s), fol- 4-8. S H E AR S TR E NG TH i s t he m a xim umlow ed by t he res pect iv e d ig it a l per cen t a ges of a m ou nt (i n pou nd s per sq ua r e in ch ) in cr os s s ec-t h es e elem en t s. Th e p er cen t a g e i s r ou n ded of f t o t i on a l st r es s t h a t a m a t e r ia l w i ll su st a in bef or et h e n ea r es t w h ole n u mb er or if a t ol er a n ce ra n g e p er m a n en t d ef or m a t ion or r up tu r e occu r s.of the alloy is specified, the mean of the range

4-9. ELONGATION is the linear s t retch of a(rounded off to nearest whole number) is used. Ama terial dur ing tensile load ing measured before

suffix letter following the percentage digits,and a f ter rupture. In magnesium it is the

denotes th e lat est qua lified revision of th e alloy.increase in distance which occurs when stretch is

For example: Alloy Designation AZ92A would con-applied betw een t wo ga ge mar ks placed 2 inches

sist of 9%(mean va lue) aluminum an d 2%(meanapa rt on the test specimen. Af ter rupture the tw o

va lue) zinc a s the major alloying elements. Thepieces a re f itt ed together and remeasu red. The

suff ix ‘‘A’’ indicates this is the first qualified alloy

elongation is the percentile difference of theof this t ype. One exception to th e use of th e suff ix am ount of stretch in r at io to the original 2 inches.let ter is tha t a n ‘‘X’’ denotes tha t impurity contentis controlled to a low limit. Some of the letters 4-10. PH YS I CAL PROPE RTI E S . M a g nes iu m , inused to designate va rious a lloying elements are: its pure sta te, ha s a specif ic gravity of 1.74, weigh

ing .063 pounds per cubic inch. Sim ilar da ta forA Aluminum, E R are E ar t h ,ma gnesium alloys are included in Table 4-6 a sH Thorium, K Zirconium,well a s other physical property informat ion.M Ma nga nese, Z Zinc.

4-11. CHE M I CAL PRO PE RTI E S . Ch em ica l ly4-4. DEFINITIONS.bare magnesium is resistant to at tack by alkalis ,

4-5. HARDNESS. Hardness i s the res is t ance of chromic and hydrof luoric acids an d ma ny organica meta l to plastic deforma tion from penetrat ion, chemicals including hydrocarbons, aldehydes, alco-indent a tion, or scra tching. The degree of ha rdness hols, phenols, a mines, esters and most oils. It isis usually a good indication of the meta ls strength. susceptible to at ta ck by salts a nd by ga lvanic cor-

The har dness of a meta l can be accurately mea- rosion from conta ct with dissimilar meta ls andsured using the Brinell on Rockwell process of other ma terials . Adequat e protection of the metaltesting. Ta bles 4-4, 4-5 an d 4-6 list t he nomina l against unfavorable conditions can be maintainedha rdness of various ma gnesium alloys. B rinell generally, by using proper surface finish (See par-ha rdness testing is explained in Section VIII of a gra ph 4-93) a nd a ssembly protection. The chemi-this manual . cal property constituents of the various alloys are

listed in Ta ble 4-3.4-6. TENSIL E STRENG TH. The useful tens ilest ren gt h of a met a l is th e m a xim um st ress it ca n 4-12. TE MP E R D E S IG N ATI ON S YS TE M. Th esust a in in t ens ion or compression w i thout perma- hyphena ted su f f ix symbol which fol lows an a l loynent deforma t ion . The yield st reng th is tha t poin t des igna t ion denotes the condit ion of t emper , (hea t

4-1

Page 160: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 160/288

T.O. 1-1A-9

t r ea t o r s t r a in ha rden ing), t o which the a l loy has s t andard of 0.1 mi ll ig r am per cubic meter (mg/m3)b een pr oces sed . Th es e s ym bol s a n d t h ei r m ea n - of t hor iu m in a i r i s a s a f e l im it f or con t in u ou sing s a r e li st ed b elow : (He a t t r ea t in g i ts el f i s d is - a t m os ph er ic ex pos ur e a n d is r ea d il y met incussed in subsequent pa ragraphs of th is sect ion of process ing magnes ium a l loys con ta in ing up to 10%the ma nua l). t hor ium, For exa mple: S t irr ing a lloy melt of 5%

th orium content resulted in 0.002 mg/m3 a tm os--AC As-Cast

pheric contamina tion and grinding a ir a lloy of 3%-F As-fabricated thorium content gave th orium conta minat ion in-O Annealed

the breathing zone ranging from 0.008 to 0.035-W Solution hea t treat ed - unst a ble temper

mg/m3. Only long exposur e to f ine dust or fumes-T Trea ted to produce sta ble tem pers other

need cause concern as to radioactive toxicity ofthan for -O

ma gnesium-thorium . Norma l dust control precau--T2 Annea led (ca st products only)

tions, followed t o avoid fire ha zar ds, can be-T3 Solution heat t reat ed a nd then cold

expected to control any health hazards that mightworked

result from f ine dust in grinding the low th orium-T4 Solution hea t treat ed

content a lloys. In w elding these alloys without-T5 Artif icial ly a ged only

local exhaust, concentrations of thorium above the-T6 Solution heat trea ted and then art ifi-

tent a tive limit of 0.1 mg/m3 of air were found incially aged

th e brea thin g zone. U se of loca l exhau st reduced-T7 Solution heat t reated a nd sta bilized

thorium concentra tions to well wit hin a ccepta ble-T8 Solution heat t reat ed, cold worked an d

1imits . If ventila t ion is such th at the visiblethen a r t i f icia l ly a ged fumes flow away from the welder, it is adequate,

-T9 Solution heat t reated, art ificially agedproviding such fumes are not permitted to accumu-

an d t hen cold w orkedlat e in the immediat e vicinity. An alterna te prac-

-T10 Artificially aged and then cold workedtice involves use of ventilated welder ’s hood, if

-H1 St ra in ha rdened onlythere is not sufficient room ventilation to control

-H2 Stra in hardened and par t ia l ly annealedcont a mina tion of th e genera l a tm osphere. Tho-

-H3 St rain hardened an d sta bilizedrium containing scrap and wet grinding sludgemay be disposed of by burning providing an AECAdded suffix digits 2, 4, 6, 8, to the H1, H2, H3ammendment is secured for the basic AEC license.symbols indicate t he degree of stra in ha rdening,If burned, the ashes which will then contain thei.e., 2= 1/4 ha rd, 4= 1/2 ha rd, 6= 3/4 ha rd, a nd 8= fullthorium, must be disposed of in accordance withhard .AEC Standards for Protection Against Radiation

4-13. SAFETY REQUIREM ENTS FOR HANDLING 10 CFR Part 20. As an alternative the ashes orAND FABRICATION OF MAGNESIUM ALLOYS.

scrap ma y be turned over to an AEC licensedscrap dealer, through applicable disposal proce-4-14. There are tw o specia l major areas of sa fety

dures, See T.O.00-110N-4precautions to observe in proceeding of magnesiumalloys other t ha n general shop safety pra ctices. 4-16. For indoor s torage of thor ium al loy sheetsOne is the fact some alloys contain thorium, a an d plat es, the size of sta cks should be limited tora dioactive element (e.g., H K31A, H M21A, 1000 cubic feet w ith a n a isle widt h not less tha nHM31A) and the other is the low melting point/ one-half the stack ’s height. Such storage is with inra pid oxidation (f ire haza rd) cha ra cterist ics of the the norma l recommendations for f ire safety.meta l. Where the applica tion of heat is to be

4-17. Radia t ion surveys have shown tha t expo-ma de to a t horium alloy, both of these area s mustsure of workers handling the referenced thoriumbe considered.alloys is well within th e safe limits set by t heAEC. Assuming hand contact, the body one footaw ay from the alloy for a n entire 40 hour work

WARNINGw eek, the exposure w ould be 168 millirems (mr) tothe ha nds a nd 72 mr to the wh ole body. These are

Magnesium th orium a lloys sha ll be ma ximum values which probably w ould not behandled, stored and disposed of in a pproa ched in actua l pra ctice. The correspondinga ccorda nce w ith T.O. 00-110N-4. AEC per miss ible sa fe limit s a re 1500 mr/w eek for

th e ha nds a nd 300 mr/w eek for t he w hole body.4-15. MAGNES IUM-THORIUM ALLOYS (HK31,HM21, HM31, HZ32, ZH42, ZH62) a re mi ld ly r ad i- 4-18. Desp ite the rela t ive s a fety presen t in theoa ct iv e b ut a r e w it h in t h e s a fe li mit s set b y t he h a n dlin g, t o r a ge a nd pr oces sin g of t hor iu m con -At om ic E n er g y Com m is sion (AE C) a n d repr es en t t a in in g a l loy s, it is ma n d a t or y th a t a l l s uchno haza rd to personnel under norma l condit ions . A act ions be made accord ing to the requ irements and

4-2

Page 161: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 161/288

T.O. 1-1A-9

res t r ict ions of the 00-100 ser ies t echn ica l orders , t empera ture , cert a in precau t ions should be t akena s a ppl ica b le, a n d AE C r eg ul a t ion s. As pr ev iou sly d ur in g w or king of it .s tated, the normal precautions taken in the shop

4-21. Machin ing Sa fe ty Rules. Dur ing mach in-processing of magnesium will suffice for safe han-

ing operations, observance of the following rulesdling of th orium alloys. These precautions ar e

will control any potential f ire hazard:noted in the following pa ra graphs on safetyprecautions. a . Keep a l l cu t t ing tools sha rp and ground

with adequate relief and clearance angles4-19. SAFETY PRECAUTIONS FOR ALLALLOYS (INCLUDING FIRE HAZARDS). b . Use heavy feeds to produce th ick ch ips .

4-20. S ince magnes ium wi ll ign ite and burnfiercely when heated to a point near its melting

Table 4-1. Cross-Reference, All oy Designati on to Specifications 

FE D MIL S AE AS TMALLOY S P E C S P E C H NB K AMS (AS ME ) U S E

AM100A QQ-M-56 _ _ B 80 S a nd Ca st ingQQ-M-55 _ _ 502 4483 B 199 P erma nent Mold Ca st ing

AZ31B QQ-M-31 _ _ 52 B 107 E xt ruded B a rs, Rods, S ha pesQQ-M-40 _ _ 510 B 91 ForgingsWW-T-825 _ _ 52 B 217 E xt ruded TubesQQ-M-44 _ _ 510 4375 B 90 S heet a nd P la t eQQ-M-44 _ _ 510 4376 B 90 S heet a nd P la t eQQ-M-44 _ _ 510 4377 B 90 S heet a nd P la t e

MIL-R- _ _ _ _ B 260 Welding Rod6944

AZ31C _ _ _ _ _ _ _ _ _ _ B 107 E xt ruded B a rs, Rods, S ha pes_ _ _ _ _ _ _ _ _ _ B 217 E xt ruded Tubes_ _ _ _ _ _ _ _ _ _ B 90 S heet a nd P la t e

AZ61A QQ-M-31 _ _ 520 4350 B 107 E xt ruded B a rs, Rods, S ha pesQQ-M-40 _ _ 530 4358 B 91 Forgings

WW-T-825 _ _ 520 4350 B 217 E xt ruded TubesMIL-R- _ _ _ _ B 260 Welding Rod6944

AZ63A QQ-M-56 MIL-C - 50 4420, B 80 S a nd Ca st ings19163 4422

QQ-M-56 MIL-C - 50 4424 B 80 S a nd Ca st ings19163

QQ-M-55 MIL-C - _ _ _ _ B 199 P erma nent Mold Ca st ings19163

_ _ _ _ MIL-R- _ _ _ _ B 260 Welding Rod6944

AZ80A QQ-M-31 _ _ _ 523 _ _ B 107 E xt ruded B a rs, Rods, S ha pesQQ-M-40 _ _ _ 532 4360 B 91 Forgings

AZ81A QQ-M-56 _ _ _ 505 _ _ B 80 S a nd Ca st ingsQQ-M-55 _ _ _ 505 _ _ B 199 P erma nent Mold Ca st ings

AZ91A QQ-M-55 _ _ _ _ _ _ _ B 199 P erma nent Mold Ca st ingsQQ-M-38 _ _ _ 501 4490 B 94 D ie Ca st ings

AZ91B QQ-M-38 _ _ _ 501 _ _ B 94 D ie Ca st ingsAZ91C QQ-M-56 _ _ _ 504 4437 B 80 S a nd Ca st ings

QQ-M-55 _ _ _ _ _ _ _ B 199 P erma nent Mold Ca st ings

AZ92A QQ-M-56 MIL-C - 500 4434 B 80 S a nd Ca st ings19163

4-3

Page 162: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 162/288

T.O. 1-1A-9

Table 4-1. Cross-Reference, All oy Designation to Specifications - Conti nued 

FE D MIL S AE AS TMALLOY S P E C S P E C H NB K AMS (AS ME ) U S E

AZ92A QQ-M-55 MIL-C- 503 4484 B 199 P erma nent Mold Ca st ings(Cont ) 19163

_ _ _ _ MIL-R- _ _ _ _ B 260 Welding Rod6944

E K30A QQ-M-56 _ _ _ _ _ _ _ B 80 S a nd Ca st ings

E K41A QQ-M-56 _ _ _ _ _ 4440, B 80 S a nd Ca st ings4441

QQ-M-55 _ _ _ _ _ _ _ B 199 P erma nent Mold Ca st ings

E Z33A QQ-M-56 _ _ _ 506 4442 B 80 S a nd Ca st ingsQQ-M-55 _ _ _ 506 _ _ B 199 P erma nent Mold Ca st ings_ _ _ _ MIL-R- _ _ _ _ B 260 Welding Rod

6944

H K31A* QQ-M-56 _ _ _ 507 4445 B 80 S a nd Ca st ings

_ _ _ _ MIL-M- 507 4384 B 90 S heet a nd P la te26075MIL-M- 438526075

* _ _ _ _ MIL-R- _ _ _ _ B 260 Welding Rod6944

H K21A* QQ-M-40 _ _ _ _ _ _ _ _ _ Forgings_ _ _ _ MIL-M- _ _ 4390 B 90 S heet a nd P la te

8917

H M31A* _ _ _ _ MIL-H - _ _ 4388 B 107 E xt ruded B a rs, Rods, S ha pes8916

_ _ _ _ MIL-H - _ _ 4389 _ _ E xt ruded B a rs, Rods, S ha pes8916

H Z32A* QQ-M-56 _ _ _ _ _ 4447 B 80 S a nd Ca st ings

K IA QQ-M-56 MIL-M- _ _ _ _ B 80 S a nd Ca st ings45207

MIA QQ-M-31 _ _ _ 522 _ _ B 107 E xt ruded B a rs, Rods, S ha pesQQ-M-40 _ _ _ 533 _ _ _ _ ForgingsWW-T-825 _ _ _ 522 _ _ B 217 E xt ruded TubesQQ-M-44 _ _ _ 51 _ _ B 90 S heet a nd P la te_ _ _ _ MIL-R- _ _ _ _ B 260 Welding Rod

6944

QE 22A QQ-M-56 _ _ _ _ _ _ _ _ _ S a nd Ca st ingsQQ-M-55 _ _ _ _ _ _ _ _ _ P erma nent Mold Ca st ings

TA54A QQ-M-40 _ _ _ 53 _ _ B 91 ForgingsZE 10A _ _ _ _ _ _ _ 534 _ _ B 90 S heet a nd P la te

ZE 41A QQ-M-56 _ _ _ _ _ _ _ _ _ S a nd Ca st ings

ZH 42* _ _ _ _ _ _ _ _ _ _ _ _ _ S a nd Ca st ings

ZH 62* QQ-M-56 _ _ _ 508 4438 B 80 S a nd Ca st ings

ZK 21A _ _ _ _ MIL-M- _ _ 4387 _ _ E xt rusions46039

4-4

Page 163: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 163/288

T.O. 1-1A-9

Table 4-1. Cross-Reference, Alloy Designation to Specifications - Continued

FED MIL SAE ASTM ALLOY SPEC SPEC HNBK AMS (ASME) USE

ZK51A QQ-M-56 _ _ _ 509 4443 B80 Sand CastingsZK60A QQ-M-31 _ _ _ 524 4352 B107 Extruded Bars, Rods, Shapes

QQ-M-40 _ _ _ _ _ 4362 B91 ForgingsWW-T-825 _ _ _ 524 4352 B217 Extruded Tubes

ZK60B _ _ _ _ MIL-M- _ _ _ _ _ _ Extruded Bars, Rods, Shapes26696

ZK61A QQ-M-56 _ _ _ 513 4444 B80 Sand Castings

*These alloys contain radioactive thorium element. See paragraph 4-15 for precautionary instructions.

MISC SPECIFICATION

MIL-M-3171 Magnesium alloy, processes for corrosion protection of 

SAE-AMS-M-6857 Magnesium alloy castings, heat treatment of 

Change 4 4-5

Page 164: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 164/288

T.O. 1-1A-9

Table 4-2. Al l oy D esignat ion Cr oss-Reference 

FORMER

NE W F ORME R AME RIC AN F ORME R * NE W

D E S IG NATOR D OW RE VE RE MAG NE S IU M MILITARY F E D E RAL U S E

AZ63A H AM265 _ _ _ _ QQ-M-56 Ca st ings, S a nd

MIA M AM3S AN-M-26 QQ-M-31 E xt ruded B a rs, Rods, S ha pes

MIB M AM403 AN-M-30 QQ-M-56 C a st ings, S a nd

MIA M AM3S AN-T-73 WW-T-825 E xt ruded Tube

MIA M AM3S AN-M-22 QQ-M-40 Forgings

MIA M AM3S AN-M-30 QQ-M-44 S heet

A292A C AM260 _ _ _ _ QQ-M-56 Ca st ings, S a nd

AZ92A C AM260 _ _ _ _ QQ-M-55 Ca st ings, P erm Mold

AM100A G AM240 _ _ _ _ QQ-M-55 Ca st ings, P erm Mold

AZ91A R AM263 AN-M-16 QQ-M-38 C a st ings, D ie

AZ31B F S -1 AM52S AN-M-27 QQ-M-31 E xt ruded B a r , Rod, S ha pe

AZ31B F S -1 AM52S AN-T-72 WW-T-825 E xt ruded Tube

AZ31B F S -1 AM52S _ _ _ _ _ _ _ _ Forgings

AZ31B F S -1 AM52S AN-M-29 QQ-M-44 S heet

AZ61A J -1 AMC57S AN-M-24 QQ-M-31 E xt ruded B a r , Rod, S ha pe

AZ61A J -1 AMC57S AN-T-71 WW-T-825 E xt ruded Tubes

AZ61A J -1 AMC57S AN-M-20 QQ-M-40 Forgings

AZ80A 0-1 AMC58S AN-M-25 QQ-M-31 E xt ruded B a r , Rod, S ha pe

AZ80A 0-1 AMC58S AN-M-21 QQ-M-40 Forgings

ZK60A _ _ AMA76S _ _ _ _ QQ-M-31 E xt ruded B a r , Rod, S ha pe

E X41A _ _ AMA130 _ _ _ _ _ _ _ _ Ca st ings, P erm Mold

E Z33A _ _ AMA131 _ _ _ _ _ _ _ _ Ca st ings, P erm Mold

TA54A _ _ AM65S _ _ _ _ QQ-M-40 Forgings

NOTES: *These ‘‘AN ’’ Specifications have been superseded by the listed Federal Specifications.

4-6

Page 165: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 165/288

T.O. 1-1A-9

4-7

  T a

  b  l e  4

 -  3 .

  C  h

 e m

  i c a

  l   P

 r o p e r

  t  i e s o

  f   M

 a g n e s

  i u m

   A  l  l o

 y s

   A   L   L   O   Y

   A   L

   M   N

   Z   I   N   C

   Z   I   R   C   O   N   I   U   M

   R   A   R   E

   T   H   O   R   I   U   M

   S   I

   C   U

   N   I   C   K   E   L

   M   G

   F   O

   R   M   S

   E   A   R   T   H

   A   M   1   0   0   A

   9 .   3  -   1   0 .   7

   0 .   1   0

   0 .   3   0   m   a  x

  -  -  -

  -  -  -

  -  -  -

   0 .   3   0

   0 .   1   0

   0 .   0   1

   B   a   l

   C   a   s   t   i   n   g   s ,   s   a   n   d ,   p   e   r   m   m   o   l   d

   A   Z   3   1   B   (   1   )   (   2   )

   2 .   5  -   3 .   5

   0 .   2   0

   0 .   6  -   1 .   4

  -  -  -

  -  -  -

  -  -  -

   0 .   1   0

   0 .   0   5

   0 .   0   0   5

   B   a   l

   E  x   t   r  u   d   e   d   B   a   r   s ,   r   o   d   s ,   s   h   a   p   e   s

   t  u   b   e   s  =   s   h   e   e   t   s

   A   Z   3   1   C

   2 .   4  -   3 .   6

   0 .   1   5

   0 .   5  -   1 .   5

  -  -  -

  -  -  -

  -  -  -

   0 .   1   0

   0 .   1   0

   0 .   0   3

   B   a   l

   S   a   m   e

   A   Z   6   3   A   (   2   )

   5 .   3  -   6 .   7

   0 .   1   5

   2 .   5  -   3 .   5

  -  -  -

  -  -  -

  -  -  -

   0 .   1   0

   0 .   0   5

   0 .   0   0   5

   B   a   l

   C   a   s   t   i   n   g   s ,   s   a   n   d   a

   n   d   p   e   r   m   m   o   l   d

   A   Z   8   0   A

   7 .   8  -   9 .   2

   0 .   1   2

   0 .   2  -   0 .   8

  -  -  -

  -  -  -

  -  -  -

   0 .   3   0

   0 .   2   5

   0 .   0   1

   B   a   l

   E  x   t   r  u   d   e   d   b   a   r   s ,   r   o   d   s ,   s   h   a   p   e   s ,

   f   o   r   g   i   n   g   s

   A   Z   8   1   A

   7 .   0  -   8 .   1

   0 .   1   3

   0 .   4   0  -   1 .   0

  -  -  -

  -  -  -

  -  -  -

   0 .   3   0

   0 .   1   0

   0 .   0   1

   B   a   l

   C   a   s   t   i   n   g   s ,   s   a   n   d   s

   a   n   d   p   e   r   m   m   o   l   d

   A   Z   9   1   A

   8 .   1  -   9 .   3

   0 .   1   3

   0 .   4  -   1 .   0

  -  -  -

  -  -  -

  -  -  -

   0 .   3   0

   0 .   1   0

   0 .   0   1

   B   a   l

   C   a   s   t   i   n   g   s ,   p   e   r   m   m   o   l   d

   A   Z   9   1   A

   8 .   1  -   9 .   7

   0 .   1   3

   0 .   4  -   1 .   0

  -  -  -

  -  -  -

  -  -  -

   0 .   5   0

   0 .   1   0

   0 .   0   3

   B   a   l

   C   a   s   t   i   n   g   s ,   D   i   e

   A   Z   9   1   B

   8 .   3  -   9 .   7

   0 .   1   3

   0 .   4  -   1 .   0

  -  -  -

  -  -  -

  -  -  -

   0 .   5   0

   0 .   3   0

   0 .   0   3

   B   a   l

   C   a   s   t   i   n   g   s ,   D   i   e

   A   Z   9   1   C

   8 .   1  -   9 .   3

   0 .   1   3

   0 .   4  -   1 .   0

  -  -  -

  -  -  -

  -  -  -

   0 .   3   0

   0 .   1   0

   0 .   0   1

   B   a   l

   C   a   s   t   i   n   g   s ,   s   a   n   d   a

   n   d   p   e   r   m   m   o   l   d

   A   Z   9   2   A

   8 .   3  -   9 .   7

   0 .   1   0

   1 .   6  -   2 .   4

  -  -  -

  -  -  -

  -  -  -

   0 .   3   0

   0 .   2   5

   0 .   0   1

   B   a   l

   S   a   m   e

   E   K   3   0   A

  -  -  -

  -  -  -

   0 .   3   m   a  x

   0 .   2   0   m   i   n

   2  -   3 .   0

  -  -  -

  -  -  -

   0 .   1   0

   0 .   0   1

   B   a   l

   C   a   s   t   i   n   g   s ,   s   a   n   d   o

   n   l  y

   E   K   4   1   A

  -  -  -

  -  -  -

   0 .   3

   0 .   4  -   1 .   0

   3 .   0  -   5 .   0

  -  -  -

  -  -  -

   0 .   1   0

   0 .   0   1

   B   a   l

   C   a   s   t   i   n   g   s ,   s   a   n   d   a

   n   d   p   e   r   m   m   o   l   d

   E   Z   3   3   A

  -  -  -

  -  -  -

   2 .   0  -   3 .   1

   0 .   5  -   1 .   0

   2 .   5  -   4 .   0

  -  -  -

  -  -  -

   0 .   1   0

   0 .   0   1

   B   a   l

   C   a   s   t   i   n   g   s ,   S   a   n   d   /   S   h   e   e   t   P   l   a   t   e

   H   K   3   1   A  *

  -  -  -

   0 .   1   5   m  x

   0 .   3   m  x

   0 .   4  -   1 .   0

  -  -  -

   2 .   5  -   4 .   0

   0 .   1   0

   0 .   0   1

   B   a   l

   C   a   s   t   i   n   g   s ,   S   a   n   d   /   S   h   e   e   t   /   P   l   a   t   e

   H   M   2   1   A  *

  -  -  -

   0 .   4   5  -   1 .   1

  -  -  -

  -  -  -

  -  -  -

   1 .   5  -   2 .   5

  -  -  -

  -  -  -

  -  -  -

   B   a   l

   F   o   r   g   i   n   g   s ,   S   h   e   e   t   /   P   l   a   t   e

   H   M   3   1   A  *

  -  -  -

   1 .   2   m   n

  -  -  -

  -  -  -

  -  -  -

   2 .   5  -   3 .   5

  -  -  -

  -  -  -

  -  -  -

   B   a   l

   E  x   t   r  u   d   e   d   B   a   r   s   /   R

   o   d   s   /   S   h   a   p   e   s

   H   Z   3   2   A  *

  -  -  -

  -  -  -

   1 .   7  -   2 .   5

   0 .   5  -   1 .   0

   0 .   1   m  x

   2 .   5  -   4 .   0

  -  -  -

   0 .   1   0

   0 .   0   1

   B   a   l

   C   a   s   t   i   n   g   s ,   S   a   n   d

   K   I   A

  -  -  -

  -  -  -

  -  -  -

   0 .   4  -   1 .   0

  -  -  -

  -  -  -

  -  -  -

  -  -  -

  -  -  -

   B   a   l

   C   a   s   t   i   n   g   s ,   S   a   n   d

   M   I   A   (   1   )

  -  -  -

   1 .   2

  -  -  -

  -  -  -

  -  -  -

  -  -  -

   0 .   1   0

   0 .   0   5

   0 .   0   1

   B   a   l

   E  x   t   r  u   d   e   d   B   a   r   s ,   r   o   d   s ,   s   h   a   p   e   s

   t  u   b   e  -   s   h   e   e   t   s  -   f   o   r   g   i   n   g   s

   Q   E   2   2   A   (   3   )

  -  -  -

  -  -  -

  -  -  -

   0 .   4  -   1 .   0

   1 .   8  -   2 .   5

  -  -  -

  -  -  -

   0 .   1   0

   0 .   0   1

   B   a   l

   C   a   s   t   i   n   g   s ,   s   a   n   d

   T   A   5   4   A   (   4   )

   3 .   0  -   4 .   0

   0 .   2   0

   0 .   3   m  x

  -  -  -

  -  -  -

  -  -  -

   0 .   3   0

   0 .   0   5

   0 .   0   1

   B   a   l

   F   o   r   g   i   n   g   s

   Z   E   1   0   A

  -  -  -

  -  -  -

   1 .   0  -   1 .   5

  -  -  -

   0 .   1   2  -

  -  -  -

  -  -  -

  -  -  -

  -  -  -

   B   a   l

   S   h   e   e   t   a   n   d   P   l   a   t   e

   0 .   2   2

Page 166: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 166/288

T.O. 1-1A-9

4-8

  T a

  b  l e  4

 -  3 .

  C  h e m

  i c a

  l   P

 r o p e r

  t  i e s o

  f   M

 a g n e s

  i u m

   A  l  l o

 y s - 

  C o n

  t  i n u e

  d

   A   L   L   O   Y

   A   L

   M   N

   Z   I   N   C

   Z   I   R   C   O   N   I   U   M

   R   A   R   E

   T   H   O   R   I   U   M

   S   I

   C   U

   N   I   C   K   E   L

   M   G

   F   O

   R   M   S

   E   A   R   T   H

   Z   E   4   1   A

  -  -  -

  -  -  -

   4 .   2   5

   0 .   5

   1 .   2   5

  -  -  -

  -  -  -

  -  -  -

  -  -  -

   B   a   l

   C   a   s   t   i   n   g   s ,   S   a   n   d

   Z   H   4   2  *

  -  -  -

  -  -  -

   3 .   0  -   4 .   5

   0 .   5

  -  -  -

   1 .   5  -   2 .   5

  -  -  -

  -  -  -

  -  -  -

   B   a   l

   C   a   s   t   i   n   g   s ,   S   a   n   d

   Z   H   6   2   A  *

  -  -  -

  -  -  -

   5 .   2  -   6 .   2

   0 .   5  -   1 .   0

  -  -  -

   1 .   4  -   2 .   2

  -  -  -

   0 .   1   0

   0 .   0   1

   B   a   l

   C   a   s   t   i   n   g   s ,   S   a   n   d

   Z   K   2   0   A

  -  -  -

  -  -  -

   2 .   0  -   2 .   6

   0 .   4   5   m   n

  -  -  -

  -  -  -

  -  -  -

  -  -  -

  -  -  -

   B   a   l

   E  x   t   r  u   s   i   o   n   s

   Z   K   5   1   A

  -  -  -

  -  -  -

   3 .   6  -   5 .   5

   0 .   5  -   1 .   0

  -  -  -

  -  -  -

  -  -  -

   0 .   1   0

   0 .   0   1

   B   a   l

   C   a   s   t   i   n   g   s ,   S   a   n   d

   Z   K   6   0   A

  -  -  -

  -  -  -

   4 .   8  -   6 .   2

   0 .   4   5

  -  -  -

  -  -  -

  -  -  -

  -  -  -

  -  -  -

   B   a   1

   E  x   t   r  u   d   e   d   B   a   r   s   /   R

   o   d   s   /   S   h   a   p   e   s

   T  u   b   e  -   F   o   r   g   i   n   g   s

   Z   K   6   0   B

  -  -  -

  -  -  -

   4 .   8  -   6 .   8

   0 .   4   5

  -  -  -

  -  -  -

  -  -  -

   0 .   1   0

   0 .   0   1

   B   a   l

   S   a   m   e

  *   N   O   T   E  :   T   h   e   s   e   a   l   l   o  y   s   c   o   n   t   a   i

   n   r   a   d   i   o   a   c   t   i  v   e   t   h   o   r   i  u   m .   S   e   e   p   a   r   a   g   r   a   p   h   4  -   1

   5

   (   1   )   C   a   l   c   i  u   m ,   A   Z   3   1   B ,   0 .   0   4  -  -  -   M   I   A ,   0 .   4 .   0 .   1   4

   (   2   )   I   r   o   n ,   A   Z   3   1   B ,   0 .   0   0   5  -  -  -   A   Z   6   1   A ,   0 .   0   0   5  -  -  -   A   Z   6   3   A ,   0 .   0   0   5 .

   (   3   )   S   i   l  v   e   r ,   Q   E   2   2   A ,   2 .   5  -   3 .   0

   (   4   )   T   i   n ,   T   A   5   4   A ,   4 .   6  -   6 .   0

Page 167: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 167/288

T.O. 1-1A-9

4-9

  T a

  b  l e  4

 -  4 .

  M e c

  h a n

  i c a

  l   P

 r o p e r

  t  i e s  M

 a g n e s

  i u m

   E x

  t r u s

  i o n s a n

  d  F

 o r g

  i n g s a

  t   R o o m

   T e m p e r a

  t u r e - 

  T y p

  i c a

  l 

   M   I   N

   A   L   L   O   Y

   D   I   E   M   N   (   D   I   A

   C   R   O   S   S   S   E   C  -

   M   I   N   T   E   N  -

   M   I   N   T   E   N

   M   I   N

   S   H   E   A   R

   &   C   0   N   D

   F   O   R   M

   T   H   I   C   K   N   E   S   S  :   W   A   L   L

   T

   I   O   N   A   L   A   R   E   A

   S   I   L   E   S   T   R

   Y   L   D   S   T   R

   E   L   O   N   G   A  -

   S   T   R

   H   A   R   D   N   E   S   S

   T   H   K   N   E   S   S  -   I   N

                          ’   S   )

   (   I   N   C   H   E   S   )

   (   1   0   0   0   P   S   I   )

   (   1   0   0   0   P   S   I   )

   t   i   o   n

   (   1   0   0   0   P   S   I   )

   (   B   R   I   N   E   L   L   )

   (   2          ″

    %   )

   A   Z   3   1   B  -   F

   B   a   r   s ,   R   o   d   s ,

   0 .   2   4   9   a   n   d  u   n   d   e   r

   A   l   l   a   r   e

   a   s

   3   5

   2   1

   7

   1   7

  -  -

   a   n   d

   s   h   a   p   e   s

   0 .   2   5   0  -   1 .   4   9   9

   A   l   l   a   r   e

   a   s

   3   5

   2   2

   7

   1   7

   4   9

   A   Z   3   1   C  -   F

   0 .   5   0   0  -   2 .   4   9   9

   A   l   l   a   r   e

   a   s

   3   4

   2   2

   7

   1   7

  -  -

   2 .   5   0   0  -   4 .   9   9   9

   A   l   l   a   r   e

   a   s

   3   2

   2   0

   7

  -  -

  -  -

   H   o   l   l   o  w

   A   l   l   d   i   m   e   n   s   i   o   n   s

   A   l   l   a   r   e

   a   s

   3   2

   1   6

   8

   1   7

   4   9

   s   h   a   p   e   s

   A   Z   6   1   A  -   F

   B   a   r   s ,   r   o   d   s ,

   0 .   2   4   9   a   n   d  u   n   d   e   r

   A   l   l   a   r   e

   a   s

   3   8

   2   1

   8

  -  -

  -  -

   s   h   a   p   e   s

   0 .   2   5   0  -   1 .   4   9   9

   A   l   l   a   r   e

   a   s

   3   9

   2   4

   9

   1   8

   6   0

   0 .   2   5   0  -   4 .   9   9   9

   A   l   l   a   r   e

   a   s

   4   0

   2   2

   7

  -  -

  -  -

   H   o   l   l   o  w

   A   l   l   d   i   m   e   n   s   i   o   n   s

   A   l   l   a   r   e

   a   s

   3   6

   1   6

   7

   1   8

   6   0

   s   h   a   p   e   s

   A   Z   8   0   A  -   F

   B   a   r   s ,   R   o   d   s ,

   0 .   2   4   9   a   n   d  u   n   d   e   r

   A   l   l   a   r   e

   a   s

   4   3

   2   8

   9

   1   9

   6   0

   s   h   a   p   e   s

   0 .   2   5   0  -   1 .   4   9   9

   A   l   l   a   r   e

   a   s

   4   3

   2   8

   8

   1   9

   6   0

   1 .   5   0   0  -   2 .   4   9   9

   A   l   l   a   r   e

   a   s

   4   3

   2   8

   6

   1   9

   6   0

   2 .   5   0   0  -   4 .   9   9   9

   A   l   l   a   r   e

   a   s

   4   2

   2   7

   4

  -  -

   6   0

   T  -   5

   S   a   m   e

   0 .   2   4   9   a   n   d  u   n   d   e   r

   A   l   l   a   r   e

   a   s

   4   7

   3   0

   4

  -  -

   8   2

   0 .   2   5   0  -   2 .   4   9   9

   A   l   l   a   r   e

   a   s

   4   8

   3   3

   4

   2   1

   8   2

   2 .   5   0   0  -   4 .   9   9   9

   A   l   l   a   r   e

   a   s

   4   5

   3   0

   2

  -  -

   8   2

   H   M   3   1   A  -   T   5  *

   B   a   r   s ,   r   o   d   s ,

   N   o   t   a   p   p   l   i   c   a   b   l   e

   U   n   d   e   r

   4 .   0   0   0

   3   7

   2   6

   4

   s   h   a   p   e   s

   M   I   A  -   F

   B   a   r   s ,   r   o   d   s ,

   0 .   2   4   9   a   n   d  u   n   d   e   r

   A   l   l   a   r   e

   a   s

   3   0

   n   o

   t   r   e   q

   2

  -  -

   4   4

   s   h   a   p   e   s

   0 .   2   5   0  -   1 .   4   9   9

   A   l   l   a   r   e

   a   s

   3   2

   n   o

   t   r   e   q

   3

   1   5

   4   4

   1 .   5   0   0  -   2 .   4   9   9

   A   l   l   a   r   e

   a   s

   3   2

   n   o

   t   r   e   q

   2

   1   5

   4   4

   2 .   5   0   0  -   4 .   9   9   9

   A   l   l   a   r   e

   a   s

   2   9

   n   o

   t   r   e   q

   2

  -  -

   4   4

   H   o   l   l   o  w

   A   l   l   d   i   m   e   n   s   i   o   n   s

   A   l   l   a   r   e

   a   s

   2   8

   n   o

   t   r   e   q

   2

   1   5

   4   4

   s   h   a   p   e   s

   Z   K   6   0   A  -   F

   B   a   r   s ,   r   o   d   s ,

   A   l   l   d   i   m   e   n   s   i   o   n   s

   4 .   9   9   9   a

   n   d  u   n   d   e   r

   4   3

   3   1

   5

   2   2

   7   5

   s   h   a   p   e   s

   5 .   0   0   0  -   2

   9 .   9   9   9

   4   3

   3   1

   4

   2   2

   7   5

   H   o   l   l   o  w

   A   l   l   d   i   m   e   n   s   i   o   n   s

   A   l   l   a   r   e

   a   s

   4   0

   2   8

   5

  -  -

  -  -

   s   h   a   p   e   s

   T   5

   B   a   r   s ,   r   o   d   s ,

   A   l   l   d   i   m   e   n   s   i   o   n   s

   4 .   9   9   9   a

   n   d  u   n   d   e   r

   4   5

   3   6

   4

   2   2

   8   2

   s   h   a   p   e   s

   H   o   l   l   o  w

   A   l   l   d   i   m   e   n   s   i   o   n   s

   A   l   l   a   r   e

   a   s

   4   6

   3   8

   4

   2   2

   8   2

   s   h   a   p   e   s

Page 168: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 168/288

T.O. 1-1A-9

4-10

  T

 a  b  l e  4

 -  4 .

  M e c

  h a n

  i c a

  l   P

 r o p e r

  t  i e s

  M a g n e s

  i u m

   E x

  t r u s

  i o n s a n

  d  F

 o r g

  i n g s a

  t   R

 o o m

   T

 e m p e r a

  t u r e - 

  T y p

  i c a

  l  - 

  C o n

  t  i n u e

  d

   M   I   N

   A   L   L   O   Y

   D   I   E   M   N   (   D   I   A

   C   R   O   S   S   S   E   C  -

   M   I   N   T   E   N  -

   M   I   N   T   E   N

   M   I   N

   S   H   E   A   R

   &   C   0   N   D

   F   O   R   M

   T   H   I   C   K   N   E   S   S  :   W   A   L   L

   T

   I   O   N   A   L   A   R   E   A

   S   I   L   E   S   T   R

   Y   L   D   S   T   R

   E   L   O   N   G   A  -

   S   T   R

   H   A   R   D   N   E   S   S

   T   H   K   N   E   S   S  -   I   N

                          ’   S   )

   (   I   N   C   H   E   S   )

   (   1   0   0   0   P   S   I   )

   (   1   0   0   0   P   S   I   )

   t   i   o   n

   (   1   0   0   0   P   S   I   )

   (   B   R   I   N   E   L   L   )

   (   2          ″

    %   )

   E   X   T   R   U

   D   E   D   T   U   B   E   S

   A   Z   3   1   B  -   F

   0 .   0   5   0  -   0 .   5   0   0

   N   o   t   a   p

   p   l   i   c   a   b   l   e

   3   2

   1   6

   8

  -  -

   4   6

   a   n   d

   A   Z   3   1   C  -   F

   A   Z   6   1   A  -   F

   0 .   0   5   0  -   0 .   5   0   0

   N   o   t   a   p

   p   l   i   c   a   b   l   e

   2   8

  -  -

   2

  -  -

   4   2

   M   I   A  -   F

   0 .   0   5   0  -   0 .   5   0   0

   N   o   t   a   p

   p   l   i   c   a   b   l   e

   4   0

   2   8

   5

  -  -

   7   5

   Z   K   6   0   A  -   F

   0 .   0   5   0  -   0 .   2   5   0

   N   o   t   a   p

   p   l   i   c   a   b   l   e

   4   6

   3   8

   5

  -  -

   7   5

   Z   K   6   0   A  -   T   5

   0 .   0   5   0  -   0 .   2   5   0

   N   o   t   a   p

   p   l   i   c   a   b   l   e

   4   6

   3   8

   4

  -  -

   8   2

   D   I   E   F   O   R   G   I   N   G   S

   A   Z   3   1   B  -   F

   3   4

   1   9

   6

   1   7

   5   5

   A   Z   6   1   A  -   F

   3   8

   2   2

   6

   1   9

   5   5

   A   Z   8   0   A  -   F

   4   2

   2   6

   5

   2   0

   6   9

   A   Z   8   0   A  -   T   5

   4   2

   2   8

   2

   2   0

   7   2

   T   6

   5   0   (   t  y   p   )

   3   4

   (   t  y   p   )

   5   (   t  y   p   )

  -  -

   7   2

   M   I   A

   3   0

   1   8

   3

   1   4

   4   7

   I   A   5   4   A  -   F

   3   6

   2   2

   7

  -  -

  -  -

   Z   K   6   0   A  -   T   5

   4   2

   2   6

   7

  -  -

  -  -

   N   O   T   E  :   T   h   i   s   a   l   l   o  y   c   o   n   t   a   i   n   s   r   a   d   i   o   a   c   t   i  v   e   e   l   e   m   e   n   t   s .   S   e   e   p   a   r   a   g   r   a   p   h   4  -   1   5

   f   o   r   p   r   e   c   a  u   t   i   o   n   s .

Page 169: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 169/288

T.O. 1-1A-9

4-11

  T a

  b  l e  4

 -  5 .

  M e c

  h a n

  i c a

  l   P

 r o p e r

  t  i e s

  M a g n e s

  i u m

   A  l  l o

 y  S  h

 e e

  t  a n

  d  P  l a  t e

 a  t   R

 o o

 m   T

 e m p e r a

  t u r e - 

  T y p

  i c a

  l 

   M   I   N   I   M   U   M  *  *

   M   I   N   I   M   U   M

  *  *

   M   I   N   E   L   O   N  -

   M   I   N   I   M   U   M

   D   I   M   E   N   S   I   O   N

   T   E   N   S   I   L   E

   T   E   N   S   I   L   E

   G   A   T   I   O   N

   S   H   E   A   R

   A   L   L   O   Y   &

   T   H   I   C   K   N   E

   S   S

   S   T   R   E   N   G   T   H

   Y   I   E   L   D   S   T

   R

   (   2          ″  -  -    %   )

   S   T   R   E   N   G   T   H

   H   A   R   D   N   E   S   S

   C   O   N   D

   (   I   N   C   H   E   S   )

   (   1   0   0   0   P   S   I   )

   (   1   0   0   0   P   S   I   )

   (   1   0   0   0   P   S   I   )

   (   B   R   I   N   E   L   L   )

   U   S   E

   A   Z   3   1   B  -   F

   A   l   l   g   a  u   g   e   s

   3   5   (   t  y   p   i   c   a   l   )

   1   9   (   t  y   p   i   c   a   l   )

   1   2   (   t  y   p   i   c   a   l   )

  -  -

  -  -

   T   o   o   l   i   n   g   P   l   a   t   e

   A   Z   3   1   B  -   H   1   0

   0 .   2   5   1  -   2 .   0   0   0

   3   0

   1   2

   1   0

  -  -

  -  -

   S   t   a   n   d   a   r   d   P   l   a   t   e

  -   H   1   1

   0 .   0   1   6  -   0 .   2   5   0

   3   2

   1   2

   1   2

  -  -

  -  -

   S   t   a   n   d   a   r   d   P   l   a   t   e   a   n   d

   S   h   e   e   t

  -   H   2   3

   0 .   0   1   6  -   0 .   0   6   4

   3   9

   2   5

   4

  -  -

  -  -

   S   t   a   n   d   a   r   d   S   h   e   e

   t

   0 .   0   6   5  -   0 .   0   6   4

   3   9

   2   5

   4

  -  -

  -  -

   a   n   d   P   l   a   t   e

  -   H   2   4

   0 .   0   1   6  -   0 .   0   6   3

   3   9

   2   9

   4

   1   8

   7   3

   S   p   e   c   S   h   e   e   t   a   n   d   P   l   a   t   e

   0 .   0   6   5  -   0 .   2   5   0

   3   9

   2   9

   4

   1   8

   7   3

   S   a   m   e

   0 .   2   5   1  -   0 .   5   0   0

   3   7

   2   4

   1   0

  -  -

  -  -

   S   a   m   e

   0 .   5   0   1  -   1 .   0   0   0

   3   7

   2   2

   1   0

  -  -

  -  -

   S   a   m   e

  -   H   2   6

   0 .   5   0   1  -   0 .   7   5   0

   3   7

   2   5

   8

  -  -

  -  -

   S   p   e   c   S   h   e   e   t   a   n   d   P   l   a   t   e

   0 .   7   5   1  -   1 .   0   0   0

   3   7

   2   3

   8

  -  -

  -  -

   1 .   0   0   1  -   1 .   5   0   0

   3   5

   2   2

   8

  -  -

  -  -

  -   0

   0 .   0   1   6  -   0 .   0   6   0

   3   2

   1   8

   1   2

   1   7

   5   6

   S   p   e   c   S   h   e   e   t   a   n   d   P   l   a   t   e

   0 .   0   6   1  -   0 .   2   5   0

   3   2

   1   5

   1   2

   1   7

   5   6

   S   a   m   e

   0 .   2   5   1  -   0 .   5   0   0

   3   2

   1   5

   1   2

  -  -

  -  -

   S   a   m   e

   0 .   5   0   1  -   2 .   0   0   0

   3   0

   1   5

   1   0

  -  -

  -  -

   S   a   m   e

   A   Z   3   1   C  -   F

   A   l   l   g   a  u   g   e   s

   3   2

   1   5

   8

  -  -

   5   2

   T   r   e   a   d   p   l   a   t   e

   H   K   3   1   A  -   0  *

   0 .   0   1   6  -   0 .   2   5   0

   3   0

   1   6

   1   2

  -  -

  -  -

   S   h   e   e   t

   0 .   2   5   1  -   0 .   5   0   0

   3   0

   1   6

   1   2

  -  -

  -  -

   S   h   e   e   t

   0 .   5   0   1  -   1 .   0   0   0

   3   0

   1   5

   1   2

  -  -

  -  -

   S   h   e   e   t

   1 .   0   0   1  -   3 .   0   0   0

   2   9

   1   4

   1   2

  -  -

  -  -

   S   h   e   e   t

  -   H   2   4  *

   0 .   0   1   6  -   0 .   1   2   5

   3   4

   2   6

   4

   2   1   (   t  y   p   )

   5   7

   S   h   e   e   t

   0 .   1   2   6  -   0 .   2   5   0

   3   1

   2   2

   4

   2   1   (   t  y   p   )

   5   7

   S   h   e   e   t

   0 .   2   5   1  -   1 .   0   0   0

   3   4

   2   5

   4

   2   0   (   t  y   p   )

  -  -

   S   h   e   e   t

   1 .   0   0   1  -   3 .   0   0   0

   3   3

   2   5

   4

   2   0   (   t  y   p   )

  -  -

   S   h   e   e   t

   H   M   2   1   A  -   T   8

   0 .   0   1   6  -   0 .   2   5   0

   3   1

   1   8

   4

   S   h   e   e   t   a   n   d   P   l   a   t   e

   0 .   2   5   1  -   0 .   5   0   0

   3   2

   2   1

   6

   S   h   e   e   t   a   n   d   P   l   a   t   e

   0 .   5   0   1  -   1 .   0   0   0

   3   0

   1   9

   6

   S   h   e   e   t   a   n   d   P   l   a   t   e

   1 .   0   0   1  -   2 .   0   0   0

   2   9

   1   8

   6

   S   h   e   e   t   a   n   d   P   l   a   t   e

   M   I   A  -   O

   A   l   l   G   a  u   g   e   s

   3   3   (   t  y   p   )

   1   8   (   t  y   p   )

   1   7   (   t  y   p   )

   1   7   (   t  y   p   )

   4   8

   S   h   e   e   t   a   n   d   P   l   a   t   e

   H

   A   l   l   g   a  u   g   e   s

   3   5   (   t  y   p   )

   2   6   (   t  y   p   )

   7   (   t  y   p   )

   7   (   t  y   p   )

   5   4

   Z   E   1   0  -   0

   0 .   0   1   6  -   0 .   0   6   0

   3   0

   1   8

   1   5

   S   h   e   e   t   a   n   d   P   l   a   t   e

   0 .   0   6   1  -   0 .   2   5   0

   3   0

   1   5

   1   5

   0 .   2   5   1  -   0 .   5   0   0

   2   9

   1   2

   1   2

   H   2   4

   0 .   0   1   6  -   0 .   1   2   5

   3   6

   2   5

   4

   S   h   e   e   t   a   n   d   P   l   a   t   e

   0 .   1   2   6  -   0 .   1   8   8

   3   4

   2   2

   4

   0 .   1   8   9  -   0 .   2   5   0

   3   1

   2   0

   4

  *   C   o   n   t   a   i   n   s   r   a   d   i   o   a   c   t   i  v   e   t   h   o   r   i  u   m   e   l   e   m   e   n   t .   S   e   e   p   a   r   a   g   r   a   p   h   4  -   1   9   f   o   r   p   r   e   c

   a  u   t   i   o   n   a   r  y   d   a   t   a .

  *  *   V   a   l  u   e   s   g   i  v   e   n   a   r   e   a   l   l   m   i   n   i   m  u   m  u   n   l   e   s   s   o   t   h   e   r  w   i   s   e   n   o   t   e   d   b   e   s   i   d   e  v   a   l  u

   e .

Page 170: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 170/288

T.O. 1-1A-9

Table 4-6. M echanical Pr opert i es of M agnesium All oy Cast ings at Room Temperatur es 

ALLOY & COND TE NS ILE TE NS ILE TYP ICALS TRE NG TH S TRE NG TH E LONG ATION S H E AR

YIELD(1000 P S I) (1000 P S I) IN 2″ --% S TRE NG TH H ARD NE S S

TYP E MIN TYP E MIN TYP E MIN (1000 P S I) (B r inell)

AM100A-F 22 20 12 10 2 -- 18 54-T4 40 34 13 10 10 6 20 52-T6 40 34 16 15 4 2 21 69-T61 40 34 22 17 1 -- 21 69

AZ63A-F 29 24 14 10 6 4 16 50-T4 40 34 14 10 12 7 17 55-T5 30 24 16 10 4 2 17 55-T6 40 34 19 16 5 3 19 73

AZ81A-T4 40 34 14 10 12 7 17 55

AZ91C-F 24 18 14 10 2.5 -- 16 52-T4 40 34 14 10 11 7 17 55

-T5 23 23 12 12 2 -- -- ---T6 40 34 19 16 5 3 19 73

AZ92A-F 24 20 14 10 2 1 16 65-T4 40 34 14 10 10 6 17 63-T5 26 20 17 11 1 -- 16 80-T6 40 34 21 18 2 1 20 84

E K30A-T6 23 20 16 14 3 2 18 45

E K41A-T5 23 20 16 14 1 -- 18.7 45-T6 25 22 18 16 3 1 19.4 50

E Z33A-T5 23 20 15 14 3 2 19.8 50

H K31A-T6* 30 27 15 13 8 4 21 55

H Z32A-T5* 29 27 14 13 7 4 20 57

K IA-F 24 24 6 6 14 14 -- --

QE 22A-T6 35 35 25 25 2 2 -- --

ZE 41A-T5 28 28 19 19 2.5 2.5 23 62

ZH 42-T51* 32.5 -- 21.6 -- 4.5 -- -- --

ZH 42-T4* 33.6 35 -- -- 12 -- -- --

ZH 62A-T5 35.0 35 22 22 4 5 24 70

ZK 51A-T5 40 34 24 20 8 5 22 65

ZK 61A-T6 39 39 26 26 5 5 26 68

DIE CASTINGS

AZ91A-F 33 -- 22 -- 3 -- 20 67AZ91B -F 33 -- 22 -- 3 -- 20 67

NOTE: *This alloy contains radioactive thorium element. See para graph 4-19 precautionary instruc-tions.

4-12

Page 171: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 171/288

T.O. 1-1A-9

Table 4-7. Physical Propert i es Magnesium All oy @68 oF 

ALLOY & COND S P E CIFIC D E NS ITY ME LTING E LE CTRIC ALG RAVITY LB S /CU in RANG E oF COND U CTIVITY

(IACS)

AM100A-F 1.81 0.065 867-1101 11.5-T4 1.81 0.065 867-1101 9.9-T6 1.81 0.065 867-1101 12.3

AZ31B a nd AZ31C 1.77 0.064 1116-1169 18.5AZ61A 1.80 0.065 977-1145 11.6AZ63A-F 1.82 0.066 850-1130 15.0

-T4 1.82 0.066 850-1130 12.3-T6 1.82 0.066 850-1130 13.8

AZ80A 1.80 0.065 914-1130 10.6AZ81A 1.81 0.065 914-1132 12.0AZ91A-AZ91B 1.81 0.065 875-1105 10.1AZ91C-F 1.81 0.065 875-1105 11.5

-T4 1.81 0.065 875-1105 9.9-T6 1.81 0.065 875-1105 11.2

AZ92A-AC 1.83 0.066 830-1100 12.3-T4 1.83 0.066 830-1100 10.5-T6 1.83 0.066 830-1100 12.3

E K30A 1.79 0.065 1100-1184 27.0E K41A-T5 1.81 0.065 1193 24.0

-T6 1.81 0.065 1193 26.0E Z33A 1.83 0.066 1010-1189 25.0H K31A-T6 1.79 0.065 1092-1204 22.0H M21A 1.77 0.064 1100-1195H M-31A-F 1.80 0.065 1121-1202 26.0H M32A 1.83 0.066 1026-1198 26.5MI-A 1.76 0.064 1200 34.5TA54A 1.87 0.067 -- --ZE 10A 1.76 0.063 1100-1200 --

ZH 42 1.86 0.067 1180 23.9ZH 62A 1.86 0.067 1180 26.5ZK21A 1.80 0.645 -- --ZK51A 1.81 0.066 1020-1185 28.0ZK60A-F 1.83 0.066 968-1175 29.0

-T5 1.83 0.066 968-1175 30.0ZK60B 1.83 0.066 968-1175 31.0ZK61A 1.80 0.065 1145 --

NOTE: Percentage conductivity of annealed copper at 68 oF (international a nnealed copper sta nda rd).

c. M a ch in e t h e m et a l dr y w hen ev er pos sib le, M a ch in is ts sh ou ld not w ea r t ext u red or fu zz yavoiding f ine feeds and keeping speeds below 500 - cloth ing and ch ips and sawdus t should not be

700 su rf a ce feet p er m in ut e du rin g tu rn in g a nd a l low ed t o a ccu mu la t e in cu ff s or pocket s.boring. If a coolant is definitely required use amineral oil. f . Do not permi t tools to rub on the work

af ter a cut has been ma de.d . K eep w or k a r ea s cl ea n .

e. S tore ma gnesium chips in clea n, pla inly g. Keep a n a dequa te supply of a recom-labeled, covered, non-combust ible conta iners where mended magnesium f ire ext inguisher within reachthey w i ll r ema in dry . Do not a l low ch ips to accu- of the opera to rs . I f ch ips should become ign i ted ,mulate on machines or operator ’s clothing. ext inguish t hem a s follow s:

4-13

Page 172: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 172/288

T.O. 1-1A-9

wit h booth type porta ble grinding and polishingwhere the dust passes through the grate with the

WARNING air being circulat ed into a liquid spray w hichremoves the dust . Design the booth to cat ch allth e dust possible. On individua l grinders for sma llWater or any of the common liquid orscale work, as shown in Figure 4-1, deta i l C, thefoam type extinguishers will intensifyhood design and the oil pan combine to afford a

a magnesium chip f ire and ma y cause sa tisfa ctory dust collection. Any dust escaping thean explosion and shall not be used.hood should be kept swept up and properly dis-

(1) Cover with a layer of G-1 or Met-L-X posed of.powder. Clean, dry unrusted cast iron chips,

4-23. The fol lowing specif ic sa fety rules per ta ingraphite powder, clean dry sand, talc and pitchto the grinding a nd polishing of ma gnesium:ma y a lso be used.

a . Magnes ium gr ind ing should be done on(2) Act ively burning f ires on combust ibleequipment set a side and la beled for t ha t purpose.surfa ces should be covered w ith a 1/2 inch la yer orDo not grind sparking ma terial on these grindersmore of extinguishing powder; then the entireunless the ma gnesium dust h as been completelymass shoveled into an iron container or onto aremoved from the equipment system. In a ddit ion,piece of iron plat e. Alterna tely, a one or t w o inchthe grinding wheel or belt must be replaced priorlay er of pow der can be spread on the f loor or sur-to grinding of an y other metal.face nearby and the burning metal transferred to

it , then a dd more powder a s required. b . I f chrome pick led magnesium is to beground, sparks may result. Therefore, dust and(3) High cu t t ing speeds , ext remely f ineair-dust m ixtures must not be a llowed t o accumu-feeds, dull, chipped or improperly designed tools,la te w ithin spark ra nge.tool dwell on work after feed is stopped, tool rub,

or tool hitting a steel or iron insert increase thec. Main t a in adequa te supplies of p la in lychances of chip ignition. Keeping the cutting speed

labeled a pproved f ire extinguishing powder a ndbelow 700 feet per minute will greatly reduce thesuitable dispensing tools readily available to oper-fire possibilities even with a dull or poorlyat ors. Fire control is the same as deta iled in para -designed tool and fine feeds.graph 4-21 for machine chips.

4-22. G RI N D I NG AN D POL I S HI N G S AF E TYd. Keep dus t from accumula t ing on surround-P RACTICE S. During grinding and polishing oper-

ing f loors, benches, win dows, etc. If such a ccumu-ations a proper dust collection system must belation is evident the collector system is not operat-used. Figure 4-1 illustrates acceptable type collec-ing properly and must be checked and repaired.tors. The dust produced during grinding a nd pol-P eriodically a nd no less tha n once a month, com-ishing of magnesium must be removed immedi-pletely clean t he entire collector systems. Inspectately from the working area with a properlyand clean the grinder to collector ducts daily ordesigned wet type dust collection system. P ropermove frequent ly if t he volume of collection is h igh.systems precipita te the ma gnesium dust by a

heavy spray of water and must be so designed that e. Dispose of g r ind ing s ludge a s soon as i t i sdust or sludge can not accumulate a nd dry out t o a removed from the equipment . Do not store orf lamm able sta te. Sma ll collectors as shown in allow t o even part ially dry since it is extremelyFigure 4-1, detail A serving one or two grinders f lamm able. This may be done by spreading it on aare the best. The grinder-to-collector ducts should layer of fire brick or hard burned paving brick to abe short an d stra ight. The self opening vents ma ximum depth of 3″  t o 4″ , then placing a com-illustrated prevent hydrogen collection during shut bustible material on top of it a nd burning t hedown. The grinder ’s power supply, air exhaust entire lot . The sludge will burn wit h intense heat ,

blower and liquid level controller should be electri- th erefore, a safe locat ion must be used. A meth odcally water connected so cessation or failure of the of rendering magnesium sludge chemically inactivedust collector operation will shut the grinder off. an d non-combustible by reacting it with a 5%solu-In a ddit ion a suita ble devise should be installed in tion of ferrous chloride (Fe C122H 2O) is detailed inthe system t ha t w ill insure the collector system is the National Fire Protection Association ’s Bulletinin full operation and has changed the air in the No. 48, Sta nda rds for Magnesium.ducts, etc., several times before the grinder beginsr un nin g. D r y t ype f ilt er collect or s or cen tr a l col- f. Th e clot hin g of oper a tor s sh ou ld be sm oot hlect or sy st em s w h ich ca r r y t he d us t t hr ou gh lon g a n d f i re r et a r d a n t w it h ou t pock et s a n d cu f fs . Ca p sdry duct s should not be used for magnes ium. The should be worn . Al l cloth ing should be easy tocollector portr a yed in Fig ure 4-1, d et a il B is us ed r em ov e a n d kept fr ee of du st a ccu mu la t ion s.

4-14

Page 173: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 173/288

T.O. 1-1A

4-24. D eleted. covered w it h t he pow der , t he furna ce loa d shouldbe allowed to cool wit h th e door open. For the

4-25. HE AT TREATING S AFETY PRACTICE S.handling of large quantities of G-1 powder, pump

Heat treating of magnesium alloys requires thehave been constructed which can throw 75-100 l

exercising of certain definite rules, if safe and goodminute onto the f ire through a 30 foot h ose and

qua lity workma nship is to result. The followingnozzle.

rules should be closely followed:

(2) Boron Tr i f luor ide (BF 3) G as Methoda . U s e fu r na ce eq u ipm en t h a v in g t w o set s oftemperature controls, operating independently ofeach other.

WARNINGb. S t anda rd ize checking procedures and

adjustments of a ll equipment a nd of opera tingB oron t rif luoride vapor or gas is toxiccycles.in the proportion of more than 1 part

c. Load the furnace w i th cas t ings of one iden- per million by volume of air whentical alloy only. Insure the cast ings are clean. exposures ar e prolonged or freq uently

repeated. Five par ts per million byd. U se S O2 (Sulfur Dioxide) atmosphere to

volume of air or more are usually pre-contr ol oxidat ion.

sent in visible clouds of materiale. U se the recommended t ime a nd t empera - result ing from t he relea se of the ga s

t ure opera t ing ra nges a t a ll t imes. to a t mosphere. Therefore, personnelmust not enter such clouds or anyf . Provide approved f i re ext ingu ish ing

area where there is reason to believeequipment.

the safe level is exceeded unless wear-ing a gas ma sk with an a cid gas can-ister conta ining a dust f iller . Ana ly-

WARNING sis of atmosphere in the worker ’sbreathing zone will be accomplishedto assure personnel safety.Water and other extinguishers for

Class A, B, and C fires shall not be This is an effective gaseous means of extinguish-used. ing magnesium fires in heat treating furnaces.

The gas is introduced into the furnace from a sto4-26. I f a f ire should occur for any reason, asage cylinder t hrough an entry port prefera blyevidenced by excessive furnace temperature andloca ted near f loor level. Connect the gas feed lin

omission of a light colored smoke, proceed a s to this port, open the feed line valve to providefollows:a bout 2 lbs/minut e (depending on furn a ce size an

a . S h ut of f a ll pow er , f uel a nd S O2 feed lines number of gas cylinders) an d ma inta in gas f low to the furna ce. until furnace temperature drops to 700oF indica t

ing the f ire is out. The furna ce door should beb . Not i fy f i re marsha l con t rol crew a t once .kept closed during this a ction a nd unt il a def init

c. Beg in f i re ext ingu ish ing procedures us ing temperature drop below 700oF is evident. Run-one of the following methods: ning th e furnace circulat ing fan s for about 1 min

ute after the gas is first introduced will assist in(1) G -1 Po w der M et h od .

gas dispersal, then shut t he fan off . The gas cylWhere i t can be sa fely done, a sma l l f i re should be der used should be f i t t ed w ith a Monel needler em oved from th e fur na ce, dum ped in to a n iron va lve a nd a ‘‘t ee ’’ for attaching a 0-160 psi pres-con t a iner a n d t h en ext ing ui sh ed b y cover in g w it h s ur e g a u ge. A s ui t a ble g a s t ra n s fer s ys t em u sesG -1 p ow d er w h ich is a gr a ph it e b a se p ow d er of th e 5/16″  f lexible bronze hose to car ry t he gas to theP yrene CO2 C om pa n y . M et a l F yr P ow d er of t h e fu rn a ce w h er e it en t er s t h rou gh a 1/4″  steel pipeFyr Fyter Company is the s ame ma ter ia l . In la rge en t ry por t . Us ing 10 fee t of hose and feed of p ipfurnaces or with f ires of high intensity , the powder a ga uge pressure of 15-30 psi wil l deliver 1-2 lbsca n be a pplied to t he bur nin g pa rt s w it h a sh ovel B F 3 per minut e. The cylinders ma y be perma -(assuming the furnace door can be opened sa fely ). nen t ly connected or brought to the furnace , whenPa p er ba g s f i ll ed w it h t h e pow d er ca n b e u sed if n eed ed , on a s ui t a ble d ol ly . Th is ga s d oes notthe f i re i s so loca ted tha t such bags can be thrown require hea t ing in order to f low . The cy l indersin ef fect ive ly . Remove par t s not burn ing w i th long should be we igh t checked for con tent s every 6h a n dled h ook s. Af t er a l l b ur nin g pa r t s h a ve b een m on t hs .

Change 1 4

Page 174: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 174/288

T.O. 1-1A-9

(3) Boron Trichloride (BCL3) Gaseous iridescent coating forms the alloy contains alumi-Method. This material has been successfully used num. The solution is made in the proportions of to extinguish magnesium heat treat furnace fires. 24 ounces sodium dichromate and 24 fluid ouncesHowever, there are several factors involved with concentrated nitric acid to enough water to makeits use which makes it less preferred than boron one gallon. Prior to the test the metal should betrif luoride, these include: ten times more concen- thoroughly cleaned down to the base metal, if nec-tration than the 0.04% of boron trif luoride, the gas essary, by grinding or filing a clean area on themust be heated to f low freely; it is more expensive surface.than trif luoride; the liquid is corrosive and the

4-29. HEAT TREATING MAGNESIUM ALLOYSfumes irritating with a health hazard similar to

- GENERAL.hydrochloric acid fumes. Workmen should notoccupy areas where noticeable vapors are present

NOTEunless wearing a gas mask with an acid gas canis- . SAE-AMS-M-6857, Heat Treatment of ter containing a dust filter. If this agent must be

Magnesium Alloy Castings, will beused, the liquid containing cylinders should bethe control for heat treatment of mag-heated with infrared lights to provide the heatnesium alloy castings used on aero-necessary to insure adequate gas f low. The cylin-space equipment. For completeder outlet should be fitted with a special valve anddescription of magnesium alloy cast-gauge to control gas flow. Flexible 5/8″  ID neo-ings heat treat requirements, refer toprene hose may be used to connect the cylinder tolatest issue of SAE-AMS-M-6857.a steel pipe for insertion into the furnace port.

Otherwise its use in extinguishing a furnace fire is .  Additional Heat Treatment informa-similar to the procedures for boron trif luoride. tion is discussed in Section IX.

4-27. IDENTIFICATION OF ALLOY. 4-30. PRECAUTIONS DURING HEATING. Of first importance in the heat processing of these4-28. Positive identification of an alloy, from aalloys is a clear understanding of the characteris-constituency standpoint, can only be determinedtics of the metal relative to heat. Pure magnesiumby laboratory analysis. However, whether a lightwill melt at approximately 1202oF. The alloysmetal is magnesium or not can be generally deter-melting points range from 830oF to 1204oF,mined by a simple test consisting of placing theapproximately, according to their element constitu-test metal in contact with an 0.5% solution of sil-ency. Therefore, during any heating of alloy items,ver nitrate, and observing the reaction for 1 min-specified temperature maximums must be closelyute. The solution is made by dissolving 0.5g. of adhered to, particularly during solution heat treat-silver nitrate in 100 ml. of water. Formation of aing. The metal is easily burned and overheating 

black deposit of metallic silver on the metal indi- will also cause formation of molten pools within it,cates magnesium or high-magnesium alloy. Theneither condition resulting in ruining of the metal.immerse the metal in a chrome pickle chemicalCertain alloys such as AZ63A Type 1, or AZ92A solution, Type I Specif ication MIL-M-3171 (Com-Type 1, are subject to eutectic melting of some of mercially known as DOW No. 1). The solutionits elements if heated too rapidly. They must beshould be freshly prepared and the test operatorbrought up to heat treating temperature slowlyfamiliar with the colors of chemical treatment. If enough to prevent this. In the case of these twothe metal assumes a very bright brassy coating, it

indicates it is aluminum free alloy. If a greyish

4-16 Change 4

Page 175: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 175/288

T.O. 1-1A-9

ex a m ples , n o l es s t h a n t w o h ou r s s hou ld be con - ca p a bi li t y of ma in t a in in g t h e m in im u m a n d m a xi -mum temperatures required for the various treat-sumed in bringing them from 640oF to t rea t ingments it will be used for. A minimum of 9 testtemperature.locations within t he furnace load ar ea should be

4-31. An addi t iona l and no less impor t an t char- checked. One in each corner, one in the centeracterist ic of the metal relat ive to heat treatment, and one for each 25 cubic feet of furnace volumeis that it is subject to excessive surface oxidation up to the maximum of 400 cubic feet. A monthlyat 750oF and higher temperatures. In an oxidizing survey should be made after the init ial survey,at mosphere, this chara cterist ic can result in igni- unless separate load thermocouples are employed,tion an d f ierce burnin g. To prevent such occur- to record actua l metal temperatur es. The monthlyrences, a protective at mosphere conta ining suff i- survey should consist of one test for a solutioncient sulphur dioxide, carbon d ioxide or other heat treat temperature and one test for a precipi-sa t i sf actory ox ida t ion inh ibi tor sha l l be used when ta t ion hea t t rea t t empera ture , one for each 40

cubic feet of heat t reating volume with a mini-heating to 750oF an d over. When oxidat ion inhibi-mum, of 9 test locations required regardless of thetors are used, their concentration percentage involume. In a ddit ion, a periodic survey should bethe furnace atmosphere should be periodicallyma de, using th e test criteria of the init ia l survey.checked for correct am ounts. The pa rt icularFor a ll surveys, the furna ces should be allowed torequirements for va rious a lloys a re detailed in par-heat to a point stabilization before taking anya gra ph 4-46 in this section. These requirementsread ings. The tempera tur e of a ll test locat ionsan d t hose of other pertinent specificat ions a ndshould be determined a t 5 to 10 minute intervals

instructions should be consulted and strictly af ter insertion of the temperature sensing ele-a dhered to in processing the meta l. The safetyments in the furna ce. The maximum temperat uremeasures defined in para graph 4-1 must be rigidlyvariation of all elements shall not exceed 20oF a n dpracticed.shall not exceed the solution or precipitation heat

4-32. HEAT TREATING E QUIPMENT. trea t ing range a t any t ime a f ter equil ibr ium isreached.

4-33. Furnaces used for solut ion heat t rea tm ent4-35. Furnace con t rol t empera ture measur ingshall be of the air chamber t ype with forced airinstruments shall not be used as test instrumentscircula tion. Hea ting provisions ca n be ga s, electr i-during a ny survey. The th ermocouple a nd sensingcity or oil. Their design must be such a s to ma keelements should be replaced periodically becauseimpossible, direct heating element radiation orof the in-service incurred effects of oxidat ion an df lame impingement on the art icles being trea ted.deterioration.The furna ces sha ll be installed w ith t he necessary

control, temperature m easuring a nd r ecording4-36. Pyrometers used w ith the au tomat ic con-instrument equipment to assure complete a nd trol system to indicate, maintain and record the

a ccura te control. The temperat ure control sha ll be furnace temperatures, should preferably be of thecapable of maintaining a given temperature to potentiometer type.within ± 10o F at any point in the working zone,

4-37. Su i t ab le jigs , f ixtures , t r ays , hangers ,after the charge has been brought up to this tem-racks, ventilators and other equipment sha ll bepera ture. Ea ch furnace used sha ll be equippedused in processing the articles.with a separate manual reset safety cut-out which

will turn off the heat source in the event of any 4-38. HE AT TRE ATMENT SOLU TION. Solu-ma lfunction or fa ilure of the regular a utomat ic tion for heat treating of magnesium alloyed art i-contr ols. The safety cut -outs sha ll be set a s close cles is accomplished by hea ting a t a n elevatedas practicable above the maximum solution hea t temperature in a n a ir furnace for a specif ic lengthtreating temperature for the alloy being treated. of time (holding period); during which certainThis will be above the variation expected but shall alloying elements enter into uniform solid solution,

not be more than 10

o

F above the maximum heat since the alloys tend to become plastic at high heattreat temperature of the alloy being processed. t rea t t emperatures, i t is manda tory tha t suitableThere sha ll a lso be protective devices to shut off support be provided for a rticles being processed tothe heat source in case of circulation air stoppage. prevent warping. Ta ble 4-8 below lists the recom-These devices shall be interconnected with a man- mended soaking and holding time for solution heatual reset control. trea ting a lloys. The holding periods given are for

castings up to 2 inches thick. Items thicker tha n 24-34. Upon ini t ia l furnace inst a l l a t ion and a f t e r

inches will require longer periods.an y ma intenan ce on the furnace or its equipmentwhich might af fect its opera tional chara cterist ics, 4-39. AZ92A (Type 2), AZ91C an d QE 22A sanda temperature survey shall be made to test its castings and AM100A permanent mold castings

4-17

Page 176: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 176/288

T.O. 1-1A-9

m a y be ch a rged in to t he fu rn a ce w h ich is a t t he 4-41. S t a biliz a tion hea t t rea t in g a n a lloyhea t t rea t ing tempera ture. S ince magnes ium cas t - increases i t s creep s t reng th and ret a rds growth a tings a re subject to excess ive surface ox ida t ion a t serv ice encountered eleva ted tempera tures. Thetemperatures of 750oF a nd over , a pr ot ect ive sa m e gen er al pr ocedur e of h ea t in g t o t em per at ur e,a tmosphere con ta in ing su f f icien t su lphur d iox ide, hold ing for a t ime and cool ing to room tempera-ca r bon d ioxid e or ot her sa t isfa ct or y oxid a tion t ur e is used a s in t he ot her t w o t ypes, on ly t heinhibi tor sha l l be used when solut ion hea t t rea t ing tempera ture and t ime e lements a re d i f fe rent .at 750oF a nd ov er . Th e w h ol e ca s t in g m us t b e Wh en a pplied to a s olu t ion tr ea t t rea t ed a lloy , i thea t t rea t ed, not just pa rt of it . increa ses t he a lloy ’s yield strength. Actually stabi-

lization treatment is a high temperature aging4-40. Precipi t a t ion hea t t rea tment or a r t i f icia l

treatment accomplished quickly rather thanaging of alloys is a ccomplished a t temperature

allowing a n a lloy to age na tura lly over a period oflower t ha n th ose of the solution treat ment. Sug-

time.gested aging treatments for various alloys are ascited in Ta ble 4-9.

Table 4-8. Solut i on H eat Treat ing Temperatur es and H oldi ng Times 

TEMPERATUREALLOY RANG E TIME P E RIOD (H RS ) MAX TE MP oF

AM100A 790-800 16-24 810

AZ63A (Type 1) 720-730 (F t o T4) 10-14 734

AZ63A (Type 2)* 720-740 (F t o T4) 10-14 745

AZ81A 770-785 16-24 785

AZ91C 770-785 16-24 785

AZ92A (Type 1) 760-770 16-24 775

AZ92A (Type 2) 775-785 14-22 785

H K31A 1045-1055 2 1060

QE 22A** 970-990 4-8 1000

ZK 61A 925-935 2 935or

895-905 10 935

* Conta ins calcium.

** Quench in 150oF w at er bat h w ithin 30 seconds af ter opening of furnace.

4-42. An nea lin g of m a gn esiu m a lloy s is a ccom - 4-43. H E AT TR E ATI NG P R OC E D U RE S . P l a c-pli sh ed t o r eliev e in t er na l st r es ses , g en er a lly i ng of a rt icl es to b e t r ea t ed in t he f ur na ce, (g en er -r es ult in g fr om for min g oper a t ion s; s of t en t he a l ly ref er red to a s ch a r gin g t h e f ur na ce), s hou ldmater ia l for forming ; improve the duct i li t y ; and/or not be done in a haphaza rd fa sh ion . Ind iv idua lref ine the gra in s t ructure. The a l loy is hea ted to p ieces should be r acked or suppor ted to prevent

t h e pr oper t em per a t ur e, soa k ed or h el d a t t h a t d is tor t in g w i th ou t in t er fer in g w it h t he f ree f low oft em per a t ur e f or a s pecif i ed ti me a n d cooled to t h e h ea t ed a t mos ph er e a r ou nd t h e a r t icle. D is tor -room tempera ture. The des ired ef fect s a re ga ined t ion or warp ing can occur due to the semi-p las t icby con t rol ling the tempera ture , hold t ime and cool- qua l it ies of the a l loys a t t he furnace eleva ted tem-ing m ed iu m ex pos ur e. Avoid ex ces sive t ime a t p er a t u r es d ur in g s olut ion h ea t t rea t . D i st or t ion i st em per a t u re t o pr even t un w a n t ed gr a in g row t h . n ot a pa r t icu la r pr ob lem du r in g pr ecipi t a t ion orConversely , no a t t empt should be made to shor ten s t ab il iza t ion t rea tment or annea l ing. However , i tt h e t im e a t t em per a t ur e a n d ov er a l l a n n ea l in g is good pr a ct ice to h a n dl e m a gn es iu m a lloy a r t icl est im e b y in cr ea s in g t h e t em per a t ur e, sin ce ele- w i th ca r e a t a l l t im es un der elev a t ed hea t con di-ments of the a l loy subject to melt ing poin t s lower t ions . In the case of compl ica ted formed par t s , i tt hen t he a lloy it self ca n go in to solut ion . m a y be n ecessa ry t o ut ilize a specia lly con toured

4-18

Page 177: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 177/288

T.O. 1-1A-9

jig or f ixt ur e t o a d eq ua t ely pr ot ect t he d es ig n con - a . AM 100-A - U s ed in pr es su re t ig ht sa n d en dt our of t he it em a t high tempera tures. perma nent mold ca st ings w it h good combina tion of

tensile strength, y ield strength an d elonga tion.4-44. Cooling a f ter t rea t ing is accomplished in

Solution heat treat in 0.5%SO2 atmosphere 20either still or blast air, depending upon the alloy.

hours at 790oF; cool in strong air blast . PartiallyThe one exception is a lloy QE22A wh ich is w a ter

art ificial a ging -12 hours a t 325oF; cool in still air.quenched. The wa ter should be a t 150oF

Completely ar t if icial a ge 5 hours a t 450oF; cool intemperature. still air or oven. Aging increases basic yield

strength and hardness and decreases toughness4-45 . ALLOY GENERAL CHARACTERISTICan d elonga tion.INFORM ATION.

4-46. In the fol lowing paragraphs a re brief sum-ma ries of the general chara cterist ics of th e variousalloys.

Tab le 4-9 . Ar t i f i c ia l Ag ing (Precip i ta t ion T rea tment ) 

ALLOY & TE MP E R AG ING TRE ATME NT

AM100A-T6 5 hours a t 450oF or 24 hours at 400oF

AM100A-T5* 5 hours a t 450oF

AZ63A-T6 5 hours a t 425oF or 5 hours at 450oF

AZ63A-T5* 4 hours a t 500oF or 5 hours at 450oF

AZ91C-T6 16 hours a t 335oF or 4 hours at 420oF

AZ92A-T6 (Type 1) 4 hours a t 500oF or 5 hours at 425oF

AZ92A-T6 (Type 2) 5 hours a t 450oF or 16 hours at 400oFor 20 hours at 350oF

AZ92A-T5* (Type 2) 5 hours a t 450oF

E Z33A-T5* 2 hours a t 650oF or 5 hours at 420oFor 5 hours at 420oF

H K31A-T6 16 hours a t 400oF

H Z32A-T5* 16 hours a t 600oF

QE 22A-T6 8 hours a t 400oF

ZH 62A-T5* 2 hours a t 625oF or 16 hours at 350oF

ZK51A-T5* 8 hours a t 424oF or 12 hours at 350oF

ZK61A-T5* 48 hours a t 300oF

ZK61A-T6 48 hours a t 265oF

*T5 is a ged from a s-cast condit ion. Others a re a ged from T4 condit ion.

b . AZ31B a n d C - U s ed in low cos t ext r ud ed F or eig n eq uiv a len t s a r e: B r it is h D TD 120A S h eet ,bars, rods, shapes, structural sections a nd tubing 1351350 forgings; G erman an d It alia n, E lectronwith modera te mechanical properties and high AZ31; French - SOC Gen Air Magnesium, F3 andelonga tion sheet a nd plat e; good forma bility a nd T8.strength, high resistance to corrosion, good welda-

c. AZ61A - Use in genera l purpose extrus ionsbility. Liquid tempera tur e 1170oF; solid 1120oF.with good properties, intermediate cost; press forg-Hot working temperature is 450 - 800oF.ings with good mecha nical properties. Ra rely usedAnnealing temperature 650oF. St ress relief ofin sheet form. Hot working temperat ure 350o-extrusions a nd a nnealed sheet = 500oF for 15 min-

utes; ha rd rolled sheet = 300oF for 60 minut es. 750oF; shortness temperature above 780oF. Anneal

Change 1 4 -1 9

Page 178: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 178/288

T.O. 1-1A-9

650oF . H ea t t rea t a nn ea led sh eet ext rusion s a nd e. AZ80A - U sed for ext ruded a nd pr essforgings 15 minutes at 500oF rolled sh eet 400oF forged product s. H ea t t rea ta ble. H ot w orking t em-for 15 m in ut es . F or ei gn eq ui va l en t s a r e B r it is h per a t ur e 600-750oF. Shortness temperature aboveB S 1351 (f or gin gs ) B S 1354 (ext r us ion s); G e rm a n 775oF, annealing temperature 725oF. St ress relief:AZM. a s ext ruded, 500oF for 15 minutes, extruded a nd

artificially aged 400oF for 60 minutes; forgingsd. AZ63A - Used in sand cas t ings for good

500o F for 15 minutes. Foreign equivalents arestrength properties with best ductility a nd tough- B ritish 1351 (forgings); G erma n AZ855 Helium orness. Solution heat t reat a t 740oF in a 0.5%-

Argon-a rc w eldable using AZ92A welding rod orS O2atmosphere for 10 hours then cool in air.

ma y be resista nce welded. St ress relieve af terAging is done at 450oF for 5 hours and cooled in

welding.air or furnace. St abilize at 300oF a t 4 hours andcool in air. Foreign equiva lents are Elektron AZG,B ritish DTD59A(a s ca st)and DTD-289 (hea ttreated). Good salt water anti-corrosion properties.

Tab le 4-10. Deleted .

Tab le 4-11. Deleted .

f. AZ81A - U sed in sa nd or perm anent mold k. E K41A - U sed a s pressure t ight sa nd ca st -cas t ings for good s t reng th , exce llen t duct i li t y , p res- ing a l loy . Good s t reng th a t 300o - 500oF. Solutionsur e t igh tn ess a nd tough ness. R ea dily ca st a ble h ea t tr ea t a t 1060oF maximum 16 hours then coolw i t h l ow m icr o-s hr in ka g e t en d en cy . S olut ion hea t in a i r or w it h fa n . Ag e a t 400oF 16 hours, a ir cool.treat 775oF for 18 hours, cool in air or by fan.

l . EZ33A - Used for pressure t ight , goodStabilizing treatment 500oF, 4 hours and air cool.strength sand and permanent mold castings whereTo prevent germination (grain growth) an alter-temperatures may reach 500oF in use. Age a tnate heat treat of 775oF for 6 hours, 2 hours at420oF for 5 hours. Forgeign equivalent Brit ish665oF a nd 10 hours a t 775oF may be used.ZRE1.

g. AZ91A, AZ91B - AZ91A - used for die cast-ings generally. m. HK31A - Used in s and cas t ings for e leva ted

temperature use up to 650oF a nd sheet and pla teh. AZ91C - AZ91B - is a lso die cas t a l loy but

applicat ions. Ha s excellent w eld an d forminghas higher impurity content. AZ91C is used forchar a cteristics in sheet/plat e form an d reta ins

pressure t ight sand and permanent mold castingsgood strength up to 650oF. Hot working tempera-

ha ving high tensile an d weld strength. Shortnessture is 800o to 1050oF. Anneal a t 750oF. Solution

temperatures a re a bove 750oF. Heat treat: T-4 con-heat treat sand castings by loading into a 1050oF

dition, 16 hours at 780oF, cool in a ir blast an dfurna ce an d holding for 2 hours, then fan or a ir

then age at 400oF for 4 hours; T-7 condition, 5cool. Age for 16 hours a t 400oF. H23 sheet may be

hours at 450oF. Foreign equivalents are Elektronstress relieved a f ter w elding a t 650oF for 1 hour or

AZ91 a nd B ritish D TD136A. G ood impact resis-675oF for 20 minutes. Sheet may be resista nce

tance in T-4 temper. T-6 has good yield strengthwelded.

and, ductility .

n . HM21A - Used shee t , p la te and forg ings,i . AZ92A - Used in pressure t igh t s and andusable at 650oF and above. Hot work at 850oF -perma nent mold castings. Ha s high tensile an d1100oF Anneal at 850oF. Heat t rea t forgingsyield strengths. Solution heat trea t 20 hours at

(T5)450o

F for 16 hours. Resista nce w elding is also760oF in a n a tmosphere of 0.5%SO 2 . Cool insatisfactory.strong air blast . Artif icial aging is done at 420oF

for 14 hours. Cool in air or oven. St a bilize for 4o. HM31A - Used in ext ruded ba rs , rods ,

hours at 500oF, then cool in air. Eq ua l to AX63Ashapes an d tubing for elevated temperat ure ser-

in sa lt w at er corrosion resista nce.vice. Exposure to tempera tur es th rough 600oF for

j. E K 30A - U s ed in sa n d ca s t in g for el eva t ed per iod s of 1000 h ou rs ca u s ed pr a ct i ca l ly n o ch a n get em per a tu re a pplica t ion s. H a s g ood st ren gt h in sh or t t im e r oom a nd eleva t ed t em per a tu reproperties in temperature range 300o- 500oF . S olu- p roper t ies . S u per ior m od ulus of el a st ici t y pa r t i cu -tion heat treat at 1060oF m a xim um 16 h ou rs th en la r ly a t elev a t ed t em per a t ur es . H ot w or k a t 700oFcool in air by fa n. Age at 400oF t hen a ir cool. - 1000oF.

4 -2 0 Change 1

Page 179: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 179/288

T.O. 1-1A-9

p. H Z32A - U sed for sa n d ca st in gs. I t is of s tr en gt h a t room tem per a tu res a n d m od er a te lon g-proper t ies for medium and long r ange exposure a t t ime creep res is t ance a t t empera tures up to 480oFtemperatures above 500oF a nd is pr es su re t ig ht . a r e r eq uir ed . Th e a l loy is a pr ecipit a t ion ha r den -

ing one from the as-cast condition and requires noq . KIQA - Cas t ing a l loy w i th compara t ive ly solution heat trea tment. Maximum hardn ess is

low strength ha s excellent da mping developed a t 480oF in 24 hours. More ductilitycharacterist ics. an d better shock resistance may be obta ined by

overaging a t t empera tures such as 750oF. For T51r . MIA - Used for wrought product s and pro- condition treat at 480oF for 24 hours; T4 condition

vides for moderate mechanical properties with 750oF for 24 hours.excellent weldability, corrosion resistance and hot

x . ZH62A - Used as a h igh s t reng th good duc-forma bility . Hot work at 560o - 1000oF. Anneal att ility structural alloy at normal temperatures and700oF. St ress relieve an nealed sheet at 500oF, inha s the highest yield strength of any a lloy except15 minutes; hard rolled sheet at 400oF in 60 min-ZK61A-T6. Hea t trea t a t 480oF for 12 hours. For-utes; an d extrusions a t 500oF in 15 minut es. For-eign equivalent is British T26.eign equivalents a re B rit ish B S1352 (forgings) an d

German AM503.y . ZK21A - An a l loy of moderate st rength for

extrusion fabricat ion. G ood w eldability usings . QE22A - Cas t ings have high y ie ld s t reng thshielded a rc an d AZ61A or AZ92A, rod. Resist a nceat elevated temperatures. Solution heat treat atwelding also satisfactory. ZK51A - Used for high970o-990oF 4 to 8 hours. Quench in 150oF wa ter

yield strength, good ductility , sand cast ings. Hea tba th . treat for 12 hours at 350oF. Foreign equivalent isBritish Z52.t . TA54A - Bes t hammer forg ing a l loy .

z . ZK60A - Used as a wrought a l loy foru . ZE10A - Used for low cos t , modera teextruded shapes and press forgings. Ha s highstrength sheet and plat e. No stress relief requiredstrength a nd good ductility cha racterist ics. Hotaf ter welding. Hot work at 500o - 900oF. Annealwork at 600o-750oF. Shortness temperature is400oF. AZ61A or EX33A rod is preferr ed for950oF. Age a t 300oF for 24 hours, a ir cool. For-welding.eign equivalent is German ZW6.

v. ZE41A - A good s t rength , pressure t ight ,a a . ZK61A - Cas t ing Al loy . Solut ion hea t t rea t

weldable a lloy, w here tempera tures a re below at 925o - 935oF for 2 hours or 895o - 905o F for 10

200oF. Age 2 hours at 625oF, air cool; 16 hours athours.

350oF air cool. Foreign equivalent - B ritish RZ5.

w . ZH42A - Used in s and cas t ings for a i r cr a f tengines and airframe structures where high

Paragraphs 4-47 through 4-51 deleted.

Change 1 4 -2 1

Page 180: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 180/288

T.O. 1-1A-9

Figure 4-1. Typical Dust Col lectors for M agnesium 

Paragraphs 4-52 through 4-95 deleted.Ta bles 4-12 th rough 4-31 deleted.Figures 4-2 through 4-4 deleted.P a ges 4-23 th roug h 4-43/(4-44 bla nk) delet ed.4 -2 2 Change 1

Page 181: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 181/288

T.O. 1-1A-9

SECTION V

TITANIUM AND TITANIUM ALLOYS

5-1. CLASSIFICATION. diff icult ies encountered in the fa bricat ion of par ts ,

since the absorption of small amounts of oxygen or5-2. Titanium is produced in pure form as w ell nitrogen ma kes vast cha nges in the chara cterist icsas in various alloys. Pure t ita nium is commonly of this metal during welding, heat treatment, orknown as una lloyed. It can be cast , formed, any application of heat in excess of 800oF .joined, and ma chined w ith relat ive ease a s com-pared to the various alloy grades. Unalloyed t ita- 5-9. Opera t ions involving t i t an ium requir ing thenium cann ot be hea t trea ted. Therefore, its uses a pplica tion of hea t in excess of 800oF must be per-ar e limited to end items not r equiring the higher formed in a closely controlled atmosphere by meth-strengths obtained from the heat treatable alloys. ods explained in future para gra phs. The nomina l

mechanical properties are listed in Ta ble 5-2.5-3. Ti t an ium is a very ac t ive meta l , and read ilydissolves carbon, oxygen, and n itrogen. The most 5-10. METHODS OF IDENTIFICATION. Meth-pronounced effects are obtained from oxygen and ods of dist inguishing t ita nium a lloys from othernitrogen. For this reason, any h eating process meta ls are simple an d definite. One quick methodmust be performed in a closely controlled atmos- is to contact the t itanium with a grinding wheel.

phere to prevent the absorption of oxygen and This results in a pure white t race ending in a bril-nitrogen to a point of brittleness. liant w hite burst . Also, identif icat ion can be

accomplished by moistening the t ita nium a nd5 -4 . GENERAL.

ma rking the surfa ce wit h a piece of glass . Thisleaves a dark line similar in appearance to a pen-5-5. M I LI TARY AN D CO M ME RCI AL D E S I G -cil ma rk. Tita nium is non-ma gnetic. To positivelyNATIONS . There are present ly tw o milita ry spec-identify the various alloys, a chemical orifications in existence (See Ta ble 5-1) coveringspectographic analysis is necessary.alloyed and unalloyed t itanium in classes estab-

lished to designate various chemical compositions.5-11. HARDNESS TESTING. Hardness i s the

For the selection of the proper class and form ofresista nce of a meta l to plastic deforma tion by

stock required for a particular purpose, referencepenetra tion, indenta tion, or scrat ching, and is usu-

will be made to Ta ble 5-1.a lly a good indicat ion of str ength . This propertycan be measured a ccura tely by the B rinell,5-6. PH YS ICAL PRO PE RTI E S . L im it ed ph y si -

Rockwell or Vickers Techniq ue. The har dness tocal properties are a vaila ble on t he t ita nium compo-be expected from the various alloys and unalloyedsitions covered by existing military specifications.t itanium is listed in Ta ble 5-2.Compared to other ma terials , the m elting point of

t itanium is higher than that of any of the other5-12. TENSI LE TESTING. The useful s t rength

construction materials currently in use. The den-of a metal is the maximum load which can be

sity of t itanium is intermediate to aluminum andapplied wit hout perma nent deforma tion. This fac-

steel. Electrical resist ivit ies of t ita nium ar e simi-tor is commonly ca lled yield strengt h. The tensile

lar to those of corrosion-resista nt st eel. The modu-strength of a metal is that load, in pounds per

lus of elasticity is somewhat more than half that ofsqua re inch, at w hich complete failure occurs. In

the alloy steels and the coefficient of expansion isthe case of t ita nium the yield strength is th e most

less than half that of austenit ic stainless steels .importa nt fa ctor a nd is therefore used by industryto designate the various types of unalloyed5-7. MECHANICAL PROP ERTIES. As previ-t i tanium.ously pointed out, t ita nium is a very active metal

and readily dissolves carbon, oxygen and nitrogen. 5-13. NON-DE STRUC TIVE TESTING. Tita-All three elements t end to ha rden th e meta l; oxy-nium and t itanium alloys are highly susceptible togen a nd nit rogen h aving the m ost pronouncedstress risers resulting from scratching, nicking,effect.a nd notching. For this reason, close visua l inspec-

5-8. The con t rol of these e lements causes cons id- t ion i s requ ired of a l l r aw s tock pr ior to any form-er a b le di f f icu lt y in ob t a in in g cor r ect m ech a n ica l ing or m a ch in in g oper a t i on s. Al l s cr a t ch es , n ick sproper t ies during the f abr ica t ion of t i t an ium. This and notches must be removed , be fore fabr ica t ion ,va r ia t i on in m ech a n ica l pr oper t ies is t h e ca u s e of b y s a n ding a n d p ol is hing .

5-1

Page 182: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 182/288

T.O. 1-1A-9

Table 5-1. Specif icat ion Cross Reference Titanium All oys 

C omp/AlloyD esigna tion Form/C ommodit y S pecif ica tion D at a 1

AMS Milit a ry Ot her 2

COMMERCIALLY PU RE (UNALLOYED)

40K S 1 (A-40 S H E E T, S TRIP 4902 MIL-T-9046 A-40; H A1940; MS T-40; RS -40;55A) YIE LD P LATE Type I , COMP . A Ti-55A

Tubing Welded 4941 A40; 55A

Tu bin g S ea m les s 4942

55K S 1 (A55; S heet , S t r ip 4900 MIL-T-9046 A55; H A-1950; MS T 55 RS 55;65A) Yield P la te Type I , COMP . C T1-65A; NA2-7123B

F orgings MIL-F-83142Comp. 1

70K S 1 (A70; S heet S t rip P la t e 4901 MIL-T-9046 A70; H A-1970; MS T70 RS 70;75A) Yield Type I , COMP . B Ti-75A, NA2-7126G

70K S 1 (A70; B a rs, Forgings 4921 MIL-T-9046 A70; H A-1970; MS T70 RS 70;100A) a nd Forging Type I , COMP . A Ti-75A

Stock

ALPHA TITANIUM ALLOY

5AL-2.5S n S heet S t rip, 4910 MIL-T-9046 A-110AT; H A5137; 0.01 014; MS T(A110AT) P la te Type I I , COMP . 5AL-2.5S n; RS 110C; T1-5AL-

A 2.5S n;NA2-71269

B a rs a nd 4926 MIL-T-9047 A-110AT; H A5137; MS T 5AL-F orgings 4966 Comp. 2 2.5S n; RS 110C; Ti-5AL-2.5S n;

NA2-7149A5AL-2.5S n S heet S t rip P la t e 4909 MIL-T-9046E L1 Type I I , COMP .

B

B a rs a nd 4924 MIL-T-9047F orgings Comp. 3

5AL-S Zr-5S n S heet , S t r ip MIL-T-9046P la te Type I I , COMP .

C

7AL-12Zr S heet , S t r ip MIL-T-9046P la te Type I I , COMP .

D

7AL-2Cb-1Ta S heet , S t r ip MIL-T-9046P la te Type I I , COMP .

E

5 -2 Change 1

Page 183: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 183/288

T.O. 1-1A-9

Comp/AlloyD esigna tion F orm/C ommodity S pecif ica tion D at a 1

AMS Milit a ry Other 2

8AL-1MO-IV S heet , S t r ip, 4915 MIL-T-9046

P la t e (S ingle Type I I , COMP .a nn ’1) F

B a rs a nd MIL-T-9047Forgings C omp. 5

B a rs, Rings 4972

Forgings 4973(Solutionheat t rea ted andstabilized)

B E TA TITANIU M ALLO YS

13V-11C r-3AL Forgings MIL-F-83142

Comp. 14

B a rs a nd MIL-T-9047Forgings C omp. 12

13.5V-11Cr-3AL P la t e, S heet 4917 B -120VCA; MS T 13V-11Cr-3AL;(B 120VCA) a nd S t r ips R120B ; Ti-13V-11C4-3AL

Solution H eatTreated

11.5 Mo-6Zr- B a rs a nd MIL-T-9047Forgings C omp. 13

B a rs a nd Wire 4977(Solution Heat

Treated)8Mn S heet , S t r ip 4908 MIL-T-9046 C 110M, MS T 8Mn; RS 110A;(C110M) P la t e Type I I I , C OMP . Ti-8Mn; 0.01002

A

Forgings MIL-T-83142Comp. 12

4AL-3Mo-IV S heet , S t r ip, 4912 MIL-T-9046 MS T 4AL-3MO-IV; RS 115;P la t e Type I I I COMP . Ti-3AL 3MO-IV; LB -0170-104

B

S heet , S t r ip, 4913P la t e(Solution and

Pretrea ted)6AL-4V S heet , S t r ip, 4911 MIL-T-9046 C -120AV; H A6510; MS T 6AL-4V;(C120AV) P la t e Type I I I , COMP . RS 120A; TI-6AL-4V; LB 0170-110

C

Change 1 5 -3

Page 184: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 184/288

T.O. 1-1A-9

Tabl e 5-1. Specification Cross Reference Ti tani um A ll oys - Conti nued 

C omp/AlloyD esigna tion Form/C ommodit y S pecif ica tion D at a 1

AMS Milit a ry Ot her 2

B a rs a nd 4928 MIL-T-9047 C120AV; H A6510; MS T-6AL-4V;F orgings Comp. 6 RS 120A; TI-6AL-4V; LB 0170-110;

0.01037

B a rs a nd 4965Forgings(Solution &Precipitat ionHeat Treated)

E xt rusions 4935 C120AV; H A6510; MS T-6AL-4V;RS 120A; Ti-6AL-4V; LB 0170-147

Wire, Welding 4954 C120AV

F orgings MIL-F-83142COMP. 6

6AL-4VE L1 S heet , S t r ip, MIL-T-9046P la te Type I I I , COMP .

D

B a rs a nd 4930 MIL-T-9047F orgings Comp. 7

F orgings MIL-F-83142Comp. F

Wire, Welding 4956(Extra low 

inter t i ta lenvironmentcontrolled)

6AL-6V-2S n F orgings MIL-F-83142Comp. 8

S heet , S t r ip, 4918 MIL-T-9046P la te Type I I I , COMP .

E

B ars a nd Forg- 4973 MIL-T-9046ings (Ann ’1) COMP . B

4979(H.T.)

F orgings MIL-T-83142Comp. 9

7AL-4Mo S heet , S t r ip, MIL-T-9046 C135MO; H A-7146; MS T 7AL-(C135MO) P la te Type I I I , COMP . 4MO; RS 135; Ti-7AL-4MO;

F LB 0170-122

B a rs a nd 4970 MIL-T-9047F orgings (H .T.) Comp. 9

5-4

Page 185: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 185/288

T.O. 1-1A-9

Table 5-1. Specification Cross Reference Titanium Alloys - Continued

Comp/AlloyDesignation Form/Commodity Specif ication Data 1

 AMS Military Other 2

7AL-4Mo Forgings MIL-F-83142(C135MO) Comp. 13(Cont)

6AL-2SN- Sheet, Strip, MIL-T-90464Zr-2Mo Plate Type III, COMP.

G

Bars and 4979 MIL-T-9047Forgings (H.T.) Comp. II

4976(Ann’1)

6AL-2Sn- Bars and MIL-T-9047

4Zr-6Mo Forgings Comp. 14

MISCELLANEOUS SPECIFICATIONS

Heat Treatment SAE-AMS-H-of Titanium and 81200Titanium Alloys

1 There may be controlled requirements applicable to some specifications listed in the same alloytype or series. Validate any difference and assure that selected specification material(s) willcomply with end item specification requirements before specifying or using.

2 The following manufactures names apply to designations listed under other:

a. For designation beginning with A, B, C (example - A-40) CRUCIBLE STEEL CO.

b. For designation beginning with HA (example HA-1940) HARVEY ALUMINUM CO.

c. For designation beginning with MST (example MST-70) REACTIVE METAL CORP.

d. For designation beginning with RS (example RS-40) REPUBLIC STEEL CO.

e. For designation beginning with T1 (example T1-8Mn) TITANIUM METAL CORP.

f. For designation beginning with LB or NA (example LB170-110 or NA2-7123B) NORTH AMERICAN AVIATION INC.

g. For designation beginning with 0.0 (example 0.01015) CONVAIR OR GENERAL DYNAMICSCORP.

Change 4 5-5

Page 186: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 186/288

T.O. 1-1A-9

5-14. FIRE DAMAGE. Fire damage to titanium alloys used on aerospace equipment.and titanium alloys becomes critical above 1000oF For complete description of titaniumdue to the absorption of oxygen and nitrogen from heat treat requirements, refer to lat-the air which causes surface hardening to a point est issue of SAE-AMS-H-81200.of brittleness. However, an overtemperatured con- .  Additional Heat Treatment informa-dition is indicated by the formation of an oxide

tion is discussed in Section IX.coating and can be easily detected by a light greento white color. If this indication is apparent fol-

5-16. A majority of the titanium alloys can belowing fire damage to titanium aircraft parts, theeffectively heat treated to strengthen, anneal andaffected parts will be removed and replaced withstress relieve. The heating media for accomplish-serviceable parts.ing the heat treatment can be air, combusted

5-15. HEAT TREATMENT - GENERAL. gases, protective atmosphere, inert atmosphere, or vacuum furnace. However, protective, inert atmo-

NOTE spheres or vacuum shall be used as necessary toprotect all parts (titanium or titanium alloy), etc.,. SAE-AMS-H-81200, Heat Treatmentwhich comprise the furnace load to prevent reac-of Titanium and Titanium Alloys, willtion with the elements hydrogen, carbon, nitrogenbe the control document for heatand oxygen.treatment of titanium and titanium

5-6 Change 4

Page 187: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 187/288

T.O. 1-1A-9

5-7

  T a

  b  l e  5

 -  2 .

  N o m

  i n a

  l   M

 e c

  h a n

  i c a

  l   P

 r o p e r

  t  i e s a

  t   R

 o o m

   T e m p e r a

  t u r e

   A   N   N   E   A   L   E   D   C   O   N   D   I   T   I   O   N

   S   O   L   U   T   I   O   N   T   R

   E   A   T   E   D   C   O   N   D   I   T   I   O   N

   S   O   L   U   T   I   O   N   T   R   E   A   T   E   D   A   N   D

   A   G   E   D

   Y   i   e   l   d   S   t   r

   T   e   n   s   i   l   S   t   r

   E   l   o   n   g

   R   o   c   k

   Y   i   e   l   d   S   t   r

   T   e   n   s   i   l   S   t   r

   E   l   o   n   g

   R   o   c   k

   (   0 .   2

    %   O   f   f

   (   U   l   t   i   m   a   t   e

    %   i   n

  w   e   l   l

   (   0 .   2

    %   O   f   f

   (   U   l   t   i   m   a   t   e

    %   i   n

  w   e   l   l

   Y   i   e   l   d

   T   e   n   s   i   l

   E   l   o   n   g

   s   e   t   )   1   0   0   0

   m   i   n   )   1   0   0   0

   2   i   n

   H   a   r   d  -

   s   e   t   )   1   0   0   0

   m   i   n   )   1   0   0   0

   2   i   n

   H   a   r   d  -

   S   t   r

    %   i   n

   M   A   T   E   R   I   A   L   T   Y

   P   E

   p   s   i   M   i   n

   p   s   i

   n   e   s   s

   p   s   i   M   i   n

   p   s   i

   n   e   s   s

   2   i   n

   M   I   L  -   T  -   9   0   4   6   1   /

   T   Y   P   E   I ,   C   o   m   p   A

   (   U   n   a   l   l   o  y   e   d   4   0   k   s   i   )

   4   0  -   6   5

   5   0

   2   0

   B   8   8

   C   o   m   p   B

   (   U   n   a   l   l   o  y   e   d   7   0   k   s   i   )

   7   0  -   9   5

   8   0

   1   5

   C   2   3

   C   o   m   p   C

   (   U   n   a   l   l   o  y   e   d   6   5   k   s   i   )

   5   5  -   8   0

   6   5

   1   8

   B   9   5

   T   Y   P   E   I   I ,   C   o   m   p   A   (   5   A   L  -   2 .   5   S

   N   )

   1   1   0

   1   2   0

   1   0

   C   3   5

   C   o   m   p   B   (   5   A   L  -   2 .   5   S   n

   E   1   1   )

   9   5

   1   0   0

   8  -   1   0

   C   o   m   p   C   (   5   A   L  -   5   Z   r  -   5

   S   n   )

   1   1   0

   1   2   0

   1   0

   C   3   5

   N   o   t   r   e   c   o   m   m   e   n   d

   e   d

   C   o   m   p   D   (   7   A   L  -   2   3   Z   r   )

   1   2   0

   1   3   0

   1   0

   C   o   m   p   E   (   7   A   L  -   2   C   b  -   1   T   a   )

   1   1   0

   1   1   5

   1   0

   C   3   5

   C   o   m   p   F   (   8   A   L  -   1   M   o  -   I   V   )

   1   3   5

   1   4   5

   8  -   1   0

   C   3   8

   T   Y   P   E   I   I   I ,   C   o   m   p   A   (   8   M   n   )

   1   1   0

   1   2   0

   1   0

   N   o   t   r   e   c   o   m   m   e   n   d

   e   d

   C   o   m   p   B   (   4   A   L  -   3   M   o  -

   I   V   )

   1   1   5

   1   2   5

   1   0

   1   3   0

   8

   1   5   5

   1

   7   0

   5 .   0

   C   o   m   p   C   (   6   A   L  -   4   C   )

   1   2   0

   1   3   0

   8

   C   3   6

   1   5   0

   1   6   0

   5

   1   4   5

   1

   6   0

   5 .   0

   C   o   m   p   D   (   6   A   L  -   4   V  -   E

   L   1   )

   1   2   0

   1   3   0

   1   0

   C   3   6

   C   o   m   p   E   (   6   A   L  -   6   V  -   2   S   n   )

   1   4   0

   1   5   0

   1   0

   1   6   0

   1   7   0

   1   0

   1   6   0

   1

   7   0

   8 .   0

   C   o   m   p   F   (   7   A   L  -   4   M   o   )

   1   3   5

   1   4   5

   1   0

   C   3   8

   1   6   0

   1   0

   1   6   0

   1

   7   0

   8 .   0

   T   Y   P   E   I   V ,   C   o   m   p   A   (   1   3   V  -   1   1   C

   r  -   3   A   1   )

   1   2   0

   1   2   5

   1   0

   1   2   0

   1   2   5

   1   0

   1   6   0

   1

   7   0

   1   0 .   0

   M   I   L  -   T  -   9   0   4   7 ,   C   l   a   s   s   1   (   U   n   a   l   l   o  y   e   d   )

   7   0

   8   0

   1   5

   C   2   3

   C   l   a   s   s   2   (   5   A   L ,   2 .   5   S   n

   )

   1   1   0

   1   1   5  -   1   2   0

   1   0

   C   3   6

   C   l   a   s   s   3   (   3   A   L ,   5   C   r   )

   1   3   0

   1   4   0

   1   0

   C   l   a   s   s   4   (   2   F   e ,   2   C   r ,   2   M   o   )

   1   2   0

   1   3   0

   1   5

   C   3   6

   C   l   a   s   s   5   (   6   A   L ,   4   V   )

   1   2   0

   1   3   0

   8

   C   3   6

   1   4   5

   1   6   0

   5

   1   5   0

   1

   6   0

   5 .   0

   C   l   a   s   s   6   (   6   A   L ,   4   V   )

   1   3   0

   1   4   0

   1   0

   C   4   0

   1   5   0

   1   6   0

   5

   1   6   0

   1

   7   5

   5 .   0

   C   l   a   s   s   7   (   5   A   L ,   1 .   5   F   e

 ,   1   5   C   r ,   1 .   5   M   o   )

   1   3   5

   1   4   5

   1   0

   C   3   9

   N   O   T   E   1   /   C   o   m   p

   A ,   B   a   n   d   C   a   r   e   c   l   a   s   s   i   f   i   e   d   a   s   c   o   m   m   e   r   i   c   a   l   l  y   p  u   r   e .

Page 188: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 188/288

T.O. 1-1A-9

above 1000oF under oxidizing conditions results insevere surface scaling as well as diffusion ofCAUTIONoxygen.

Cracked ammonia or hydrogen shall5-22. HYDROGEN EMBRITTLEMENT. Hydro-

not be used as a protective atmos-gen embrit t lement is a major problem with t ita-

phere for t itanium and t itaniumnium and t ita nium alloys. Hydr ogen is readily

alloys in any heat treating operations.absorbed from pickling, cleaning and scale removalsolution a t room temperat ure and from th e at mos-5-17. Air-chamber furnaces are more f lexible andphere at elevated tempera tures. Hydr ogen embrit-economical for large volumes of work and for low tlement in the basically pure and alpha alloys istemperature heat t rea tments ; but a t h igh tempera-evident by a reduction in ductility a nd a slighttures where surface oxidation (above 1000oF) isincrease in strength. This is associat ed with asignificant , a m uff le furna ce utilizing externa ldecrease in impact strength at temperatures below heating gives more protection, especially if gas200oF a nd a shif t in the temperat ure range wherehea ted. For genera l use, electric furna ces a re pre-th e cha nge from ductile to britt le occurs. Withferred since heating can be accomplished inter-alpha -beta alloys, embrit t lement is found a t slow nally or externally with a minimum of contamina-speeds of testing a nd un der consta nt or ‘‘sus-tion. Furna ces which ha ve given satisiactoryta ined ’’ loads as demonstra ted by t ests on notchedresults ar e vacuum furna ces capable of supplyingspecimens. This type of embrit tlement , which ispressures of one micron or less; and inert gas fur-similar to the embrittlement of steel, only becomesnaces which control the atmosphere to 1%or lessevident a bove a certa in strength level. Solutionof oxygen and nitrogen combined.heat t rea t ing and aging the a lpha-beta a l loys to

high st rength levels increases sensit ivity t o hydro-NOTE gen embrit t lement.Avoid direct f lame impengement to

5-23. Quenching from solut ion heat t rea t ing forprevent severe localized oxidation andtemperature w rought t ita nium a lloys, except forcont a mina tion. Also a void cont a ctalloy 3AL-13V-11Cr less than 2 inches thick,with scale or dirt .wh ich ma ybe air cooled, shall be by total imm er-

5-18. Al terna te ly d i rect res is t ance hea t ing may sion in wa ter. The wa ter shall be of sufficientbe used where extremely short heat up cycle on volume or circulat ion or both so tha t t he wa ternearly f inished part s is required to minimize sur- temperature upon completion of the quenchingface oxidation. operation will not be more than 100oF. The

quenching baths shall be located and arranged to5-19. The commercia l ly pure, or unalloyed t i ta-permit r apid tra nsfer of the load from th e furnacenium, ca n only be ha rdened/str ength ened by coldto the bat h. Maximum quench delay for immer-work. St ress relief an d annea ling ar e the onlysion-type quenching shall be 4 seconds for wroughthea t trea tm ents applicable to th ese a lloys. Thesealloys up to 0.091 nominal thickness and 7 seconds

processes of heat treat ment a re employed to for 0.091 a nd over. Quench delay time beginsremove residual stress resulting from grinding,wh en furna ce doors begin to open a nd ends w henwork hard ening, w elding, etc. For recommend edth e las t corner of the load is immersed. Withtemperatures and t imes see Ta ble 5-3.extremely large loads or long lengths quench delay

5-20. The soaking per iod for heat t rea tment of may be exceeded if performance test indicates thatt itanium alloys shall be the minimum necesaary to all pa rts comply wit h specificat ion requirements.develop the required mechanica l properties. The

5-24. AG I N G AN D S TRE S S RE L IE VI N G . F orminimum soaking period (when unknown) shall beaging, the material shall be held within tempera-determined by teat samples run prior to heatture range for sufficient time, depending on sec-treat ing the finiahed material or par t . Excessivetion size, for t he necessary a ging to ta ke place an dheat treat soaking periods a ha ll be avoided to pre-to insure that specified properties are developed.vent diffusion of oxygen hydrogen and nitrogen.Wrought alloys should be fully quenched by airOxygen a nd nit rogen diffusion w ill take th e formcooling from the aging temperat ure. The sa meof a hard brit t le surface layer which is difficult toapplies for stress relieving except the time at tem-distinguish from the base meta l. The brit t le lay erperature will depend on section size plus amount

must be removed by mechanical or chemical of cold w ork hardening present in the m at erial.means prior to forming or application in stressedThe material is also quenched by air cooling fromcomponents. For the recommended soa king peri-the st ress relieving temperature.ods and t empera tures see Ta ble 5-3.

5-21. Scal ing (oxidat ion) of t i tanium and t i ta-NOTEnium alloys starts at about 900oF. Light scaling

which forms from exposure to temperatures up to All heat t reating opera tions shall be1000oF ha s lit t le or no detrimenta l effect on performed uniformly on the wholemecha nical properties. Hea ting to temperatures part, etc., never on a portion thereof.

5-8

Page 189: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 189/288

T.O. 1-1A-9

5-9

  T a

  b  l e  5

 -  3 .

  H e a

  t   T

 r e a  t

 ,   S  t r

 e s s

  R e

  l  i e  f 

 a n

  d  A

 n n e a

  l  i n g

  T e m p e r a

  t u r e s a n

  d  T  i m

 e s

   S   T   R   E   S   S

   S   T   R   E   S   S

   A   N   N   E   A   L   I   N   G

   A   N   N   E   A   L   I   N   G

   H   E   A   T

   H .   T .

   A   G   I   N   G

   A   G   I   N   G

   R   E   L   I   E   F

   R   E   L   I   E   F

   T   E   M   P

       o   F

   T   I   M   E

   T   R   E   A   T   I   N   G

   S   O   A   K   I   N   G

   T   E   M   P

       o

   F

   S   O   A   K   I   N   G

   T   E   M   P

       o   F

   T   I   M   E

   H   O   U   R   S

   T   E   M

   P       o   F

   T   I   M   E

   T   I   M   E

   M   A   T   E   R   I   A   L

   H   O   U   R   S

   M   I   N   U   T   E   S

   H   O   U   R   S

   1   4   /

   U   n   a   l   l   o  y   e   d   C   o   m   m   e   r   c   i   a   l   l  y

   1   0   0   0  -   1   1   0   0

   1   /   2  -   1

   1   0   0   0  -   1   3   0   0

   1   1   /   2  -   2

   H   a   r   d   e   n   e   d   o   n   l  y   b  y   c   o   l   d  w   o   r   k

   P  u   r   e   C   o   m   p   A ,   B   a   n   d   C

   9   0   0

   2  -   4

   8   0   0

   8

   A   l   p   h   a   A   l   l   o  y   s

   5   A   1  -   2 .   5   S   n

   1   0   8   0  -   1   1   2   5

   1  -   2

   1   3   3   5  -   1   5   5   0

   1   /   4  -   4

   H   a   r   d   e   n   e   d   o   n   l  y   b  y   c   o   l   d  w   o   r   k

   5   A   1  -   5   Z   r  -   5   S   n

   1   1   0   0  -   1   3   0   0

   1   /   2  -   3   /   4

   1   3   3   5  -   1   5   5   0

   1   /   4  -   1

   7   A   1  -   1   2   Z   r

   1   2   7   5  -   1   3   2   5

   1   /   2  -   3   /   4

   1   6   3   0  -   1   6   7   0

   1   /   4  -   1

   7   A   1  -   2   C   b  -   1   T   a

   2   /

   1   0   0   0  -   1   2   0   0

   1   /   3  -   3   /   4

   1   6   3   0  -   1   6   7   0

   1   /   4  -   1

   8   A   1  -   1   M   o  -   1   V

   1   /

   1   2   8   5  -   1   3   1   5

   1   /   2

   1   4   3   0  -   1   4   7   0

   8

   A   l   p   h   a  -   B   e   t   a   A   l   l   o  y   s

   8   M   n

   3   /

   9   5   0  -   1   0   0   0

   1   /   2  -   2

   1   2   5   0  -   1   3   0   0

   1

   N   o   t   r   e   c   o   m   m   e   n   d   e   d

   2   F   e  -   2   C   r  -   2   M   o

   4   /

   8   0   0  -   1   0   0   0

   1   /   2  -   1   5

   1   1   7   5  -   1   2   0   0

   1   /   2

   1   6   5   0  -   1   7   5   0

   5  -   2   5

   9   0   0  -   9   5   0

   4  -   6

   2 .   5   A   1  -   1   6   V

   5   /

   9   6   0  -   9   9   0

   3  -   5

   1   3   6   0  -   1   4   0   0

   1   /   1   6  -   1   /   2

   1   3   6   0  -   1   4   0   0

   1   0  -   3   0

   9   6   0  -   9   9   0

   3  -   5

   3   A   1  -   2 .   5   V

  -  -  -

  -  -  -

   1   2   5   0  -   1   3   5   0

   1   /   2  -   1   1   /   2

   N   o   t   r   e   c   o   m   m   e   n   d   e   d

   4   A   1  -   4   M   n

   6   /

   1   2   5   0  -   1   3   5   0

   1   /   2  -   2   1   /   2

   1   2   5   0  -   1   3   0   0

   2  -   2   4

   1   4   2   0  -   1   4   8   0

   6   0  -   1   2   0

   8   7   5  -   9   2   5

   6  -   1   0

   4   A   1  -   3   M   o  -   1   V

   7   /

   9   0   0  -   1   1   0   0

   1   /   2  -   8

   1   2   2   5  -   1   2   5   0

   2  -   4

   1   6   2   0  -   1   6   6   0

   1   0  -   2   0

   9   1   0  -   9   4   0

   6  -   1   2

   5   A   1  -   1 .   2   5   F   e  -   2 .   7   5   C   r   7   /   8   /

   1   0   0   0  -   1   1   0   0

   1   /   2  -   2

   1   4   2   5  -   1   6   5   0

   1   /   3  -   2

   1   3   5   0  -   1   5   5   0

   1   0  -   6   0

   9   0   0  -   1   0   0   0

   6  -   1   0

   5   A   1  -   1 .   5   F   e  -   4   C   r  -   1 .   2   M   o   9   /

   1   1   0   0  -   1   2   0   0

   1   /   2  -   2

   1   1   8   0  -   1   2   0   0

   4  -   2   4

   1   6   5   0  -   1   7   0   0

   3   0  -   1   2   0

   9   5   0  -   1   0   5   0

   4  -   8

   6   A   1  -   4   V

   7   /   1   0   /   5   /

   9   0   0  -   1   2   0   0

   1   /   2  -   5   0

   1   2   7   5  -   1   5   5   0

   1   /   2  -   8

   1   6   7   0  -   1   7   3   0

   5  -   2   5

   9   6   0  -   9   9   0

   4  -   6

   6   A   1  -   6   V  -   2   S   n   9   /   1   5   /

   1   0   0   0  -   1   1   0   0

   1   /   2  -   3

   1   3   0   0  -   1   5   0   0

   2  -   3

   1   5   7   5  -   1   6   7   5

   3   0  -   6   0

   8   7   5  -   1   1   7   5

   4  -   8

   7   A   1  -   4   M   o   1   1   /

   9   0   0  -   1   3   0   0

   1   /   2  -   8

   1   4   2   5  -   1   4   5   0

   1  -   8

   1   6   7   5  -   1   2   7   5

   3   0  -   9   0

   9   7   5  -   1   1   7   5

   4  -   8

   6   A   1  -   4   V   (   l   o  w   o   )   1   0   /   5   /

   9   0   0  -   1   2   0   0

   1   /   2  -   5   0

   1   2   7   5  -   1   5   5   0

   1   /   2  -   8

   N   o   t   r   e   c   o   m   m   e   n   d   e   d

   B   e   t   a   A   l   l   o  y

   3   A   1  -   1   3   V  -   1   1   C   r   1   2   /

   9   0   0  -   1   0   0   0

   1   /   4  -   6   0

   1   4   3   0  -   1   4   7   0

   1   /   4  -   1

   1   3   7   5  -   1   4   2   5

   3   0  -   9   0

   8   8   0  -   9   2   0

   2  -   6   0

   1   A   1  -   8   V  -   5   F   e

   1   3   /

   1   0   0   0  -   1   1   0   0

   1   /   4  -   6   0

   1   2   0   0  -   1   3   0   0

   1   /   2  -   1   1   /   2

   1   3   7   5  -   1   4   7   0

   1   5  -   6   0

   9   2   5  -   1   0   0   0

   1  -   3

Page 190: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 190/288

Page 191: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 191/288

T.O. 1-1A-9

5-25. FABRICATION. hinge-type dies ar e used. When cold forming isemployed, it is usually desirable to partially form

5-26. FORMING SHE ET METAL-GE NERAL. the parts, stress-relieve at 1000oF for 20 minutes,The forming of the una lloyed t ita ntum can be then f inish form. Hot forming for severely con-accomplished at room temperature using approxi-

toured parts or when only low-forming pressuresma tely the sa me procedures as t hose extablished

are available is accomplished between 600oF a n dfor 18-8 sta inless steel. The basic diff iculties

800oF. For this procedure, the form block isencountered are sheet thickness, property varia- heated to the required temperature, the blanktions, direction of grain f low a nd f lat ness. The

positioned and covered with powdered or shreddedabove factors combined w ith h igh yield strength,

asbestos; then a rubber pad 70 to 80 Durometerhigh tensile strength a nd low uniform elongat ion

ha rdness is pla ced on top. This extra pa d of rub-of commercial t ita nium a lloys ma kes forming diff i-ber serves two purposes: First, it provides addi-cult . The current equipment ava ilable wa stional rigidity for forming; and second, it protectsdesigned for ma terial of uniform q uality an d con-the press-contained rubber from the hot formsiderable work is required for ada ptat ion to formblock.t i tanium.

5-27. BE NDING. S t r a igh t -Edge Bending of t i t a - 5-31. Tooling for hydropress form blocks, if ele-nium using power brake on ha nd forming equip- vat ed temperature forming is t o be used, requiresment can be accomplished to a limited degree that pressure plates and dies be made somewhatusing the methods developed for stainless steel. thicker tha n in norma l pra ctice. If long runs are

The factors which require control are the compen- anticipated, it is recommended that form blocks besat ion for springback and the bend radii. Spr- made from a good grade of hot-work tool steel dueingback is comparable to that of hard stainless to the galling action of t itanium at elevatedsteel wh en formed at room temperat ure. The bend temperatures.ra dii will depend on th e type of ma terial or a lloyand whether forming is accomplished hot or cold. 5-32. STRETCH FORMING. S t re t ch formingThe forming of material requiring tight bends or ha s been used on t it an ium primarily t o bendsma ll radii necessitat es the a pplicat ion of heat in angles, hat sections, Z-sections and channels andthe range of 500oF. The heat sh ould be a pplied for

to stretch form skins so that they w ill f it t he con-only short periods of tim e to a void excessive oxy-

tour of the airplane fuselage. This type of forminggen and nitrogen conta mina tion which causes

is accomplished by gripping the section to beembritt lement. For a pproxima te cold bend ra dii of

formed in knurled jaws, loading until plastic defor-sheet t itanium see Ta ble 5-4. Actual pra ctice ma y

mation begins, then wrapping the part around areveal that smaller bend radii can be used.

fema le die. This opera tion is performed at roomtemperature a nd should be done at a very slow 5-28. DRAW FORMING. Deep draw formingra te. Sprin g back is equivalent t o th a t of 1/4 ha rdshould not be a ttempted unless adequa te equip-18-8 sta inless steel. All blanks for str etch-formingment an d facilit ies are ava ilable. This will requireshould have the edges polished to remove anythat facilit ies be maintained for heating and con-notch effects. Approxima tely 0.025 inch of shearedtrolling temperatures of the blanks to be formededges should be r emoved.an d th e dies used in t he forming opera tion.

5-29. HYD RAU L I C PRE S S F ORM IN G . Ru bb er 5-33. DROP-HAMMER FORMING. Drop-ham-pad hydropress forming can be accomplished mer forming of titanium has been very successfuleither hot or cold depending on the type tooling an d ha s been a ccomplished both a t room a nd a temployed an d the press pressures used. This type

elevat ed temperatur es. Kirksite is satisfactory forof forming is used on parts t ha t a re predominately

male and female dies where only a few parts aref la t and have f langes, beads , a nd l ightening holes .

required. If long runs a re to be ma de, ductile ironA male form block is set on the lower press platen

or lamina ted steel dies are usually necessary. Inand the blank held in place on the block by locat-drop-hammer forming, the best results have been

ing pins. A press-cont a ined r ubber pa d (45 to 55obtained by warning the female die to a tempera-

Shore Durometer hardness a nd a bout 8 inchesture of 200o to 300oF t o remove the chill and h eat-

thick) is located over the form block and blank.ing the bla nk to a temperature of 800o 1000oF forThe press is then closed. As the ra m is lowered,10 to 15 minut es. The part is th en struck an d setthe rubber pad envelops the form block forcing thein the die. Usua lly a stress relief operation atsheet metal blank to conform to its contour.1000oF for 20 minutes is necessary, then a re-strike operat ion. In most instances, a f inished5-30. Many par t s can be formed a t room temper-part requiring no hand work is obtained.at ure on th e hydropress if f la nge clips, wedges and

5-11

Page 192: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 192/288

T.O. 1-1A-9

Tab le 5-4 . Recommended M in im um CCLD B end Rad i i 

MINIMUM BEND RADIUS (90 DEGREE BEND) 1/TYP E /C OMP 0.070 & under t hickness over 0.070 t o 0.187

Type I - Commercially Pure

Comp A (una lloyed 40,000 psi) 2T 2.5T

Comp B (una lloyed 70,000 psi) 2.5T 3T

Comp C (una lloyed 55,000 psi) 2T 2.5T

Type II - Alpha Titanium Alloy

Comp A (5AL02.5S n) 4T 4.5T

Comp B (5AL-2.5S n E L1) 4T 4.5T

Comp C (5AL-5Zr-5S n) 4.5T 5T

Comp D (7AL-12Zr) 5T 5T

Comp E (7AL-2Cb-1Ta ) -- --

Comp F (8AL- 1Mo-1V) 4.5T 5TType III - Alpha-Beta

Comp A (8Mn) 3T 3.5T

Comp B (4AL-3Mo-1V) 3.5T 4T

Comp C (6AL-4V) 4.5T 5T

Comp D (6AL-4V) 4.5T 5T

Comp E (6AL-6V-2S n) -- --

Comp F (7AL-4Mo) -- --

Type IV - Beta

Comp A (13V-11Cr-3AL) 3T 3-5T

1/T = Thickness of ma ter ia l. E xa mple: A piece of 0.040 MI L-T-9046, Type II , Com position A, wouldrequire a bend ra dii of 4 x 0.040 = 0.160 bend ra dii (minim um).

5-34. J O G GLI NG . J oggling of t it anium ca n be 5-35. B LANK ING AND S HE AR ING . Theseaccomplished without any par t icular di f f iculty pro- operat ions compare to those of 18-8 s ta inless s teelvided the following rules are adhered to: in t he 1/4 ha rd condit ion for commer cially pure,

a nd th e a lloys compare t o 1/2 ha rd 18-8 sta inlessa . The joggle die corner radius should not be

steel. The force required for tit a nium a nd itsless than 3T-8T.

alloys is greater and the dies wear faster. Mat eri-als up to 0.125 inch in thickness have beenb . J ogg le run-out should be the determin ingshea red on 1/2 inch capa city f lat bed shear sfactors whether joggles are formed hot or cold.designed for steel. If this capa city is to beJ oggles should be formed hot w here a ra tio of jog-exceeded, the shear designer should be consulted.gle run-out to joggle depth is less than 8.1.

c. Min imum jogg le run-outs should be a s 5-36. Before any forming or other opera t ions arefollows: performed 0.025 inch of the sheared, blanked,

sawed, or nibbed edges should be removed to pre-Hot joggling - four t imes t he jogglevent stress risers that will cause a tear in the partdepth.during forming operations.

Cold joggling - eight t imes t he joggledept h. 5-37. Delet ed.

Paragraphs 5-38 through 5-42 deleted.Pages 5-13 through 5-14 deleted.

5 -1 2 Change 2

Page 193: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 193/288

T.O. 1-1A

5-43. D eleted. increa sed a bout 65% over tha t required for highstrength aluminum rivets . B etter results can be

5-44. D elet ed .obtained by using the squeeze method rather thathe rivet gun an d bucking bar . When it is neces5-45. D elet ed .sary to have f lush-head r ivets , dimpling can be

5-46. D elet ed . accomplished at temperatures of 500oF to 700oF.Other types of r ivets such a s high strength alum

5-47. SOLDERING. L imited in forma t ion i s num, sta inless steel and monel are also used toa va ilable on soldering. It is possible to success-join t it an ium.fully solder t ita nium w here lit t le strength is

required, by precoating w ith a thin f ilm of silver, 5-49. Due to dif f icult ies involved, the above mcopper or tin from their chloride salt s. This can be tioned method will probably be replaced in mostaccomplished by heating the chloride salts-coated cases with rivets of the high shear series, i.e., pintita nium in a n a tmosphere controlled furnace as rivets su ch a s NAS1806 thr ough NAS1816, tensipreviously mentioned in paragraph 5-18. The rivet NAS-2006 through NAS-2010, and shearresultant film should be made wet with either a rivet NAS-2406 through NAS-2412.60%t in-40%lea d or a 50%-50%t in a nd lea d sol-

5-50. As w i th o ther meta ls, i t i s necessa ry toder. Since the deposited film ma y dissolve in thetake precautions to avoid galvanic corrosion wheliquid solder and dewet t he surface, it is importa ntt ita nium is riveted to other meta ls . This can bethat the t ime and temperature be held to aaccomplished by coat ing the t ita nium w ith zincminimum.

chromat e primer S pecif icat ion MIL-P -8585.5-48. RIVETING. Rive t ing of t i t an ium can beaccomplished using conventional equipment withrivets ma nufactured from commercially pure ma te-rial; however, the rivet holes require close toler-a nces to insure good gripping. The driving tim e is

Table 5-5 deleted.

Change 1 5 -15 / ( 5 -16 bl an

Page 194: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 194/288

Page 195: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 195/288

T.O. 1-1A-9

5-51. MACHINING AND GRINDING. if there is any lost motion in the feed mechanismof the table, the piece being cut will be pulled into

5-52. MACHINING. Commercia l ly pure, una l- the cutt er. This may da ma ge the cutter or theloyed titanium machines similarly to 18-8 stainless work piece.steel, but the alloy grades are somewhat harder.Va r ia t ion s i n a ct ua l pr a ct ice w i ll depen d on t he 5-59. F or ef fect iv e m illin g, th e w or k f eed sh ou ldtype of work , equipment , and f in ish , so the fol low- move in the s ame direct ion a s the cu t t ing t ee th,

in g in for ma t ion is on ly in ten ded a s a gu id e. a n d for fa ce m illin g t he t eet h s hou ld em er ge fr omthe cut in the sa me direction tha t t he work is fed.

5-53. The bas ic requirements are : r ig id machinesetups , use of a good cu t t ing f lu id tha t emphas izes 5-60. To select the appropria te tool ma ter ia l it i scool in g r a t her t h a n lub ri ca t i on , sh a r p a n d pr oper a d v is a ble t o t r y bot h ca s t a l loy a n d ca r b id e t ool s t otools, slow speeds and heavy feeds . S ince t it an ium determine the be t ter of the tw o for l a rge mil linghas a t endency to ga l l and seize on other meta ls , jobs. This should be done s ince the cu t ter usua l lyt h e u se of sh a r p t ool s i s ver y im por t a n t . S l id in g f a il s b eca u s e of ch ip ping , a n d t h e r es ul t s a r e n otcon tac t , and r id ing of the tool on the work mus t be as s a t i sf actory w i th ca rb ide a s they a re w i th cas t -a voided. a lloy tools. The increa se in cut t ing speeds (20 t o

30%) possible by using carbide r a ther th a n ca st5-54. TURNING. Commercia l ly pure and a l loy (all alloy tools) does not always compensate for thetita nium is not difficult to turn. Ca rbide tools additional tool grinding cost.such as m etal ca rbides C91 an d C arboloy 44A an d

other similar types give the best results for turn- 5-61. The same water-base cut t ing f luids useding tita nium. Coba lt-type high speed steels give for turning are recommended for milling; however,the best results of the ma ny types ava ilable. Ca st carbide tools ma y give better results when dr y.alloy tools such a s S tellite, La ntung, Rexalloy, etc. ,

5-62. S ee Ta ble 5-8 for recommended speed andma y be used when carbide is not a vaila ble, orfeeds. For tool grindin g informa tion see Ta ble 5-9.when the high speed steels , are not sa tisfactory.

5-63. DRILLING. Dr i ll ing of t i t an ium can be5-55. The recommended cut t ing f luids areaccomplished successfully with ordinary highwa terbase cutt ing f luids such a s soluble oils orspeed steel drills. Low speeds an d heavy positivechemical type f luids.feeds are required. The unsupported port ion of

5-56. Tables 5-6 a nd 5-7 show suggested turning the drill should be as short as possible to providespeeds, tool a ngles an d feeds. All work should be maximum rigidity and to prevent drill running.accomplished with live centers since galling or All holes should be drilled w ithout pilot holes if

seizing will occur on dea d centers. Tool sha rpness possible. As wit h oth er mat erials, chip removal isis aga in emphasized because a nick or a seized one of the principal problems and the appearancechip on a tool increases t empera ture a nd w ill of the chip is an indicat ion of the sha rpness andcause rapid tool failures. correct grinding of the drill. In dr illing deep holes

intermittent drilling is recommended. Tha t is , the5-57. MILLING . Consider ing the type of tool drill is removed from t he hole at intervals t owhich is required in milling operations, it can be remove the chips.readily seen th at this ty pe of ma chining is mored if f i cu lt t h a n t ur n in g. Th e d if f i cu lt y en cou n t er ed 5-64. Th e cu t t in g f luids recom m en d ed a r e s ul fu -is that chips remain t ightly welded to the cutter ’s rized and chlorinat ed coolan ts for drills with diam-edge at the end of cut or during the portion of the eters of less tha n 1/4 inch an d m ixtures of minera lrevolution th a t it does not cut. As the cutt er oil or soluble oil with water for hole sizes largersta rts t he next machining portion the chips ar e tha n 1/4 inch dia meter.knocked off. This dam a ges the cutting edge a nd

5-65. The cut t ing speed should be 50 to 60 FPMthe t ool fails rapidly. for th e pure grad e of t ita nium a nd 30 to 50 FP M5-58. One method that can be ut il ized to relieve for alloy gra des. Feeds should be 0.005 to 0.009this diff iculty to a great extent is climb milling. inch for 1/4 to 1/2 inch d ia met er d ril ls; 0.002 toThe cutter machines the thinnest portion of the 0.005 inch for smaller drills. Point angle, 90o forchip a s it leaves the cut. Thus, the ar ea of conta ct drills 1/4 inch diam eter a nd la rger a nd 140o forbetween chip and tool is at a minimum when the drills 1/8 inch dia met er or less; but 90o, 118o a ndchip is removed at the sta rt of the next cutt ing 140o should be tried on large jobs to determine thepor t ion of t h e r ev olu t ion . Th is w i ll r ed uce t h e a n gle t h a t w i ll g iv e t h e b es t r es ul t. H elix a n gled a ng er of ch ippin g t h e t ool . Th e m a ch in e u sed for 28o to 35o and lip relief 10o. Additional informationcl imb mil ling should be in good condit ion because on dr il ls may be obta ined f rom NAS907.

5-17

Page 196: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 196/288

T.O. 1-1A-9

Tab le 5-6 . Turn ing Speeds for T i tan ium Al l oys 

TYP E MILITARY CU TTING S P E E D FE E D , in/rev TOOLMIL-T-9047C FP M MATE RIAL

U na lloyed Cla ss 1 250-300 0.010-0.020 Ca rbide

70,000 P S I 150-170 0.004-0.007 H i-S peed S t eel170-200 0.005-0.010 Ca st Allloy

5A1, 2.5 S n Cla sses 2, 3, 4, 120-160 0.008-0.015 Ca rbide3A1, 5Cr 5, a nd 6 30-60 0.004-0.007 B i-S peed S t eel2F e, Cr 2 Mo 50-80 0.005-0.010 Ca st Alloy6A1, 4V4A1, 4Mn

5A1, 1.5 Fe Cla ss 7 110-150 0.005-0.012 Ca rbide1.5 Cr , 1.5 Mo 20-40 0.003-0.006 H i-S peed S t eel

40-70 0.004-0.008 Ca st Alloy

NOTE : For cutt ing forgin g skin speed 1/4 of th a t a bove an d feeds a bout 1/2.

Tab le 5-7 . Tool Ang les for A l loys 

TOOL ANG LE S CARB ID E H IG H S P E E D S TE E L CAS T ALLOY

B a ck Ra ke 0o 5o P os 5 P os

S ide Ra ke 6o 5o - 15o 5o - 15o

S ide C ut t ing 6o 5o - 15o 5o - 15o

Edge Angle

E nd Cut t ing 6o 5o 5o

Edge Angle

Relief 6o 5o 5o

Nose Ra dius 0.040 inch 0.010 inch 0.005 inch t o0.010 inch

Table 5-8. Speeds and Feeds for M il l ing 

MILLING S P E E D FE E D , IP T TOOLTYP E MILITARY FP M -IN INCH E S MATE RIAL

U na lloyed MIL-T-9047C 160-180 0.004-0.008 Ca rbide70,000 P S I C la ss 1 120-140 0.004-0.008 Ca st Alloy

5A1, 2.5S n Cla ss 2, 3, 4, 80-120 0.004-0.008 Ca rbide3A1, 5CR 5, 6 80-100 0.004-0.008 Ca st Alloy

2Fe, 2Cr, 2Mo,6A1, 4V4A1, 4Mn

5A1, 1.5Fe, 1.5Cr Cla ss 7 70-110 0.004-0.008 Ca rbide1.5Mo 70-90 0.004-0.008 Ca st Alloy

5-18

Page 197: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 197/288

T.O. 1-1A-9

Tab le 5-9 . Ang les for Tool Gr ind i ng  c. Cut t ing f lu id ; Act ive cu t t ing oi l such as o il ,cutting, sulfurized mineral, Specification VV-O-283, Grade 1.

CAS T ALLOY CARB ID E5-69. REAMING. Prepara t ion of the hole to beANG LE S TOOL TOOLreamed a nd th e type of reamer used is the key-note to successful reaming opera tions. As withAxia l Ra ke 0o 0o

tapping operations, the hole to be reamed shouldRa dia l Ra ke 0o 0obe drilled with a shar p drill. A stra ight-f lutedreamer can be used, but spiral-f luted reamersCorner Angle 30o 60o

with carbide t ips usually produce the best r esults .E nd C ut t ing 6o 6o

Speeds of 40-200 FP M a nd feeds of 0.005 to 0.008Edge Angle inch are sa tisfactory; however, th ese factors

depend on th e size of th e hole. Feeds shouldRelief 12o 6-10o

increase in proportion t o the size of th e hole. Theremoval of larger amounts lessens the degree of5-66. TAPP ING. Due to the ga l ling and seizingconcentricity. If the degree of concentr icity is a nthat are characterist ic of t itanium, tapping is oneimporta nt fa ctor, sma ller a mounts should beof the more diff icult ma chining operat ions. Chipremoved.removal is one of the problems that will require

considerable attention in an effort to tap t itanium. 5-70. GRINDING. The essen t ia l requ irementsAnother problem will be the smear of titanium.

for grinding are the selection and use of grindingB uild up from smea r w ill cause t he ta p to freeze or f luids an d abra sive wheels. G rinding of t ita niumbind in the hole. These problems can be alleviated is different from grinding steel in that the abra-to some extent by t he use of an active cutt ing f luid sive grain of the wheel wears or is dissolved by asuch as sulphurized an d chlorinat ed oil. surface reaction, rather than wheel wear which is

caused by brea ka ge. To overcome this problem,5-67. P ower equipment should be used when pos-lower wheel speeds and the use of aluminum oxidesible and a hole to be tapped should be drilledor soft bonded silicone carbide wheels employingwith a shar p drill to prevent excessive hard eningwet grinding methods a re recommend ed. Recom-of the hole wa ll. In the att empt to ta p t ita nium,mended wheel speeds are; 1500-2000 SFPM anddifficulties involved can be minimized by reducingtable feeds of 400 to 500 inches per minute withth e threa d to 55 or 65%from th e sta nda rd 78%.down feed of 0.001 inch maximum per pass and

5-68. The fol lowing are procedures and mater ia l using 0.05 inch cross feed for highest grindingrecommended for ta pping t ita nium: ratios.

a . Cut t ing speed : 40 to 50 FP M for una l loyedan d 20 to 30 FP M for the alloy grades.

b. Type of Tap: Gun or spira l point , 2 f lutedin siz es 1/4-20 or 1ess; 3 f lut ed in s izes gr ea tert ha n 1/4-20.

5-19/ (5-20 blank)

Page 198: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 198/288

Page 199: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 199/288

T.O. 1-1A-9

SECTION VI

COPPER AND COPPER BASE ALLOYS

6-1. C OP P E R AN D C OP P E R B AS E AL LOYS . a n d h a s a n elect rica l con du ct iv it y of 20%. B er ry l-

lium-coppers a re w idely used for t ools w here non-6-2. Most o f the commercia l coppers are ref inedsparking qua lit ies a re desired.

to a purit y of 99.90%, min imu m copper plus silver.The two pr incipa l copper base a l loys a re brass and MANGANESE - Added pr imar ily a s a desu lfuriz-bronze, con ta in ing z inc and t in respect ively , a s the ing and de-gass ify ing e lement for a l loys con ta in ingm a jor a lloyin g elem en t. Alloy design at ion s for n ickel.wrought copper and copper alloys are listed in

6-4. CH EMICAL COMPOSITION. - The chemi-table 6-1, with the corresponding specification andcal composition of the copper alloys (listed by com-common tra de nam es.mercial t ra de nam e) is listed in table 6-1.

6-3. C OP P E R AL L OYI NG E L E ME N TS .6-5. HE AT TREATMENT AND NOT WORKING

ZINC - Added to copper to form a series of alloys TEMP ERATURE OF COP P ER ALLOYS.known as bras ses. They are ductile, ma lleable,corrosion resistant and have colors ranging from NOTE

pink to yellow. Additiona l Heat Treatm ent informa -TIN - Added to copper to form a series of alloys tion is discussed in Section IX.known as bronzes. B ronzes are a qua lity spring

6-6. During product ion and fabr ica t ion, copperma terial, a nd a re strong, ductile and corrosionalloys may be heated for homogenizing, hot work-res is tant .ing, stress relief for solution t reatm ent, a nd pre-

LEAD - Added to copper in amounts up to 1%to cipita tion ha rdening. The tempera tur es commonlyform a machinable, high-conductivity copper rod. used for heating, hot working and annealing afterIt is added to brasses or bronzes in amounts of 0.5 cold working are given in table 6-2.to 4%to improve machinability a nd in t he ran ge of2 -4%t o improve bearing propert ies. 6-7. S TRE S S RE L IE F OF COPP E R AL L OYS .

ALUMINUM - Added to copper as a predominat- 6-8. Table 6-3 below gives a list of typical stressing a lloy element to form a series known a s a lumi- relief tr eat ment s commonly used in industr y. Thisnum bronzes. These a lloys a re of high strengt h

table is listed in terms of chemical compositionand corrosion resistance. percents, a nd should be used as representing a ver-age st ress relieving temperatures.IRON - Added to copper along with aluminum in

some aluminum bronzes and with manganese in6-9. M AC H I NI NG C OP P E R AN D C OP P E R

some manganese bronzes.ALLOYS . Free cutt ing bra ss is one of the mosteas i ly ma chined meta ls and serves a s a s tanda rdP HOS P HOROU S - Added to copper principally a sfor ma china bility ra ting s of copper alloys. The fol-a deoxidizer and in some bronzes to improvelowing table gives the machinability rat ings andspring properties.recommended speeds and feeds for use with high

NICKEL - Added to copper for higher strength speed steel tools.wit hout loss of ductility. They ha ve excellent cor-rosion resistance. 6-10. WROU G H T-CO PPE R-B E RYL LI U M

ALLOYS . The beryllium copper alloys are fre-SI LIC ON - Added t o copper to form t he copper -

quently used due to their ability to respond to pre-

silicon series having high corrosion resistance com- cipitat ion or age hardening treatments and otherbined with strength and superior welding quali-benef icial chara cterist ics. Some of the cha racteris-

ties. Sma ll amounts a re used as deoxidizers.tics are; good electrical and thermal conductivity,

BE RYLLIUM - Added to copper to form a ser ies of h igh s t reng th ha rdness , cor ros ion resist ance, gooda g e ha r d en a b le a ll oy s. I n t h e f ul ly t r ea t e d con d i- w e a r r es is t a n ce, n on -m a g n et i c q u a li t ies a n d ver yt ion , it is th e s tr on ges t of th e copper ba s e a l loy s g ood fa t ig ue s tr en gt h .

6-1

Page 200: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 200/288

T.O. 1-1A-9

Table 6-1. Chemi cal Composit i on by Trade Nam e 

C O P P E RSPECIFICATION

ALLOYNO. FE D E RAL MILITARY TRAD E NAME

101 QQ-A-673, t ype I I MIL-W-85C Oxygen free cer t if ied copper .QQ-C-502QQ-C-576QQ-W-343WW-P-377

102 QQ-A-673Type I I MIL-W-85C Oxygen free copper.QQ-C -502 MIL-W-6712AQQ-C-825QQ-C-576QQ-R-571, C la ssFS-RCu-1QQ-W-343

WW-T-799104 QQ-C -502 Oxygen free w it h silver .

QQ-C-825

105 QQ-C -502 Oxygen free w it h silver .QQ-C-825

110 QQ-A-673, Type I MIL-W-3318 E lect roly t e Tough pit chQQ-C -502 MIL-W-6712 copper .QQ-C-825QQ-C-576

128 QQ-C -502 Fire ref ined t ough pit chQQ-C -576 w ith silver.

130 QQ-C -502 Fire ref ined t ough pit chQQ-C -576 w ith silver.

170 QQ-C -530 B eryllium Copper172 QQ-C-533

210 QQ-W-321, G ilding, 95%comp 1

220 QQ-W-321, MIL-W-85C Commercia l bronze, 90%comp 2 MIL-W-6712

230 QQ-B -613,comp 4 Red B ra ss, 85%QQ-B -626,

comp 4QQ-W-321comp 3WW-P-351Gra de AWW-T-791Gra de 1

6-2

Page 201: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 201/288

T.O. 1-1A-9

Table 6-1. Chemi cal Composit i on by Trade Name - Cont in ued 

C O P P E RSPECIFICATION

ALLOYNO. FE D E RAL MILITARY TRAD E NAME

240 QQ-B -591 Low B ra ss, 80%QQ-B -613comp 3QQ-B -626comp 3QQ-B -650comp DQQ-W-321 J AN-W-472comp 4

260 QQ-B -613 *MIL-S -22499 C a rt r idge bra ss, 70%comp 2 and 11QQ-B -626 MIL-T-6945comp 2 a nd 11 comp I I

QQ-B -650 MIL-T-20219comp CQQ-W-321comp 6

*Laminated ShimStock

261 S a me a s 260

262 QQ-B -613comp 11QQ-B -626comp 11

268 QQ-B -613 Yellow bra ss, 66% (S heet )comp 1 and 11QQ-B -626comp 1 and 11

270 QQ-B -613 Yellow bra ss, 65% (rod a nd w ire)comp 11QQ-B -626comp 11QQ-W-321comp 7

274 QQ-B -613 Yellow bra ss 63%comp 11QQ-B -626comp 11

QQ-W-321comp 8

6-3

Page 202: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 202/288

T.O. 1-1A-9

Table 6-1. Chemi cal Composit i on by Trade Name - Cont inu ed 

C O P P E RSPECIFICATION

ALLOYNO. FE D E RAL MILITARY TRAD E NAME

280 QQ-B -613 Muntz met a l, 60%comp 11QQ-B -626comp 11WW-P-351Gra de CWW-T-791Gra de 3

298 QQ-B -650 B ra zing Alloycomp A

330 QQ-B -613 Low lea ded bra sscomp 11 MIL-T-6945QQ-B -626 comp I I I

Comp 11WW-P-351Gra de BWW-T-791Gra de 2

331 QQ-B -613comp 11QQ-B -626comp 11

110 QQ-R-571, C la ssFS-RW-1QQ-W-343WW-P-377

111 QQ-C -502 E lect rolyt ic Touch pit chQQ-C -825 a nnea l resist copperQQ-C-576QQ-W-343

114 QQ-C -502 Tough pit ch w ith silverQQ-C-825QQ-C-576

116 QQ-C -502 Tough pit ch w ith silverQQ-C-825QQ-C-576

120 QQ-C -502 MIL-W-85C P hosphorous deoxidized low  

QQ-C -576 residua l phosphorus copperWW-P-377WW-T-797WW-T-799

6-4

Page 203: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 203/288

T.O. 1-1A-9

Table 6-1. Chemi cal Composit i on by Trade Name - Cont in ued 

C O P P E RSPECIFICATION

ALLOYNO. FE D E RAL MILITARY TRAD E NAME

121 QQ-C-502QQ-C-576

122 QQ-A-674, Type P hosphorus deoxidized highI I I residua l phosphorus copperQQ-C-502

122 QQ-C-576WW-P-377WW-T-797

123 QQ-C-502QQ-C-576

125 QQ-C-502 F ire ref ined tough pit chQQ-C-576 copper

127 QQ-C-502 F ire ref ined tough pit chQQ-C-576 w it h silver

332 QQ-B -613 H igh lea ded bra sscomp 11QQ-B -626comp 11

340 QQ-B -613 comp 11 Medium lea ded bra ss 641/2%QQ-B -626comp 11

335 QQ-B -613 Low lea ded bra sscomp 11

QQ-B -626comp 11

342 QQ-B -613 H igh lea ded bra ss 641/2%comp 11 an d 24QQ-B -626comp 11 an d 24

344 QQ-B -613comp 11QQ-B -626comp 11

347 QQ-B -613comp 11QQ-B -626comp 11

348 QQ-B -613comp 11QQ-B -626comp 11

6-5

Page 204: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 204/288

T.O. 1-1A-9

Table 6-1. Chemi cal Composit i on by Trade Name - Cont inu ed 

C O P P E RSPECIFICATION

ALLOYNO. FE D E RAL MILITARY TRAD E NAME

350 QQ-B -613 Medium lea ded bra ss 62%comp 11QQ-B -626comp 11

353 QQ-B -613 E xt ra H igh lea ded bra sscomp 11QQ-B -626comp 11

356 QQ-B -613 E xt ra H igh lea ded bra sscomp 11QQ-B -626comp 11 and 22

370 QQ-B -613 Free cut t ing muntz met a lcomp 11QQ-B -626comp 11

360 QQ-B -613 Free cut t ing bra sscomp 11QQ-B -626comp 11 and 22

377 QQ-B -626 Forging bra sscomp 21

443 WW-T-756 Admira lt y, Arsenica l

444 WW-T-756 Admira lt y, Ant imonia l

445 WW-T-756 Admira lt y, P hosphorized

462 QQ-B -626 Na va l B ra ss, 631/2%comp 11QQ-B -637comp 4

464 QQ-B -613 Na va l B ra sscomp 11 MIL-W-6712QQ-B -626comp 11 MIL-T-6945QQ-B -637 comp 1comp 1

465 QQ-B -613 MIL-W-6712 Na va l bra ss, a rsenica lcomp 11QQ-B -626 MIL-T-6945comp 11QQ-B -637 comp 1comp 1

6-6

Page 205: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 205/288

T.O. 1-1A-9

Table 6-1. Chemi cal Composit i on by Trade Name - Cont in ued 

C O P P E RSPECIFICATION

ALLOYNO. FE D E RAL MILITARY TRAD E NAME

466 QQ-B -613 comp 11 MIL-W-6712 Na va l B ra ss, a nt imonia lQQ-B -626comp 11 MIL-T-6945QQ-B -637comp 1 comp 1

467 QQ-B -613 MIL-W-6712 Na va l B ra ss, phosphorizedcomp 11 MIL-T-6945QQ-B -626comp 11QQ-B -637comp 1

470 QQ-R-571 Na va l bra ss, w elding a ndC la ss FS -RWZn-1 bra zing rod

472 QQ-B 650 B ra zing Alloycomp B

482 QQ-B -626 MIL-W-6712 Na va l B ra ss, medium lea dedcomp 11 MIL-T-6945QQ-B -637 comp 1comp 2

485 QQ-B -626 MIL-W-6712 Na va l B ra ss, H igh lea dedcomp 1 MIL-T-6945QQ-B -637 comp 1comp 3

510 QQ-B -750 P hosphor B ronze A

comp AQQ-W-401QQ-R-571,class FS-RCuSm-2

518 QQ-R-571 P hosphor bronzeClass F S-RCuSm-2

521 QQ-R-571 P hosphor B ronze CCla ss FS -RcuSm-2

524 QQ-B -750 P hosphor B ronze DComp D

544 QQ-B -750 MIL-B -13501 P hosphor B ronze B -2

606 QQ-C-450comp 3

612 QQ-C-450comp 4

6-7

Page 206: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 206/288

T.O. 1-1A-9

Table 6-1. Chemi cal Composit i on by Trade Name - Cont inu ed 

C O P P E RSPECIFICATION

ALLOYNO. FE D E RAL MILITARY TRAD E NAME

614 QQ-C-450comp 5 Aluminum B ronze D

618 MIL-W-6712MIL-R-18818MIL-RUA1-2

622 MIL-R-18818 cla ssMIL-RCA-B

651 QQ-C -591 Low silicon bronze Bcomp B

655 QQ-C-591comp A MIL-T-8231 H igh S ilicon B ronze A

656 QQ-R-571Cla ss FS -RC uS 1 MIL-E 13191 cla ss

MIL-EcuSi-A

658 MIL-E -13191 cla ssMIL-ECuSi-A

661 QQ-C-591comp D

670 QQ-B -728 Ma nga nese B ronze BClass B

675 QQ-B -728 Ma nga nese B ronze AClass A

680 QQ-R-571 B ronze Low Fuming (Nickel)Cla ss F S-RCu-Zn-3

681 QQ-R-571 cla ss B ronze, Low FumingFS-RCuZn-2

692 QQ-C -591 S ilicon B ra ssComp E

715 QQ-R-571 C la ss Copper Nickel 30%FS-RCuNi

735 QQ-C-585comp 6

745 QQ-C -585 Nickel S ilver 65-10

comp 5QQ-C-586comp 5QQ-W-340comp 5

6-8

Page 207: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 207/288

T.O. 1-1A-9

Table 6-1. Chemi cal Composit i on by Trade Name - Cont in ued 

C O P P E RSPECIFICATION

ALLOYNO. FE D E RAL MILITARY TRAD E NAME

752 QQ-C-585 Nickel S ilver 65-18comp 1QQ-C-586comp 1QQ-W-340comp 1

764 QQ-C-586comp 3QQ-W-340comp 3

766 QQ-C-585comp 7

770 QQ-C-585 Nickel S ilver 55-18comp 2QQ-C-586comp 2QQ-W-340comp 2

794 QQ-C-586comp 4QQ-W-340comp 4

Table 6-2. H ot Worki ng and An neal ing T emperatur es for Copper and Wrought Copper A l loys 

COMME RCIAL C H E MICAL H OT WORKING ANNE ALING TE MPD E S IG NATION COMP OS ITION TE MP oF oF

Copper , commercia lly 99,93 C u 1300 t o 1650 700 to 1200pure

G ilding Met a l 95 Cu, 5 Zn 1300 to 1650 800 t o 1450

Commercia l B ronze 90 Cu, 10 Zn 1400 to 1600 800 t o 1450

Red B ra ss 85 Cu, 15 Zn 1450 to 1650 800 t o 1350

Low B ra ss 80 Cu, 20 Zn 1450 to 1650 800 t o 1300

Ca rt r idge B ra ss 70 Cu, 30 Zn 1350 to 1550 800 t o 1300

Yellow B ra ss 65 Cu, 35 Zn (a ) 800 t o 1300

Munt z Met a l 60 Cu, 40 Zn 1150 to 1450 800 t o 1100

Lea ded C ommercia l 89 Cu, 9.25 Zn, (a ) 800 to 1200B ronze 1.75 P b

Low Lea ded B ra ss 64.5 C u, 35 Zn, (a ) 800 to 13000.5 Pb

Medium Lea ded B ra ss 64.5 Cu, 34.5 Zn, (a ) 800 t o 12001 P b

6-9

Page 208: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 208/288

T.O. 1-1A-9

Table 6-2. H ot Worki ng and A nneal ing T emperatur es for Copper and Wr ought Copper Al l oys - Cont inu ed 

COMME RCIAL CH E MIC AL H OT WORKING ANNE ALING TE MPD E S IG NATION COMP OS ITION TE MP oF oF

H igh Lea ded B ra ss 62.5 Cu, 35.75 Zn, (a ) 800 t o 1100

1.75 Pb

E xt ra H igh Lea ded 62.5 Cu, 35 Zn, (a ) 800 t o 1100B ra ss 2.5 P b

F ree Cut t ing B ra ss 61. 5 C u, 35.5 Zn, 1300 to 1450 800 t o 11003 P b

Lea ded Muntz Meta l 60 Cu, 39.5 Zn, 1150 to 1450 800 t o 11005 P b

F ree Cut t ing Muntz 60.5 Cu, 38.4 Zn, 1150 to 1450 800 t o 1100Meta l 1.1 P b

F orging B ra ss 60 Cu, 38 Zn, 1200 to 1500 800 t o 11002 P b

Archit ectura l B ronze 57 Cu, 40 Zn, 1200 t o 1400 800 t o 11003 P b

Admira lt y 71 Cu, 28 Zn, 1200 t o 1500 800 t o 11001 S n

Na va l B ra ss 60 Cu, 39.25 Zn, 1200 to 1400 800 t o 11000.75 Sn

Lea ded Na va l B ra ss 60 Cu, 37.5 Zn, 1200 to 1450 800 t o 11001.75 Sn

Ma nga nese B ronze 58.5 Cu, 39.2 Zn

1 S n, 3Mn, 1Fe 1250 t o 1450 800 t o 1100

Aluminum B ra ss 76.Cu, 22Zn, Z a l 1450 to 1550 800 t o 1100P hosphor Bronze ‘‘A’’ 95 C u, 5 S n (a ) 900 t o 1250

P hosphor Bronze ‘‘C ’’ 92 C u, 8 S n (a ) 900 t o 1250

P hosphor Bronze ‘‘D ’’ 90 C u, 10 S n (a ) 900 t o 1250

P hosphor Bronze ‘‘E ’’ 98- 75 Cu, 1.25 S n 1450 t o 1600 900 t o 1200

C upro-Nickel 30% 70 Cu, 30 Ni 1700 to 2000 1200 t o 1600

Nickel S ilver 18% (A) 65 Cu, 17 Zn, 18 Ni (a ) 1100 t o 1500

Nickel S ilver 18% (B ) 55 Cu, 27 Zn, 18 Ni (a ) 1100 t o 1400

H igh-S ilicon B ronze (A) 94.8 Cu, 3 S i, 1.5 1300 t o 1650 900 t o 1300Mn, 0.7 Zn

Low S ilicon B ronze (b) 96. Cu, 2 S i, 1.5 1300 to 1650 900 t o 1250Zn, 0.5 Mn

(a) These alloys a re usually h ot extruded af ter cast ing, further hot working is uncommon.

6-11. Typica l Engineer ing proper t ies of a l loys 6-12. HEAT TREATING PROCEDURES AND EQUIP-170, Specification QQ-C-530 and 172, Specification M ENT REQUIREMENTS.QQ-C-533 are cited in Ta ble 6-5.

6-10

Page 209: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 209/288

T.O. 1-1A

NOTE forming operations and then precipitation heattreating. An exception is when the material hasSAE-AMS-H-7199, Heat Treatment of been rendered unsuitable for precipitation or ageWrought Copper-Beryllium Alloys,hardening as result of welding, brazing or otherProcess for (Copper Alloy numbersfabrication operations or when, cold working 170, 172 and 175), will be the controlrequirements demand intermediate sof tening document for heat treatment of (annealing) treatment.

wrought copper-beryllium alloy, num-bers 170, 172 and 175. For complete6-16. The solution heat treatment temperaturedescription of heat treat requirementsfor alloys 170 and 172 shall be 1425o to 1460oF.for these alloys, refer to the latestThe time the material is held at the temperatureissue of SAE-AMS-H-7199.will determine the potential properties of the

6-13. Furnaces for solution heat treating of cop- material. Insufficient time will make it impossiper-beryllium items/parts may be heated by elec- to achieve maximum strength after precipitationtricity, gas or oil, with either controlled gas atmos- hardening, while excessive time may cause grainphere or air (static or forced), used in the chamber, growth with attendant harmful possibilities. Onccontinuous or induction types. Molten salt baths the parts are brought up to temperature it is recshall not be used because of corrosive attack of  ommended that material be held at temperatureberyllium alloys by the molten salts at solution for 1 hour per inch of thickness. For parts lessheat treatment temperatures. Air atmosphere fur- than 1/2 inch in thickness, 1/6-1/2 hour may benaces shall not be used when the loss of material suff icient. Test sample should be used to deter-due to excessive scaling is detrimental to the fin- mine specific time or if laboratory facilities areished part. available an examination of microstructure will

confirm the adequacy of the time selected. The6-14. The furnace alloy shall be capable of main-part/material should be rapidly (10 seconds ortaining a temperature in working zone with a nor-under) quenched in water from the annealing temmal load, of ± 20oF for solution heat treatment, orperature. An agitated quench should be used.

± 5oF for aging, or precipitation heat treatment.Some oxidation will occur as a result of theIn addition, the temperature in working zone shallannealing temperatures and it should be removenot vary above the maximum or below the mini-by pickling or other suitable cleaning process.mum specified for the alloy being treated, during 

the holding portion of the treatment cycles (See6-17. PRECIPITATION OR AGE HARDENING

Table 6-6). Appreciable changes can be produced in both

6-15. SOLUTION HEAT TREATMENT COP- mechanical and physical by this treatment. ThePER-BERYLLIUM. Normally solution heat treat- actual changes can be controlled by the time andment is not required because the material is fur- temperature of hardening. Table 6-6 gives timesnished in a condition suitable for accomplishing and temperatures for obtaining various tempers

Table 6-3. Typical Stress-Relief Treatments for Certain Copper Alloys

 ALLOY COMPOSITION TEMP oF TIME, HOURS

Copper, commercially pure 300 1/290 Cu - 10 Zn 400 180 Cu - 20 ZN 500 170 Cu - 30 ZN 500 163 CU - 37 ZN 475 160 CU - 40 ZN 375 1/2

70 Cu - 29 ZN - 1 SN 575 185 Cu - 15 Ni 475 170 Cu - 30 Ni 475 164 Cu - 18 ZN - 18 Ni 475 195 Cu - 5 Sn 375 190 Cu - 10 Sn 375 1

Change 4 6-

Page 210: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 210/288

T.O. 1-1A-9

Tab le 6-4 . S tandard M ach inab i l i t y Rat ing of Copper A l loys 

ALLOY MACH INA- S U RF ACE ROU G H ING FINIS H INGD E S IG NATION B ILITY S P E E D FE E D , INCH FE E D , INCH

RATING FE E T P E RMINUTE

Lea ded Copper 80 300 to 700 0.006 to 0.020 0.003 t o 0.015Lea ded Commercia l 300 t o 700 0.006 to 0.020 0.003 t o 0.015B ronze 80 300 to 700 0.006 to 0.020 0.003 t o 0.015Low Lea ded B ra ss 60 300 to 700 0.006 to 0.020 0.003 t o 0.015Medium Lea ded B ra ss 70 300 t o 700 0.006 to 0.020 0.003 t o 0.015H igh Lea ded B ra ss 90 300 to 700 0.006 to 0.020 0.003 t o 0.015F ree Cut t ing B ra ss* 100 300 t o 700 0.006 to 0.020 0.003 t o 0.015F orging B ra ss 80 300 to 700 0.006 to 0.020 0.003 t o 0.015Lea ded Na va l B ra ss 70 300 to 700 0.006 to 0.020 0.003 t o 0.015Archit ectura l B ronze 90 300 to 700 0.006 to 0.020 0.003 t o 0.015Red B ra ss, 85% 30 150 to 300 0.015 to 0.035 0.005 t o 0.015Low B ra ss, 80% 30 150 to 300 0.015 to 0.035 0.005 t o 0.015Munt z Met a l 40 150 to 300 0.015 to 0.035 0.005 t o 0.015

Na va l B ra ss 30 150 to 300 0.015 to 0.035 0.005 t o 0.015Ma nga nese B ronze (A) 30 150 t o 300 0.015 to 0.035 0.005 t o 0.015Leaded Nickel Silver,12% 50 150 to 300 0.015 to 0.035 0.005 t o 0.015Leaded Nickel Silver18% 50 150 to 300 0.015 to 0.035 0.005 t o 0.015H igh S ilicon B ronze (A) 30 150 to 300 0.015 to 0.035 0.005 t o 0.015Leaded S ilicon B ronze(d) 60 150 to 300 0.015 to 0.035 0.005 t o 0.015Aluminum S ilicon B ronze 60 150 to 300 0.015 to 0.035 0.005 t o 0.015Electrolytic Toughpit ch copper 20 75 to 150 0.015 to 0.040 0.005 t o 0.020C ommercia l B ronze 20 75 to 150 0.015 to 0.040 0.005 t o 0.020P hosphor B ronze 20 75 to 150 0.015 to 0.040 0.005 t o 0.020

Nickel S ilver 20 75 to 150 0.015 to 0.040 0.005 t o 0.020C upro-Nickel 20 75 t o 150 0.015 to 0.040 0.005 t o 0.020Aluminum B ronze 20 75 to 150 0.015 to 0.040 0.005 t o 0.020B eryllium Copper 20 75 to 150 0.015 to 0.040 0.005 t o 0.020C hromium Copper 20 75 to 150 0.015 to 0.040 0.005 t o 0.020

* Table based on machining characteristics in comparison to this alloy.

6-12

Page 211: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 211/288

T.O. 1-1A-9

Table 6-5. Typical Engineering Properties

TENSILE YIELD % ELONG- FATIGUE ROCKWELL ELEC-STRENGTH STRENGTH ATION (1) HARDNESS TRICAL

KSI 0.2% IN 2 STRENGTH CONDUC-OFFSET INCHES KSI TIVITY  

% OF 1 ACS

 A- Annealed 60-78 28-36,000 35-60 30-35 B45- 78 17-19

1/4 Hard 75-88 60-80,000 10-35 31-36 B68-90 16-18

1/2 Hard 85-100 55-70,000 5-25 32-38 B88-96 15-17

Hard 100-120 90-112,000 2-8 35-39 B96-102 15-17

 AT 165-190 100-125,000 4-10 34-38 C36-MIN 22-25

1/4 HT 175-200 110-135,000 3-6 35-39 C38-MIN 22-25

1/2 HT 785-210 160-195,000 2-5 39-43 C39-MIN 22-25

HT 190-215 165-205,000 1-4 41-46 C40-MIN 22-25

(1) Based on 100,000,000 load cycles.

Table 6-6. Age Hardening Time-Temperature Conditions and Material Temper Designations

MATERIAL TEMPER DESIGNATION AGE HARDENING TEMPER DESIGNATIONFORM BEFORE AGE TIME TEMP AFTER AGE HARDENING

HARDENING HRS. (oF)

Plate, Sheet A 3 600 ± 5 AT1/4 H 2-1/2 600 ± 5 1/4 HT

or Strip 1/2 H 2 600 ± 5 1/2 HT

H 2 600 ± 5 HT

Forgings Rod A 3 600 ± 5 AT

and Bar 3/4 H 2 600 ± 5 HT

Inch or Less H 3 600 ± 5 HT

Over 3/4 Inch

Wire A 3 600 ± 5 AT1/4 H 2 600 ± 5 1/4 HT1/2 H 1-1/2 600 ± 5 1/2 HT3/4 H 1 600 ± 5 3/4 HT

NOTE: For additional data see Specif ication SAE-AMS-H-7199.

Change 4 6-13/(6-14 blank

Page 212: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 212/288

Page 213: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 213/288

T.O. 1-1A-9

SECTION VII

TOOL STEELS

7 -1 . GENERAL. acts as a n intensifier . It improves the deep hard-

ening and elevated temperature properties of steel7-2. Tool s teels are essent ia l to the fabr ica t ion ofa ir cr a f t pa r ts. I t is t her efor e n ecessa r y t o pr ov id e f. N IC K E L - N ickel m a kes t he st eel m or eg uid a nce in t he h a nd lin g of t hes e im por ta n t d uct ile. I t is u sed in on ly a few a pplica t ion s a n dmet a ls. only in sma ll a mount s.

7-3. Tool st eels ar e pr oduced a nd used in a va ri- g. S IL IC ON - Th is elem en t is pr esen t in a llet y of for m s. Th e m or e com m on for m s a r e b a r s, s t eel s. I n a m ou n t s of 1/4 t o 1% i t a ct s a s a d eox i-(round, square , hexagonal , or octagana l), dr i ll rods , dizer . Si l icon is added to shock resis t ing and hot(r ou n d, sq u a r e, or r ect a n g ul a r ), f l a t s , a n d for ged w or k st eel s to im pr ove t h ei r im pa ct cha r a ct er is t icssha pes. a nd ha rdena bilit y . I t ha s a gra phit izing inf luence

an d usually requires the a ddit ion of carbide stabi-7-4. ALLOYING ELE MENTS IN TOOL

lizing elements such as molybdenum a ndSTEELS. (See Ta ble 7-2, chemical composition

chromium.table.)

h . TUNGS TEN - One of the mos t impor t an ta . CARB O N - Ca r b on i s t h e m os t im por t a n t features of tungsten steels is their high red ha rd-single element in tool steel. Changing the carbon

ness. Tungsten steels are f ine grained and highcontent a specif ic amount w ill cha nge the physical

strength, w hich means t hey hold good cutt ingproperties a greater degree than the same amount

edges. Tungst en content is usua lly 5 - 12% in heatof a ny other element . Degree of har dness of tool

resisting tool steels, 4 - 9%in tun gsten - molybde-steel quenched from a suitable temperatur e is a

num high speed steels, and 14 - 20%in straightfunction of carbon content alone.

tungsten high speed steel.

b . CHRO MI U M - I n a m ou n t s u p t o 1. 80% t h ei . VANADIU M - This e lement forms stable

addition of chromium produced a marked increasecarbides and ha s considerable effect on the

in the hardenability (depth of hardness) of steels.ha rdenability of steels . Un dissolved van adium

Sma ll amounts of chromium t oughens th e steelcarbides inhibit grain growth and reduce

(greater impa ct strength), and increases itsha rdenability . Dissolved carbides increase

strength. Machine ability decreases as chromiumha rdenability . Vana dium is also used as a deoxi-

increases. The add ition of 5 to 15%chr omium dizer. It is ad ded to plain carbon tool steels toimpart s ha rdening qua lit ies to the st eel. A degreemake them fine grained and tough. It is added to

of red hardness and resistance to wear and abra-high speed a nd hot w orking steels to resist gra in

sion results from the addition of chromium togrowth and help maintain their hardness at ele-

steel.vated temperatures.

c. COBALT - Coba l t i s somet imes used in7-5. SP ECIFICATIONS. The a rmed services

high speed tools. Addit ion of 5 to 8%increase th eprocure tool steels under three different Federal

red hardness of these steels.Specifications, dependent upon its intended use.Ta ble 7-1 lists these specifications, and presentd . MANGANESE - This element i s present ina nd past classif ication of the tool steels. Armya ll steels. In a mounts of less tha n 1/2%, it a cts asSpecificat ion 57-108A wa s superseded by th reea deoxidizer and desulfurizer. In a mounts greaterArmy Ordna nce S pecif ications, QQ-S-778, QQ-S-tha n 15%it gives steel air ha rdening tendencies.779, and QQ-S-780. wh ich were then su persededIn intermediate amounts it is necessary to have

by F ederal Specificat ion ’s QQ-T-570, QQ-T-580other alloying agents present with manganeseand QQ-T-590 respectively.because of its tendency to make the steel brittle.

e . MOLYBDENUM - Always used in conjunc-tion with other alloying elements, molybdenum

7-1

Page 214: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 214/288

T.O. 1-1A-9

D - High carbon-high chromium types

H - Hot work tool steels

T - High speed tool steels

M - Molybdenum Base types

L - Special purpose, low alloy types

F - Car bon tungsten tool steels

Table 7-1. Tool Steel Specif icat ions 

S AE

D E S IG NATION F E D E RAL S P E C IFIC ATION S U P E RS E D E D S P E CIF ICATION

NU MB E R CLAS S NU MB E R C LAS S IFIC ATION

W1-.80 C a rbon QQ-T-580 W1-08 57-108A A1

W1-.90 C a rbon QQ-T-580 W1-09 57-108A A2

W1-1.0 C a rbon QQ-T-580 W1-10 57-108A A3

W1-1.2 C a rbon QQ-T-580 W1-12 57-108A A4/A5

W2-.9 C a rbon V QQ-T-580 W2-09 57-108A B 1

W2-1.0 C a rbon V QQ-T-580 W2-10 57-108A B 1W3-1.0 C a rbon VV QQ-T-580 W3-10 QQ-S -00779 (Army) F S -W3-10

A2 QQ-T-570 A2 57-108A C 1

A6 QQ-T-570 A6 ------ ------

D 2 QQ-T-570 D 2 57-108A C 2

D 3 QQ-T-570 D 3 57-108A C 3

D 5 QQ-T-570 D 5 QQ-S -00778 (Army) FS -D 5

D 7 QQ-T-570 D 7 ------ ------

F 3 QQ-T-570 F3 57-108A D 1

H 11 QQ-T-570 H 11 ------ ------

H 12 QQ-T-570 H 12 QQ-S -00778 (Army) FS -H 12

H 13 QQ-T-570 H 13 ------ ------

H 21 QQ-T-570 H 21 QQ-S -00778 (Army) FS -H 21

T1 QQ-T-590 T1 QQ-S -00780 (Army) FS -T1

T2 QQ-T-590 T2 QQ-S -00780 (Army) FS -T2

T3 QQ-T-590 T3 ------T4 QQ-T-590 T4 QQ-S -00780 (Army) FS -T4

T5 QQ-T-590 T5 QQ-S -00780 (Army) FS -T5

T6 QQ-T-590 T6 MIL-S -15046 (S hips) T6

T7 QQ-T-590 T7 QQ-S -00780 (Army) FS -T7

T8 QQ-T-590 T8 QQ-S -00780 (Army) FS -T8

M1 QQ-T-590 M1 QQ-S -00780 (Army) FS -M1

M2 QQ-T-590 M2 QQ-S -00780 (Army) FS -M2

M3 QQ-T-590 M3 QQ-S -00780 (Army) FS -M3

M4 QQ-T-590 M4 ------ ------

M10 QQ-T-590 M-10 57-108A F1

M15 QQ-T-590 M15 ------ ------

M30 QQ-T-590 M30 57-108A F3

M34 QQ-T-590 M34 QQ-S -00780 (Army) FS -M34

01 QQ-T-570 01 57-108A.QQ-T-778 B 4

02 QQ-T-570 02 57-108A B 3

06 QQ-T-570 06 ------ ------

L6 QQ-T-570 L6 ------ ------

L7 QQ-T-570 L7 QQ-S -00778 (Army) FS -L7

T15 QQ-T-590 T15 ------ ------

S 1 QQ-T-570 S 1 QQ-S -00778 (Army) FS -S 1

S 2 QQ-T-570 S 2 QQ-S -00778 (Army) FS -S 2

S 5 QQ-T-570 S 5 QQ-S -00778 (Army) FS -S 5

W5 QQ-T-570 W5 QQ-S -00778 (Army) F S -W5

7-2

Page 215: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 215/288

T.O. 1-1A-9

7-3

  T a

  b  l e  7

 -  2 .

  C  h

 e m

  i c a

  l   C

 o m p o s

  i  t  i o n , 

  T o o

  l   S  t e

 e  l 

   S   A   E

   C   H   E   M   I   C   A   L   C   0   M   P   O   S   I   T   I   O   N ,   P   E   R   C   E

   N   T   (   T   A   B   L   E   I   I   )

   D   E   S   I   G   N   A   T   I   O   N

   C

   M   N

   S   I

   C   R

   V

   M   O

   W

   C   O

   N   I

   C   U

   P

   W   1  - .   8   0   C   a   r   b   o   n

   0

 .   7   0  -   0 .   8   5

   0 .   1   5  -   0 .   3   5

   0 .   1   0  -   0 .   3   5

   0 .   1   5

   0 .   1   0

   0 .   1   0

   0 .   1   5

   0 .   2   0

   0 .   2   0

   0 .   0   2   5

   W   1  - .   9   0   C   a   r   b   o   n

   0

 .   8   5  -   0 .   9   5

   0 .   1   5  -   0 .   3   5

   0 .   1   0  -   0 .   3   5

   0 .   1   5

   0 .   1   0

   0 .   1   0

   0 .   1   5

   0 .   2   0

   0 .   2   0

   0 .   0   2   5

   W   1  -   1 .   0   0   C   a   r   b   o   n

   0

 .   9   5  -   1 .   1   0

   0 .   1   5  -   0 .   3   5

   0 .   1   0  -   0 .   3   5

   0 .   1   5

   0 .   1   0

   0 .   1   0

   0 .   1   5

   0 .   2   0

   0 .   2   0

   0 .   0   2   5

   W   1  -   1 .   2   0   C   a   r   b   o   n

   1

 .   1   0  -   1 .   3   0

   0 .   1   5  -   0 .   3   5

   0 .   1   0  -   0 .   3   5

   0 .   1   5

   0 .   1   0

   0 .   1   0

   0 .   1   5

   0 .   2   0

   0 .   2   0

   0 .   0   2   5

   W   2  - .   9   0   C   a   r   b   o   n  -   V

   0

 .   8   5  -   0 .   9   5

   0 .   1   5  -   0 .   3   5

   0 .   1   0  -   0 .   3   5

   0 .   1   5

   0 .   1   5  -   0 .   3   5

   0 .   2   0

   0 .   2   0

   0 .   0   3   0

   W   2  -   1 .   0   0   C   a   r   b   o   n  -   V

   0

 .   9   5  -   1 .   1   0

   0 .   1   5  -   0 .   3   5

   0 .   1   0  -   0 .   3   5

   0 .   1   5

   0 .   1   5  -   0 .   3   5

   0 .   1   0

   0 .   1   5

   0 .   2   0

   0 .   2   0

   0 .   0   3   0

   W   3  -   1 .   0   0   C   a   r   b   o   n   V   V

   0

 .   9   5  -   1 .   1   0

   0 .   1   5  -   0 .   3   5

   0 .   1   0  -   0 .   3   5

   0 .   1   5

   0 .   3   5  -   0 .   5   0

   0 .   1   0

   0 .   1   5

   0 .   2   0

   0 .   2   0

   0 .   0   3   0

   A   2  -   5    %   C   h   r   o   m   i  u   m

   0

 .   9   5  -   1 .   0   5

   0 .   4   5  -   0 .   7   5

   0 .   2   0  -   0 .   4   0

   4 .   7   5  -

 .   4   0

   0 .   9   0  -   1 .   4   0

   5 .   5   0

   A   6  -   M   a   g   a   n   e   s   e

   0

 .   6   5  -   0 .   7   5

   1 .   8   0  -   2 .   2   0

   0 .   2   0  -   0 .   4   0

   0 .   9   0  -

   0 .   9   0  -   1 .   4   0

   1 .   2   0

   D   2

   1

 .   4   0  -   1 .   6   0

   0 .   3   0  -   0 .   5   0

   0 .   3   0  -   0 .   5   0

   1   1 .   0  -

   0 .   8   0

   0 .   7   0  -   1 .   2   0

   0 .   6   0

   1   3 .   0

   D   3

   2

 .   0   0  -   2 .   3   5

   0 .   2   4  -   0 .   4   5

   0 .   2   5  -   0 .   4   5

   1   1 .   0

   0 .   8   0

   0 .   8   0

   0 .   1   5

   1   3 .   0

   D   5

   1

 .   4   0  -   1 .   6   0

   0 .   3   0  -   0 .   5   0

   0 .   3   0  -   0 .   5   0

   1   1 .   0

   0 .   8   0

   0 .   7   0  -   1 .   2   0

   2 .   5  -   3 .   5

   1   3 .   0

   D   7

   2

 .   1   5  -   2 .   5   0

   0 .   3   0  -   0 .   5   0

   0 .   3   0  -   0 .   5   0

   1   1 .   5

   2 .   8  -   4 .   4

   0 .   7   0  -   1 .   2   0

   1   3 .   5

   F   3

   1

 .   2   5  -   1 .   4   0

   0 .   2   0  -   0 .   5   0

   0 .   6   0  -   0 .   9   0

   0 .   2   5   m   a  x

   3 .   0   0

   4 .   5   0

   H   1   1

   0

 .   3   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   0 .   8   0  -   1 .   2   0

   4 .   7   5

   0 .   3   0  -   0 .   5   0

   1 .   2   5  -   1 .   7   5

   5 .   5   0

   H   1   2

   0

 .   3   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   0 .   8   0  -   1 .   2   0

   4 .   7   5  -

   0 .   5   0   m   a  x

   1 .   2   5  -   1 .   7   5

   1 .   0  -   1 .   7

   5 .   5   0

   H  -   1   3

   0

 .   3   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   0 .   8   0  -   1 .   2   0

   4 .   7   5  -

   0 .   8   0  -   1 .   2   0

   1 .   2   5  -   1 .   7   5

   5 .   5   0

   H   2   1

   0

 .   3   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   0 .   1   5  -   0 .   3   0

   3 .   0   0

   0 .   3   0  -   0 .   5   0

   8 .   7   5

   3 .   7   5

   1   0 .   0   0

   T   1

   0

 .   6   5  -   0 .   7   5

   0 .   2   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   3 .   7   5  -   4 .   5   0

   0 .   9   0  -   1 .   3   0

   1   7 .   2   5  -   1   8 .   7   5

   T   2

   0

 .   7   5  -   0 .   8   5

   0 .   2   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   3 .   7   5  -   4 .   5   0

   1 .   8   0  -   2 .   4   0

   0 .   7   0  -   1 .   0   0

   1   7 .   5   0  -   1   9 .   0   0

   T   3

   1

 .   0   0  -   1 .   1   0

   0 .   2   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   3 .   7   5  -   4 .   5   0

   2 .   9   0  -   3 .   5   0

   0 .   7   0  -   1 .   0   0

   1   7 .   5   0  -   1   9 .   0   0

   T   4

   0

 .   7   0  -   0 .   8   0

   0 .   2   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   3 .   7   5  -   4 .   5   0

   0 .   8   0  -   1 .   2   0

   0 .   1   0  -   1 .   0   0

   1   7 .   2   5  -   1   8 .   7   5

   4 .   2   5

   5 .   7   5

Page 216: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 216/288

T.O. 1-1A-9

7-4

  T a

  b  l e  7

 -  2 .

  C

  h e m

  i c a

  l   C

 o m p o s

  i  t  i o n , 

  T o o

  l   S  t e

 e  l 

 -   C

 o n

  t  i n

 u e

  d

   S   A   E

   C   H   E   M   I   C   A   L   C   0   M   P   O   S   I   T   I   O   N ,   P   E   R   C   E

   N   T   (   T   A   B   L   E   I   I   )

   D   E   S   I   G   N   A   T   I   O   N

   C

   M   N

   S   I

   C   R

   V

   M   O

   W

   C   O

   N   I

   C   U

   P

   T   5

   0

 .   7   5  -   0 .   8   5

   0 .   2   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   3 .   7   5  -   4 .   7   5

   1 .   8   0  -   2 .   4   0

   0 .   7   0  -   1 .   0   0

   1   7 .   5   0  -   1   9 .   0   0

   7 .   0   0

   9 .   5   0

   T   6

   0

 .   7   5  -   0 .   8   5

   0 .   2   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   4 .   0   0  -   4 .   7   5

   1 .   5   0  -   2 .   1   0

   0 .   7   0  -   1 .   0   0

   1   8 .   5   0  -   2   1 .   2   5

   1   0 .   2   5

   1   3 .   7   5

   T   7

   0

 .   7   0  -   0 .   7   6

   0 .   2   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   3 .   7   5  -   4 .   2   5

   1 .   8   0  -   2 .   2   0

   0 .   7   0  -   1 .   0   0

   1   3 .   5   0  -   1   4 .   5   0

   T   8

   0

 .   7   5  -   0 .   8   5

   0 .   2   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   3 .   7   5  -   4 .   5   0

   1 .   8   0  -   2 .   4   0

   0 .   7   0  -   1 .   0   0

   1   3 .   2   5  -   1   4 .   7   5

   4 .   2   5  -

   5 .   7   5

   M   1

   0

 .   7   5  -   0 .   8   5

   0 .   2   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   3 .   7   5  -   4 .   5   0

   0 .   9   0  -   1 .   3   0

   7 .   7   5  -   9 .   2   5

   1 .   1   5  -   1 .   8   5

   M   2

   0

 .   7   8  -   0 .   8   8

   0 .   2   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   3 .   7   5  -   4 .   5   0

   1 .   6   0  -   2 .   2   0

   4 .   5   0  -   5 .   5   0

   5 .   5   0  -   6 .   7   5

   M   3

   1

 .   0   0  -   1 .   2   5

   0 .   2   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   3 .   7   5  -   4 .   5   0

   2 .   3   5  -   3 .   2   5

   4 .   7   5  -   6 .   2   5

   5 .   5   0  -   6 .   7   5

   M   4

   1

 .   2   5  -   1 .   4   0

   0 .   2   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   4 .   0   0  -   4 .   7   5

   3 .   9   0  -   4 .   5   0

   4 .   5   0  -   5 .   5   0

   5 .   2   5  -   6 .   5   0

   M   1   0

   0

 .   8   5  -   0 .   9   5

   0 .   2   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   3 .   7   5  -   4 .   5   0

   1 .   8   0  -   2 .   2   0

   7 .   7   5  -   9 .   0   0

   M   1   5

   1

 .   5   0  -   1 .   6   0

   0 .   2   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   4 .   0   0  -   5 .   0   0

   4 .   5   0  -   5 .   2   5

   2 .   7   5  -   3 .   5   0

   6 .   0   0  -   6 .   7   5

   4 .   7   5  -

   5 .   2   5

   M   3   0

   0

 .   7   7  -   0 .   8   5

   0 .   2   0  -   0 .   4   0

   0 .   2   0  -   0 .   4   0

   3 .   5   0  -   4 .   2   5

   1 .   0   0  -   1 .   4   0

   7 .   7   5  -   9 .   0   0

   1 .   3   0  -   2 .   3   0

   4 .   5   0  -

   5 .   5   0

   M   3   4

   0

 .   8   5  -   0 .   9   2

   0 .   2   0  -   0 .   3   0

   0 .   2   0  -   0 .   3   0

   3 .   5   0  -   4 .   2   5

   1 .   9   0  -   2 .   3   0

   8 .   0   0  -   9 .   2   0

   1 .   3   0  -   2 .   3   0

   1 .   7   5

   8 .   7   5

   0   1

   0

 .   8   5  -   0 .   9   5

   1 .   0   0  -   1 .   3   0

   0 .   2   0  -   0 .   4   0

   0 .   4   0  -   0 .   6   0

   0 .   3   0   m   a  x

   0 .   4   0  -   0 .   6   0

   0   2

   0

 .   8   5  -   0 .   9   5

   1 .   4   0  -   1 .   8   0

   0 .   2   0  -   0 .   4   0

   0 .   3   5

   0 .   2   0

   0 .   3   0

   0   6

   1

 .   3   5  -   1 .   5   5

   0 .   3   0  -   1 .   0   0

   0 .   8   0  -   1 .   2   0

   0 .   2   0  -   0 .   3   0

   L   6

   0

 .   6   5  -   0 .   7   5

   0 .   3   0  -   0 .   8   0

   0 .   2   0  -   0 .   4   0

   0 .   6   5  -   0 .   8   5

   0 .   2   0  -   0 .   3   5

   0 .   2   0  -   0 .   3   5

   1 .   2   5   1 .   7   5

   L   7

   0

 .   9   5  -   1 .   0   5

   0 .   2   5  -   0 .   4   5

   0 .   2   0  -   0 .   4   0

   1 .   2   5  -   1 .   7   5

   0 .   3   0  -   0 .   5   0

   T   1   5

   1

 .   5   0  -   1 .   6   0

   3 .   7   5  -   4 .   5   0

   4 .   7   5  -   5 .   2   5

   1   2 .   0   0  -   1   3 .   0   0

   4 .   7   5  -   5 .   2   5

   S   1

   0

 .   4   5  -   0 .   5   5

   0 .   2   0  -   0 .   4   0

   0 .   2   5  -   0 .   4   5

   1 .   2   5  -   1 .   7   5

   0 .   1   5  -   0 .   3   0

   0 .   4   0

   1 .   0  -   3 .   0

   S   2

   0

 .   4   5  -   0 .   5   5

   0 .   3   0  -   0 .   5   0

   0 .   8   0  -   1 .   2   0

   0 .   2   5

   0 .   4   0  -   0 .   6   0

   S   5

   0

 .   5   0  -   0 .   6   0

   0 .   6   0  -   0 .   9   0

   1 .   8   0  -   2 .   2   0

   0 .   3   0

   0 .   2   5

   0 .   3   0  -   0 .   5   0

   W   5

   1

 .   0   5  -   1 .   2   5

   0 .   1   5  -   0 .   3   5

   0 .   1   0  -   0 .   4   0

   0 .   4   0  -   0 .   6   0

   0 .   2   5   m   a  x

   0 .   3   0  -   0 .   5   0

Page 217: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 217/288

T.O. 1-1A-9

Table 7-3. Tool Steel Select ion 

MATE RIAL TO B E CU T TOTAL QU ANTITY OF P ARTS TO B E MAD E1,000 10,000 100,000

Aluminum, copper a nd ma gnesium a lloys W1, AIS 14140 W1, 01, A2 01, A2

Ca rbon a nd a lloy steels , ferr it ic st a inless W1, AIS 14140 W1, 01, A2 01, A2

S t a inless st eel, a ust enit ic W1, A2 W1, A2, D 2 A2, D 2

S pring st eel, ha rdened, Rockw ell C52ma x A2 A2, D 2 D 2

E lect r ica l sheet , t ra nsformer gra de A2 A2, D 2 D 2

P a per , ga sket s, a nd simila r sof t ma t er ia l W1 W1 W1, A2

P la st ic sheet , not reinforced 01 01 01, A2

Ta ble 7-3 is listed for use as a guide reference in the selection of tool steel types for specificapplications.

Table 7-4. Tool Steel H ardening and T emperi ng Temperatur es 

S TE E L H ARD E NING TE MP E RING S IZE CH ANG E , IN/INTRE ATME NT TRE ATME NT

W 1450oF, Wa ter 300oF 0.0017 - 0.0025

O 1450oF, Oil 300oF 0.0014 - 0.0021

L 1550oF, Oil 300oF 0.0014 - 0.0024

F 1600oF, Oil 300oF 0.0011 - 0.0021

S 1750oF, Oil 500oF 0.0010 - 0.0025

A 1775oF, Oil 500oF 0.0005 - 0.0015

D 1875oF, Oil 500oF 0.0005 - 0.0005

T 2350oF, Oil 1050oF 0.0006 - 0.0014

M 2225oF, Oil 1025oF 0.0016 - 0.0024

7-6. C LAS S D E S IG NATIONS . cut t ing t ools require h igh ha rdness, h igh resis-ta nce to the softening effect of heat , a nd high

W - Wa ter h a rdening tool steels wea r resistan ce. Shea ring tools require high wearresista nce an d fair toughness. Forming tools mustS - Sh ock resistin g t ool st eelspossess high wear resistance or high toughness

O - Cold work tool steels, oil hardening types an d strength. In bat tering tools, high toughness ismost important .A - Cold work tool steels, air hardening types

7-9. SELEC TION OF MATERIAL FOR A CUT-7-7. APP LICATIONS OF TOOL STEELS . TING TOOL. The selection of ma teria l for a cut-7-8. The major i ty of tool s teel applica t ions can be ting tool depends on several factors: th e meta ldivided into a small number of groups: cutt ing, being machined, nature of cutting operation, condi-shearing, forming, dra wing, extrusion, rolling and tion of the machine tool, machining practice, sizebat tering. Cut ting tools include drills , ta ps, and design of tool, coolant to be used, and cost ofbroaches, hobs, la th e tools, etc. Sh ear ing tools tool ma teria l. Selection is usua lly based more oninclude shears, blanking a nd t rimming dies, previous experience or applications than on anpunches, etc. Forming tools include dra w , forging, engineering or metallurgical a na lysis .cold head ing and die cast ing dies. B at tering toolsinclude chisels an d a ll forms of shock tools. Most

7-5

Page 218: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 218/288

T.O. 1-1A-9

NOTE7-10. High speed cut t ing tools are usually manu-factured from the class ‘‘T’’ or class ‘‘M ’’ alloys. Additiona l Heat Treatm ent informa -Four classes, T1, M1, M2 and M10 make up nearly tion is discussed in Section IX.90% of th e genera l purpose high speed steels. Cer-tain special purpose steels in each class, such as 7-17. The therma l t rea tments li st ed in table 7-5T6, T7, T8 and T15 are advantageous for opera- cover the generally used t reatm ents for the forg-tions like milling cutters and prehardened forging

ings, norma lizing, and a nnealing of tool an d diedie blocks. steels . The thermal treat ments listed in table 7-7cover the usua l ra nges of temperatures for har den-7-11. High speed dr il ls should possess highing an d tempering tool and die steels. Thesestrength an d toughness, nota bly M1, M2, M10 andta bles a re listed for use as a guide only, and testT1. C la sses T1 and M1 a re used for tools subjectsa mples should be checked prior t o use.to shock, while M2 and M10 are generally used

where t ools require less toughness and more abra -7-18. DIS TORTION IN TOOL STEE LS. Dis tor-sion resistance.t ion is a genera l term encompassing a ll dimen-

7-12. Mater ia l for reamers should be of high siona l changes; the t wo ma in types being volumeha rdness and abra sion resistance, such a s M1, M2, chan ge or chan ge in geometr ical form. VolumeM10 and T1. The M3 an d M15 a nd T15 clas ses change is defined a s expan sion or contra ction a ndpossess great er abra sion resistan ce than the lower- geometric cha nge is defined a s changes in curva-vana dium grades . ture or angular relat ions. Ta ble 7-4 shows a n

approximate range of size changes depending upon7-13. Mater ia l for taps is genera l ly of the M1, the type of tool steel, and also dependent on spe-M2 or M10 types. In ta pping hea t-resisting a lloyscific tempering an d heat t reatm ents. If a veryor steels harder than Rockwell C35, M15 or T15close tolerance is required for a finished tool, spe-may be justified.cific data covering this item should be obtained

7-14. Mil ling cu t ter s a re usua l ly made f rom the from a detailed source.high speed steels. As the har dness of theworkpiece increases beyond Rockw ell C35, the 7-19. D elet edcobalt high speed steels should be used.

7-20. D elet ed7-15. Recommended punch and die mat er ia l forblanking par ts from 0.050 inch sheet m at erials a re

7-21. D elet edshown in followin g ta ble. This ta ble does not coverall opera tions, and is a sample ta ble intended for

7-22. D elet eduse as a guide only.

7-16. H E AT TRE AT D ATA. 7-23. D elet ed

7 -6 Change 1

Page 219: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 219/288

T.O. 1-1A-9

Change 1 7 -7

  T a

  b  l e  7

 -  5 .

  F o r g

  i n g , 

  N o r m

 a  l  i z  i n

 g a n

  d  A

 n n e a

  l  i n g

  T r e a

  t m e n

  t s o

  f   T o

 o  l 

 a n

  d  D  i e  S  t e

 e  l s

   F   O   R   G   I   N   G   /   a

   N   O   R   M

   A   L   I   Z   I   N   G   /   b

   A   N   N   E   A   L   I   N   G   /   c

   S   A   E

   H   E   A   T

   S   T   A   R   T

   D   O   N   O   T

   H   E   A   T

   H   O   L   D   A   T

   T   E   M   P   E   R  -

   M   A

   X   R   A   T   E

   B   R   I   N   E   L   L

   D   E   S   I   G   N   A  -

   S   L   O   W   L   Y

   F   O   R   G   I   N   G

   F   O   R   G   E

   S   L   O   W   L   Y

   A   T   U   R   E

   O   F   C   O   O   L  -

   H   A   R   D   N   E   S   S

   R   O   C   K

   W   E   L   L

   T   I   O   N

   T   O

   A   T

   B   E   L   O   W

   T   O

   I   N

   G   F   /   H   R

   A   P   P   R   O   X .

   B ,   A   P

   P   R   O   X .

   W   1   (   0 .   8   C   )

   1   4   5   0

   1   8   0   0

   1   5   0   0

   1   4   5   0

   1   5   0   0

   1   4   0   0  -   1   4   5   0

   7   5

   1   5   9  -   2   0   2

   8   4  -   9   4

   1   9   5   0

   W   1   (   0 .   9   C   )

   1   4   5   0

   1   8   0   0

   1   5   0   0

   1   4   5   0

   1   5   0   0

   1   3   7   5  -   1   4   2   5

   7   5

   1   5   9  -   2   0   2

   8   4  -   9   4

   1   9   5   0

   W   1   (   1 .   0   C   )

   1   4   5   0

   1   8   0   0

   1   5   0   0

   1   4   5   0

   1   5   5   0

   1   4   0   0  -   1   4   5   0

   7   5

   1   5   9  -   2   0   2

   8   4  -   9   4

   1   9   0   0

   W   1   (   1 .   2   C   )

   1   4   5   0

   1   8   0   0

   1   5   0   0

   1   4   5   0

   1   6   2   5

   1   4   0   0  -   1   4   5   0

   7   5

   1   5   9  -   2   0   2

   8   4  -   9   4

   1   9   0   0

   W   2   (   0 .   9   C   )

   1   4   5   0

   1   8   0   0

   1   5   0   0

   1   4   5   0

   1   5   0   0

   1   3   7   5  -   1   4   2   5

   7   5

   1   5   9  -   2   0   2

   8   4  -   9   4

   1   9   0   0

   W   2   (   1 .   0   C   )

   1   4   5   0

   1   8   0   0

   1   5   0   0

   1   4   5   0

   1   5   5   0

   1   4   0   0  -   1   4   5   0

   7   5

   1   5   9  -   2   0   2

   8   4  -   9   4

   1   9   0   0

   W   3   (   1 .   0   C   )

   1   4   5   0

   1   8   0   0

   1   5   0   0

   1   4   5   0

   1   5   5   0

   1   4   0   0  -   1   4   5   0

   7   5

   1   5   9  -   2   0   2

   8   4  -   9   4

   1   9   0   0

   A   2

   1   6   0   0

   1   8   5   0

   1   6   5   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   5   5   0  -   1   6   0   0

   4   0

   2   0   2  -   2   2   9

   9   4  -   9   8

   2   0   0   0

   A   6

   1   2   0   0  -   1   3   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   2   4   8

   1   0   2

   D   2

   1   6   5   0

   1   8   5   0

   1   6   5   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   4   0

   2   0   7  -   2   5   5

   9   5  -   1   0   2

   2   0   0   0

   D   3

   1   6   5   0

   1   8   5   0

   1   6   5   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   5   0

   2   1   2  -   2   5   5

   9   6  -   1   0   2

   2   0   0   0

   D   5

   1   6   5   0

   1   8   5   0

   1   6   5   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   4   0

   2   0   7  -   2   5   5

   9   5  -   1   0   2

   2   0   0   0

   D   7

   1   6   5   0

   2   0   5   0

   1   8   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   5   0

   2   3   5  -   2   6   2

   9   9  -   1   0   3

   2   1   2   5

   F   3

   1   5   5   0

   1   8   0   0

   1   6   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   4   7   5

   5   0

   2   3   5

   9   9

   2   0   0   0

Page 220: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 220/288

T.O. 1-1A-9

7 -8 Change 1

  T a

  b  l e  7

 -  5 .

  F o r g

  i n g , 

  N o r m a

  l  i z  i n

 g a n

  d  A

 n n e a

  l  i n g

  T r e a

  t m e n

  t s o

  f   T

 o o

  l  a n  d

  D  i e  S  t e

 e  l s

 -   C

 o n

  t  i n u e

  d

   F   O   R   G   I   N   G   /   a

   N   O   R   M

   A   L   I   Z   I   N   G   /   b

   A   N   N   E   A   L   I   N   G   /   c

   S   A   E

   H   E   A   T

   S   T   A   R   T

   D   O   N   O   T

   H   E   A   T

   H   O   L   D   A   T

   T   E   M   P   E   R  -

   M   A

   X   R   A   T   E

   B   R   I   N   E   L   L

   D   E   S   I   G   N   A  -

   S   L   O   W   L   Y

   F   O   R   G   I   N   G

   F   O   R   G   E

   S   L   O   W   L   Y

   A   T   U   R   E

   O   F   C   O   O   L  -

   H   A   R   D   N   E   S   S

   R   O   C   K

   W   E   L   L

   T   I   O   N

   T   O

   A   T

   B   E   L   O   W

   T   O

   I   N

   G   F   /   H   R

   A   P   P   R   O   X .

   B ,   A   P

   P   R   O   X .

   H   1   1

   1   6   5   0

   1   9   5   0

   1   6   5   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   5   5   0  -   1   6   0   0

   5   0

   1   9   2  -   2   2   9

   9   2  -   9   8

   2   1   0   0

   H   1   2

   1   6   5   0

   1   9   5   0

   1   6   5   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   5   0

   1   9   2  -   2   2   9

   9   2  -   9   8

   2   1   0   0

   H   1   3

   1   6   5   0

   1   9   5   0

   1   6   5   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   5   5   0  -   1   6   0   0

   5   0

   1   9   2  -   2   2   9

   9   2  -   9   8

   2   1   0   0

   H   2   1

   1   6   0   0

   2   0   0   0

   1   6   5   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   5   0

   2   0   2  -   2   3   5

   9   4  -   9   9

   2   1   5   0

   T   1

   1   6   0   0

   1   9   5   0

   1   7   5   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   5   0

   2   1   7  -   2   5   5

   9   6  -   1   0   2

   2   1   0   0

   T   2

   1   6   0   0

   2   0   0   0

   1   7   5   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   5   0

   2   2   3  -   2   5   5

   9   7  -   1   0   2

   2   1   5   0

   T   3

   1   9   2   5

   2   0   2   5

   1   7   5   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   5   0

   5   0

   T   4

   1   6   0   0

   2   0   0   0

   1   7   5   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   5   0

   2   2   9  -   2   5   5

   9   8  -   1   0   2

   2   1   5   0

   T   5

   1   6   0   0

   2   0   0   0

   1   8   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   5   0

   2   4   8  -   2   9   3

   1   0   2  -   1   0   6

   2   1   5   0

   T   6

   1   6   0   0

   1   9   5   0

   1   7   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   5   0

   2   4   8  -   2   9   3

   1   0   2  -   1   0   6

   2   1   5   0

   T   7

   1   6   0   0

   1   9   5   0

   1   7   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   5   5   0  -   1   6   2   5

   5   0

   2   1   7  -   2   5   0

   9   6  -   1   0   2

   2   1   5   0

   T   8

   1   6   0   0

   2   0   0   0

   1   7   5   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   5   0

   2   2   9  -   2   5   5

   9   8  -   1   0   2

   2   1   5   0

   M   1

   1   5   0   0

   1   9   0   0

   1   7   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   5   2   5  -   1   6   0   0

   5   0

   2   0   7  -   2   4   8

   9   5  -   1   0   2

   2   0   5   0

   M   2

   1   5   0   0

   1   9   5   0

   1   7   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   5   5   0  -   1   6   2   5

   5   0

   2   1   7  -   2   4   8

   9   6  -   1   0   2

   2   1   0   0

Page 221: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 221/288

T.O. 1-1A-9

Change 1 7 -9

  T a

  b  l e  7

 -  5 .

  F o r g

  i n g , 

  N o r m a

  l  i z  i n

 g a n

  d  A

 n n e a

  l  i n g

  T r e a

  t m e n

  t s o

  f   T

 o o

  l  a n  d

  D  i e  S  t e

 e  l s

 -   C

 o n

  t  i n u e

  d

   F   O   R   G   I   N   G   /   a

   N   O   R   M

   A   L   I   Z   I   N   G   /   b

   A   N   N   E   A   L   I   N   G   /   c

   S   A   E

   H   E   A   T

   S   T   A   R   T

   D   O   N   O   T

   H   E   A   T

   H   O   L   D   A   T

   T   E   M   P   E   R  -

   M   A

   X   R   A   T   E

   B   R   I   N   E   L   L

   D   E   S   I   G   N   A  -

   S   L   O   W   L   Y

   F   O   R   G   I   N   G

   F   O   R   G   E

   S   L   O   W   L   Y

   A   T   U   R   E

   O   F   C   O   O   L  -

   H   A   R   D   N   E   S   S

   R   O   C   K

   W   E   L   L

   T   I   O   N

   T   O

   A   T

   B   E   L   O   W

   T   O

   I   N

   G   F   /   H   R

   A   P   P   R   O   X .

   B ,   A   P

   P   R   O   X .

   M   3

   1   5   0   0

   2   0   0   0

   1   7   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   5   5   0  -   1   6   2   5

   5   0

   2   2   3  -   2   5   5

   9   7  -   1   0   2

   2   1   5   0

   M   4

   1   5   0   0

   2   0   0   0

   1   7   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   5   5   0  -   1   6   2   5

   5   0

   2   2   9  -   2   5   5

   9   8  -   1   0   2

   2   1   5   0

   M   1   0

   1   4   0   0

   1   9   0   0

   1   7   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   5   0

   2   3   5  -   2   6   2

   9   9  -   1   0   3

   2   1   0   0

   M   1   5

   1   4   0   0

   1   9   0   0

   1   7   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   5   0

   2   3   5  -   2   6   2

   9   9  -   1   0   3

   2   1   0   0

   M   3   0

   1   4   0   0

   1   9   0   0

   1   6   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   5   0

   2   3   5  -   2   6   2

   9   9  -   1   0   3

   2   1   0   0

   M   3   4

   1   4   0   0

   1   9   0   0

   1   6   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   5   0

   2   3   5  -   2   6   2

   9   9  -   1   0   3

   2   1   0   0

   0   1

   1   5   0   0

   1   7   5   0

   1   5   5   0

   1   5   0   0

   1   6   0   0

   1   4   2   5  -   1   4   7   5

   5   0

   1   8   3  -   2   1   2

   9   0  -   9   6

   1   9   0   0

   0   2

   1   5   0   0

   1   7   5   0

   1   5   5   0

   1   5   0   0

   1   5   5   0

   1   3   7   5  -   1   4   2   5

   5   0

   1   8   3  -   2   1   2

   9   0  -   9   6

   1   9   0   0

   0   6

   1   5   0   0

   1   7   5   0

   1   5   0   0

   1   5   0   0

   1   6   2   5

   1   4   2   5  -   1   2   7   5

   5   0

   1   8   3  -   2   1   2

   9   0  -   9   6

   1   9   0   0

   L   6

   1   5   0   0

   1   8   0   0

   1   6   0   0

   1   5   5   0

   1   6   5   0

   1   4   0   0  -   1   4   5   0

   5   0

   1   8   3  -   2   1   2

   9   0  -   9   6

   2   0   0   0

   L   7

   1   5   0   0

   1   8   0   0

   1   5   5   0

   1   5   5   0

   1   6   5   0

   1   4   5   0  -   1   5   0   0

   5   0

   1   7   4  -   2   1   2

   8   8  -   9   6

   2   0   0   0

   T   1   5

   1   5   0   0

   2   0   0   0

   1   6   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   6   0   0  -   1   6   5   0

   3   5

   2   4   1  -   2   6   9

   1   0   0  -   1   0   4

   2   1   0   0

   S   1

   1   5   0   0

   1   8   0   0

   1   6   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   4   5   0  -   1   5   0   0

   5   0

   1   9   2  -   2   3   5

   9   2  -   9   9

   2   0   0   0

Page 222: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 222/288

T.O. 1-1A-9

7 -1 0 Change 1

  T a

  b  l e  7

 -  5 .

  F o r g

  i n g , 

  N o r m a

  l  i z  i n

 g a n

  d  A

 n n e a

  l  i n g

  T r e a

  t m e n

  t s o

  f   T

 o o

  l  a n  d

  D  i e  S  t e

 e  l s

 -   C

 o n

  t  i n u e

  d

   F   O   R   G   I   N   G   /   a

   N   O   R   M

   A   L   I   Z   I   N   G   /   b

   A   N   N   E   A   L   I   N   G   /   c

   S   A   E

   H   E   A   T

   S   T   A   R   T

   D   O   N   O   T

   H   E   A   T

   H   O   L   D   A   T

   T   E   M   P   E   R  -

   M   A

   X   R   A   T   E

   B   R   I   N   E   L   L

   D   E   S   I   G   N   A  -

   S   L   O   W   L   Y

   F   O   R   G   I   N   G

   F   O   R   G   E

   S   L   O   W   L   Y

   A   T   U   R   E

   O   F   C   O   O   L  -

   H   A   R   D   N   E   S   S

   R   O   C   K

   W   E   L   L

   T   I   O   N

   T   O

   A   T

   B   E   L   O   W

   T   O

   I   N

   G   F   /   H   R

   A   P   P   R   O   X .

   B ,   A   P

   P   R   O   X .

   S   2

   1   5   0   0

   1   9   0   0

   1   6   0   0

   1   5   0   0  -

   1   6   5   0

   1   4   0   0  -   1   4   5   0

   5   0

   1   9   2  -   2   2   9

   9   2  -   9   8

   2   1   0   0

   S   5

   1   5   0   0

   1   9   0   0

   1   6   0   0

   1   5   0   0

   1   6   0   0

   1   4   0   0  -   1   4   5   0

   5   0

   1   9   2  -   2   2   9

   9   2  -   9   8

   2   0   5   0

   W   5

   1   2   0   0

   1   7   0   0

   1   5   0   0

   D   O   N   O   T   N

   O   R   M   A   L   I   Z   E

   1   4   0   0  -   1   4   2   5

   5   0

   1   9   2  -   2   1   2

   9   2  -   9   6

   1   9   0   0

   a .   T   h   e   t   e   m   p   e   r   a   t  u   r   e   a   t  w   h   i   c   h   t   o   s   t   a   r   t   f   o   r   g   i   n   g   i   s   g   i  v   e   n   a   s   a   r   a   n   g   e ,   t   h   e

   h   i   g   h   e   r   s   i   d   e   o   f  w   h   i   c   h   s   h   o  u   l   d   b   e  u   s   e   d   f   o   r   l   a   r   g   e   s   e   c   t   i   o   n   s   a   n   d   h   e   a  v  y   o   r   r   a   p   i   d   r   e   d  u   c   t   i   o   n   s ,

   a   n   d   t   h   e   l   o  w   e   r   s   i   d   e   f   o   r   s   m   a   l   l   e   r   s   e   c   t   i   o   n   s   a   n   d   l   i   g   h   t   e   r   r   e   d  u   c   t   i   o   n   s ,   a   s   t   h   e

   a   l   l   o  y   c   o   n   t   e   n   t   o   f   t   h   e   s   t   e   e   l   i   n   c   r   e   a   s   e   s ,   t   h   e   t   i   m   e   o   f   s   o   a   k   i   n   g   a   t   f   o   r   g   i   n   g   t   e   m   p   e   r   a   t  u   r   e

   i   n   c   r   e   a   s   e   s   p   r   o   p   o   r   t   i   o   n   a   t   e   l  y .   L

   i   k   e  w   i   s   e ,   a   s   t   h   e   a   l   l   o  y   c   o   n   t   e   n   t   i   n   c   r   e   a   s   e   s ,   i   t   b   e   c   o   m   e   s   m   o   r   e   n   e   c   e   s   s   a   r  y   t   o   c   o   o   l   s   l   o  w   l  y   f   r   o   m   t   h   e   f   o   r   g   i   n   g   t   e   m   p   e   r   a   t  u   r   e .   W   i   t   h   t   h   e  v   e   r  y

   h   i   g   h   a   l   l   o  y   s   t   e   e   l   s ,   s  u   c   h   a   s   h   i   g   h   s   p   e   e   d   o   r   a   i   r   h   a   r   d   e   n   i   n   g   s   t   e   e   l   s ,   t   h   i   s   s   l   o  w   c   o   o   l   i   n   g   i   s   i   m   p   e   r   a   t   i  v   e   i   n   o   r   d   e   r   t   o   p   r   e  v   e   n   t   c   r   a   c   k   i   n   g   a   n   d   t   o   l   e   a  v   e   t   h   e   s   t   e   e   l   i   n   a   s   e   m

   i  -   s   o   f   t

   c   o   n   d   i   t   i   o   n .   E   i   t   h   e   r   f  u   r   n   a   c   e   c   o   o   l   i   n   g   o   r   b  u   r  y   i   n   g   i   n   a   n   i   n   s  u   l   a   t   i   n   g   m   e   d   i  u   m

   s  u   c   h   a   s   l   i   m   e ,   m   i   c   a ,   o   r   s   i   l   o   c   e   l   i   s   s   a   t   i   s   f   a   c   t   o   r  y .

   b .   T   h   e   l   e   n   g   t   h   o   f   t   i   m   e   t   h   e   s   t   e   e   l   i   s   h   e   l   d   a   f   t   e   r   b   e   i   n   g  u   n   i   f   o   r   m   l  y   h   e   a   t   e   d   t

   h   r   o  u   g   h   a   t   t   h   e   n   o   r   m   a   l   i  z   i   n   g   t   e   m   p   e   r   a   t  u   r   e ,

  v   a   r   i   e   s   f   r   o   m   a   b   o  u   t   1   5   m   i   n  u   t   e   s   f   o   r   a   s   m   a   l   l

   s   e   c   t   i   o   n   t   o   a   b   o  u   t   1   h   o  u   r   f   o   r   l

   a   r   g   e   r   s   i  z   e   s .   C   o   o   l   i   n   g   f   r   o   m   t   h   e   n   o   r   m   a   l   i  z   i   n   g   t   e   m   p   e   r   a   t  u   r   e   s   i   s   d   o   n   e   i   n   s   t   i   l   l   a   i   r .   T   h   e   p  u   r   p   o   s   e   o   f   n   o   r   m   a   l   i  z   i   n   g   a   f   t   e   r   f   o   r   g   i   n   g   i   s   t   o   r

   e   f   i   n   e

   t   h   e   g   r   a   i   n   s   t   r  u   c   t  u   r   e   a   n   d   t   o   p

   r   o   d  u   c   e   a  u   n   i   f   o   r   m   s   t   r  u   c   t  u   r   e   t   h   r   o  u   g   h   o  u   t   t   h   e   f   o   r   g   i   n   g .   N   o   r   m   a   l   i  z   i   n   g   s   h   o  u   l   d   n   o   t   b   e   c   o   n   f  u   s   e   d  w   i   t   h   l   o  w   t   e   m   p   e   r   a   t  u   r   e   (   a   b   o  u   t   1   2   0   0

   F   )

   a   n   n   e   a   l   i   n   g  u   s   e   d   f   o   r   t   h   e   r   e   l   i   e   f   o   f   r   e   d   i   s  u   a   l   s   t   r   e   s   s   e   s   r   e   s  u   l   t   i   n   g   f   r   o   m   h   e   a  v

  y   m   a   c   h   i   n   i   n   g ,   b   e   n   d   i   n   g   a   n   d   f   o   r   m   i   n   g .

   c .   T   h   e   a   n   n   e   a   l   i   n   g   t   e   m   p   e   r   a   t  u   r   e   i   s   g   i  v   e   n   a   s   a   r   a   n   g   e ,   t   h   e  u   p   p   e   r   l   i   m   i   t   o   f

  w   h   i   c   h   s   h   o  u   l   d   b   e  u   s   e   d   f   o   r   l   a   r   g   e   s   e   c   t   i   o   n   s ,   a   n   d   t   h   e   l   o  w   e   r   l   i   m   i   t   f   o   r   s   m   a   l   l   e   r   s   e   c   t   i   o   n   s .   T   h   e

   t   e   m   p   e   r   a   t  u   r   e  v   a   r   i   e   s   f   r   o   m   a   b   o  u   t   1   h   o  u   r   f   o   r   l   i   g   h   t   s   e   c   t   i   o   n   s   a   n   d   s   m   a   l   l   f  u

   r   n   a   c   e   c   h   a   r   g   e   s   o   f   c   a   r   b   o   n   o   r   l   o  w   a   l   l   o  y   s   t   e   e   l ,   t   o   a   b   o  u   t   4   h   o  u   r   s   f   o   r   h   e   a  v  y   s   e   c   t   i   o   n   s   a   n   d

   l   a   r   g   e

   f  u   r   n   a   c   e   c   h   a   r   g   e   s   o   f   h   i   g   h   a   l   l   o  y   s   t   e   e   l .

Page 223: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 223/288

T.O. 1-1A-9

7-11

  T a

  b  l e  7

 -  6 .

  T  h

 e r m a

  l   T

 r e a

  t m e n

  t   f o

 r   H

 a r

  d e n

  i n g a n

  d  T

 e m p e r

  i n g

  T o o

  l   S  t e

 e  l 

 -   G

 e n e r a

  l 

   H   A   R   D   N   E   S   S

   H   A   R   D   N   E   S   S

   D   E   C   A   R   B   U   R   I   Z   A   T   I   O   N

   H   A   R   D   E   N

   I   N   G

   A   F   T   E   R

   T   E   M   P   E   R

   I   N   G

   A   F   T   E   R

   (   P   R   E   V   E   N   T   I   O   N   O   F

   Q   U   E   N   C   H

   P   R   E   H   E   A   T

   T   E   M   P   E   R   A   T   U   R   E

   Q   U   E   N   C   H   I   N   G

   T   E   M   P   E   R   A

   T   U   R   E

   T   E   M   P   E   R   I   N   G

   D   U   R   I   N

   G   H   E   A   T

   C   L   A   S   S

   M   E   D   I   U   M

   T   E   M   P   E   R   A   T   U   R   E   F

   R   A   N   G   E

   F

   R   O   C   K   W   E   L   L   C

   R   A   N   G   E   F

   R   O   C   K   W   E   L   L   C

   T   R   E   A   T   M   E   N   T   )

   W   1  -   0   8

   W   a   t   e   r

  -   a

   1   4   2   0  -   1   4   5   0

   6   5  -   6   7

   3   5   0  -   5   2   5

   6   5  -   5   6

  -   b

   W   1  -   0   9

   W   a   t   e   r

  -   a

   1   4   2   0  -   1   4   5   0

   6   5  -   6   7

   3   5   0  -   5   2   5

   6   5  -   5   6

  -   b

   W   1  -   1   0

   W   a   t   e   r

  -   a

   1   4   2   0  -   1   4   5   0

   6   5  -   6   7

   3   5   0  -   5   2   5

   6   5  -   5   6

  -   b

   W   1  -   1   2

   W   a   t   e   r

  -   a

   1   4   2   0  -   1   5   0   0

   6   5  -   6   7

   3   5   0  -   5   2   5

   6   5  -   5   6

  -   b

   W   2  -   0   9

   W   a   t   e   r

  -   a

   1   4   2   0  -   1   5   0   0

   6   5  -   6   7

   3   5   0  -   5   2   5

   6   5  -   5   6

  -   b

   W   2  -   1   0

   W   a   t   e   r

  -   a

   1   4   2   0  -   1   5   0   0

   6   5  -   6   7

   3   5   0  -   5   2   5

   6   5  -   5   6

  -   b

   W   3  -   1   0

   W   a   t   e   r

  -   a

   1   4   2   0  -   1   5   0   0

   6   5  -   6   7

   3   5   0  -   5   2   5

   6   5  -   5   6

  -   b

   A   2

   A   i   r

   1   2   0   0  -   1   3   0   0

   1   7   2   5  -   1   7   7   5

   6   1  -   6   3

   4   0   0  -   7   0   0

   6   0  -   5   7

  -   c

   A   6

   A   i   r

   1   2   0   0  -   1   3   0   0

   1   5   2   5  -   1   6   0   0

   6   0

   D   2

   A   i   r

   1   2   0   0  -   1   3   0   0

   1   8   0   0  -   1   8   7   5

   6   1  -   6   3

   4   0   0  -   7   0   0

   6   0  -   5   8

  -   c

   D   3

   O   i   l

   1   2   0   0  -   1   3   0   0

   1   7   5   0  -   1   8   0   0

   6   2  -   6   4

   4   0   0  -   7   0   0

   6   2  -   5   8

  -   c

   D   5

   A   i   r

   1   2   0   0  -   1   3   0   0

   1   8   0   0  -   1   8   7   5

   6   0  -   6   2

   4   0   0  -   7   0   0

   5   9  -   5   7

  -   c

   D   7

   A   i   r

   1   2   0   0  -   1   3   0   0

   1   8   5   0  -   1   9   5   0

   6   3  -   6   5

   3   0   0  -   5   0   0

   6   5  -   6   3

  -   c

   8   5   0  -   1   0   0   0

   6   2  -   5   8

   F   3

   W   a   t   e   r

  -   a

   1   5   5   0

   6   2  -   6   6

   3   0   0  -   5   0   0

   6   6  -   6   2

  -   c

   H  -   1   1

   A   i   r

   1   4   5   0  -   1   5   0   0

   1   8   2   5  -   1   8   7   5

   5   3  -   5   5

   1   0   0   0  -   1   1   0   0

   5   1  -   4   3

  -   c

   H   1   2

   O   i   l  -   A   i   r

   1   4   5   0  -   1   5   0   0

   1   8   0   0  -   1   9   0   0

   5   3  -   5   5

   1   0   0   0  -   1   1   0   0

   5   1  -   4   3

  -   c

   H   1   3

   A   i   r

   1   4   0   0  -   1   4   5   0

   1   8   2   5  -   1   5   7   5

   5   3  -   5   5

   1   0   0   0  -   1   1   0   0

   5   1  -   4   3

  -   c

   H   2   1

   O   i   l  -   A   i   r

   1   5   0   0  -   1   5   5   0

   2   1   0   0  -   2   1   5   0

   5   0  -   5   2

   9   5   0  -   1   1   5   0

   5   0  -   4   7

  -   c

   T   1

   O   i   l  -   A   i   r  -

   1   5   0   0  -   1   5   5   0

   2   3   0   0  -   2   3   7   5

   6   3  -   6   5

   1   0   2   5  -   1   1   0   0

   6   5  -   6   3

  -   c

   S   a   l   t

   T   2

   O   i   l  -   A   i   r  -

   1   5   0   0  -   1   5   5   0

   2   3   0   0  -   2   3   7   5

   6   3  -   6   5

   1   0   2   5  -   1   1   0   0

   6   3  -   6   5

  -   c

   S   a   l   t

   T   3

   O   i   l  -   A   i   r

   1   5   0   0  -   1   5   5   0

   2   2   7   5  -   2   3   2   5

   1   0   0   0  -   1   0   5   0

   6   7  -   6   0

  -   c

   T   4

   O   i   l  -   A   i   r  -

   1   5   0   0  -   1   5   5   0

   2   3   0   0  -   2   3   7   5

   6   3  -   6   5

   1   0   2   6  -   1   1   0   0

   6   5  -   6   3

  -   c

   S   a   l   t

   T   5

   O   i   l  -   A   i   r  -

   1   5   0   0  -   1   5   5   0

   2   3   0   0  -   2   4   0   0

   6   3  -   6   5

   1   0   5   0  -   1   1   0   0

   6   5  -   6   3

  -   c

   S   a   l   t

Page 224: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 224/288

T.O. 1-1A-9

7-12

  T a

  b  l e  7

 -  6 .

  T  h

 e r m a

  l   T

 r e a

  t m e n  t

   f o r

   H a r

  d e n

  i n g a n

  d  T

 e m p e r

  i n g

  T o o

  l   S  t e e  l 

 -   G

 e n e r a

  l  - 

  C o n

  t  i n u e

  d

   H   A   R   D   N   E   S   S

   H   A   R   D   N   E   S   S

   D   E   C   A   R   B   U   R   I   Z   A   T   I   O   N

   H   A   R   D   E   N

   I   N   G

   A   F   T   E   R

   T   E   M   P   E   R

   I   N   G

   A   F   T   E   R

   (   P   R   E   V   E   N   T   I   O   N   O   F

   Q   U   E   N   C   H

   P   R   E   H   E   A   T

   T   E   M   P   E   R   A   T   U   R   E

   Q   U   E   N   C   H   I   N   G

   T   E   M   P   E   R   A

   T   U   R   E

   T   E   M   P   E   R   I   N   G

   D   U   R   I   N

   G   H   E   A   T

   C   L   A   S   S

   M   E   D   I   U   M

   T   E   M   P   E   R   A   T   U   R   E   F

   R   A   N   G   E

   F

   R   O   C   K   W   E   L   L   C

   R   A   N   G   E   F

   R   O   C   K   W   E   L   L   C

   T   R   E   A   T   M   E   N   T   )

   T   6

   O   i   l

   1   6   0   0

   2   3   5   0

   6   0  -   6   5

   1   0   0   0  -   1   1   0   0

   6   5  -   6   0

  -   c

   T   7

   O   i   l

   1   6   0   0

   2   3   2   5

   6   0  -   6   5

   1   0   0   0  -   1   1   0   0

   6   5  -   6   0

  -   c

   T   8

   O   i   l  -   A   i   r  -

   1   5   0   0  -   1   5   5   0

   2   3   0   0  -   2   3   7   5

   6   3  -   6   5

   1   0   2   5  -   1   1   0   0

   6   5  -   6   3

  -   c

   S   a   l   t

   M   1

   O   i   l  -   A   i   r  -

   1   4   0   0  -   1   5   0   0

   2   1   5   0  -   2   2   5   0

   6   3  -   6   5

   1   0   2   5  -   1   1   0   0

   6   5  -   6   3

  -   c

   S   a   l   t

   M   2

   O   i   l  -   A   i   r  -

   1   4   5   0  -   1   5   0   0

   2   1   7   5  -   2   2   5   0

   6   3  -   6   5

   1   0   2   5  -   1   0   7   5

   6   5  -   6   3

  -   c

   S   a   l   t

   M   3

   O   i   l  -   A   i   r  -

   1   4   5   0  -   1   5   0   0

   2   1   5   0  -   2   2   2   5

   6   3  -   6   5

   1   0   2   5  -   1   0   7   5

   6   5  -   6   3

  -   c

   S   a   l   t

   M   4

   O   i   l  -   A   i   r  -

   1   4   5   0  -   1   5   0   0

   2   1   5   0  -   2   2   2   5

   6   3  -   6   5

   1   0   2   5  -   1   0   7   5

   6   5  -   6   3

  -   c

   S   a   l   t

   M   1   0

   O   i   l

   1   4   0   0

   2   2   2   0

   6   0  -   6   5

   1   0   0   0  -   1   1   0   0

   6   5  -   6   0

  -   c

   M   1   5

   O   i   l

   1   4   0   0

   2   2   2   0

   6   0  -   6   5

   1   0   0   0  -   1   1   0   0

   6   5  -   6   0

  -   c

   M   3   0

   O   i   l

   1   4   0   0

   2   2   2   0

   6   0  -   6   5

   1   0   0   0  -   1   1   0   0

   6   5  -   6   0

  -   c

   M   3   4

   O   i   l

   1   4   0   0

   2   2   2   0

   6   0  -   6   5

   1   0   0   0  -   1   1   0   0

   6   5  -   6   0

  -   c

   0   1

   O   i   l

  -   a

   1   4   5   0  -   1   5   0   0

   6   3  -   6   5

   3   0   0  -   8   0   0

   6   2  -   5   0

  -   b

   0   2

   O   i   l

  -   a

   1   4   2   0  -   1   4   5   0

   6   3  -   6   5

   3   7   5  -   5   0   0

   6   2  -   5   7

  -   b

   0   6

   O   i   l

  -   a

   1   4   5   0  -   1   5   0   0

   6   3  -   6   5

   3   0   0  -   8   0   0

   6   3  -   5   0

  -   b

   L   6

   O   i   l

  -   a

   1   5   0   0  -   1   6   0   0

   6   2  -   6   4

   4   0   0  -   8   0   0

   6   2  -   4   8

  -   b

   L   7

   O   i   l

  -   a

   1   5   2   5  -   1   5   5   0

   6   3  -   6   5

   3   5   0  -   5   0   0

   6   2  -   6   0

  -   b

   T   1   5

   O   i   l  -   A   i   r

   1   5   0   0  -   1   6   0   0

   2   2   5   0  -   2   3   0   0

   6   5  -   6   6

   1   0   2   5  -   1   1   0   0

   6   6  -   6   8

  -   c

   S   1

   O   i   l

   1   2   0   0  -   1   3   0   0

   1   6   5   0  -   1   8   0   0

   5   7  -   5   9

   3   0   0  -   1   0   0   0

   5   7  -   4   5

  -   c

Page 225: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 225/288

T.O. 1-1A-9

7-13

  T a

  b  l e  7

 -  6 .

  T  h

 e r m a

  l   T

 r e a

  t m e n  t

   f o r

   H a r

  d e n

  i n g a n

  d  T

 e m p e r

  i n g

  T o o

  l   S  t e e  l 

 -   G

 e n e r a

  l  - 

  C o n

  t  i n u e

  d

   H   A   R   D   N   E   S   S

   H   A   R   D   N   E   S   S

   D   E   C   A   R   B   U   R   I   Z   A   T   I   O   N

   H   A   R   D   E   N

   I   N   G

   A   F   T   E   R

   T   E   M   P   E   R

   I   N   G

   A   F   T   E   R

   (   P   R   E   V   E   N   T   I   O   N   O   F

   Q   U   E   N   C   H

   P   R   E   H   E   A   T

   T   E   M   P   E   R   A   T   U   R   E

   Q   U   E   N   C   H   I   N   G

   T   E   M   P   E   R   A

   T   U   R   E

   T   E   M   P   E   R   I   N   G

   D   U   R   I   N

   G   H   E   A   T

   C   L   A   S   S

   M   E   D   I   U   M

   T   E   M   P   E   R   A   T   U   R   E   F

   R   A   N   G   E

   F

   R   O   C   K   W   E   L   L   C

   R   A   N   G   E   F

   R   O   C   K   W   E   L   L   C

   T   R   E   A   T   M   E   N   T   )

   S   2

   W   a   t   e   r  -   o   i   l

  -   A

   1   5   5   0  -   1   5   7   5

   6   0  -   6   2

   3   0   0  -   5   0   0

   6   0  -   5   4

  -   b

   1   6   6   0  -   1   6   2   5

   5   8  -   6   0

   3   0   0  -   5   0   0

   5   8  -   5   4

  -   b

   S   5

   W   a   t   e   r

   1   5   5   0  -   1   6   0   0

   6   0  -   6   2

   3   0   0  -   6   5   0

   6   0  -   5   4

  -   b

   O   i   l

   1   6   0   0  -   1   6   7   5

   5   8  -   6   0

   3   0   0  -   6   5   0

   5   8  -   5   4

  -   b

   W   5

   W   a   t   e   r

   1   1   0   0  -   1   2   0   0

   1   4   0   0  -   1   5   5   0

   6   5  -   6   6

   3   0   0  -   4   0   0

   6   2  -   6   5

  -   b

   a .   F   o   r   l   a   r   g   e   t   o   o   l   s   a   n   d   t   o   o   l   s   h   a  v   i   n   g   i   n   t   r   i   c   a   t   e   s   e   c   t   i   o   n   s ,   p   r   e   h   e   a   t   i   n   g   a   t   1

   0   5   0

       o    t

   o   1   2   0   0

       o    i

   s   r   e   c   o   m   m   e   n   d   e   d .

   b .   U   s   e   m   o   d   e   r   a   t   e   l  y   o  x   i   d   i  z   i   n   g

   a   t   m   o   s   p   h   e   r   e   i   n   f  u   r   n   a   c   e   o   r   a   s  u   i   t   a   b   l   e   n   e  u   t   r   a   l   s   a   l   t   b   a   t   h .

   c .   U   s   e   p   r   o   t   e   c   t   i  v   e   p   a   c   k   f   r   o   m

  w   h   i   c   h  v   o   l   a   t   i   l   e   m   a   t   t   e   r   h   a   s   b   e   e   n   r   e   m   o  v   e   d ,   c   a   r   e   f  u   l   l  y   b   a   l   a   n   c   e   d   n   e  u   t   r   a   l   s   a   l   t   b   a   t   h   o   r   a

   t   m   o   s   p   h   e   r   e   c   o   n   t   r   o   l   l   e   d   f  u   r   n   a   c   e   s .   I   n   t   h   e   l   a   t   t   e   r   c   a   s   e ,   t   h   e

   f  u   r   n   a   c   e   a   t   m   o   s   p   h   e   r   e   s   h   o  u   l   d

   b   e   i   n   e   q  u   i   l   i   b   r   i  u   m  w   i   t   h   t   h   e   c   a   r   b   o   n   c   o   n   t   e   n

   t   o   f   t   h   e   s   t   e   e   l   b   e   i   n   g   t   r   e   a   t   e   d .   F  u   r   n   a   c   e   a   t   m   o   s   p   h   e   r   e   d   e  w   p   o   i   n   t   i   s   c   o   n   s   i   d   e   r   e   d   a   r   e   l   i   a   b   l   e   m   e   t   h   o   d   o   f

   m   e   a   s  u   r   i   n   g   a   n   d   c   o   n   t   r   o   l   l   i   n   g   t

   h   i   s   e   q  u   i   l   i   b   r   i  u   m .

Page 226: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 226/288

T.O. 1-1A-9

Table 7-7. Compari son of Tool Steel Pr opert i es 

NON RE S IS TANC E

D E F ORMING TO S OFTE NING WE AR MAC H INE

C LAS S P ROP E RTIE S TOU G H NE S S E F FE CT OF RE S IS TANCE AB ILITY

HEAT

W1-08 P oor G ood P oor Fa ir B est

W1-09 P oor G ood P oor Fa ir B est

W1-10 P oor G ood P oor G ood B est

W1-12 P oor G ood P oor G ood B est

W2-09 P oor G ood P oor Fa ir B est

W2-10 P oor G ood P oor G ood B est

W3-10 P oor G ood P oor G ood B est

A2 B est Fa ir Fa ir G ood Fa ir

A6 G ood Fa ir P oor G ood Fa ir

D 2 B est Fa ir Fa ir B est P oor

D 3 G ood P oor Fa ir B est P oor

D 5 B est Fa ir Fa ir B est P oor

D 7 B est P oor Fa ir B est P oor

F 3 P oor P oor P oor B est Fa ir

H 11 G ood G ood G ood Fa ir Fa ir

H l2 G ood G ood G ood Fa ir Fa ir

H l3 G ood G ood G ood Fa ir Fa ir

H 21 G ood G ood G ood Fa ir Fa ir

T1 G ood P oor G ood G ood Fa ir

T2 G ood P oor G ood G ood Fa ir

T3 G ood P oor G ood G ood Fa ir

T4 G ood P oor B est G ood Fa ir

T5 G ood P oor B est G ood Fa ir

T6 G ood Fa ir G ood B est Fa ir

T7 G ood P oor G ood B est Fa ir

T8 G ood P oor B est G ood Fa ir

M1 G ood P oor G ood G ood Fa ir

M2 G ood P oor G ood G ood Fa ir

M3 G ood P oor G ood B est Fa ir

M4 G ood P oor G ood B est Fa ir

M10 G ood P oor G ood B est Fa ir

M15 G ood P oor G ood B est Fa ir

M30 G ood P oor G ood B est Fa ir

M34 G ood P oor G ood B est Fa ir

01 G ood Fa ir P oor G ood G ood

7-14

Page 227: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 227/288

T.O. 1-1A-9

Tabl e 7-7. Compari son of Tool Steel Propert ies - Conti nued 

NON RE S IS TANCE

D E FORMING TO S OFTE NING WE AR MAC H INE

CLAS S P ROP E RTIE S TOU G H NE S S E FFE C T OF RE S IS TANC E AB ILITY

HEAT

02 G ood F a ir P oor G ood G ood

06 Fa ir F a ir P oor G ood B est

L6 Fa ir F a ir P oor F a ir Fa ir

L7 Fa ir F a ir P oor G ood Fa ir

T15 G ood P oor B est B est F a ir

S 1 Fa ir G ood Fa ir F a ir Fa ir

S 2 W-P oor B est Fa ir F a ir G ood

O-Fair

S 5 W-P oor G ood P oor F a ir B est

O-Fair

W5 P oor G ood P oor F a ir B est

7-15/ (7-16 blank)

Page 228: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 228/288

Page 229: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 229/288

T.O. 1-1A-9

SECTION VIII

TESTING AND INSPECTION

HARDNESS TESTING

8 -1 . GENERAL. d . A release mechan ism wi th micrometer eye-piece for calculating the area of the impression.

8-2. Ha rdness t es t ing i s used to determine theresults of heat treatment as well as the state of 8-7. Making The Br inell Test . The tes t isthe metal prior to heat tr eatm ent. Its applicat ion preformed as follows:in determining t he a pproximat e tensile strength of

a . P r e pa r e t he sa m p le by f i li ng , gr in d in g , a n dthe ma terial by use of a ha rdness-tensile strengthpolishing to remove all scrat ches a nd va riat ionstable is very limited and should only be used inthat may a f fect the reading.the case of ferrous (steel) alloys. Ta ble 8-1 should

be used only as a conversion table for converting b . P l a ce t he sa m p le on t h e a n v il of t h ethe various hardness values from one type of test ma chine an d elevat e until the ha rdened ball con-to another, and should not be used as an indica- ta cts the surface to be tested.t ion of tensile strength for a lloys other th an fer-

c. Apply the load by pumping handle.rous. In a ddit ion, it should be realized tha t va luesgiven in Ta ble 8-1 a re only a pproxima te. When-

NOTEever a specific type of hardness test is given in a

A loa d of 3,000 kilogra ms is req uireddra wing, specif icat ion, etc. , necessary h ar dnessfor steel, while 500 kilograms is usedreadings should be made by that test wheneverwhen testing the softer metals , suchpossible, rather than by other means, and a con-as aluminum alloy, brass, and bronze.version ma de. In obtaining ha rdness values, pre-Normally, the load should be appliedcaution must be taken t o assure removal of clad-for 30 seconds. Although th is periodding and decarburized surface layers from area tomay be increased to 1 minute forbe tested.extremely hard steels, in order to pro-

8-3. M ETHODS OF HARDNESS TESTING. duce equilibrium.

d . Release the pressure and measure the a rea8-4. The methods of hardness test ing in genera lof impression with the calibrated microscope.use a re: B rinell, Rockwell, Vickers (Brit ish), Tukon

a nd Sh ore scleroscope.e . Ca lcu la te the Br inel l number, comple t ing

the test .8-5. BRINELL HARDNESS TEST. This t estconsists of pressing a hardened steel ball into a

8-8. ROCKWELL HARDNESS TEST. Thef lat surface of the meta l being tested by the appli-Rockwell hardness test is based on the degree ofcat ion of a known pressure. The impression ma depenetration of a specifically designed indentor intoby the ball is measured by means of a microscopea ma terial under a given sta t ic load. Thewit h a micrometer eyepiece. The Brin ell ‘‘number ’’indent or/penetra tor used ma y be either a dia mondis obta ined by dividing the load in kilogra ms byor ha rdened steel ba ll. The diamond indentorthe a rea of the spherical impression ma de by thecalled a ‘‘brale’’ is precision ground and polishedba ll, mea sured in squa re millimeters. The th ick-a nd th e shape is spheroconica. The steel ball forness of a ll samples used for testing must be suff i-norma l use is 1/16 inch dia meter, however, oth ercient to prevent bulging on the under side.la rg er di a met er st eel ba lls su ch a s 1/8, 1/4 or 1/2

inch may be used for testing sof t meta ls . The8-6. B r inell Tester . The Br inell tes ter (Figure 8-selection of the ba ll is based on the ha rdness ran ge1) consists of the following major parts:of the type of materia1 to be tested.

a . An eleva t ing screw and anvi l for bringingthe sample into contact with the ball. 8-9. The Rockwell machine/tester for a ccomplish-

ing the ha rdness test a pplies t wo loads to obta inb . A manua l ly opera ted hydrau lic pump for

the controlled penetration and indicates results onapplying the pressure to the ha rdened steel ball,

a graduated dial (see Figure 8-2). A minor load ofwhich is mounted on its a ctuat ing member.

10 kilogram s is f irst a pplied t o seat the penetrat orc. A pressure ga ge for det ermining t he in t he sur fa ce of t he t est specimen. The a ct ua l

a pplied pressure. penet ra t ion is then produced by a pplying a ma jor

8-1

Page 230: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 230/288

T.O. 1-1A-9

loa d, subseq uen tly, r elea sin g a nd t hen rea din g c. C heck t rip lever for proper loca t ion . L everhardness number f rom the d ia l. The d ia l read ing should be loca ted in the OFF LOAD pos it ion .is relat ed to the depth of penetra tion, load a nd th e

d . P lace the test specimen on the anvi l and bypenetra tor used. The sha llower the penetra tion,

turning the ha nd w heel, raise it s lowly (do notthe higher th e har dness value number for given

crash) until contact is made with the penetrator.indentor and load. The normal major load is 150

On the older model continue turning until pointerkilogram s (‘‘C ’’ Scale) wh en using the diamond

of the indicat or has m ade t hree revolutions a nd ispenetra tor a nd 100 kilogram s (‘‘B ’’Scale) whenwithin five divisions (plus or minus) of the upright

using a 1/16 inch st eel ball. A har dness va lue indi-position. On the newer model a f ter conta ct, con-

cat ed by a nu mber alone is incomplete. The num-tinue turning hand wheel until the small pointer

ber must be prefixed with a letter to indicate theis nearly vertical a nd slightly to right of the dot .

load an d indentor used to obta in the number.Then watching the long pointer, raise specimen

There is a variety of combinations of indentors anduntil long pointer is a pproximately upright with in

loads used to obta in a ha rdness value in accor-th ree degrees (plus or minu s) of C-0. K the C= + 3

dance with hardness range of various material.degrees position is overshot, lower t he specimen

The combinations are listed in Ta ble 8-2 which isan d sta rt over. When the pointer is within three

ba sed on S pecif icat ion ASTM E -18.divisions of C-0, set dia l to zero. Af ter t his step is

8-10. R eview of Ta ble 8-2 w ill revea l t ha t th e com plet e, t he m in or loa d h as been a pplied.Red Dial Numerals ‘‘B ’’ scale are used for steel ball

e. Apply the major load by t r ipp ing the t r ipindentors regardless of size of ball or load and

lever. Trip the lever, do not push.Bla ck Figure ‘‘C ’’ scales are used for the diamondpenetra tor. When the readings fall below t he f . When the t r ip lever comes to res t and therehardness value, C20 (B98) the material is consid- is no further movement of pointer, return lever toered t oo sof t for t he dia mond cone a nd 1/16 inch or the original posit ion and read the hardness num-lar ger hard ened ball should be used. The diamond ber indica ted by the dia l. When dial pointer indi-cone must be used for all ha rd ma terials (those cates a fraction, use next lower whole number forabove 100 on the ‘‘B ’’scale) as t he steel ball ma y be the reading.deformed by the test . If in doubt about the hard-

8-12. All hardness tes ts should be made on aness of a material start with the diamond pene-single thickness to obta in accurate results . Intrator and switch to the steel ball if the material istesting curved specimens, the concave side shouldbelow C20-C22.face the indentor; if reversed, a n ina ccura te read-

8-11. Rockwell Test P rocedure: The procedure for ing w ill result due to f latening of the piece on t hemaking the Rockwell test is outlined as follows: an vil. Specimens tha t do not balance on the anvil

(See Figure 8-2 for ma chine illustra tions.) because of overha ng sh ould be properly supportedto obtain accurate readings and to prevent damag-a . Prepare the s ample by removing (f i le, gr inding the penetra tor. Also to obta in a tr ue indica-and polish) scale, oxide films, pits, variations andtion of ha rdness of a given par t , several readingsforeign ma terial tha t ma y affect the reading. The(3-6 is usually sufficient) at different points shouldsurface should be f lat , of one thickness a nd nobe ta ken and avera ged. If it is necessary to deter-bludge should be opposite the indentation.mine the condition of the interior, parts should becut by some method tha t does not a ppreciablyNOTEchange the temper/condition, such as using a

Do not perform test closer t ha n 1/8″ w a ter-cooled saw -off wheel. When testing clad

from edge of specimen to assure accu-ma terial; the clad coat sha ll be removed. Speci-

ra te reading.men sam ples of clad a nd other ma terials should be

b . S elect t h e pr oper a n vi l a n d pen et r a t or a n d pr ov id ed w h en pos sib le. I t is not d es ir a ble t opla ce proper w eight on t he w eight pa n. a ccomplish t he t est on the f inished pa rt .

8-2

Page 231: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 231/288

T.O. 1-1A-9

Table 8-1. H ardness Conversion Chart 

8-3

Page 232: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 232/288

T.O. 1-1A-9

working order before ma king any t est . The tableon which t he Rockwell tester is mounted must berigid and not subject t o any vibra tion if accura teresults are t o be obta ined.

8-14. The accuracy of the Rockwell hardness tes-ter should be checked regula rly. Test blocks ar e

ava ilable for testing all ra nges of ha rdness. If theerror in t he tester is more tha n ±2 hardness num-bers, it should be re-calibra ted. The dash potshould be checked or oil a nd properly a djusted forcompletion of tra vel. The ball indent or a nd diam -eter should also be checked regularly for bluntnessan d chipping a nd replaced a s required.

8-15. VI CK E RS P YRAM I D HARD N E S S TE S T.The Vickers pyramid hardness test (Figure 8-4)covers a normal range of loading from 2.5 to 127.5kilogra ms. H owever, for special applicat ions suchas the hardness testing of thin, soft materials ,load s a s low a s 50 to 100 gram s ma y be used.

This test is ma de by pressing a sq uar e base dia-mond indentor into a f lat surfa ce of the meta lbeing tested by the application of known pressure.The indentat ion left by the indentor is a squa re,the diagonal of which remains the hardness of themetal. The diagonal of the square impression ismeasured by a microscope which reads directly to0.001 millimeters on a large micrometer drum.With the standard pyramidal diamond indentor(Figure 8-5) having an angle of 136o betw een oppo-site face of the pyramid, the pyramidal hardnessnumber is determined by dividing the applied loadin kilograms by the pyramidal area of the impres-sion in sq uar e millimeters by the formula,

Hardness 1.854 applied load in kilogramssquare of the diagonal of impression

or from correlation ta bles a ccompan ying t he tester.

Rapid readings may be taken by means of threeknife edges in the f ield of th e eye-piece. The f irstknife edge is fixed; the second knife is movablethrough a micrometric screw connected to acount er. The third kn ife edge, moved by mean s ofa special screw, ma y be used if rapid read ing ofvalues to specified limits is desired. This method

Figure 8-1 . Br ine l l H ardness Tester  of testing is highly f lexible and permits t esting for

very high har dness values. In th e Amsler-Vickersvar iat ion of this hardn ess tester the surface of the8-13. The Rockwell tes ters are equipped withma terial to be tested, at which the indentor con-various anvils and indentors. Typical a nvils an dta cts ma y be thr own on a ground-glass screena tt a chments a re show n in Figur e 8-3. The anvil(s)directly in front of the operator, allowing theshould be properly selected to accomplish the job.length of the diagonals t o be read directly.The tester should also be properly set and in good

8-4

Page 233: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 233/288

T.O. 1-1A-9

Figure 8-2. Rockwel l H ardness Tester 

8-5

Page 234: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 234/288

T.O. 1-1A-9

Figure 8-3. Attachments for Rockwel l Tester 

8-16. Vicker s Test er . Th e Vicker s t est er con sist s a . P r epa r e t he sa m ple by sm oot h gr in din g orof the following major parts: polishing to remove all scrat ches a nd va riat ions

tha t ma y a f fect t he readabil ity o f the indenta t ion.a . Table for suppor t ing the meta l t o be t ested.

b . P lace the test p iece (6) on the tes t ing t ab leb . A lever w i th a 20 to 1 r a t io th rough which(5) and turn the table elevating wheel (1) until thea load is applied through a rod to an indentor atindentor (7) fails to contact the metal being tested.the end of a tube moving up and down in a verti-

cal position.

c. A f r ame con ta in ing a con t rol in which a CAUTIONplunger moves up and d own vertically und er theinf luence of a cam w hich applies and releases the Sudden conta ct of the indentor andtest load . The cam is mounted on a drum a nd the material under test should bewhen t he sta rt ing ha ndle is depressed, the whole avoided to prevent possible injury tois rota ted by a w eight at t ached to a f lexible cable, the dia mond point .the speed of rotation being controlled by a piston

c. Depress the load t r ip level (8) apply ing thea nd da shpot of oil. The mechanism provides for aload. The dura tion of the loa d application is f ixedslow an d diminishing ra te of application for t heby th e man ufacturers a t 10 to 30 seconds, the t imelast portion of the load.being determined by the ra te a t w hich oil is

d . A foot peda l , wh ich when depressed , a llowed to bleed out of the dash pot. The loa d isreturns the cam, drum and weight to their original fully applied, the indentor is aut omaticallypositions, thus cocking the mechanism and prepar- released.ing the instrument for another test .

d . E leva te the indentor by turn ing the wheel .e . A t r ipper , wh ich suppor t s the beam dur ing

Lower the t esting ta ble by reversing the t able ele-the return of the cam , weight and drum. The trip-

vating wheel.per also released the lever for load applications.

e . Sw ing the microscope (10) into place unt ilf . A medium-power compound microscope forlocked.measuring t he indentat ion a cross the diagona l of a

square .f . View the impression of the indenta t ion in

the form of a square in the field shown by the8-17. Making The Vickers Test . The test iseyepiece.applied as follows (See figure 8-4):

8-6

Page 235: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 235/288

T.O. 1-1A-9

Figure 8-4. Vickers Pyrami d Har dness Tester 

8-7

Page 236: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 236/288

T.O. 1-1A-9

8-18. S H OR E S C LE R OS C OP E H AR D NE S STE ST. The S hore scleroscope is not a pr ecisioninstrument as the others discussed in precedingpara gra phs. It is used to give approximat e valuesfor compar at ive ha rdness read ings. Testing hard-ness w ith th e scleroscope consists of dropping adiamond tipped hammer upon the test specimenfrom a definite height and measuring the reboundproduced. In one type of tester, the height of therebound must be measured directly on the scale ofthe ma chine, while on a nother the a mount is indi-cated on a dial.

8-19. The Scleroscope Tester. The tester (Figure8-6) consists of the following m a jor pa rts:

a . A base , provided w i th leve ling screws , enda clamping arrangement to hold the sample to betested.

Figure 8-5 . S tandard Pyramid Diam ond Indentor 

g . Br ing the lef t corner of the impression , bymeans of the centering screws (13) to a pointwhere it t ouches the left ha nd f ixed knife edge.Adjust the right hand movable knife edge bymeans of the micrometric screw connected to thecounter until it touches the right hand corner ofth e impress ion. The count er (15) w ill then show an ocular reading w hich is tra nsposed to the Vick-ers pyramid numeral by use of correlation ta blesaccompany ing the t ester.

h . Where speci f ied ha rdness l imi t s a redesired the thir d knife edge is used. This ismoved by means of special screws to correspond tothe sma ller dimension or maximum h ar dness,wh ile the micrometer-cont rolled kn ife edge isadjusted to correspond to the m inimum ha rdnessor la rger dimension. When the settin gs of the sec-ond and third knife edges a re ma de, it is only nec-

essary when taking readings to set the fixed knifeFigure 8-6. Shore Scleroscope edge to the left hand corner of the impression in

the usual way. If the right han d corner of theim pr es sion a ppea r s bet w een th e secon d a n d t hir d b. A ver tica l g la ss t ube, m ou nt ed t o t he ba sek ni fe ed ges , t he m a t er ia l h a s t h e p rop er h a r d nes s a n d con t a ining t h e cy lind r ica l d ia m on d pointfor t he ra nge desired. ha mmer.

8-8

Page 237: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 237/288

T.O. 1-1A-9

c. A suct ion hea t a nd bulb for lif t ing a nd b. When a n ext ensomet er is required t o det er-relea sing t he ha mmer. mine ela st ic propert ies, dimensions C a nd L ma y

be modif ied. In a ll cases the percent a ge of elonga -d. A sca le , visible through the glass tube, for

t ion shall be based on dimension G .determining the height of the rebound.

c. The type R1 tes t specimen is circular ine. A m a g n if i er h a m m er w i t h a l a r g er con t a ct

cross section and is used for bars, rods, forgings,area is supplied for use with extremely soft

plates, shapes, heavy-wa lled tubing, a nd castings.meta ls .Types R2 , R3 , R4 , and R 5 a re circular in cross-sec-tion and ar e used for ma terial of dimensions insuf-8-20. TESTING WITH THE SCLE ROSCOPE .ficient for type R1.The test is made as follows:

(1) The ends of the reduced sect ion shalla . L evel t he in st r u men t b y m ea n s of t henot differ in widt h by m ore than 0.004 inch.a djusting screws (1). (See figure 8-6). The level

position is determined by means of the plumb rod(2) The ends of the specimen shall be sym-

(2).metrical with the center line of the reduced sectionwithin 0.10 inch.b . Prepare the tes t specimen as descr ibed for

the Brinell and Rockwell tests in preceding(3) When mater ia l is over 2 inches thick,

para graphs a nd clam p it on the base. This is donema chine t o 3/4 inch or use ty pe R1 test specimen.

by raising the lever (3) inserting the sample andFor more detailed information, refer to Federal

exert ing t he pressure on t he clam ping shoe (4).

Test Method Standard No. 151.c. Ra ise the hammer (5) by squeezing and8-22 . DECARBURIZATION MEASUREMENT.

releasing the bulb (6)8-23. Decarburiza t ion is the loss of carbon a t t he

d . Relea s e th e h a m m er b y a g a in s q ueez in gsurface of ferrous materials which have been

the bulb a nd observing its rebound.heated for fa bricat ing, welding, etc., or wh enheat ed to modify mechan ical properties. Ef fectivee . Severa l t es t s should be made a t d if feren tdecar burization is a ny m easura ble loss of carbonpoints of a specimen, and a n a verage readingcontent which results in mechanical propertiestaken to reduce visual error.below the minimum acceptable specifications for

8-21. TENSIL E TES TING. The terms tension ha rdened ma teria ls. The most common methodstest and compression test are usually taken to used to measure decarburization are microscopic,refer to tests in which a prepared specimen is sub- ha rdness a nd chemical. The microscopic meth od isjected to a gra dually increasing load a pplied axi- sufficiently accurate for most annealed and hota lly until failur e occurs . For the purpose of ten-

rolled mat erial for small a mounts of decarburiza-sile testing implied by this technical order this tion in h igh ca rbon (over 0.60%), high h a rdn esstype of sett ing would a pply to determining the steels. The hard ness method is insensitive in th ismecha nical properties desired in a ma terial. For case, and recourse must be t aken t o chemical a na l-this test, the following test specimens are listed. ysis . In th is technical order, only the har dness(See Figure 8-7.) This does not exclude the use of meth od is covered. When precise measu rement sother test specimens for special materials or forms are required, publicat ions giving deta iled m easure-of material. The tensile strength shall be deter- ments must be consulted.mined by dividing t he ma ximum load on t he speci-men during a tension t est by th e original cross-sectional area of the specimen.

a . Diameter of the reduced sect ion may besmaller at center than at ends. Difference shallnot exceed 1%of diameter at ends.

8-9

Page 238: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 238/288

T.O. 1-1A-9

Table 8-2. Rockwel l Scales, Loads and Pr ef ix L etters 

S CALE P RE FIX MAJ OR LOADLE TTE RS IND E NTOR/P E NE TRATOR KILOG RAMS D IAL NU MB E RS

A D ia mond 60 B la ckB * 1/16 in S t eel B a ll 100 Red

C* D ia mond 150 B la ck

D D ia mond 100 B la ck

E 1/8 in B a ll 100 Red

F 1/16 in B a ll 60 Red

G 1/16 in B a ll 150 Red

H 1/8 in B a ll 60 Red

K 1/8 in B a ll 150 Red

L 1/4 in B a ll 60 RedM 1/4 in B a ll 100 Red

P 1/4 in B a ll 150 Red

R 1/2 in B a ll 60 Red

S 1/2 in B a ll 100 Red

V 1/2 in B a ll 150 Red

* Most Commonly Used S cales.

8-24. H ARD NE S S ME TH OD . rea dings a re ma de on steps w hich a re know n dis-ta nces below t he surfa ce. These steps should be

8-25. Taper or St ep G rind - The specimen con-ground at pre-determined depths below the sur-

ta ining the surface on w hich decarburiza tion is to faces, and of sufficient areas to allow several hard-be measured is prepared so tha t it can be ma nipu-

ness readings on each flat .lated on a Rockwell superficial or Vickers hard-ness tester. If the specimen is not in t he hardened

8-26. The f i le method is of t en suitable forcondition, it is recommended th at it be ha rdeneddetecting decarburizat ion of hardened ma terialsby quenching from heat ing equipment under con-during shop processing, but not for accurate mea-dit ions w hich avoid further change in car bon dis-surement. Ba se metals expected to ha rden abovetribution. For the taper grind procedure, a shal-RC60 and found to be file sof t a re probably decar-low t aper is ground through the case, andburized. Decarburizat ion of base meta l tha t willhardness measurements are made along the sur-not ha rden to RC 60 can not be detected by thisface. The angle is chosen so th a t read ings spacedmethod unless specially prepared files are used.equal distances apart will represent the hardnessThe extent and severity of any decarburizationat the desired increments below the surface of thedetected by this method should be verified bycase. The step grind procedure is essentia lly the

either of the other methods.same as the taper grind, except that hardness

8-10

Page 239: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 239/288

T.O. 1-1A-9

Figure 8-7. Test Specimens 

8-11

Page 240: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 240/288

T.O. 1-1A-9

Tabl e 8-3. Appr oxim ate H ard ness - Tensile Strength Relationship of Carbon and Low Al loy Steels 

Rockw ell Vickers B r inell3 Tensile

D ia mond 300 K g Loa d - 10mm B a ll S t rengt h

C B P yra mid Tungst en 1000 lb

150 K g 100 Kg 50 Kg Ca rbide S t eel perLoa d Loa d Loa d B a ll B a ll sq in .

1/16 B a ll

67 918 820 71766 884 796 70165 852 774 68664 822 753 67163 793 732 65662 765 711 64261 740 693 62860 717 675 61359 694 657 60058 672 639 584

57 650 621 57456 121.3 630 604 56155 120.8 611 588 54854 120.2 592 571 53653 119.6 573 554 524 28352 119.1 556 538 512 27351 118.5 539 523 500 26450 117.9 523 508 488 25649 117.4 508 494 476 24648 116.8 493 479 464 23747 116.2 479 465 453 23146 115.6 465 452 442 22145 115.0 452 440 430 21544 114.4 440 427 419 20843 113.8 428 415 408 20142 113.3 417 405 398 19441 112.7 406 394 387 18840 112.1 396 385 377 18139 111.5 386 375 367 17638 110.9 376 365 357 17037 110.4 367 356 347 16536 109.7 357 346 337 16035 109.1 348 337 327 15534 108.5 339 329 318 15033 107.8 330 319 309 14732 107.1 321 310 301 14231 106.4 312 302 294 13930 105.7 304 293 286 13629 105.0 296 286 279 13228 104.3 288 278 272 12927 130.7 281 271 265 12626 102.9 274 264 259 12325 102.2 267 258 253 12024 101.5 261 252 247 11823 100.8 255 246 241 11522 100.2 250 241 235 11221 99.5 245 236 230 11020 98.9 240 231 225 107

8-12

Page 241: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 241/288

T.O. 1-1A-9

Table 8-3. Appr oxim ate H ard ness - Tensile Strength Relationship of Carbon and Low Al loy Steels - Continu ed 

Rockw ell Vickers B rinell3 Tensile

D ia mond 300 Kg Loa d - 10mm B a ll S t rengt h

C B P yra mid Tungsten 1000 lb

150 Kg 100 K g 50 K g Ca rbide S t eel perLoa d Loa d Loa d B a ll B a ll sq in .

1/16 B a ll

19 98.1 235 226 220 10418 97.5 231 222 215 10317 96.9 227 218 210 10216 96.2 223 214 206 10015 95.5 219 210 201 9914 94.9 215 206 197 9713 94.1 211 202 193 9512 93.4 207 199 190 9311 92.6 203 195 186 9110 91.8 199 191 183 90

9 91.2 196 187 180 898 90.3 192 184 177 887 89.7 189 180 174 876 89 186 177 171 855 88.3 183 174 168 844 87.5 179 171 165 833 87 177 169 162 822 86 173 165 160 811 85.5 171 163 158 800 84.5 167 159 154 78

83.2 162 153 150 7682 157 148 145 74

80.5 153 144 140 7279 149 140 136 70

77.5 143 134 131 6876 139 130 127 6674 135 126 122 6472 129 120 117 6270 125 116 113 6068 120 111 108 5866 116 107 104 5664 112 104 100 5461 108 100 96 5258 104 95 92 5055 99 91 87 4851 95 86 83 4647 91 83 79 4444 88 80 76 4239 84 76 72 4035 80 72 68 3830 76 67 64 3624 72 64 60 3420 69 61 57 3211 65 57 53 300 62 54 50 28

8-13

Page 242: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 242/288

T.O. 1-1A-9

8-27. NOND ES TRU CTI VE INS P EC TI ON sout h poles w hich w ill a t t ra ct m agnet ic pa rt iclesME TH OD S . a pplied t o the ma t er ia l. D iscont inuit ies a re visible

due to color contra st bet ween th e magn etic par ti-8-28. Radiographic inspect ion wil l show internal

cles and the background surface. All magneticand external structural details of all types of parts

particle inspections shall be accomplished in accor-an d mat erials . I t is accomplished by passing pene-

dance with T.O. 33B-1-1 and MIL-STD-410.t ra t ing radia t ion (usually X or gamma rays)

t h rou gh t he pa r t or a ss em bly bein g in spect ed t o 8-32. E d dy cu rr en t in spect ion is us ed t o d et ectexpose a f i lm. Af ter develop ing , in terpret a t ion of d iscon t inui t ies in ma teria ls tha t a re conductors oft h e r a d iog ra p h w i ll i nd ica t e d ef ect s or da m a g e. elect r ici t y. An ed d y cu r ren t is t h e ci rcu la t in g elec-Al l rad iographic inspect ions sha l l be accomplished t r ica l cur ren t induced in a conductor by an a l t er -in a ccor d a n ce w it h T. O. 33B -1-1, M IL -S TD -453, n a t ing m a g n et i c f i eld, w h ich i s pr od u ced b y aa nd MIL-S TD -410. sma ll t est coil in cont a ct w ith or close to t he ma te-

ria l being inspected. Discontinuit ies in th e ma te-8-29. P enetran t inspect ion is a nondestruct ive

rial being tested cause va riat ions in t he inducedinspection method that is used to detect disconti-

eddy current . The test coil mea sures the va ria -nuities open to the surface of nonporous material.

t ions which reveal discontinuities in th e ma terial.It is accomplished by t reating the inspection a rea

All eddy current inspections shall be in accordancewith a fluid (penetrant) that penetrates the sur-

w ith T.O. 33B -1-1 a nd MIL -STD-410.face discontinuity. Surplus penetrant rema iningon t he s ur fa ce is rem ov ed a n d a n a bs or ben t ma t e- 8-33. C H E M IC AL AN AL YS I S . C h em ica l a na l y-

r ia l (d ev el oper ) is a ppl ied t o t h e s ur fa ce. Th e s is met h od s a r e t h os e in w h ich t he elem en t s pr e-d evelop er a ct s a s a blot t er a n d dr a w s som e of t he s en t in m et a l s a r e d et er m in ed by t h e u se ofpen et r a n t fr om t h e d is con t in u it y t o t h e s ur fa ce. r ea g en t s in s olut ion , b y com b us t ion m et h od s, or byD iscon t in u it i es a r e v is ib le d ue t o color con t r a st ot h er n on e-m is sion m et h od s. S a m ple m et a l fr omb et w e en t h e pen et r a nt d ra w n ou t a n d t h e b a ck - a n y piece sh a ll be su ch t h a t it r epr es en t s a s n ea r lyground surface . Only f luorescent penet r an t s a re as possible the meta l of the en t i re p iece . Dr i ll ing ,approved for Air Force use. Al l penet r an t inspec- mill ing and other mach in ing opera t ions for s amplet ion ma ter ia ls sha l l con form to MIL-I-25135. Al l meta l sha l l be per formed without the use of wa t er ,pen et r a n t in s pect ion s s ha l l b e a ccom pl is hed in oi l, or ot h er lu br ica n t s , a n d cu t t in g s peed s s ha l l b eaccordance w i th T.O. 33B-1-1 and MIL-STD-410. such tha t no burn ing t akes place to cause a l t e rna-

tion of the chemical composition of the test metal.8-30. Ultra sonic inspect ion uses a high frequency

Method III .I of Federal Method St an da rd 151A issound w ave t o detect discontinuities in ma terials .

the controlling document for chemical analysis.The pulser in the ultr asonic instrument sends a nelect r ica l im pu ls e t o a p iez oelect r ic m a t er ia l in t h e 8-34. S PE C TROCHE M I CAL AN AL YS I S . S p ec-

search un it (t r ansducer). The t r ansducer changes t rochemica l ana lysis includes a l l methods in whicht h e elect r ica l im pu ls e in t o mech a n ica l v ib ra t i on s m ea s u rem en t s of el ect r om a g n et i c r a d ia t i on s pr o-(sou nd ) a n d t ra n sm it s t hem in to t he m a ter ia l d uced by a sa m ple m et a l a r e em ploy ed to d et er -b eing in spect ed . An y m a r ked ch a n g e in a cou st i c m in e t h e ch em ica l com pos it i on . S a m ples sh a l l b eproper t ies , such as a f l aw or in ter face in the ma te- so selected a s to be representa t ive of the en t i rer ia l , r ef lect s t h e s ou nd b a ck t o t h e t r a ns du cer . q ua n t it y of m et a l u nd er in spect ion . C u tt in gE x a m in a t ion of t h e r ef l ect i on s on a ca t h od e r a y s peed s in a l l m a ch in in g oper a t i on s s ha l l b e s ucht u be w ill r ev ea l d is con t in uit ies in t h e m a t er ia l . t h a t n o b ur nin g t a kes pla ce t o ca u se a lt er a t ion ofAl l ul t r a son ic inspect ions sha ll be accomplished in the chemica l compos it ion o f the t est meta l .a ccor d a n ce w it h T. O. 33B -1-1, MI L -I -8950, a n d M et h od 112. 1 of F ed er a l Tes t Met h od S t a n d a r dMIL-S TD -410. 151A governs t his t ype of a na lysis. The result of

spectrochemical a na lysis shall be determined to8-31. Magnet ic par t icle inspect ion is used to

the number of decimal places shown in the chemi-detect discontinuities in ferroma gnetic ma terials ,

cal requirements for the material.principally iron a nd steel. Ma gnetic par ticleinspection is accomplished by inducing a magneticfield into the material being inspected. A disconti-nuity will interrupt this field, creating north and

8-14

Page 243: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 243/288

T.O. 1-1A-9

SECTION IX

HEAT TREATMENT

9-1. G E NE RAL. 9-8. S ome t ypica l ma t er ia l a pplica t ions a re list ed

in Ta ble 9-1 for genera l guida nce only. Cy cle for9-2. Controlled a tm osphere ovens are not which a n a lloy type is listed ma y not necessarilyrequired for hea t t reatm ent opera tions unless be specified for th at ma terial.specif ied for a particular pa rt .

9-9. SP ECIAL HEAT TREATMENT9-3. A cold oven is def ined as any oven where INFORMATION.the temperature is not over 500oF (260oC). Load-

9-10. C AD MI U M P L ATE D P AR TS . All ca d -ing and unloading a cold oven is possible withoutmium plate sha ll be stripped from parts (SP OP 21)further lowering the tempera ture.and cadmium plated detail parts shall be removedfrom assemblies prior to subjecting the part or9-4. P a r t s tha t a re prone to d is tor t ion dur ingassemblies to any furnace temperature in excess ofheat treat ment sha ll be properly supported a nd500oF (260oC). At tempera tur es a bove 500oFtemperature raised grad ually by steps. Coat f ix-(260oC), stress alloying of molten cadmium willturing at part contact points and threaded detailsoccur w ith potentially ha rmful results on the ba sewith PMC 2264 boron nitride coating prior to

mater ia ls .insta lling part a nd before heat trea tment. Coolingof these par ts sha ll also be done gradua lly. Cycles 9-11. TINT TEST FOR DE TERMINING COAT-with A suffix are recommended for this purpose. ING REMOVAL FROM NICK EL B ASE AND

COB ALT B ASE ALLOYS.9-5. P a r t s tha t a re not prone to d is tor t ion dur ingheat t rea t ment may be loaded into and w ithdraw n 9-12. Per form tes t a s fol lows :from a hot oven.

a . Remove coa t ing f rom par t s using appl icab lestripping procedure.9-6. Temperature and t ime are the most cr i t ica l

factors in heat t reatm ent. Time required at ea chb . He a t pa r t s a n d a n un coa t e d, va p or b la s t ed

specif ied tempera ture begins only af ter a ll sec-tes t panel of the same mat er ia l a s the par ts a t

t ions of parts have reached that temperature.1075o

±25oF (579o±14oC) for 45 to 75 minutes in

Furna ce opera tor sha ll ma ke allowance for size ofa ir .

part , number of parts , and furnace input

capacities. c. A un iform color ma tch be tween the par tand the test piece will indicate complete removal

9-7. Opt imum tempera tures a re g iven for each of the coating.cycle, with tolerances included for practical use.However, it is best to hold to basic temperatureslisted.

Tab le 9-1 . Typ ica l H eat Tr ea tment App l ica t ion 

Cycle No. Type* S P OP No. P ossible Alloy Applica t ion

1, 1A S TR 455-1, 455-2 Low a lloy st eel, a s AMS 6322 a nd AMS 6415; ma rt ensit icstainless steel, as Type 410 (AMS 5504 and AMS 5613) andG reek Ascoloy (AMS 5508 a nd AMS 5616)

2 S TR 456 Aluminum

3 S TR 457 -

4, 4A S TR 458-1, 458-2 Inconel X

5, 5A S TR 459-1, 459-2 Nickel a lloys: B -1900 (P WA 663 a nd P WA 1455); Inconel713 (P WA 655) C obalt a lloys: St ellite 31 (AMS 5382); WI-52(P WA 653); MAR-M509 (P WA 647)

6, 6A S TR 460-1, 460-2 G reek Ascoloy (AMS 5508 a nd AMS 5616) (ma rt ensit icsta inless st eel)

9-1

Page 244: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 244/288

T.O. 1-1A-9

Table 9-1. Typical H eat Treatment Appl icat ion - Cont in ued 

Cycle No. Type* S P OP No. P ossible Alloy Applica t ion

7 S TR 461 Wa spa loy , U dimet 700

8 S TR 455-3 -

9 S TR 459-3 Inconel 600 (nickel a lloy); Nimonic 75 (P WA 673) (nickelalloy); stainless steel, as Types 310, 316, 321, and 347

11 S TR 464 Tita nium

12, 12A P RE 471, 465 Inconel 718 (nickel a lloy), a s AMS 5596, AMS 5662, a ndAMS 5663

13 S TR 466 17-7P H (st a inless st eel - a ustenite condit ioning); Type 430(ferritic stainless steel), welded with Type 430 filler metal

14 S TR 467 Type 430 (ferr it ic st a inless st eel), w elded w ith AMS 5680(Type 347 stainless steel)

15 P RE 468 A-286 (modif ied Tinidur) st a inless steel, a s AMS 5525, AMS5731, AMS 5732, and AMS 5737

17 P RE 470 Incoloy 901 (nickel a lloy), a s AMS 5660 a nd AMS 5661

20 S OL 480 H AS TE LLOY X (nickel a lloy)

21 S OL 481 Nickel a lloy: HAS TE LLOY X (AMS 5536 a nd AMS 5754)Coba lt a lloys: S TE LL ITE 31 (AMS 5382); H a ynes 188 (AMS5608, AMS 5772, an d P WA 1042); L-605 (AMS 5537 an dAMS 5759)

22 S TR 482 Nickel a lloys: I nconel 600 (AMS 5540 a nd AMS 5665); In-conel 625 (AMS 5599 and AMS 5666); HASTELLOY N;H ASTE LL OY X (AMS 5536, AMS 5754, a nd P WA 1038);H ASTE LL OY W Coba lt a lloys: STELL ITE 31 (AMS 5382);H a ynes 188 (AMS 5608, AMS 5772, a nd P WA 1042); L -605(AMS 5537 an d AMS 5759); MAR-M509 (P WA 647)

101 S OL 761 Wa spa loy (nickel a lloy), a s AMS 5544, AMS 5706, a nd AMS5707

102 S OL 762 Wa spa loy (nickel a lloy), a s AMS 5544, AMS 5706, a nd AMS5707

103 S TA 763 Wa spa loy (nickel a lloy), a s AMS 5544, AMS 5706, AMS5707, AMS 5708, and AMS 5709

104 P RE 764 Wa spa loy (nickel a lloy), a s AMS 5596, AMS 5706, AMS5707, AMS 5708, and AMS 5709

105 S OL 765 Inconel 718 (nickel a lloy), a s AMS 5596, AMS 5662, a ndAMS 5663

106 S OL 766 Inconel 718 (nickel a lloy , a s AMS 5596, AMS 5662, a ndAMS 5663

9-2

Page 245: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 245/288

T.O. 1-1A-9

Table 9-1. Typical H eat Treatment Appl icat ion - Cont inu ed 

Cycle No. Type* S P OP No. P ossible Alloy Applica t ion

10 P RE 767 Nickel a lloys: I nconel 718, a s AMS 5596, AMS 5662, a ndAMS 5663; Inconel X-750, as AMS 5598, AMS 5670, and

AMS 5671

* P RE = Precipita t ionSOL = Solut ionSTA = St abilizat ionSTR = St ress-relief

9-13. TITANIUM ALLOY P ARTS.

WARNINGNOTE

AMS 4901 and 4921 are the only com-Alkaline rust remover causes burns.

mercially pure t itanium material P rotect eyes an d skin from conta ct .types used widely in t he fabricat ion ofP &W engine par ts. Virtua lly a ll

NOTEother t i tanium m ater ia ls used a retitanium alloys and are subject to . P ar ts sha ll be immersed only longthese instructions. enough to obtain optimum results.

9-14. GE NERAL. Al l t i t an ium a lloy pa r t s sha l l . Refer t o Section V. CLEANING, forbe cleaned by the following procedure prior to solution m a ke-up.str ess-relief. Otherw ise, cert a in impurit ies th a t

b . S oa k in a lk a line ru st r em over (S PS 2, S PSmay be present on the parts during the heating5, SPS 7, SPS 12, SPS 25, SPS 27, or PS 240) atcycle could ca use stress alloying of th e part s. The180o to 200oF (82o to 93oC) for 1 to 4 minutesthin, hard, blue-gray oxide coating sometimesmaximum.occurring on t it an ium a lloy surfaces and una f-

fected by this cleaning procedure is harmless inc. Pressure r inse over t ank w ith cold wa t er ,this respect an d ma y be disregar ded.

then dip rinse in cold water, following with a coldwa ter pressure rinse.

d . Rinse in hot PMC 1737 deion ized wa t er a tWARNING150o to 200oF (66o to 93oC). Air dry; do not usecompressed air.

Methyl ethyl ketone (MEK ) is f lam-mable and harmful to eyes, skin, and e . Immedia te ly a f t e r complet ing s tep d ., pro-breathing passages. Keep ignit ion tect the parts from all contamination, such as dirt ,sources aw ay , provide adequa te venti- dust , oil mist , f ingerprints , etc. Cover parts w ithlat ion, a nd w ear protective clothing. clear plastic sheet or store them in clear plastic

bags until furnace or other operation is begun.Use clean whit e gloves for a ll han dling.NOTE

9-15. Type 6A1-4V Tita nium Alloy Pa rts (AMSSince only light films of oil or grease4911, 4928, 4930, 4935, 4954, 4956, 4967, andwill be removed by the cleaning solu-P WA 1213, 1215, 1262). P a rts fa bricat ed of thesetion, it is essential that as much sur-tita nium a lloys ma y be stress-relieved in air onlyface contamination as possible beto 1015o

±15oF (546o±8oC). See Cycles 1 a nd 1A.removed before immersing parts into

At any higher temperatures, an inert atmospherethe cleaning solution.shall be used regardless of a ny contra ry instr uc-

a . Remove any vis ible concentra t ions of oi l, t ions st ipulated in a particular repair .grease, dirt , and any other contaminants by wip-in g w it h a clea n , lin t-fr ee clot h da m pen ed w it h 9-16. S OL U TI ON , S TAB I LI ZATI ON , OR P R E -methyl ethyl ketone TT-M-261 or acetone O-A-51. CIP ITATION HE AT TREATMENT.

9-3

Page 246: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 246/288

T.O. 1-1A-9

9-17. G E NE RAL. S olut ion hea t trea tm ent of 9-21. The expressions AI R C OOL a nd AI R C OOLm a t er ia l (pa r t icu la r ly H AS TE L L OY X) is per - OR FAS TE R m ea n th a t pa r t s s ha l l b e cooledf or m ed t o im pr ove d u ct i li ty a n d w e ld a b il it y p rior q u ick ly e nou gh t o pr even t m e ta l s t r uct u re ch a n g esto resizing and repa ir . Long-t ime exposure to h igh tha t can happen in cert a in a l loys if cool ing is tootempera ture eng ine opera t ing environment causes s low . I t does not mean to quench in a liquid . Cir -precipi t a t ion of ca rb ides in to the gra in boundar ies. cu la t ing fans may be used , bu t f ixtur ing may beCarbides , pa r t icu la r ly chromium carb ides, a re thus requ ired i f d is tor t ion i s a problem.precipita ted into the gra in boundaries of part s fab-

a . AIR COOL is def ined as r a te of cool ing ofricated of HASTELL OY X ma terial a nd subjectedpart obtained by removing that part from furnacefor long periods t o tempera tur es of 1200o to 1700oFat prescribed temperature a nd a llowing it t o cool(649o to 927oC). The solution trea tm ent dissolvesin room temperature st ill air . Def init ion has beenthese carbides an d puts th em back into metallicbroadened to include the following situations.solution. The cooling cycle, th erefore, sha ll be

ra pid enough t o maint ain carbides or precipitat ion(1) In vacuum furnace, by force cooling in

ha rdeners in solution. Replicat ion and meta llurgi-protective atmosphere.

cal examina tion may be necessary t o verifywhether fixturing and cooling rate are adequate to (2) In protect ive a t mosphere furnace, byobta in desired microstructure a nd prevent shut t ing of f heat and mainta ining a tmosphericcracking. f low ra tes .

9-18. S t ab i li za t ion hea t t rea tment is ma in t a in ing (3) In re tor t furnace , by removing retor ta part at a selected temperature long enough to from furnace and fan cooling.rearrange the atoms into an improved structure.

(4) In p it fu rnace , by removing par t s f rom9-19. Precipi t a t ion hea t t rea tment i s a selected furnace a nd cooling in room t empera ture st ill a ir .temperature and duration that produces beneficial

b . AIR COOL OR FASTER is def ined as cool-ha rdening in certa in alloys. It is sometimesing not less tha n 40oF (22oC) per minute to 1100oFreferred to as Aging, or Age Hardening.(593oC) and not less than 15oF (8oC) from 1100o t o

9-20. When a sequence of solut ion, s tabil iza t ion, 1000oF (538oC).or precipitat ion hea t t reatm ent is a pplied to ag iv en pa r t , v a ri ou s t em per a t ur es a r e u sed . Th e 9-22. C y cle n um ber , t y pe of h ea t tr ea t m en t ,f i na l con dit ion ob ta i ned is a com bin ed ef fect of S P O P nu mb er , a n d m a xim um tem per a t ur e a r et his sequence. list ed in Ta ble 9-2.

Table 9-2. Cross-Index for Solut ion, Stabi l izat ion, or Precip i tat i on Heat Treatments 

Cycle No. Type S P OP No. P ea k Temp., oF(oC)*

12 P recipit a t ion 471 1350 (732)12A P recipit a t ion 465 1350 (732)15 P recipit a t ion 468 1325 (718)17 P recipit a t ion 470 1450 (788)20 S olut ion 480 2050 (1121)21 S olut ion 481 2150 (1177)101 S olut ion 761 1825 (996)102 S olut ion 762 1825 (996)103 S ta biliza t ion 763 1550 (843)

104 P recipit a t ion 764 1400 (760)105 S olut ion 765 1750 (954)106 S olut ion 766 1750 (954)107 P recipit a t ion 767 1325 (718)

* (disregarding tolerance)

9-23. S olu t ion h ea t t r ea t m en t C ycles 20 a n d 21 in st r uct ion s, a s n eces sa r y, by cy cle or S P O Pa r e u sed for va r iou s H AS TE L L OY X pa r t s. R ef er - n um ber .ence to these cycles will be made in the repair

9-4

Page 247: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 247/288

T.O. 1-1A-9

NOTE ma nufa cture. The beneficia l proper-ties derived from this lower tempera-These cycles a pply only to t he repa irture tr eatm ent could be lost perma -of HASTELL OY X part s tha t requirenently if subjected to a temperatureusing one of th e following solutionhigher tha n 1800oF (982oC). For reg-hea t treat ment s. The specif ic cycleular Hastelloy material, solution heatrequired will be included in the repairtreat shall be performed in a ccordance

procedure. with Cycle 20 (SPOP 480), unless oth-erwise directed by a specific repair9-24. CYCLE 20 (SP OP 480). Per form asprocedure.follows:

a . H ea t pa rt to 2150o±25oF (1177o

±14oC) andhold for 7 to 10 minut es.

CAUTION

NOTEDo not use this cycle for solution heat

Hydr ogen, argon, or a ir are a ccepta bletreating PWA 1038 HASTELLOY Xa tm ospheres. How ever, wh en solu-ma terial. This ma terial wa s solutiontion treating is to be followed by weldtreated at 1950oF (1066oC) a t i t srepair that requires complete priorma nufa cture. The beneficial proper-removal of oxides, hydr ogen is pre-ties derived from this lower tempera-

ferred because of its characteristicture tr eatm ent could be lost perma- an d beneficial clean ing a ction overnently if subjected to a t emperat urethe entire par t . Hydr ogen cleaninghigher tha n 1800oF (982oC). Forremoves oxides from all surfacesother HASTELLOY alloys, solutionincluding those difficult to cleanheat treat shall be performed per thismecha nically, and to some extent,cycle unless otherwise directed by afrom the inside of cracks to be welded.

specif ic repair procedure.

b . Air cool or fa s t er .a . H ea t pa rt to 2050o

±25oF (1121o±14oC) and

9-26. The following solution, stabilization, or pre-hold for 7 to 10 minut es.cipitat ion heat treat ment cycles apply prima rily tocertain age-hardenable alloys such as WASPALOYand INCONEL materials , for stress-relief, and toNOTEdissolve precipitated carbides and intermetallics

Hydr ogen, a rgon, or a ir ar e acceptable(hardeners).atmospheres; however, when solution

treating is to be followed by weldNOTErepair that requires complete prior

These cycles a pply only w hen specif i-removal of oxides, hydrogen is pre-cally invoked in repair procedures inferred because of its characteristicengine publicat ions. P ar ts tha t arean d beneficial cleaning a ction oversusceptible to distortion during heatthe entire par t . Hyd rogen cleaningtreatment shall be adequately sup-removes oxides from all surfaces,ported, and temperature raised andincluding those difficult to cleanlowered stepwise. The Suf f ix A fol-mecha nically, and to some extent,lowing a cycle number indicates afrom the inside of cracks to be welded.stepwise cycle. St ep cycles shall not

b . Ai r cool or fa s t er . be used for solution hea t t reat ments.Refer to cautions in solution heat

9-25. CYCLE 21 (SP OP 481). Per form as treat cycles.follows:

9-27. CYCLE 12 (SP OP 471). Per form asfollows:

CAUTIONNOTE

Do not use this cycle for solution heat This is a short-term precipitationtreating PWA 1038 HASTELLOY X (aging) heat treatment for INCONELma terial. This ma terial wa s solution 718 or other part material specifiedtreated at 1950oF (1066oC) a t i t s in engine publication.

9-5

Page 248: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 248/288

T.O. 1-1A-9

a . P l a ce p a rt i n oven a n d hea t t o 1350o±15oF a . H ea t pa r t t o 1450o

±15oF (788o±8oC) and

(732o±8oC). hold for 4 hours.

b. C ool t o 500oF (260oC) a t a ra te equivalentb. H old a t 1350oF (732oC) for 4 hours.to air cool.

c. C ool t o 1200o±15oF (649o

±8oC) at approxi-c. H ea t pa rt t o 1325o

±15oF (718o±8oC) andma tely 100oF (56oC) per hour. Hold at tempera-

hold for 14 hours.ture for a total of 3 hours, including cool-downtime from 1350oF (732oC).

d . Cool a t a r a t e e qu iva len t t o a i r cool .d . Air cool to room tempera ture .

9-31. CYCLE 101 (SP OP 761). Per form asfollows:9-28. CYCLE 12A (SP OP 465). P er form as

follows:

CAUTIONNOTE

This is a short-term precipitation Hea ting or cooling ra te betw een(aging) heat treatment for INCONEL 1000oF (538oC) and 1850oF (1010oC )718 or other part material specified shall be at least 40oF (22oC) per min-in engine publication. ute to prevent cracking and to control

aging characterist ics.a . P l a ce pa r t in cold ov en .

b. H ea t t o 600oF (316oC) and hold for 30 NOTEminutes.

This is a solution hea t t reatm entusing an argon atmosphere.c. I ncr ea se t o 800oF (427oC) and hold for 30

minutes.a . P lace par t w ith thermocouples in retor t ,

and seal retort .d . I ncr ea se t o 1000oF (538oC) and hold for 30minutes.

b . Pu r g e r et or t a t a p pr ox im a t el y 150 CF Hargon until dew point reaches -40oF (-40oC) ore. I n cr ea s e t o 1200oF (649oC) and hold for 30lower at retort exhaust .minutes.

c. I n ser t ret or t in t o f ur n a ce.f. I ncr ea se to 1350o±15oF (732o

±8oC) andhold for 4 hours.

NOTEg. C ool to 1200o

±15oF (649o±8oC) at approxi-

Furnace may init ially be set higherma tely 100oF (56oC) per hour. Hold at tempera- tha n 1850oF (1010oC).ture for a total of 3 hours, including cool-downtime from 1350oF (732oC). d. H ea t t o 1825o

±25oF (996o±14oC) using

lower th ermocouple for controllin g. D o not exceedh . Air cool to room tempera ture.

1850oF (1010oC) on higher therm ocouple. Hold at9-29. CYCLE 15 (SP OP 468). Per form as temperature for 2 hours unless otherwisefollows: specified.

e . Remove retor t f rom furnace and cool w i thNOTEforced argon to 1000oF (538oC) in no longer than

Heating and cooling rates are 18 minutes; then complete cooling with argon oroptiona l. Air is a n accepta ble a ir .atmosphere.

9-32. CYCLE 102 (SP OP 762). Per form asa . H ea t pa rt to 1325o

±25oF (718o±14oC) and follows:

hold for 4 hours.

b. Air cool.

9-30. CYCLE 17 (SP OP 470). Per form asfollows:

NOTE

Hydrogen, argon, or a blend of hydro-gen and argon, or vacuum, are a ccept-able a tmospheres.

9-6

Page 249: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 249/288

T.O. 1-1A-9

NOTE

This is a precipita t ion heat treat mentCAUTIONusing air , a rgon, or va cuum.

Hea ting or cooling ra te betw eena . P l a ce pa r t in cold fu rn a ce.1000oF (538oC) and 1850oF (1010oC)

shall be at least 40oF (22oC) per min-b. H ea t t o 1400o

±15oF (760o±8.3oC) for 16

ute to prevent cracking and to control hours.aging characterist ics.

c. Air cool.

NOTE9-35. CYCLE 105 (SP OP 765). Per form as. This is a solution hea t t reatm ent follows:

using vacuum. Hea t cycle shall becompleted in the 0.010 torr range orlower. CAUTION

. Furnace system shall provide forHea ting or cooling ra te betw een

argon forced cooling, in order to sat-1000oF (538oC) and 1775oF (968oC )

isfy cooling rate requirement.shall be at least 40oF (22oC) per min-ute to prevent cracking and to controla . P lace par t , w ith thermocouples , in furnace .

aging characterist ics.b . Evacua te to 0.009 tor r or lower . S t a t ic

leak rate shall not exceed 50 microns per hour.NOTE

This is a solution hea t t reatm entNOTE

using an argon atmosphere.Furnace may init ially be set higher

a . P lace par t w ith thermocouples in retor t ,tha n 1850oF (1010oC).and seal retort .

c. H ea t t o 1825o±25oF (996o

±14oC) usinglower th ermocouple for cont rolling. Do not exceed b . Pu r g e r et or t a t a p pr ox im a t el y 150 CF H1850oF (1010oC) on higher therm ocouple. H old a t argon until dew point reaches -40oF (-40oC) ortemperature for 2 hours unless otherwise lower, at retort exhaust .specified.

c. I n ser t ret or t in t o f ur n a ce.d . Cool a t requ ired r a te us ing forced a rgon .

NOTE9-33. CYCLE 103 (SP OP 763). Per form asfollows: Furnace may init ially be set higher

tha n 1775oF (968oC).

NOTEd. H ea t t o 1750o

±25oF (954o± 14oC), using

This is a stabilization heat treatment lower th ermocouple for controllin g. D o not exceedusing air , a rgon, or va cuum. 1775oF (968oC) on higher therm ocouple. Hold at

temperature for 1 hour unless otherwise specified.a . P l a ce pa r t in col d f ur na ce.

e . Remove retor t f rom furnace and cool w i thb. H ea t t o 1550o±15oF (843o

±8.3oC) for 4forced argon to 1000oF (538oC) in no longer thanhours.16 minutes; then complete cooling with argon or

a ir .c. Air cool.

9-34. C YC LE 104 (S P OP 764). P er form a s 9-36. C YC LE 106 (S POP 766). P erform a sfollow s: follow s:

9-7

Page 250: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 250/288

T.O. 1-1A-9

NOTE

Loca l st ress-relief of engine pa rts fol-CAUTIONlowing minor repairs is a uthorizedonly if procedure has been developedHea ting or cooling ra te betw eento be compatible with applicable1000oF (538oC) and 1775oF (968oC)parts , material, s ize, and operatingshall be at least 40oF (22oC) per min-environment, a nd is a pproved by the

ute to prevent cracking and to control cognizant engineering a uthority.aging characterist ics.9-39. GE NERAL. Pa r t s tha t have been repa ired

NOTE by fusion w elding sha ll ordinar ily be stress-relieved.. This is a solution hea t t reatm ent

using vacuum. Hea t cycle shall becompleted in the 0.010 torr range or

CAUTIONlower.

The required stress-relief (Cycle 1 or. Furnace system shall provide for1A) after welding or brazing Type 410argon forced cooling, in order to sat-or Greek Ascoloy materials eliminatesisfy cooling rate requirement.the britt leness in the joint a reas. Toavoid cracking, part s sha ll be ha ndleda . P lace par t , w ith thermocouples , in furnace.carefully until stress-relief is

b . Evacua te to 0.009 tor r or lower . S t a t ic accomplished.leak rate shall not exceed 0.05 torr per hour.

NOTENOTE

On certain part s , experience has indi-Furnace may init ially be set highercated that stress-relief is nottha n 1775oF (968oC).requ ired. This permis sible omission

c. H ea t t o 1750o±25oF (954o

±14oC), using will be included in a ppropriat e ma n-lower th ermocouple for cont rolling. Do not exceed ual repair section for such parts.1775oF (968oC) on higher therm ocouple. H old a t

9-40. The following str ess-relief cycles ar e usedtemperature for 1 hour unless otherwise specified.throughout ma nua l for various par ts . Reference to

d . Cool a t requ ired r a te us ing forced a rgon . these cycles will be made, as necessary, by cycle orSP OP number .9-37. CYCLE 107 (SP OP 767). Per form as

follows:

NOTENOTE . Parts may require a cycle differentThis is a precipita t ion heat treat ment

from one of th e following . This wi llusing air or argon.

result in cycle being included in spe-cific repair procedure.a . P l a ce pa r t in cold fu rn a ce.

b. H ea t t o 1325o±15oF (718o

±8.3oC) for 8 . Parts that are susceptible to distor-hours. t ion during heat treatment shall be

adequately supported, and tempera-c. Furnace cool a t a r a te not to exceed 100oF

ture ra ised a nd lowered stepwise.(56oC) per hour to 1150o

±15oF (621o±8.3oC); hold

The Suffix A following a cycle numberfor 8 hours.

indicates a stepwise cycle.d. Air cool.

9-41. Cycle number, SPOP number , and max i-mum temperature are listed in Table 16-3.9-38. STRESS-RELIEF AFTER WELDING.

9-8

Page 251: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 251/288

T.O. 1-1A-9

Tabl e 9-3. Cross-Ind ex for Str ess-Reli ef Heat Treatm ents 

Cycle No. S P OP No. P ea k Temp., oF (oC)*

1 455-1 1015 (546)1A 455-2 1015 (546)

2 456 350 (177)3 457 900 (482)4 458-1 1300 (704)4A 458-2 1300 (704)5 459-1 1600 (871)5A 459-2 1600 (871)6 460-1 1050 (566)6A 460-2 1050 (566)7 461 1500 (816)8 455-3 1010 (543)9 459-3 1600 (871)11 464 1150 (621)13 466 1400 (760)14 467 1500 (816)22 482 1800 (982)

* (disregarding tolerance)

9-42. C YCLE 1 (S P OP 455-1). H ea t pa r t t o d. Cool t o 500oF (260oC) not faster than 100oF1015oF ±15oF (546o

±8oC) a nd hold for 2 hours. (56oC) every 15 minutes.

9-46. CYCLE 4 (SP OP 458-1). Hea t pa r t t oNOTE 1300o

±25oF (704o±14oC) and hold for 2 hours.

To minimize distortion, u se C ycle 1Aas a n alterna te. Other cycles ar e per-

NOTEmissible provided st ress-relief require-To minimize distortion, temperaturement of 1015o

±15oF (546o±8oC) for 2

ma y be raised a nd cooled gradua lly inhours is met.a ccordan ce wit h Cycle 4A. Oth er

9-43. CYCLE 1A (SP OP 455-2). P er form as cycles a re permissible provided stress-follows: relief requirement of 1300o

±25oF(704o

±14oC) for 2 hours is met.a . P u t pa r t in cold ov en .

b. H ea t t o 600oF (316oC) and hold for 30 9-47. CYCLE 4A (SP OP 458-2). P er form asminutes. follows:

c. I ncr ea se t o 800oF (427oC) and hold for 30 a . P u t pa r t in cold oven .minutes.

b. H ea t t o 600oF (316oC) and hold for 30d . I ncr ea se to 1015o

±15oF (546o±8oC) and

minutes.hold for 2 hours.

c. I ncr ea se t o 800oF (427oC) and hold for 30e. C ool t o 500oF (260oC) not faster than 100oFminutes.(56oC) every 15 minutes.

d . I ncr ea se t o 1100oF (593oC) and hold for 309-44. CYCLE 2 (SP OP 456). Hea t pa r t t o 350o

minutes.±10oF (177o±6oC) and hold for 1 hour.

9-45. CYCLE 3 (SP OP 457). P er form as fol lows : e. I n cr ea s e t o 1300oF ±25oF (704o±15oC) and

hold for 2 hours.a . P u t pa r t in cold ov en .

f. C ool t o 500oF (260oC) not faster than 100oFb. H ea t t o 600oF (316oC) and hold for 30(56oC) every 15 minutes.minutes.

c. I ncr ea se t o 900o±15o(482o

±8oC) and hold 9-48. CYCLE 5 (SP OP 459-1). Hea t pa r t t ofor 4 hours. 1600o

±25oF (871o±14oC) and hold for 2 hours.

9-9

Page 252: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 252/288

T.O. 1-1A-9

NOTE c. I ncr ea se t o 800oF (427oC) and hold for 30minutes.To minimize distortion, temperature

may be raised and lowered graduallyd . I ncr ea se to 1010oF (543o

±8oC) and hold forin accorda nce wit h Cycle 5A. Other

30 minutes.cycles are permissable providedstress-relief requirement of 1600o

e. C ool t o 500oF (260oC) not faster than 100oF±

25

o

F (871

14

o

C) for 2 hours is met. (56o

C) every 15 minutes.9-49. CYCLE 5A (SP OP 459-2). P er form as

9-54. CYCLE 9 (SP OP 459-3). Hea t pa r t t ofollows:

1600o±25oF (871o

±14oC) and hold for 1 hour.

a . P u t pa r t in cold ov en .9-55. CYCLE 11 (SP OP 464). Per form as

b. H ea t t o 700oF (371oC) and hold for 30 follows:minutes.

c. I n cr ea s e t o 1000oF (538oC) and hold for 30CAUTIONminutes.

d . I ncr ea se t o 1300oF (704oC) and hold for 30 . For t itanium parts , a vacuum of 0.5minutes. microns m ercury, m aximum, or ar gon

or helium with a dew point n o highere. I n cr ea s e t o 1600o±25oF (871o

±14oC) and

than -60o

F (-51o

C) shall be used.hold for 2 hours.. Longer heat treatment at specifiedf. C ool t o 500oF (260oC) not faster than 100oF

temperature, or shorter heat treat-(56oC) every 15 minutes.ment a t h igher temperature ma y be

9-50. CYCLE 6 (SP OP 460-1). Hea t pa r t t o required by engine publication for cer-1050o

±15oF (566o±8oC) for 2 hours. ta in par ts .

NOTE a . H ea t pa rt to 1150o±15oF (621o

±8oC) andhold for 1 hour.To minimize distortion, temperature

may be raised and lowered graduallyin accorda nce wit h Cycle 6A. Other NOTEcycles a re permissible provided stress-

For mater ia ls other than t i tanium, a irrelief requirement of 1050o±15oF

or argon ma y be used.(566

o

±8o

C) for 2 hours is met.b. Air cool.9-51. CYCLE 6A (SP OP 460-2). P er form as

follows:9-56. CYCLE 13 (SP OP 466). Per form as

a . P ut pa rt in cold oven. follow s:

b. H ea t t o 600oF (316oC) and hold for 30 a . H ea t pa rt to 1400o±25oF (760o

±14oC) inminutes. air an d hold for 2 hours.

c. I ncr ea se t o 800oF (427oC) and hold for 30 b . Ai r cool , or fa s t er .minutes.

9-57. CYCLE 14 (SP OP 467). Per form asd . I ncr ea se t o 1050o±15oF (566o

±8oC) andfollows:hold for 2 hours.

a . H ea t pa rt to 1500o±25oF (816o

±14oC) ande. C ool t o 500oF (260oC) not faster than 100oFhold for 30 minutes.(56oC) every 15 minutes.

9-52. CYCLE 7 (SP OP 461). Hea t pa r t t o 1500oFNOTE±25oF (815o

±14oC) and hold for 4 hours.

A protective atmosphere is suggested.9-53. CYCLE 8 (SP OP 455-3). Per form asfollows: b . F u rn a ce cool a t a r a t e of 50oF (28oC) per

hour to 1100o (593oC), then air cool or faster.a . P u t pa r t in cold ov en .

b. H ea t t o 600oF (316oC) and hold for 30 9-58. CYCLE 22 (SP OP 482). P reviously desig-minutes. nated Cycle 10.

9-10

Page 253: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 253/288

T.O. 1-1A-9

9-65. Choice of method depends upon s ize andshape of joint, part configuration, and accessibil-CAUTIONity . Resistance blankets and quart z lam ps can beused to 1350oF (732oC); induction hea ters a ndParts shall be thoroughly cleanedrad iant gas burn ers can be used to 1825oF (996oC)before ent ering oven.

NOTECAUTION

Hydrogen, argon, vacuum, or air areacceptable atmospheres; however, Thermocouples sha ll not be ta ckwh en heat treat ment is to be followed welded to t itanium parts .by weld repair, hydrogen is preferablebecause of its cleaning action on

9-66. Temperature prof i le shal l be monitoredoxides and impurit ies diff icult t o

with tack welded thermocouples to provide accu-clean m echa nically, as w ithin cracks

rate readout for manual or automatic control dur-or cavities.

ing heat t rea t cycle. Thermocouples sha ll belocated every 2 inches of area that is to be stress-a . P lace par t in cold oven ; however , th is s teprelieved. Followin g the cycle, therm ocouples aremay be omitted for thin sheet metal parts .broken or ground off, and part blended to original

b. H ea t pa rt t o 1800o±25oF (982o

±14oC) and contour.hold for 1 hour.

9-67. Stress-relief dura t ion and temperaturec. Air cool.shall be the sa me a s for a corresponding furna ce

9-59. L OCAL S TRE S S -RE L I E F . heat trea t , unless otherwise specif ied in a pplicableengine technical orders.

9-60. G ENER AL. Local s t ress-relief is the appli-cation of a heat trea tment cycle, using a porta ble

9-68. D E S CR IP TI ON OF M ETH OD S . L oca lheat ing sys tem, to a par t tha t ha s been weld

stress-relief methods are defined in the followingrepaired, usually with out disassembly. Ela borat e

paragraphs .fixturing is avoided when stress-relieving minorareas of large components.

9-69. Resis tance. Heaters consist of nichrome9-61. Approval for local stress-relief is governed wire elements insulated with ceramic fiber andin part by a ccessibility , t empera ture requirement, cont a ined wit hin a f lexible w ire jacket. These

and configura t ion and mat er ia l o f par t . components a re woven into a therma l blanket,which sha ll be held in close contact w ith surfa ce to

9-62. Local stress-relief is especially useful whenbe stress-relieved. Su pplement a ry f lexible hea ters

applied to part s on a mounted or partly disa ssem-may be added to ensure that adjacent parts do not

bled engine.conduct heat aw ay in such a ma nner as to makeheat distribution non-uniform.9-63. B esides avoiding disassembly , loca l s t ress-

relief provides significant cost a nd t ime savings.9-70. Induct ion. Requirements include a high

9-64. Typical local stress-relief methods include frequency generator, with a water-cooled copperthe following: induction coil of sufficient number of turns to be

positioned over entire area to be heat treated, sucha . Resist a nceas a w elded patch. Coils shall be insulated frommetal contact, which will produce electrical arcing.b. Induct ionTypical applications include small weld repair of

c. Qua rt z la mp holes or bosses, or replacement of small detailpar ts .

CAUTION9-71. Quar t z Lamp. Radian t l amp providesintense infrared heat , wh ich can be easily directed

Gas burner shall not be used totowa rd pa rt being stress-relieved. Temperat ure

stress-relieve t ita nium part s .can be cont rolled by pulsing lam p on a nd off. Typ-Exhaust gases can produce harmfulical applications include inlet guide vanes, exhaustsurface reaction.struts, intermediate cases, door assemblies, acces-sory housing, an d t hrust reversers.d . G a s bu rn er ra d ia n t hea t er .

9-11

Page 254: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 254/288

T.O. 1-1A-9

9-72. Ra d ia n t G a s B u rn er . G o od hea t in g p a t -terns a nd t empera ture control are permitted byCAUTIONusing as burners. Hea t treat of severa l areas canbe accomplished simulta neously. Ra diant ga sGas burner shall not be used toburners are fueled with a mixture of air and natu-stress-relieve t ita nium parts .ra l gas .Exhaust gases can produce harmful

surface reaction.

9-12

Page 255: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 255/288

T.O. 1-1A-9

APPENDIX A

SUPPLEM ENTAL DATA

Tab le A-1. Chemica l Symbols 

E LE ME NT S YMB OL ATOMIC NO. E LE ME NT S YMB OL ATOMIC NO.

Aluminum Al 13 Neodymium Nd 60Ant imony S b 51 Neon Ne 10Argon A 18 Nickel Ni 28Arsenic As 33 Nit rogen N 7B a rium B a 56 Osmium Os 76B eryllium B e 4 Oxygen O 8B ismuth B i 83 P a lla dium P d 46B oron B 5 P hosphorus P 15B romine B r 35 P la t inum P t 78Ca dmium C d 48 P olon ium P o 84

Cesium C s 55 P ot a ssium K 19Ca lcium C a 20 P ra seodymium P r 59Ca rbon C 6 P rot a ct inium P a 91Cerium C e 58 Ra dium Ra 8Chlor ine C l 17 Ra don(ra dium ema na t ion) Rn 86Chromium C r 24 Rhemium Re 75Coba lt C o 27 Rhodium Rh 45Columbium (Niobium) C b(Nb) -- Rubedium Rb 37Copper C u 29 Ruthenium Ru 44D ysprosium D y 66 S a ma rium S m 62E rbium E r 68 S ca ndium S c 21E uropium E u 63 S elenium S e 34Fluor ine F 9 S ilicon S i 14G a dolinium G d 64 S ilver Ag 47

G a llium G a 31 S odium Na 11G erma nium G e 32 S t ront ium S r 38G old Au 79 S ulphur S 16H a fnium H f 72 Ta nta lum Ta 73H elium H e 2 Tellur ium Te 52H olmium H o 67 Terbium Tb 65H ydrogen H 1 Tha llium Tl 81Indium In 49 Thorium Th 90Iodine I 53 Thulium Tm 69Iridium Ir 77 Tin S n 50Iron F e 26 Tit a nium Ti 22Krypton K r 36 Tungst en W 74La ntha num La 57 U ra nium U 92Lea d P b 82 Va na dium V 23

Lit hium Li 3 Xenon Xe 54Lut ecium Lu 71 Yt t erbium Yb 70Ma gnesium Mg 12 Yt t rium Yo 39Ma nga nese Mn 25 Zinc Zn 30Mercury H g 80 Zirconium Zr 40Molybdenum Mo 42

A-1

Page 256: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 256/288

T.O. 1-1A-9

Tab le A-2. Decima l Equ iva len ts 

D RILL S IZE D E C IMALS D RILL S IZE D E CIMALSINCH Mm. NO. OR LTR OF AN INCH INCH Mm. NO. OR LTR OF AN INCH

80 0.0135 1.7 0.066929

79 0.0145 51 0.0671/64 0.015625 1.75 0.068897

0.4 0.15748 50 0.0778 0.016 1.8 0.07086677 0.018 1.85 0.072834

0.5 0.019685 49 0.07376 0.02 1.9 0.07480375 0.021 48 0.076

0.55 0.021653 1.95 0.07677174 0.0225 5/64 0.078125

0.6 0.023622 47 0.078573 0.024 2.0 0.0787472 0.025 2.05 0.080708

0.65 0.02559 46 0.081

71 0.026 45 0.0820.7 0.027559 2.1 0.082877

70 0.028 2.15 0.08464569 0.02925 44 0.086

0.75 0.029527 2.2 0.08661468 0.031 2.25 0.088582

1/32 0.03125 43 0.0890.8 0.031496 2.3 0.090551

67 0.032 2.35 0.09251966 0.033 42 0.0935

0.85 0.033464 3/32 0.0937565 0.035 2.4 0.094488

0.9 0.035433 41 0.09664 0.036 2.45 0.096456

63 0.037 40 0.0980.95 0.037401 2.5 0.098425

62 0.038 39 0.099561 0.039 38 0.1015

1.0 0.03937 2.6 0.10236260 0.04 37 0.10459 0.041 2.7 0.106299

1.05 0.041338 36 0.106558 0.042 2.75 0.10826757 0.043 7/64 0.109375

1.1 0.043307 35 0.111.15 0.045275 2.8 0.110236

56 0.0465 34 0.1113/64 0.046875 33 0.113

1.2 0.047244 2.9 0.1141731.25 0.049212 32 0.1161.3 0.051181 3.0 0.11811

55 0.052 31 0.121.35 0.053149 3.1 0.122047

54 0.055 1/8 0.1251.4 0.055118 3.2 0.1259841.45 0.057086 3.25 0.1279521.5 0.059055 30 0.1285

53 0.0595 3.3 0.129921

A-2

Page 257: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 257/288

T.O. 1-1A-9

Tabl e A-2. Decim al E quival ents - Conti nued 

D RILL S IZE D E CIMALS D RILL S IZE D E CIMALSINCH Mm. NO. OR LTR OF AN INCH INC H Mm. NO. OR LTR OF AN INCH

1.55 0.061023 3.4 0.133858

1/16 0.0625 29 0.1361.6 0.062992 3.5 0.137795

52 0.635 28 0.14051.65 0.06496 9/64 0.1406253.6 0.141732 A 0.234

27 0.144 15/64 0.2343753.7 0.145669 6.0 0.23622

26 0.147 B 0.2383.75 0.147637 6.1 0.240157

25 0.1495 C 0.2423.8 0.149606 6.2 0.244094

24 0.152 D 0.2463.9 0.153543 6.25 0.246062

23 0.154 6.3 0.248031

5/32 0.15625 1/4 E 0.2522 0.157 6.4 0.251968

4.0 0.15748 6.5 0.25590521 0.159 F 0.25720 0.161 6.6 0.259842

4.1 0.161417 G 0.2614.2 0.165354 6.7 0.263779

19 0.166 17/64 0.2656254.25 0.167322 6.75 0.2657474.3 0.169291 H 0.266

18 0.1695 6.8 0.26771611/64 0.171875 6.9 0.271653

17 0.173 I 0.2724.4 0.173228 7.0 0.27559

16 0.177 J 0.2774.5 0.177165 7.1 0.279527

15 0.18 K 0.2814.6 0.181102 9/32 0.28125

14 0.182 7.2 0.28346413 0.185 7.25 0.285432

4.7 0.185039 7.3 0.2874014.75 0.187007 L 0.29

3/16 0.1875 7.4 0.2913384.8 0.188976 M 0.295

12 0.189 7.5 0.29527511 0.191 19/64 0.296875

4.9 0.192913 7.6 0.29921210 0.1935 N 0.3029 0.196 7.7 0.303149

5.0 0.19685 7.75 0.3051178 0.199 7.8 0.307086

5.1 0.200787 7.9 0.3110237 0.201 5/16 0.3125

13/64 0.203125 8.0 0.314966 0.204 O 0.316

5.2 0.204724 8.1 0.3188975 0.2055 8.2 0.322834

5.25 0.206692 P 0.323

A-3

Page 258: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 258/288

T.O. 1-1A-9

Table A-2. Decim al E quival ents - Conti nued 

D RILL S IZE D E C IMALS D RILL S IZE D E CIMALSINCH Mm. NO. OR LTR OF AN INCH INCH Mm. NO. OR LTR OF AN INCH

5.3 0.208661 8.25 0.324802

4 0.209 8.3 0.3267715.4 0.212598 21/64 0.328125

3 0.213 8.4 0.3307085.5 0.216535 Q 0.332

7/32 0.21875 8.5 0.3346455.6 0.220472 8.6 0.338582

2 0.221 R 0.3395.7 0.224409 8.7 0.3425195.75 0.226377 11/32 0.34375

1 0.228 8.75 0.3444875.8 0.228346 8.8 0.3464565.9 0.232283 S 0.3488.9 0.350393 23/32 0.718759.0 0.35433 18.5 0.728345

T 0.358 47/64 0.7343759.1 0.358267 19.0 0.74803

23/64 0.359375 3/4 0.759.2 0.362204 49/64 0.7656259.25 0.364172 19.5 0.7677159.3 0.366141 25/32 0.78125

U 0.368 20.0 0.78749.4 0.370078 51/64 0.7968759.5 0.374015 20.5 0.807085

3/8 0.375 13/16 0.8125V 0.377 21.0 0.82677

9.6 0.377952 53/64 0.8281259.7 0.381889 27/32 0.843759.75 0.383857 21.5 0.846455

9.8 0.385826 55/64 0.859375W 0.386 22.0 0.86614

9.9 0.389763 7/8 0.87525/64 0.390625 22.5 0.885825

10.0 0.3937 57/64 0.890625X 0.397 23.0 0.90551Y 0.404 29/32 0.90625

13/32 0.40625 59/64 0.921875Z 0.413 23.5 0.925195

10.5 0.413385 15/16 0.937527/64 0.421875 24.0 0.94488

11.0 0.43307 61/64 0.9531257/16 0.4375 24.5 0.964565

11.5 0.452755 31/32 0.9687529/64 0.453125 25.0 0.9842515/32 0.46875 63/64 0.984375

12.0 0.47244 1 1.031/64 0.484375

12.5 0.4921251/2 0.5

13.0 0.5118133/64 0.51562517/32 0.53125

13.5 0.531495

A-4

Page 259: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 259/288

T.O. 1-1A-9

Tabl e A-2. Decim al E quival ents - Conti nued 

D RILL S IZE D E CIMALS D RILL S IZE D E CIMALSINCH Mm. NO. OR LTR OF AN INCH INC H Mm. NO. OR LTR OF AN INCH

35/64 0.546875

14.0 0.551189/16 0.5625

14.5 0.57086537/64 0.578125

15.0 0.5905519/32 0.5937539/64 0.609375

15.5 0.6102355/8 0.625

16.0 0.6299241/64 0.640625

16.5 0.64960521/32 0.65625

17.0 0.66929

43/64 0.67187511/16 0.6875

17.5 0.68897545/64 0.703125

18.0 0.70866

A-5

Page 260: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 260/288

T.O. 1-1A-9

Table A-3. Engineer in g Conversion Factors 

LENGTH

1 inch = 2.54 Centim eters = 0.0833 Foot = 0.0278 Yard1 foot = 0.305 Meter = 0.333 Ya rd

1 yard = 0.914 Meter = 3 Feet1 Rod = 16 1/2 Feet = 5 1/2 Ya rd s1 Mile = 1.609 Kilometers = 5280 Feet = 1760 Ya rds1 Cent imeter = 0.3937 Inch = 0.0328 Foot1 Meter = 39.37 Inches = 3.281 Feet = 1.094 Yar ds1 Kilometer = 1000 Meters = 3280.83 Feet = 1093.61 Ya rds = 0.62137 Mile

AREA

1 Sq. Inch = 6.452 Sq. C entimeters1 Sq. F oot = 144 Sq. I nches = 929.032 Sq. Centimeters1 Sq. Yard = 1296 Sq. I nches = 9 Sq. Feet = 0.836 Sq. Meter1 Sq . Rod = 272 1/4 Sq Feet = 30 1/4 Sq . Ya rds1 Acre = 43,560 Sq. F eet = 160 Sq. R ods

1 Sq . Mile = 640 Acres1 Sq. Cent imeter = 0.155 Sq. I nch1 Sq. Meter = 1550 Sq . Inches = 10.764 Sq . Feet = 1.196 Sq. Yards1 Sq . K ilometer = 0.3861 Sq . Miles = 247.104 Acres

VOLUME

1 Cu. Inch = 16.39 Cu. C entimet ers = 0.00433 G a llons*1 Cu. Foot = 1728 Cu. I nches = 7.48 Ga llons* = 28.317 Liters = 0.037 Cu. Ya rds1 Cu. Yard = 27 Cu. F eet = 0.7646 Cu. Meter = 202 Ga llons*1 Cu. Cent imeter = 0.001 Liter = 0.061 Cu. I nch1 Cu. Meter = 35.31 Cu. Feet = 1.308 Cu. Yar ds = 264.2 G allons*1 Quart* = 0.25 G allons* = 57.75 Cu. Inches = 0.946 Liter = 2 Pint s*1 Ga llon* = 0.832702 Imperial G a llon = 231 Cu. In ches = 0.1377 Cu. Feet = 3.785 Liters =

3785 Cu. Centimeters1 Ga llon, Imperial = 1.20091 U.S . G allons1 B a rrel (Std .) = 31 1/2 G a llons1 Ba rrel (Oil) = 42 G allons

*U.S. Measure

WEIGHT

1 Ounce = 16 Dr a ms = 437.5 G ra ins = 0.0625 Pound = 28.35 G ra ms = 0.9155 Ounce (Troy)1 Pound = 16 0unces = 453.593 G ra ms = 0.453593 Kilogra m1 Ton (Short ) = 2000 P ounds = 907.185 Kilogra ms = 0.892857 Long Ton = 0.907185 Metr ic Ton1 Ton (Metric) = 2204.62 Poun ds = 0.98421 Long Ton = 1.10231 Short Tons1 Ton (Long) = 2240 P ounds = 1016.05 Kilogr a ms = 1.120 Sh ort Tons = 1.01605 Metr ic Tons1 Gra m = 15.43235 G ra ins = 0.001 Kilogra m1 Kilogra m = 2.20462 P ounds

COMPOU ND U NITS

1 gra m per sq ua re m illimet er = 1.422 pounds per sq ua re inch1 k ilog ra m per sq u a r e m il limet er = 1 .422. 32 pou n ds per sq u a r e inch1 k ilog ra m per sq u a r e cen t im et er = 14. 2232 pou n ds per sq u a r e inch1 kilogra m per sq ua re m et er = 0.2048 pound per sq ua re foot

= 1.8433 pounds per squar e yar d

A-6

Page 261: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 261/288

T.O. 1-1A-9

Tabl e A-3. Engi neeri ng Conversion F actors - Contin ued 

COMPOU ND UNITS (Cont)

1 kilogra m meter = 7.2330 foot pounds1 kilogra m per met er = 0.6720 pound per foot

1 pound per squa re inch = 0.07031 kilogra m per squa re cent imet er1 pound per squa re foot = 0.0004882 kilogra m per squa re cent imet er1 pound per squa re foot = 0.006944 pound per squa re inch1 pound per cubic inch = 27679.7 kilogra ms per cubic met er1 pound per cubic foot = 16.0184 kilogra ms per cubic met er1 kilogra m per cubic met er = 0.06243 pound per cubic foot1 foot per second = 0.30480 meter per second1 meter per second = 3.28083 feet per second1 meter per second = 2.23693 miles per hour

MULTIPLES

Circumference of C ircle = Dia meter X 3.1416Area of C ircle = S qua re of D ia meter X 0.7854, or

Square of Radius X 3.1416, orSq ua re of Circumference X 0.07958

Area of Tria ngle = B a se X one-ha lf a lt it udeS urfa ce of S phere = C ircumference X dia met er, or

Square of diameter X 3.1416Volume of S phere = S urfa ce X one-sixth dia meter , or

Cu be of diam eter X 0.5236Area of H exa gon = Squa re of D ia meter of Inscr ibed C ircle X 0.866Area of Oct a gon = Squa re of D ia meter of Inscr ibed C ircle X 0.828

ENGINEE RING UNITS

1 H orsepow er = 1 kilow a t t H our =33,000 foot pounds per minute 1,000 w a t t hours

550 foot pounds per second 1.34 horsepow er hours746 w a t t s 2,655,220 foot pounds0.746 kilow a t t s 3,412 hea t unit s (B .T.U )

1 H orsepow er H our = 1 B r it ish Therma l U nit =0.746 Kilow a t t hours 1,055 w a t t seconds1,980,000 foot pounds 778 foot pounds2,545 hea t unit s (B .T.U ) 0.000293 kilow a t t hour

0.000393 horsepow er h our

1 K ilow a t t = 1 Wa t t =1,000 w a t t s 1 joule per second1.34 horsepow er 0.00134 horsepow er737.3 foot pounds per second 3.3412 hea t unit s (B .T.U .) per hour44.240 foot pounds per minut e 0.7373 foot pounds per second56.9 hea t unit s (B .T.U ) per minute 44.24 foot pounds per minut e

A-7

Page 262: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 262/288

T.O. 1-1A-9

The following w eights ar e approximate a nd va riat ions must be expected in pract ice.

Tab le A-4. Tab le of Weigh ts - A luminum and Aluminum Al loy 

B a rs-Fla t .0403 . ..... .. ... ... .. ... .. ... .. ... ... .. ... .. ..0.5676 1 x .049 .... .. ... .. ... ... .. ... .. ... ... .. ... ..0.18

S ize L bs P er L in ea r F t .0508 . ..... .. ... .. ... .. ... .. ... .. ... .. ... ... ..0.7158 1 x .058 ..... ... .. ... .. ... .. ... ... .. ... .. ... .0.210

1/2 x 1 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 578 . 0641 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 9026 1 x . 065 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .23

1/2 x 2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 174 . 0808 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 1382 1 x . 083 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .293/4 x 2 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1. 7604 . 0907 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 2781 1 1/16 x . 032 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .13

3/4 x 3 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .6408 . 128 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1. 8099 1 1/16 x . 083 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .31

1 x 2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .3472 . 156 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2. 202 1 1/8 x .035 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 15

1 x 3 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3. 5208 . 1875 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 6481 1 1/8 x . 049. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .20

1 1/2 x 2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .5208 . 250 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .5215 1 1/8 x . 058 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 24

1 3/4 x 3 1/2. .. . .. . .. . .. . .. .. . .. .. . .. .. . ..7.1883 .375 . .. . .. .. . .. .. . .. .. . .. .. . .. . .. .. . .. .. . .. .. . .5 .2822 1 1/8 x .065. . .. .. . .. .. . .. . .. . .. .. . .. .. . ..0.27

2 x 3 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .7 .0416 . 500 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .7. 212 1 3/16 x . 083 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .35

2 3/4 x 4 ..... .. ... ... .. ... .. ... .. ... ... .. .12.9096 Tubing-Round 1 1/4 x .035.... ... .. ... ... .. ... .. ... .. ...0.16

3 x 4 ...... .. ... .. ... ... .. ... .. ... .. ... .. ... .14.350 S ize Lbs P er Linea r F t 1 1/4 x .049.... .. ... .. ... .. ... .. ... .. ... .0.2134

B a rs-H exa gon 1/4 x .028 .... .. ... .. ... ... .. ... .. ... .. ... ..0.025 1 1/4 x .058...... ... .. ... .. ... .. ... .. ... .0.27

S ize Lbs P er L inea r F t 1/4 x .032 .... .. ... .. ... ... .. ... .. ... .. ... ..0.027 1 1/4 x .065.... .. ... .. ... .. ... .. ... .. ... .0.30

3/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 147 1/4 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .03 1 1/4 x . 083. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .37

7/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 20 1/4 x . 049 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 036 1 5/16 x . 083 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .39

1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 262 1/4 x . 058 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .044 1 3/8 x . 032. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .17

9/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 331 1/4 x .065 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 047 1 3/8 x . 049. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .255/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 409 5/16 x . 025 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 027 1 3/8 x . 058. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .29

3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 639 5/16 x . 028 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 032 1 3/8 x . 065. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .33

1 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .047 5/16 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0. 039 1 3/8 x . 083. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .41

1 1/4 . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .620 5/16 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0. 061 1 3/8 x . 120. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .58

1 1/2 . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .340 3/8 x . 025 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 033 1 7/16 x .095 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 48

R ods-Roun d 3/8 x .028 .... .. ... .. ... ... .. ... .. ... .. ... ..0.037 1 1/2 x .035...... ... .. ... .. ... .. ... .. ... .0.19

S ize Lbs Per Linea r F t 3/8 x .035 .... .. ... .. ... ... .. ... .. ... .. ... ..0.0435 1 1/2 x .049.... .. ... .. ... .. ... .. ... .. ... .0.27

3/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 032 3/8 x .042 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 053 1 1/2 x . 058. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .32

1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 058 3/8 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .063 1 1/2 x . 065. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .36

5/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 090 7/16 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0. 054 1 1/2 x . 083. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .45

3/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 129 7/16 x . 049 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 075 1 5/8 x . 065. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .39

7/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 176 1/2 x .032 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 056 1 5/8 x . 125. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .72

1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 230 1/2 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .063 1 11/14 x . 095 .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .58

9/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 291 1/2 x . 042 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 073 1 3/4 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 23

5/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 360 1/2 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .086 1 3/4 x .049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 32

11/14 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .435 1/2 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .11 1 3/4 x . 065 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .3934

3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 518 9/16 x . 032 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 067 1 3/4 x . 083 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 53

13/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .608 5/8 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .08 1 3/4 x . 125 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .79

7/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 705 5/8 x .042 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .093 2 x .042 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 29

15/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .809 5/8 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .11 1 7/8 x . 049 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .34

1 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0. 921 5/8 x . 058 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .13 2 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 36

1 1/4 . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .439 5/8 x . 065 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 14 2 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 48

1 3/8 . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .741 11/16 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0. 105 2 x . 083 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 61

1 1/2 . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .072 3/4 x .035 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 096 2 x .125 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .92

1 3/4 . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .820 3/4 x . 049 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 1245 2 1/4 x . 025 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .2052

2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .683 3/4 x . 058 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 15 2 1/2 x . 065 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .61

2 1/2 ...... .. ... .. ... .. ... ... .. ... .. ... .. ... .. .5.755 3/4 x .065 .... .. ... .. ... ... .. ... .. ... .. ... ..0.17 Tubin g-S tr ea mlin e

2 3/4 ...... .. ... .. ... ... .. ... .. ... .. ... .. ... .. .6.964 3/4 x .083 .... .. ... ... .. ... .. ... .. ... .. ... ..0.21 S ize Lbs P er Linea r F t

3 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .8 .287 13/16 x . 032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0. 095 1. 500 x . 250 x . 020. .. .. .. .. .. .. .. .. .. 0. 082

3 1 /2 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 11. 550 13/16 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0. 13 1. 500 x . 375 x . 020 .. .. .. .. .. .. .. .. .. .0. 085

4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .15. 200 7/8 x . 028 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0. 09 1. 625 x . 375 x . 025 .. .. .. .. .. .. .. .. .. .0. 115S heet s 7/8 x .035 .... ... .. ... .. ... .. ... .. ... .. ... ..0.11 1.875 x .375 x .035...... .. ... .. ... .. .0.16

Thickn ess Lbs P er S q Ft 7/8 x .049 .... .. ... .. ... ... .. ... .. ... .. ... ..0.16 2.00 x .875 x .049.... .. ... ... .. ... .. .0.27

. 0126 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .1797 15/16 x . 032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .11 2 .01563 x . 375 x . 025. .. .. .. .. .. .. .. 0. 12

. 016 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 2253 15/16 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .17 2 .625 x . 375 x . 035. .. .. .. .. .. .. .. .. .. 0. 22

. 020 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 2817 15/16 x . 083 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .27 3 .00 x . 375 x . 035. .. .. .. .. .. .. .. .. .. .0 .25

. 0253 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .3570 1 x . 032 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0. 12 3. 125 x . 375 x . 032. .. .. .. .. .. .. .. .. .. 0. 25

. 032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 4501 1 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 13 3 .350 x 1. 50 x . 065. .. .. .. .. .. .. .. .. .. 0. 61

. 0359 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 5055 1 x . 042 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 16 4. 0625 x 1. 71 x . 065 .. .. .. .. .. .. .. .. .0. 73

A-8

Page 263: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 263/288

T.O. 1-1A-9

Table A-5. Table of Weights - Br ass 

B ars-Fla t 3/8 . ... ... .. ... .. ... ... .. ... .. ... .. ... ... 0.4493 13/16 . ... ... .. ... .. ... ... .. ... .. ... .. .. 1.913

S ize Lbs P er Linea r F t 7/16 . .... ... .. ... .. ... .. ... ... .. ... .. ... 0.6115 7/8 . ..... ... .. ... .. ... ... .. ... .. ... .. ... . 2.218

1/8 x 1/2 . ... ... .. ... .. ... ... .. ... .. .. 0 .238 1/2 .. .. ... ... .. ... .. ... .. ... ... .. ... .. ... 0 .7987 18/14 .. .. ... ... .. ... .. ... .. ... ... .. .. .. 2 .546

1/8 x 3/4 . ... ... .. ... .. ... ... .. ... .. .. 0 .358 9/16 .. ... ... .. ... .. ... ... .. ... .. ... .. ... 1 .001 1 .. .. ... .. ... .. ... ... .. ... .. ... ... .. ... ... 2 .897

1/8 x 1 . .... .. ... .. ... ... .. ... .. ... ... . 0.475 5/8 .. ... .. ... .. ... .. ... ... .. ... .. ... ... .. 1 .248 1 1/8 . .. ... ... .. ... .. ... .. ... ... .. ... ... 3 .667

1/8 x 1 3/4 .... .. ... .. ... ... .. ... .. .. 0 .815 11/16 .. ... .. ... ... .. ... .. ... .. ... .. ... . 1.510 1 3/14 . .... .. ... .. ... .. ... ... .. ... .. ... 4 .0861/8 x 2 . .... .. ... .. ... ... .. ... .. ... ... . 0.935 3/4 .. ... .. ... .. ... .. ... ... .. ... .. ... ... .. 1 .797 1 1/4 . .. ... ... .. ... .. ... .. ... ... .. ... ... 4 .527

6/32 x 1 . .. .. ... ... .. ... .. ... .. ... ... . 0.625 12/16 ... ... .. ... .. ... ... .. ... .. ... .. ... 2 .109 1 5/16 . ... .. ... .. ... ... .. ... .. ... ... .. . 4. 991

3/16 x 3/4 . .... .. ... ... .. ... .. ... .. .. 0 .535 7/8 .. .. ... ... .. ... .. ... ... .. ... .. ... .. ... 2 .446 1 3/8 . .. ... .. ... ... .. ... .. ... ... .. ... .. . 5. 478

3/16 x 1 . .. .. ... ... .. ... .. ... .. ... ... . 0.715 15/16 ... ... .. ... .. ... ... .. ... .. ... .. ... 2 .808 1 7/16 . ... .. ... .. ... ... .. ... .. ... ... .. . 5. 987

3/16 x 1 1/4 .. .. ... .. ... ... .. ... .. .. 0 .895 1 .. ... ... .. ... .. ... .. ... ... .. ... .. ... ... .. 3 .195 1 1/2 . .. ... ... .. ... .. ... .. ... ... .. ... .. . 6. 519

3/16 x 1 1 /2 .... ... .. ... ... .. ... .. .. 1 .00 1 1 /8 . ... ... .. ... .. ... ... .. ... .. ... ... .. 4 .043 1 9 /16 . ... .. ... ... .. ... .. ... .. ... ... .. . 7 .073

3/16 x 1 3/4 .. .. ... .. ... .. ... .. ... .. 1 .175 1 3/16 . ... .. ... .. ... ... .. ... .. ... .. ... . 4.505 1 5/8 . ... ... .. ... .. ... ... .. ... .. ... .. ... 7 .651

3/16 x 2 . .. .. ... .. ... .. ... .. ... ... .. .. 1 .385 1 1/4 . ... .. ... .. ... .. ... .. ... ... .. ... .. . 4.992 1 11/16 . .. ... .. ... .. ... .. ... ... .. ... .. 8 .250

3/16 x 2 1/2 .. .. ... .. ... .. ... .. ... .. 1 .785 1 5/16 . ... .. ... .. ... ... .. ... .. ... .. ... . 5.503 1 3/4 . ... ... .. ... .. ... ... .. ... .. ... .. ... 8 .873

3/16 x 3 . .. .. ... .. ... .. ... .. ... ... .. .. 2 .055 1 3/8 . ... .. ... .. ... .. ... .. ... ... .. ... .. . 6.040 1 13/14 . .. ... .. ... .. ... .. ... ... .. ... .. 9 .518

1/4 x 1 .. ... .. ... .. ... .. ... .. ... .. ... .. 0 .9575 1 1/2 . .. ... ... .. ... .. ... .. ... .. ... .. ... . 7.188 1 7/8 . .... .. ... .. ... .. ... .. ... .. ... ... 1 0. 19

1/4 x 1 1/8 .... ... .. ... .. ... ... .. ... . 1.075 1 9/16 . .... .. ... ... .. ... .. ... ... .. ... .. 7 .800 1 15/16 . .... .. ... .. ... ... .. ... .. ... . 10.88

1/4 x 1 1/4 .... .. ... .. ... ... .. ... .. .. 1 .185 1 5/8 . ... .. ... .. ... .. ... .. ... ... .. ... .. . 8.436 2 . .. ... .. ... .. ... .. ... .. ... .. ... ... .. ... 1 1. 59

1/4 x 1 3/4 .... .. ... .. ... ... .. ... .. .. 1 .585 1 11/14 . .... .. ... .. ... .. ... ... .. ... .. . 9.097 2 1/4 . .... .. ... .. ... .. ... ... .. ... .. ... 1 4. 67

1/4 x 2 . .... .. ... .. ... .. ... .. ... .. ... .. 1 .885 1 3/4 . .. ... ... .. ... .. ... .. ... .. ... .. ... . 9.784 2 1/2 . .... .. ... .. ... .. ... .. ... .. ... .. . 18. 111/4 x 2 1/2 .... .. ... .. ... ... .. ... .. .. 2 .375 1 13/16 . .... .. ... .. ... .. ... ... .. ... . 1 0.50 2 3/4 . .... .. ... .. ... .. ... ... .. ... .. ... 2 1.91

1/4 x 3 ..... .. ... .. ... ... .. ... .. ... ... . 2 .815 1 7/8 . ... ... .. ... ... .. ... .. ... ... .. ... 1 1.23 2 7/8 . ..... ... .. ... .. ... .. ... ... .. ... . 2 3.95

1/4 x 6 ..... .. ... .. ... ... .. ... .. ... ... . 5 .65 1 15/16 . .... ... ... .. ... .. ... ... .. ... 1 1.99 3 .... ... .. ... .. ... ... .. ... .. ... ... .. ... . 2 6.08

5/16 x 3/4 ..... .. ... ... .. ... .. ... .. .. 0 .957 2 ..... ... .. ... .. ... ... .. ... .. ... ... .. ... 1 2.78 3 1/2 . ..... .. ... ... .. ... .. ... ... .. ... . 3 6.75

5/16 x 1 ..... ... ... .. ... .. ... .. ... ... . 1 .075 2 1/2 . ... ... ... .. ... .. ... ... .. ... .. ... 1 9.97 4 .... ... .. ... ... .. ... .. ... ... .. ... .. ... . 4 6.93

5/16 x 1 1/4 .... ... .. ... ... .. ... .. .. 1 .475 3 ..... ... .. ... .. ... .. ... ... .. ... .. ... ... 2 6.41 5 .... ... .. ... .. ... .. ... ... .. ... .. ... ... . 7 4.25

5/16 x 1 1/2 .... ... .. ... ... .. ... .. .. 1.975 B a rs-S q ua re 6 .... .. ... .. ... .. ... ... .. ... .. ... ... .. 108.25

5/16 x 1 3/4 .... ... .. ... .. ... .. ... .. 2.075 S ize Lbs P er L inea r F t S heet

5/16 x 2 ..... ... .. ... .. ... .. ... ... .. .. 2.375 3/16 ..... .. ... .. ... .. ... .. ... .. ... ... .. . 0.1297 Thickness Lbs P er S q Ft

5/16 x 2 1/2 .. .. ... .. ... ... .. ... .. .. 3 .075 1/4 .. .. ... ... .. ... .. ... .. ... ... .. ... .. ... 0 .2306 . 0031 .. .. ... ... .. ... .. ... .. ... ... .. ... . 0. 1393

5/16 x 3 . .. .. ... ... .. ... .. ... .. ... ... . 3.875 9/16 ... .. ... ... .. ... .. ... .. ... ... .. ... .. 0 .3602 . 0035 .. ... .. ... ... .. ... .. ... .. ... ... .. . 0. 1564

5/16 x 4 ... .. ... ... .. ... .. ... .. ... ... . 5.125 3/8 .. ... .. ... .. ... ... .. ... .. ... .. ... ... .. 0 .5188 . 004 .. .. ... ... .. ... .. ... .. ... ... .. ... ... 0 .1756

5/16 x 6 . .. .. ... ... .. ... .. ... .. ... ... . 8.75 7/16 ... .. ... ... .. ... .. ... .. ... ... .. ... .. 0 .7061 . 0045 .. ... .. ... ... .. ... .. ... .. ... ... .. . 0. 1972

3/8 x 1 . .... .. ... .. ... ... .. ... .. ... .. .. 1 .285 1/2 .. ... .. ... .. ... .. ... ... .. ... .. ... ... .. 0 .9222 . 005 .. .. ... .. ... ... .. ... .. ... ... .. .. .. .. 0 .2214

3/8 x 1 1/4 .... ... .. ... .. ... .. ... ... . 1.575 5/8 .. ... .. ... .. ... ... .. ... .. ... ... .. ... .. 1 .441 . 0056 .. ... .. ... .. ... ... .. ... .. ... ... .. . 0. 2486

3/8 x 1 1/2 .... ... .. ... .. ... .. ... ... . 2 .00 3/4 ..... .. ... .. ... ... .. ... .. ... .. ... ... .. 2 .075 .0063 ..... .. ... .. ... ... .. ... .. ... .. ... . 0 .2792

3/8 x 1 3/4 .... ... .. ... .. ... .. ... ... . 2.275 1 ... .. ... .. ... ... .. ... .. ... ... .. ... .. ... .. 3 .689 . 0071 .. ... .. ... ... .. ... .. ... ... .. ... .. . 0. 3135

3/8 x 2 . .... .. ... .. ... ... .. ... .. ... ... . 2.675 1 1/4 . ... ... .. ... ... .. ... .. ... ... .. ... .. 5 .764 . 008 .. .. ... ... .. ... .. ... ... .. ... .. ... ... 0 .3521

3/8 x 2 1/2 .... ... .. ... .. ... ... .. ... . 3.475 1 1/2 . ... ... ... .. ... .. ... ... .. ... .. ... .. 8 .300 . 0089 .. ... ... .. ... .. ... .. ... ... .. ... .. . 0. 3953

3/8 x 3 ..... .. ... .. ... ... .. ... .. ... .. .. 4 .175 2 ..... ... .. ... .. ... ... .. ... .. ... ... .. ... 1 4.76 .010 .... ... .. ... ... .. ... .. ... .. ... ... . .. 0 .4439

3/8 x 4 ..... .. ... .. ... ... .. ... .. ... .. .. 5.725 Rods-Round .0113 .... ... .. ... ... .. ... .. ... .. ... ... . 0.4985

3/8 x 6 ..... .. ... .. ... ... .. ... .. ... ... . 8.325 S ize Lbs Per Linea r F t .0126 .... ... ... .. ... .. ... .. ... ... .. ... . 0.5598

1/2 x 1 . .... .. ... .. ... ... .. ... .. ... .. .. 1 .795 1/16 ... .. ... .. ... ... .. ... .. ... .. ... ... .. 0 .01132 . 0142 .. ... .. ... .. ... ... .. ... .. ... ... ... 0 .6286

1/2 x 1 1/2 .... ... .. ... .. ... .. ... ... . 2.685 3/32 ... .. ... ... .. ... .. ... .. ... ... .. ... .. 0 .03625 . 0159 .. ... .. ... ... .. ... .. ... ... .. ... .. . 0. 7059

1/2 x 2 . .... .. ... .. ... ... .. ... .. ... .. .. 3 .675 1/8 .. ... .. ... .. ... .. ... ... .. ... .. ... ... .. 0 .04527 . 0179 .. ... .. ... .. ... .. ... ... .. ... .. .. .. 0 .7927

1/2 x 2 1/2 .... ... .. ... .. ... .. ... ... . 4.675 6/32 ... .. ... ... .. ... .. ... .. ... ... .. ... .. 0 .0915 . 0201 .. ... .. ... ... .. ... .. ... .. ... ... .. . 0. 8901

1/2 x 3 . .... .. ... .. ... ... .. ... .. ... .. .. 5 .675 3/16 ... .. ... .. ... ... .. ... .. ... .. ... ... .. 0 .1019 . 0226 .. ... .. ... .. ... ... .. ... .. ... ... ... 0 .9995

1/2 x 4 . .... .. ... .. ... ... .. ... .. ... .. .. 7 .705 7/32 ... .. ... .. ... ... .. ... .. ... .. ... ... .. 0 .1475 . 0253 .. ... .. ... .. ... ... .. ... .. ... ... ... 1 .122

1/2 x 6 . .... .. ... .. ... ... .. ... .. ... .. 1 1.10 1/4 .. .. ... .. ... ... .. ... .. ... ... .. ... .. ... 0 .1811 . 0285 .. .. ... ... .. ... .. ... .. ... ... .. ... . 1. 260

5/8 x 1 . .... .. ... .. ... ... .. ... .. ... .. .. 2 .156 9/32 ... .. ... .. ... ... .. ... .. ... .. ... ... .. 0 .2375 . 032 .. .. ... ... .. ... .. ... .. ... ... .. ... ... 1 .415

5/8 x 2 . .... .. ... .. ... ... .. ... .. ... .. .. 4 .250 9/14 ... .. ... .. ... ... .. ... .. ... .. ... ... .. 0 .2829 . 0359 .. ... .. ... .. ... ... .. ... .. ... ... ... 1 .5893/4 x 1 . .... .. ... .. ... ... .. ... .. ... .. .. 2 .875 11/32 ... .. ... ... .. ... .. ... ... .. ... .. ... 0 .3480 . 0403 .. .. ... ... .. ... .. ... .. ... ... .. ... . 1. 785

3/4 x 2 . .... .. ... .. ... ... .. ... .. ... .. .. 5 .750 3/8 .. ... .. ... .. ... .. ... ... .. ... .. ... ... .. 0 .4074 . 0453 .. ... .. ... .. ... .. ... ... .. ... .. .. .. 2 .004

7/8 x 2 1/2 .... ... .. ... .. ... .. ... ... . 8.325 28/64 ... ... .. ... .. ... ... .. ... .. ... .. ... 0 .4185 . 0508 .. ... .. ... .. ... .. ... ... .. ... .. ... . 2. 251

1 x 1 1/4 .... ... .. ... .. ... ... .. ... .. .. 4 .525 12/32 ... .. ... .. ... ... .. ... .. ... ... .. ... 0 .4866 .0571 .. .. ... .. ... ... .. ... .. ... .. ... ... . 2. 527

1 x 2 . .. .. ... .. ... ... .. ... .. ... .. ... ... . 7.705 7/16 ... .. ... ... .. ... .. ... .. ... ... .. ... .. 0 .5546 . 0641 .. ... .. ... ... .. ... .. ... .. ... ... ... 2 .838

B a rs-H exa gon 1/2 . ... ... .. ... .. ... .. ... ... .. ... .. ... ... 0.7243 .072 . ... .. ... .. ... ... .. ... .. ... ... .. ... . 3.187

S ize Lbs P er Linea r F t 9/16 . .... ... .. ... .. ... .. ... ... .. ... .. ... 0.9167 .0808 . ... ... ... .. ... .. ... ... .. ... .. ... . 3.578

3/16 . ... .. ... .. ... .. ... ... .. ... .. ... ... . 0.1123 5/8 .. ... .. ... .. ... ... .. ... .. ... .. ... ... .. 1 .132 . 0907 .. ... .. ... .. ... ... .. ... .. ... .. .. .. 4 .018

1/4 ... .. ... ... .. ... .. ... ... .. ... .. ... .. .. 0 .1997 11/14 ... .. ... ... .. ... .. ... ... .. ... .. ... 1 .369 . 1019 .. .. ... .. ... ... .. ... .. ... ... .. .. .. 4 .512

5/16 . ... .. ... .. ... .. ... ... .. ... .. ... ... . 0.3120 3/4 .. ... .. ... .. ... ... .. ... .. ... .. ... ... .. 1 .630 . 1144 .. ... .. ... .. ... ... .. ... .. ... .. .. .. 5 .067

A-9

Page 264: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 264/288

T.O. 1-1A-9

Table A-5. Ta ble of Weights - Bra ss - Conti nu ed 

. 1285 .. ... .. ... .. ... .. ... ... .. ... .. ... . 5.690 7/8 x . 065 . ... ... ... .. ... .. ... .. ... .. 0 .609 . 0035 .. ... ... .. ... .. ... ... .. ... .. ... .. . 0.00003596

. 1443 .. ... .. ... .. ... .. ... ... .. ... .. ... . 6.389 1 x . 032 . .... ... .. ... .. ... .. ... ... .. .. 0 .358 . 004 .. ... ... .. ... .. ... .. ... ... .. ... .. ... 0 .00004535

. 162 .. .. ... .. ... ... .. ... .. ... ... .. ... .. . 7.175 1 x .035 . .. .. ... .. ... ... .. ... .. ... ... . 0.391 .0045 ... ... .. ... .. ... .. ... ... .. ... .. ... 0 .00005718

. 1819 .. ... .. ... .. ... .. ... ... .. ... .. ... . 8.057 1 x . 049 . .... ... .. ... .. ... .. ... ... .. .. 0 .567 . 005 .. ... ... .. ... .. ... .. ... ... .. ... .. ... 0 .00007210

. 2043 .. ... .. ... .. ... .. ... ... .. ... .. ... . 9.047 1 x . 065 . .... ... .. ... .. ... .. ... ... .. .. 0 .703 . 0056 ... .. ... .. ... ... .. ... .. ... .. ... ... 0 .00009092

.2294 ..... .. ... .. ... .. ... ... .. ... .. .. 1 0.16 1 1/8 x . 032 .... .. ... .. ... ... .. ... .. 0 .404 .0063 ..... .. ... .. ... ... .. ... .. ... ... .. . 0 .0001146

.2576 ..... .. ... .. ... .. ... ... .. ... .. .. 1 1.41 1 1/8 x . 049 .... .. ... .. ... ... .. ... .. 0 .610 .0071 ..... .. ... .. ... ... .. ... .. ... ... .. . 0 .0001446

.2893 ..... .. ... .. ... .. ... ... .. ... .. .. 1 2.81 1 1/8 x .058 .... .. ... .. ... ... .. ... .. 0 .716 .008 .... ... ... .. ... .. ... ... .. ... .. ... .. . 0 .0001823

.3249 ..... .. ... .. ... .. ... ... .. ... .. .. 1 4.39 1 1/8 x . 065 .... .. ... .. ... ... .. ... .. 0 .797 .0089 ..... .. ... .. ... ... .. ... .. ... ... .. . 0 .0002299

.3648 ..... .. ... .. ... .. ... ... .. ... .. .. 1 6.15 1 1/8 x .095 .... .. ... .. ... ... .. ... .. 1 .132 .010 .... ... ... .. ... .. ... ... .. ... .. ... .. . 0 .0002898

. 4096 .. ... .. ... .. ... .. ... ... .. ... .. .. 1 8.14 1 1/8 x .134 .... .. ... .. ... ... .. ... .. 1 .1537 . 0113 .. ... .. ... ... .. ... .. ... .. ... ... .. . 0.0003655

.460 .... ... .. ... ... .. ... .. ... ... .. ... . 2 0.37 1 1/4 x .020 .... ... .. ... .. ... .. ... .. 0 .285 .0126 ..... ... .. ... .. ... ... .. ... .. ... .. . 0 .0004609

S him S t ock 1 1/4 x .032 .... .. ... ... .. ... .. ... .. 0.451 .0142 ..... ... .. ... .. ... .. ... ... .. ... .. . 0.0005812

Th ickn ess No. Of Ozs P er S q F t 1 1/4 x .049 .... .. ... ... .. ... .. ... .. 0.681 .0159 . .... .. ... ... .. ... .. ... ... .. ... .. . 0.0007328

.002 .... ... .. ... ... .. ... .. ... ... .. ... .. . 1 .40 1 1 /4 x .058 .... ... .. ... .. ... ... .. .. 0 .800 .0179 ..... ... .. ... ... .. ... .. ... .. ... ... 0 .0009241

.004 .... ... .. ... ... .. ... .. ... ... .. ... .. . 2 .75 1 1/4 x . 065 .... ... .. ... .. ... ... .. .. 0 .891 .0201 ..... ... .. ... ... .. ... .. ... .. ... ... 0 .001165

.006 .... ... .. ... ... .. ... .. ... ... .. ... .. . 4 .50 1 1/4 x . 072 .... ... .. ... .. ... ... .. .. 0 .981 .0226 ..... ... .. ... ... .. ... .. ... .. ... ... 0 .001469

.008 .... ... .. ... ... .. ... .. ... ... .. ... .. . 6 .00 1 3/8 x . 035 .... ... .. ... .. ... ... .. .. 0 .543 .0254 ..... ... .. ... ... .. ... .. ... .. ... ... 0 .001853

.010 .... ... .. ... ... .. ... .. ... ... .. ... .. . 6 .75 1 3/8 x . 049 .... ... .. ... .. ... ... .. .. 0 .752 .0285 ..... ... .. ... ... .. ... .. ... .. ... ... 0 .002336

.012 .... ... .. ... .. ... .. ... ... .. ... .. ... . 9 .00 1 3 /8 x .065 ...... .. ... ... .. ... .. ... 0 .935 .032 . ... .. ... .. ... .. ... .. ... .. ... ... .. .. 0 .002946

Tubing-Round 1 1/2 x .032 .... .. ... .. ... .. ... ... .. 0.544 .0359 . .... .. ... .. ... ... .. ... .. ... .. ... . 0.003715S ize Lbs P er L inea r F t 1 1/2 x .049 .... .. ... .. ... ... .. ... .. 0.823 .0403 ..... .. ... ... .. ... .. ... ... .. ... .. . 0.004684

1/8 x .020 ...... .. ... .. ... .. ... ... .. . 0 .024 1 1/2 x .065 .... ... .. ... .. ... ... .. .. 1 .08 .0453 ..... ... .. ... .. ... ... .. ... .. ... ... 0 .005907

1/8 x .032 ...... .. ... .. ... .. ... ... .. . 0 .034 1 5 /8 x .032 .... ... .. ... .. ... ... .. .. 0 .590 .0508 ..... ... .. ... ... .. ... .. ... .. ... ... 0 .007449

3/16 x .028 .... .. ... .. ... ... .. ... .. . 0 .052 1 5 /8 x .049 .... ... .. ... ... .. ... .. .. 0 .893 .0571 ..... ... ... .. ... .. ... .. ... ... .. ... 0 .009393

1/4 x .032 ...... .. ... .. ... .. ... ... .. . 0 .081 1 5 /8 x .065 .... ... .. ... .. ... ... .. .. 1 .173 .0641 ..... ... .. ... ... .. ... .. ... .. ... ... 0 .01184

1/4 x .049 ...... .. ... .. ... .. ... ... .. . 0 .114 1 3 /4 x .032 .... ... .. ... .. ... ... .. .. 0 .636 .072 ..... ... .. ... .. ... .. ... ... .. ... .. ... 0 .01493

5/16 x .032 .... .. ... .. ... ... .. ... .. . 0 .104 1 3/4 x .049 .... ... .. ... ... .. ... .. .. 0 .964 .0800 ..... ... ... .. ... .. ... .. ... ... .. ... 0 .01883

3/8 x .028 ...... .. ... .. ... .. ... ... .. . 0 .112 1 3 /4 x .065 .... ... .. ... .. ... ... .. .. 1 .267 .0907 ..... ... .. ... ... .. ... .. ... .. ... ... 0 .02375

3/8 x .032 ...... .. ... .. ... .. ... ... .. . 0 .127 1 7 /8 x .049 .... ... .. ... .. ... ... .. .. 1 .035 .1019 ..... ... .. ... ... .. ... .. ... .. ... ... 0 .02994

3/8 x .042 ...... .. ... .. ... .. ... ... .. . 0 .162 2 x .032 ..... ... .. ... ... .. ... .. ... .. .. 0 .729 .1144 ..... ... ... .. ... .. ... ... .. ... .. ... 0 .03776

3/8 x .065 ...... .. ... .. ... .. ... ... .. . 0 .233 2 x .035 ..... ... .. ... ... .. ... .. ... .. .. 0 .796 .1285 ..... ... ... .. ... .. ... ... .. ... .. ... 0 .04761

7/14 x .028 ...... ... .. ... .. ... .. ... . 0 .133 2 x .065 ..... .. ... .. ... .. ... .. ... .. ... 1 .455 .1443 .... ... .. ... .. ... .. ... .. ... ... .. .. 0 .06004

1/2 x .032 ...... .. ... .. ... .. ... ... .. . 0 .173 2 1 /4 x .049 .... ... .. ... .. ... ... .. .. 1 .248 .162 ..... ... .. ... .. ... .. ... ... .. ... .. ... 0 .07571

1/2 x .035 ...... .. ... .. ... .. ... ... .. . 0 .188 2 1 /4 x .065 .... ... .. ... .. ... ... .. .. 1 .643 .1819 ..... ... .. ... ... .. ... .. ... .. ... ... 0 .09547

1/2 x .065 . .. ... .. ... .. ... .. ... ... .. . 0.327 2 3/8 x . 035 .. .. ... .. ... .. ... ... .. .. 0 .9275 . 2043 ... .. ... .. ... ... .. ... .. ... .. ... ... 0 .1204

5/8 x . 032 ...... .. ... .. ... .. ... ... .. . 0 .220 2 1/2 x . 035 .... ... .. ... .. ... ... .. .. 0 .998 .2294 ..... ... .. ... ... .. ... .. ... .. ... ... 0 .1518

5/8 x . 049 ...... .. ... .. ... .. ... ... .. . 0 .327 2 1/2 x . 065 .... ... .. ... .. ... ... .. .. 1 .831 .2576 ..... ... .. ... ... .. ... .. ... .. ... ... 0 .1914

5/8 x . 065 ...... .. ... .. ... .. ... ... .. . 0 .421 2 7/8 x . 1875 ..... .. ... ... .. ... .. .. 5 .875 .2893 ..... ... ... .. ... .. ... .. ... ... .. ... 0 .2414

3/4 x .025 ...... .. ... .. ... .. ... ... .. . 0 .210 3 x .032 ..... ... .. ... ... .. ... .. ... .. .. 1 .200 .3249 ..... ... ... .. ... .. ... ... .. ... .. ... 0 .3044

3/4 x .032 ..... ... .. ... ... .. ... .. ... . 0.266 Wire .3648 ..... .. ... ... .. ... .. ... .. ... .. ... . 0.3838

3/4 x .049 ...... .. ... .. ... ... .. ... .. . 0.397 S ize Lbs P er Linea r F t .4096 ..... ... .. ... .. ... ... .. ... .. ... ... 0.4839

7/8 x . 032 . .. .. .. .. .. .. .. .. .. .. .. .. .. 0 .312 . 0010 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . 0. 000002884 . 460 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . 0 .6102

7/8 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. 0 .468 . 0031 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . 0. 00002852

Table A-6. Table of Weights - Bronze 

B a r s-H exa gon 9/16 ..... ... ... .. ... .. ... ... .. ... .. ... .. ... ... .0.2794 1 1/2 . ... .. ... ... .. ... .. ... .. ... ... .. ... .. ... ..6.438

S ize L bs P er L in ea r Ft 3/8 . .... .. ... .. ... .. ... .. ... .. ... ... .. ... .. ... ..0.4024 1 3/4 ..... ... .. ... .. ... .. ... ... .. ... .. ... .. ... .8.763

5/16. . . . .. . .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .. . .. ..0.3081 1/2 . .. . .. .. . .. . .. .. . .. .. . .. . .. .. . .. .. . .. .. . .. . ..0.7154 2 . .. . .. .. . .. .. . .. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. .11.45

3/8 . . .. . .. .. . .. .. . .. . .. .. . .. .. . .. .. . .. . .. .. . .. ..0.4437 9/16. . . . .. . .. . .. .. . .. .. . .. . .. .. . .. .. . .. .. . .. . ..0.9054 2 1/8 . . .. . .. . .. . .. .. . .. . .. . .. . .. .. . .. .. . .. .. .12.92

7/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 6039 5/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 118 2 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .17. 881/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 7888 11/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 353 3 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .25. 75

9/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 9983 3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 610 3 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .35. 05

5/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 232 13/14 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 889 4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .45. 78

3/4 . ... .. ... .. ... ... .. ... .. ... .. ... ... .. ... .. ...1.775 7/8 . .... ... .. ... ... .. ... .. ... ... .. ... .. ... .. ... .2.191 S heet

1 . ... ... .. ... ... .. ... .. ... .. ... ... .. ... .. ... ... ..3.155 1 . ... .. ... .. ... .. ... ... .. ... .. ... .. ... ... .. ... .. .2.862 Th ickn ess L bs P er S q F t

R ods-Roun d 1 1/8 ..... .. ... .. ... ... .. ... .. ... .. ... ... .. ... .3.622 .010 . .... .. ... ... .. ... .. ... ... .. ... .. ... .. ... ..0.4406

S ize L bs P er L in ea r F t 1 3/16 ..... .. ... .. ... .. ... ... .. ... .. ... .. ... ..4.035 .012 . ... .. ... .. ... .. ... .. ... ... .. ... .. ... .. ... .0.5552

1/8 . . .. . .. .. . .. .. . .. .. . .. . .. .. . .. .. . .. . .. .. . .. ..0.04471 1 1/4 . .. . .. .. . .. .. . .. .. . .. . .. .. . .. .. . .. . .. .. . ..4.471 .0159 . . .. .. . .. .. . .. . .. . .. . .. .. . .. . .. .. . .. .. . ..0.7006

3/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 1006 1 3/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .5 .410 . 0201 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 8857

1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 1788 1 7/14 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .5 .913 . 0253 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 115

A-10

Page 265: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 265/288

T.O. 1-1A-9

Table A-6. Tabl e of Weigh ts - Br onze - Conti nu ed 

. 032 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .410 . 050 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .238 . 0907 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3. 997

. 0359 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 582 . 0641 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 825 . 1285 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .5 .662

.0403 . . .. . .. .. . .. . .. .. . .. .. . .. .. . .. . .. .. . .. .. .1.776 .0808 . .. . .. .. . .. . .. .. . .. .. . .. .. . .. . .. .. . .. .. . .3 .567

Table A-7. Table Of Weights - Copper 

B a rs-Fla t S ize Lbs P er L inea r F t 9/16 x .134 ..... .. ... ... .. ... .. ... .. ... .. ..0.704

S ize L bs Per Linea r F t 1/8 x .020 ...... .. ... .. ... .. ... ... .. ... .. ...0.026 5/8 x .032 .... ... .. ... .. ... .. ... ... .. ... .. ..0.231

1/16 x 3/4 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 1809 1/8 x . 025 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .030 5/8 x . 035 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 251

1/8 x 1 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .4823 1/8 x . 028 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .033 5/8 x . 042 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 298

1/8 x 2 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .9646 1/8 x . 032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .036 5/8 x . 049 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 343

1/4 x 1 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .9646 1/8 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .045 5/8 x . 065 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 443

1/4 x 2 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .929 3/16 x . 022 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .044 5/8 x . 083 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 547

1/4 x 3 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .894 3/16 x . 028 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .055 5/8 x . 120 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 737

1/4 x 4 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .858 3/16 x .032 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 061 11/14 x .120 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 812

3/8 x 1 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .447 3/16 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .065 3/4 x . 025 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 220

3/8 x 2 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .894 3/16 x . 042 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .075 3/4 x . 028 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 246

1/2 x 3/4 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 425 3/16 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .083 3/4 x . 032 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 280

1/2 x 1 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .929 7/22 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .132 3/4 x . 035 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 304

5/8 x 1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3. 675 1/4 x . 028 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .076 3/4 x . 042 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .362

R ods-R oun d 1/4 x .032 ...... .. ... .. ... .. ... .. ... ... .. ...0.085 3/4 x .049 .... ... .. ... .. ... .. ... .. ... ... .. ..0.418S ize L bs Per Linea r F t 1/4 x .035 ...... .. ... .. ... .. ... ... .. ... .. ...0.092 3/4 x .058 .... ... .. ... .. ... .. ... ... .. ... .. ..0.488

1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 1894 1/4 x . 042 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 106 3/4 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .542

9/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .2959 1/4 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .120 3/4 x . 083 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 673

3/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 4261 1/4 x . 065 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 146 3/4 x . 120 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .920

7/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .580 9/22 x . 042 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .122 3/4 x .134 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .00

1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 7576 3/16 x . 025 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .088 13/16 x . 042 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .396

5/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 184 5/16 x .028 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 097 13/16 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .452

3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 705 5/16 x . 032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .110 7/8 x . 028 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 289

7/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 320 5/16 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .119 7/8 x . 032 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 328

1 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .030 5/16 x .042 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 139 7/8 x .035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .358

1 1/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .835 5/16 x . 049 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 158 7/8 x .049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .492

1 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .4 .735 5/16 x . 058 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 180 7/8 x .058 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .576

1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .6 .818 5/16 x . 065 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 196 7/8 x .095 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .901

1 3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .9 .281 3/8 x .025 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 106 7/8 x .109 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 02

2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .12. 12 3/8 x . 028 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .118 7/8 x . 120 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 10

2 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .18. 94 3/8 x . 032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .134 1 x . 025 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 297

3 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .27. 27 3/8 x . 035 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 145 1 x . 028 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 331

S heet 3/8 x .042 ...... .. ... .. ... .. ... ... .. ... .. ...0.170 1 x .032 ..... .. ... .. ... .. ... ... .. ... .. ... .. ..0.377

Th ickn ess L bs P er S q F t 3/8 x .049 ...... .. ... .. ... .. ... .. ... ... .. ...0.194 1 x .035 ..... .. ... .. ... .. ... .. ... ... .. ... .. ..0.411

. 002 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .125 3/8 x . 065 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 245 1 x . 042 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 489

. 003 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .1434 3/8 x . 083 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 295 1 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 567

. 005 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .2312 3/8 x . 095 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 325 1 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 739

. 006 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .2914 7/16 x . 032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .158 1 x .120 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 29

. 010 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .4625 7/16 x .035 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 171 1 1/16 x .032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 403

. 0126 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 5827 7/16 x . 042 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .202 1 1/16 x .035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 438

. 0142 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 6567 7/16 x .049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .232 1 1/8 x . 032 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .425

. 0159 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 7353 7/16 x .065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .295 1 1/8 x . 042 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .553

. 0201 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 9296 1/2 x . 028 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 161 1 1/8 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 641

. 0226 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 0452 1/2 x . 032 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 182 1 1/8 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 838

. 0253 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 170 1/2 x .035 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 198 1 1/8 x .148 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 759

. 032 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .4799 1/2 x . 042 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 234 1 3/16 x . 032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 453

. 0359 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 6602 1/2 x . 049 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 269 1 1/4 x . 032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 474

. 0403 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 8637 1/2 x . 058 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 312 1 1/4 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 517

. 0453 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 0950 1/2 x . 065 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 344 1 1/4 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 716

. 0508 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 3493 1/2 x . 120 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 554 1 1/4 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 937

. 0571 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 6407 1/2 x . 134 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 596 1 1/4 x . 072 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .03

. 0641 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 9644 9/16 x . 032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .207 1 1/4 x . 148 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .98

. 0808 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3. 7367 9/16 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .225 1 5/16 x .032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 498

. 0907 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 4. 1946 9/16 x . 042 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .266 1 5/16 x .042 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 648

. 1285 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 5. 9427 9/16 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .306 1 5/16 x .049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 758

Tubin g-Roun d 9/16 x .120 .... .. ... .. ... ... .. ... .. ... .. ...0.645 1 3/8 x .028 .... .. ... .. ... .. ... .. ... ... .. ..0.459

A-11

Page 266: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 266/288

T.O. 1-1A-9

Tabl e A-7. Tabl e Of Weight s - Copper - Conti nu ed 

1 3/8 x .032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 523 1 3/4 x .032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 669 2 1/2 x .065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 93

1 3/8 x .035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 570 1 3/4 x .042 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 873 2 3/4 x .095 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3. 07

1 3/8 x . 042 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .681 1 3/4 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 014 3 x . 120 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .4 .20

1 3/8 x .049 ..... .. ... .. ... .. ... ... .. ... .. .0.790 1 3/4 x .065 ...... .. ... .. ... .. ... .. ... .. ...1.332 Wire

1 3/8 x .065 ..... .. ... .. ... .. ... ... .. ... .. .1.036 1 3/4 x .148 ...... .. ... .. ... .. ... .. ... .. ...2.884 S ize No. of F t P er Lb

1 3/8 x . 148 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .209 1 7/8 x . 032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 717 . 020 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .826 .91 7/16 x . 035 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0. 597 1 7/8 x . 042 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 937 . 0253 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 516. 7

1 1/2 x . 032 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .571 1 7/8 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 088 . 032 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .323 .0

1 1/2 x . 042 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .745 1 7/8 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 431 . 0359 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 256. 6

1 1/2 x . 049 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .865 1 7/8 x . 148 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3. 109 . 0403 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 203. 7

1 1/2 x . 058 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .017 2 x . 032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 766 . 0508 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 128. 2

1 1/2 x . 065 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .135 2 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 837 . 0625 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 84 .67

1 1/2 x . 148 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 434 2 x . 042 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 00 . 064 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 80. 75

1 5/8 x . 032 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .620 2 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 163 . 072 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .63. 80

1 5/8 x . 042 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .809 2 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 530 . 0808 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 50 .66

1 5/8 x . 049 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .939 2 x . 083 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 936 . 0907 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 40 .21

1 5/8 x . 058 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .106 2 x . 095 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 202 . 1019 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 31 .85

1 5/8 x . 065 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .238 2 1/4 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 31 . 1285 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 20 .03

1 5/8 x . 148 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .659 2 1/4 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 73 . 2576 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 4. 984

Tab le A-8. Tab le of Weigh ts - I ron 

Angle 5/16 x 3 x 3.... .. ... .. ... .. ... ... .. ... .. ..6.1 .500 ..... .. ... .. ... ... .. ... .. ... .. ... ... .. ...20.4

S ize Lbs P er L inea r F t 3/8 x 1 1/2 x 1 1/2 ..... ... .. ... .. ... ..3.35 S heet -G a lva nized

1 1/16 x 1 x 1..... .. ... .. ... .. ... ... .. ...0.40 3/8 x 2 1/2 x 2 1/2 . ..... .. ... .. ... .. ..5.90 Thickness Lbs P er Sq Ft

1/8 x 3/4 x 3/4 .. .. .. .. .. .. .. .. .. .. .. .. .. .0. 59 5/8 x 6 x 6. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 24. 2 . 0156 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 781

1/8 x 1 x 1 ..... .. ... .. ... .. ... ... .. ... .. ...0.80 S heet -B la ck .0188 ..... ... .. ... .. ... ... .. ... .. ... ... .. ... ..0.906

1/8 x 1 1/2 x 1 1/2 . ... ... .. ... .. ... .. .1.23 Thickness Lbs Per Sq Ft .025 . ... ... .. ... .. ... .. ... .. ... .. ... .. ... ... .. .1.156

1/8 x 1 3/4 x 1 3/4 . .. .. .. .. .. .. .. .. .. .1. 44 . 0156 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 625 . 032 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .406

1/8 x 2 x 2 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1. 65 . 0188 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 75 . 0375 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 656

3/16 x 1 x 1 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1. 16 . 025 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 00 . 0438 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 9064

3/16 x 1 1 /4 x 1 1 /4 . .. .. .. .. .. .. .. .. .1. 48 . 032 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 25 . 050 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 156

3/16 x 1 1 /2 x 1 1 /2 . .. .. .. .. .. .. .. .. .1. 80 . 0375 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 50 . 0625 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 62

3/16 x 1 1/2 x 2 .. .. .. .. .. .. .. .. .. .. .. .. .2 .12 . 0438 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 723 . 0938 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3. 9603

3/16 x 2 x 2 1/2 .. .. .. .. .. .. .. .. .. .. .. .. .2. 75 . 050 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 00 . 125 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 5. 1563

3/16 x 2 1/2 x 2 1/2 . .... ... .. ... .. ...3.07 .0625 . ... .. ... .. ... .. ... .. ... .. ... .. ... ... .. ..2.55 S heet -Terne P la te1/4 x 1 1/4 x 1 1/4 .... ... .. ... .. ... .. .1.92 .0781 ...... .. ... .. ... .. ... ... .. ... .. ... .. ... ..3.2 S ize Lbs P er S q F t

1/4 x 1 1/2 x 1 1/2 . .. .. .. .. .. .. .. .. .. .2. 34 . 093 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .757 . 0156 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 6377

1/4 x 2 x 2. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3. 19 . 125 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 5. 1 . 0186 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 7685

1/4 x 2 1/2 x 2 1/2 . .. .. .. .. .. .. .. .. .. .4. 10 . 156 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 6. 4 . 025 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 022

1/4 x 3 x 3 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .4. 9 . 1875 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 7. 56 . 0313 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 2795

1/4 x 4 x 4 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .6. 6 . 250 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 10. 2 . 037 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 5329

5/16 x 2 1 /2 x 3 .. .. .. .. .. .. .. .. .. .. .. .. .5. 6 . 375 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 15. 178 . 050 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 044

Table A-9. Table of Weights - Lead 

S heet 1/16 . ..... .. ... .. ... .. ... ... .. ... .. ... ... .. ... .4.25 1/8 . ... ... .. ... ... .. ... .. ... .. ... ... .. ... .. ... ..7.812

Th ickn ess L bs P e r S q F t 3/52 . ..... .. ... .. ... ... .. ... .. ... ... .. ... .. ... .6.031 3/16 . .... ... .. ... .. ... .. ... ... .. ... .. ... ... ..11.720

1/32 ............... ............... .............2.10

Table A-10. Table of Weights - M agnesium and M agnesium All oy 

B a rs-F la t 2 x 3 ..... .. ... .. ... .. ... ... .. ... .. ... ... .. ... .4.535 3/4 . ... ... .. ... .. ... ... .. ... .. ... ... .. ... .. ... ..0.412

S ize Lbs P er L inea r F t 2 3/4 x 4 .... .. ... .. ... ... .. ... .. ... ... .. ... .8.320 1 . .... .. ... .. ... ... .. ... .. ... ... .. ... .. ... .. ... ..0.674

1/2 x 1 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .372 3 x 4 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 9. 240 1 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .043

1/2 x 2 ..... ... .. ... .. ... ... .. ... .. ... .. ... .. .0.756 B ars-H exa gon 1 1/2 ..... ... .. ... ... .. ... .. ... .. ... .. ... .. ... .1.510

3/4 x 2 ..... ... ... .. ... .. ... ... .. ... .. ... .. ...1.135 S ize Lbs P er Linea r F t Rods-Round

3/4 x 3 ..... ... ... .. ... .. ... ... .. ... .. ... .. ...1.700 3/8 . .... ... ... .. ... .. ... ... .. ... .. ... .. ... ... .. .0.095 S ize Lbs P er Linea r F t

1 x 2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1. 513 7/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .129 3/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .021

1 x 3 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 270 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 169 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 037

1 1/2 x 2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .290 9/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .213 3/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .058

1 3/4 x 3 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .4 .630 5/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 263 3/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 083

A-12

Page 267: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 267/288

T.O. 1-1A-9

Tabl e A-10. Tabl e of Weights - Magnesium an d M agnesium Al loy - Conti nued 

7/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .114 1 3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .818 . 032 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .290

1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 148 2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .385 . 0359 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 3258

3/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .188 2 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .710 . 0403 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 366

5/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 232 2 3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .4 .480 . 0508 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 462

11/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 280 3 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .5 .340 . 0641 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .582

3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 334 3 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .7 .450 . 0808 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 73313/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 392 4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .9 .800 . 128 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 167

7/8 ..... ... ... .. ... .. ... .. ... ... .. ... .. ... ... .. .0.454 S heet s .0907 .... ... .. ... ... .. ... .. ... .. ... ... .. ... .. .1.823

15/16 . ... .. ... ... .. ... .. ... .. ... ... .. ... .. ... .0.522 Th ickn ess L bs P er S q F t .156 . ... .. ... ... .. ... .. ... ... .. ... .. ... .. ... ...1.418

1 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .593 . 0126 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 1158 . 1875 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .708

1 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .927 . 020 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .1814 . 250 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .270

1 3/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .122 . 016 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .1451 . 375 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .405

1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .348 . 0253 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 230 . 500 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .4 .650

Table A-11. Table of Weights - Ni ckel Chr omi um I ron Al l oy (Inconel) 

Rods-Round .250 . .... .. ... ... .. ... .. ... .. ... ... .. ... .. ...11.12 3/4 x .065 ..... ... .. ... ... .. ... .. ... ... .. ...0.519

S ize Lbs P er Linea r F t Tubing 7/8 x .035 .... ... .. ... .. ... ... .. ... .. ... .. ..0.343

1/4 . .... ... .. ... .. ... ... .. ... .. ... .. ... .. ... .. ..0.182 S ize L bs P er L in ea r F t 7/8 x .049 .... ... .. ... .. ... .. ... .. ... .. ... ..0.472

3/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .285 1/4 x . 028 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .071 7/8 x . 058 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 552

3/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 409 1/4 x . 035 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 088 7/8 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .6131/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 728 1/4 x . 049 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 113 1 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 393

3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 638 1/4 x . 065 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 139 1 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 543

1 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .912 5/16 x . 028 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .091 1 x . 058 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 636

1 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .4 .55 5/16 x . 035 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 113 1 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 708

1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .6 .553 5/16 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .150 1 1/4 x .049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 686

2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .11. 651 5/16 x .065 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 188 1 1/4 x .065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 897

2 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .18. 203 3/8 x .028 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 113 1 3/8 x .049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 757

S heets 3/8 x .035 ...... .. ... .. ... ... .. ... .. ... .. ...0.139 1 3/8 x .065 .... .. ... .. ... .. ... .. ... ... .. ..0.988

Th ickn ess L bs P er S q F t 3/8 x .049 ...... .. ... .. ... .. ... .. ... ... .. ...0.188 1 1/2 x .035 .... .. ... .. ... .. ... .. ... .. ... ..0.597

. 018 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .84 3/8 x . 058 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .217 1 1/2 x . 049 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .828

. 025 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .11 3/8 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .236 1 1/2 x . 065 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .09

. 032 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .39 1/2 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .191 1 3/4 x . 049 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .969

. 037 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .65 1/2 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .257 1 3/4 x . 065 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .28

. 043 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .91 1/2 x . 058 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 299 2 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 11

. 050 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .22 1/2 x . 065 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 329 2 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 46. 0625 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 76 5/8 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .329 2 1/4 x . 049 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .26

. 093 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .4 .14 5/8 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .424 2 1/4 x . 065 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .65

. 125 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .5 .56 3/4 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .292 2 1/2 x . 049 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .40

. 156 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .6 .94 3/4 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .400 2 1/2 x . 065 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .84

. 1875 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 8. 32 3/4 x . 058 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .468 3 1/4 x . 120 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .4 .38

Table A-12. Table of Weights - Nickel Copper A l loy 

Rods-Round 1 ..... .. ... .. ... ... .. ... .. ... ... .. ... .. ... .. ... ..3.044 Thickness Lbs P er S q Ft

S ize L bs P er Linea r F t 1 1 /4 .... .. ... .. ... .. ... .. ... .. ... ... .. ... .. ...4.756 .018 . ..... .. ... .. ... .. ... .. ... .. ... ... .. ... .. ..0.86

1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 190 1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .6 .849 . 025 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .15

3/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .309 2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .12. 178 . 032 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .44

3/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 428 2 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .19 .027 . 037 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .72

1/2 ..... ... ... .. ... .. ... .. ... ... .. ... .. ... ... .. .0.761 S heet s .125 .... ... .. ... .. ... .. ... ... .. ... .. ... ... .. ...5.75

3/4 ................ ............... ..............1.172

Table A-13. Table of Weights - Steel 

B ars-Fla t 1/14 x 3 . ... .. ... .. ... .. ... .. ... ... .. ... .. ...0.638 3/16 x 1/2 .... ... .. ... .. ... .. ... ... .. ... .. ..0.319

S ize L bs P er Lin ea r F t 1/8 x 1/2 ..... ... .. ... .. ... .. ... .. ... .. ... ...0.2125 3/16 x 3/4 .... ... .. ... .. ... .. ... .. ... .. ... ..0.478

1/14 x 1/2. . . .. . .. .. . .. . .. .. . .. .. . .. .. . .. . ..0.106 1/8 x 3/4. . . .. . .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .0 .3188 3/16 x 1. . . .. . .. . .. . .. . .. . .. . .. . .. . .. .. . .. .. .0.638

1/14 x 3/4. . . .. . .. .. . .. .. . .. .. . .. .. . .. .. . .. .0.1594 1/8 x 1. . . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .. . ..0.425 3/16 x 1 1/4. . .. .. . .. . .. .. . .. . .. .. . .. . .. .. .0.797

1/14 x 1 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 212 1/8 x 1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 638 3/16 x 1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 956

1/14 x 1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 319 1/8 x 2 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .850 3/16 x 2 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .28

1/14 x 2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 425 1/8 x 2 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 06 3/16 x 2 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 59

1/14 x 2 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 531 1/8 x 3 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 27 3/16 x 3 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 91

A-13

Page 268: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 268/288

T.O. 1-1A-9

Tabl e A-13. Tabl e of Weigh ts - Steel - Conti nu ed 

1/4 x 1/2 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 425 1 1/4 x 3 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 12 .75 5/32 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .065

1/4 x 3/4 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 636 1 1/4 x 4 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 17 .00 3/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .094

1/4 x 1 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0. 850 1 1/2 x 2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .10. 20 7/32 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .128

1/4 x 1 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 06 1 1/2 x 3 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .15. 30 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 167

1/4 x 1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 28 1 1/2 x 5 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .25. 50 9/32 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .211

1/4 x 1 3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 49 2 x 2 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .17. 00 5/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .2611/4 x 2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 70 2 x 3 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .20. 40 11/22 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 316

1/4 x 2 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 13 2 x 4 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 27 .20 3/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 376

1/4 x 3 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2. 55 2 1/2 x 3 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .25. 50 7/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .511

3/16 x 1/2 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 531 3 x 4 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 40 .80 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 668

3/16 x 3/4 ...... .. ... .. ... .. ... ... .. ... .. ...0.797 B ars-H exa gon 9/16 ..... .. ... .. ... ... .. ... .. ... ... .. ... .. ... ..0.845

5/16 x 1...... ... .. ... .. ... .. ... .. ... .. ... .. .1.06 S ize Lbs P er L inea r Ft 5/8 . ..... .. ... ... .. ... .. ... .. ... .. ... .. ... .. ... .1.043

5/16 x 1 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 33 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 195 11/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .262

5/16 x 1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 59 5/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .29 3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 502

5/16 x 1 3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 86 3/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 43 13/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .763

5/16 x 2 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2. 13 7/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .56 7/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 044

5/16 x 2 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 39 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 73 15/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .347

5/16 x 2 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 66 9/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .93 1 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .670

5/16 x 2 3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 92 5/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 15 1 1/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .015

5/16 x 3 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3. 19 11/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 40 1 1/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .380

3/8 x 1/2 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 638 3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 66 1 3/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .7663/8 x 1 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1. 28 13/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 91 1 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .4 .172

3/8 x 1 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 59 7/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 25 1 3/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .5 .049

3/8 x 1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 91 13/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 58 1 7/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .5 .518

3/8 x 2 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2. 55 1 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .94 1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .6 .008

3/8 x 2 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3. 19 1 1/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .33 1 5/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .7 .051

3/8 x 3 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .83 1 1/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3. 73 1 3/4 . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .8 .178

3/8 x 3 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 4. 46 1 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .4 .60 1 7/8 . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .9 .388

3/8 x 4 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .5. 10 1 5/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .5 .07 2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .10. 68

3/8 x 6 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .7 .65 1 3/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .5. 57 2 1/4 . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .13. 52

1/2 x 1 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .70 1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .6. 62 2 5/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .14. 28

1/2 x 1 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 13 1 3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .9 .00 2 3/8 . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .15. 06

1/2 x 1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 55 2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .11 .78 2 1/2 . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .16. 69

1/2 x 2 ..... ... .. ... .. ... ... .. ... .. ... .. ... .. .3.40 B ars-S q ua re 2 3/4 ..... ... .. ... ... .. ... .. ... .. ... .. ... .. ..20.19

1/2 x 2 1/2 ..... .. ... .. ... .. ... .. ... .. ... ...4.25 S ize Lbs P er Linea r F t 3 . ... ... .. ... .. ... .. ... .. ... .. ... .. ... ... .. ... .24.03

1/2 x 3 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .5. 10 1/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 053 3 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .28. 21

1/2 x 3 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 5. 95 3/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .120 3 1/2 . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .32. 71

1/2 x 4 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .6. 80 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 212 3 3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .37. 55

1/2 x 4 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 7. 65 5/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .332 4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .42. 73

1/2 x 5 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .8. 50 3/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 478 4 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .54. 07

1/2 x 6 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .10. 20 7/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .651 5 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .66. 76

5/8 x 2 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .4. 25 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 850 5 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .80. 78

5/8 x 2 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 5. 31 9/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .076 6 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .96. 13

5/8 x 3 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .6. 38 5/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 328 7 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .130 .8

5/8 x 3 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 7. 44 3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 913 8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .170 .9

5/8 x 4 ..... ... ... .. ... .. ... .. ... ... .. ... .. ...8.50 7/8 . .... ... ... .. ... .. ... .. ... ... .. ... .. ... ... .. .2.603 S heet s

5/8 x 6 ..... ... .. ... .. ... ... .. ... .. ... .. ... .12.75 1 . .... ... .. ... .. ... .. ... ... .. ... .. ... .. ... .. ... ..3.40 Thickness Lbs P er S q F t

3/4 x 1 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2. 55 1 1/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .4 .303 . 0156 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 6377

3/4 x 1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3. 85 1 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .5 .313 . 020 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 8952

3/4 x 2 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .5. 10 1 5/16 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .5 .857 . 025 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .022

3/4 x 2 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 6. 38 1 3/8 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .6 .428 . 03125 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 2795

3/4 x 3 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .7. 65 1 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .7 .650 . 0375 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 53293/4 x 4 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .10. 20 1 3/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .10. 41 . 050 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .044

3/4 x 5 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 12. 75 2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .13. 60 . 0625 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 5549

3/4 x 6 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .15. 30 2 1/4 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .17. 21 . 0781 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3. 1928

1 x 2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .6. 80 2 1/2 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 21. 25 . 093 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3. 8344

1 x 2 1/2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .8. 50 3 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .30. 60 . 109 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 4. 4557

1 x 3 ...... ... .. ... .. ... .. ... ... .. ... .. ... ...10.20 Rods-Rounds .125 ..... ... .. ... .. ... .. ... ... .. ... .. ... ... .. ..5.1096

1 x 4 ...... .. ... .. ... ... .. ... .. ... .. ... .. ... .13.60 S ize Lbs P er Linea r F t .156 . ... ... .. ... .. ... .. ... .. ... .. ... .. ... ... .. .6.377

1 x 5 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 17. 00 1/16 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .010 . 1875 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 7. 6851

1 x 6 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 20. 40 3/32 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .023 . 250 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .10. 219

1 1/4 x 2 ..... .. ... ... .. ... .. ... .. ... ... .. ...8.50 1/8 . .... ... .. ... ... .. ... .. ... .. ... ... .. ... .. ... .0.042 Tubing-Round

A-14

Page 269: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 269/288

T.O. 1-1A-9

Tabl e A-13. Tabl e of Weigh ts - Steel - Conti nu ed 

S ize L bs P er L inea r Ft 13/16 x .065 .... ... .. ... .. ... ... .. ... .. ...0.5184 1 1/2 x .065 .... .. ... .. ... .. ... .. ... ... .. ..0.9951

3/16 x .028. . .. . .. . .. . .. . .. .. . .. . .. .. . .. .. .0.0476 7/8 x .028. . .. .. . .. .. . .. .. . .. .. . .. . .. .. . .. ..0.2530 1 1/2 x .083. .. . .. . .. . .. .. . .. . .. .. . .. . .. .. .1.255

3/16 x .035. . .. . .. . .. . .. . .. .. . .. . .. .. . .. .. .0.0569 7/8 x .035. . .. .. . .. .. . .. .. . .. .. . .. . .. .. . .. ..0.3137 1 1/2 x .095. .. . .. . .. . .. .. . .. . .. .. . .. . .. .. .1.424

1/4 x .028. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.0663 7/8 x .049. . .. .. . .. .. . .. .. . .. .. . .. .. . .. .. . ..0.4318 1 1/2 x .120. .. . .. . .. . .. .. . .. . .. .. . .. . .. .. .1.767

1/4 x .035. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.0803 7/8 x .058. . .. .. . .. .. . .. .. . .. .. . .. .. . .. .. . ..0.5056 1 1/2 x .1875. . .. . .. . .. .. . .. . .. . .. .. . .. .. .2.626

1/4 x .049. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.1051 7/8 x .065. . .. .. . .. .. . .. .. . .. .. . .. .. . .. .. . ..0.5617 1 9/16 x .049.. . .. .. . .. .. . .. . .. . .. .. . .. .. .0.79121/4 x .058. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.1188 7/8 x .095. . .. .. . .. .. . .. .. . .. .. . .. .. . .. .. . ..0.7906 1 9/16 x .065.. . .. .. . .. .. . .. . .. . .. .. . .. .. .1.038

1/4 x .065. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.1283 7/8 x .120. . .. .. . .. .. . .. .. . .. .. . .. .. . .. .. . ..0.9666 1 9/16 x .095.. . .. .. . .. .. . .. . .. . .. .. . .. .. .1.487

5/16 x .028. . .. . .. . .. . .. . .. .. . .. . .. .. . .. .. .0.0850 15/16 x .035. . .. . .. . .. .. . .. .. . .. . .. .. . .. ..0.3370 1 5/8 x .049. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .0.8239

5/16 x .035. . .. . .. . .. . .. . .. .. . .. . .. .. . .. .. .0.1036 15/16 x .049. . .. . .. . .. .. . .. .. . .. . .. .. . .. ..0.4645 1 5/8 x .058. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .0.9697

5/16 x .049. . .. . .. . .. . .. . .. .. . .. . .. .. . .. .. .0.1378 15/16 x .065. . .. . .. . .. .. . .. .. . .. . .. .. . .. ..0.6051 1 5/8 x .065. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .1.082

5/16 x .058. . .. . .. . .. . .. . .. .. . .. . .. .. . .. .. .0.1575 15/16 x .083. . .. . .. . .. .. . .. .. . .. . .. .. . .. ..0.7567 1 5/8 x .083. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .1.365

5/16 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .1716 1 x . 028 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 2904 1 5/8 x . 095 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 551

5/16 x . 095 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .2204 1 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 3603 1 5/8 x . 120 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 927

3/8 x . 028 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .1037 1 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 4972 1 11/16 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 8566

3/8 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .1270 1 x . 058 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 5829 1 11/16 x . 065 .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .125

3/8 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .1704 1 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 6484 1 11/16 x . 095 .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .614

3/8 x . 058 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .1962 1 x . 083 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 8120 1 3/4 x . 035 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .6404

3/8 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .2150 1 x . 095 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 9173 1 3/4 x . 049 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .8892

3/8 x . 083 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .2586 1 x . 120 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 127 1 3/4 x . 058 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .047

3/8 x .095. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.2838 1 1/16 x .035. .. . .. . .. .. . .. .. . .. .. . .. . .. ..0.3837 1 3/4 x .065. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .1.1697/16 x .028. . .. . .. . .. . .. . .. .. . .. . .. .. . .. .. .0.1223 1 1/16 x .049. .. . .. . .. .. . .. . .. .. . .. .. . .. ..0.5298 1 3/4 x .083. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .1.476

7/16 x .035. . .. . .. . .. . .. . .. .. . .. . .. .. . .. .. .0.1503 1 1/16 x .065. .. . .. . .. .. . .. . .. .. . .. .. . .. ..0.6917 1 3/4 x .095. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .1.677

7/16 x .049. . .. . .. . .. . .. . .. .. . .. . .. .. . .. .. .0.2030 1 1/8 x .035. .. . .. .. . .. .. . .. .. . .. .. . .. . .. ..0.4070 1 3/4 x .120. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .2.087

7/16 x .065. . .. . .. . .. . .. . .. .. . .. . .. .. . .. .. .0.2583 1 1/8 x .049. .. . .. .. . .. .. . .. .. . .. .. . .. . .. ..0.5625 1 3/4 x .125. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .2.167

7/16 x .083. . .. . .. . .. . .. . .. .. . .. . .. .. . .. .. .0.3139 1 1/8 x .058. .. . .. .. . .. .. . .. .. . .. .. . .. . .. ..0.6603 1 3/4 x .1875. . .. . .. . .. .. . .. .. . .. . .. . .. .. .3.126

7/16 x .095. . .. . .. . .. . .. . .. .. . .. . .. .. . .. .. .0.3471 1 1/8 x .065. .. . .. .. . .. .. . .. .. . .. .. . .. . .. ..0.7351 1 13/16 x .049. .. .. . .. .. . .. . .. . .. .. . .. .. .0.9219

1/2 x .028. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.1410 1 1/8 x .083. .. .. . .. . .. .. . .. .. . .. .. . .. .. . ..0.9227 1 13/16 x .065. .. .. . .. .. . .. .. . .. . .. . .. .. .1.212

1/2 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .1736 1 1/8 x . 095 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .044 1 13/16 x . 095 .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .741

1/2 x . 042 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .2052 1 1/8 x . 120 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .287 1 7/8 x . 049 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .9546

1/2 x .049. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.2358 1 3/16 x .035. .. . .. . .. .. . .. .. . .. .. . .. . .. ..0.4304 1 7/8 x .058. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .1.124

1/2 x .058. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.2735 1 3/16 x .049. .. . .. . .. .. . .. .. . .. .. . .. . .. ..0.5952 1 7/8 x .065. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .1.255

1/2 x .065. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.3017 1 3/16 x .065. .. . .. . .. .. . .. .. . .. .. . .. . .. ..0.7784 1 7/8 x .095. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .1.804

1/2 x . 083 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .3693 1 3/16 x . 095 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .107 1 7/8 x . 120 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .247

1/2 x . 095 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .4105 1 3/16 x . 120 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .367 1 15/16 x . 049 .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .9873

9/16 x . 035 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 1969 1 1/4 x . 028 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .3650 1 15/16 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 299

9/16 x . 049 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 2684 1 1/4 x . 035 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .4537 1 15/16 x . 095 . .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 867

9/16 x . 065 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 3450 1 1/4 x . 049 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .6279 2 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 7338

9/16 x . 095 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .4738 1 1/4 x . 058 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .7376 2 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 020

5/8 x . 028 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .1783 1 1/4 x . 065 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .8218 2 x . 058 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 202

5/8 x . 035 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .2203 1 1/4 x . 083 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .034 2 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 340

5/8 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .3011 1 1/4 x . 095 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .171 2 x . 083 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 698

5/8 x . 058 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .3509 1 1/4 x . 120 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .447 2 x . 095 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 931

5/8 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .3883 1 1/4 x . 125 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .500 2 x . 120 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 407

5/8 x .083 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .480 1 1/4 x .134 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 595 2 x .125 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .501

5/8 x . 095 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .5372 1 5/16 x . 035 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .4770 2 x . 1875 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .626

5/8 x .120. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.6465 1 5/16 x .049. .. . .. . .. .. . .. .. . .. .. . .. . .. ..0.6605 2 1/8 x .035. .. . .. . .. . .. .. . .. .. . .. . .. . .. .. .0.7804

11/14 x .035. . .. .. . .. .. . .. .. . .. .. . .. .. . .. .0.2437 1 5/16 x .065. .. . .. . .. .. . .. .. . .. .. . .. . .. ..0.8651 2 1/8 x .049. .. . .. . .. . .. .. . .. .. . .. . .. . .. .. .1.085

11/14 x . 049 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .3338 1 5/16 x . 095 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 234 2 1/8 x . 058 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .279

11/14 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .4317 1 5/16 x . 120 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1. 527 2 1/8 x . 065 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .429

11/14 x .095. . .. .. . .. . .. .. . .. .. . .. .. . .. . ..0.6005 1 3/8 x .035. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .0 .5004 2 1/8 x .095. .. . .. .. . .. .. . .. .. . .. . .. . .. . .. .2.057

3/4 x .028. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.2157 1 3/8 x .049. .. .. . .. . .. .. . .. .. . .. .. . .. .. . ..0.6932 2 1/8 x .120. .. . .. . .. .. . .. . .. . .. .. . .. . .. .. .2.5673/4 x .035. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.2670 1 3/8 x .058. .. .. . .. . .. .. . .. .. . .. .. . .. .. . ..0.8150 2 1/4 x .035. .. . .. . .. .. . .. . .. . .. .. . .. . .. .. .0.8271

3/4 x .049. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.3665 1 3/8 x .065. .. .. . .. . .. .. . .. .. . .. .. . .. .. . ..0.9085 2 1/4 x .049. .. . .. . .. .. . .. . .. . .. .. . .. . .. .. .1.151

3/4 x . 058 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .4282 1 3/8 x . 083 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .144 2 1/4 x . 058 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .356

3/4 x . 065 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .4750 1 3/8 x . 120 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .607 2 1/4 x . 065 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .515

3/4 x .083. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.5906 1 7/16 x .049. .. . .. . .. .. . .. .. . .. .. . .. . .. ..0.7259 2 1/4 x .083. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .1.919

3/4 x .095. . .. . .. . .. . .. .. . .. .. . .. .. . .. .. . .. .0.6639 1 7/16 x .065. .. . .. . .. .. . .. .. . .. .. . .. . .. ..0.9518 2 1/4 x .095. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .2.184

3/4 x . 120 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .0 .8066 1 7/16 x . 095 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .361 2 1/4 x . 120 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .727

13/14 x .035. . .. .. . .. . .. .. . .. .. . .. .. . .. . ..0.2903 1 1/2 x .035. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .0 .5470 2 1/4 x .125. .. . .. .. . .. .. . .. .. . .. . .. . .. . .. .2.834

13/16 x .049. . .. .. . .. . .. .. . .. .. . .. .. . .. . ..0.3991 1 1/2 x .040. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .0 .7585 2 1/4 x .1875. . .. .. . .. .. . .. . .. . .. . .. . .. .. .4.126

13/16 x .058. . .. .. . .. . .. .. . .. .. . .. .. . .. . ..0.4669 1 1/2 x .058. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .0 .8923 2 3/8 x .049. .. . .. .. . .. .. . .. .. . .. . .. . .. . .. .1.216

A-15

Page 270: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 270/288

T.O. 1-1A-9

Tabl e A-13. Tabl e of Weigh ts - Steel - Conti nu ed 

2 3/8 x . 065 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .602 2 .047 x . 854 x . 058. .. .. .. .. .. .. .. .. .. 0. 8923 . 024 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .650 .9

2 3/8 x . 095 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .311 2 .215 x . 823 x . 035. .. .. .. .. .. .. .. .. .. 0. 5937 . 025 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .599 .9

2 3/8 x . 120 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .887 2 .21875 x . 921 x .049 . .. .. .. .. .. .. .. 0. 8239 . 028 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .478 .2

2 1/2 x . 049 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .281 2 .386 x . 994 x . 049. .. .. .. .. .. .. .. .. .. 0. 8892 . 031 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .383 .9

2 1/2 x . 065 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .689 2 .386 x . 994 x . 058. .. .. .. .. .. .. .. .. .. 1. 047 . 032 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .366 .1

2 1/2 x . 083 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .140 2 .386 x . 994 x . 065. .. .. .. .. .. .. .. .. .. 1. 169 . 035 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .306 .12 1/2 x . 095 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .438 2 .726 x 1 .136 x . 035. .. .. .. .. .. .. .. .. 0. 7338 . 036 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 289. 3

2 1/2 x . 120 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .3 .047 3 .00 x . 375 x . 035. .. .. .. .. .. .. .. .. .. .. 0. 7338 . 040 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .234 .3

2 1 /2 x . 125 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3. 167 3. 067 x 1. 278 x . 049 .. .. .. .. .. .. .. .. .1. 151 . 041 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 223.

2 3/4 x . 083 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .362 3 .067 x 1 .278 x . 065. .. .. .. .. .. .. .. .. 1. 515 . 045 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 182. 7

2 3/4 x . 095 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .2 .691 3 .748 x 1 .563 x . 083. .. .. .. .. .. .. .. .. 2. 362 . 047 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 166. 2

2 3/4 x .120 ..... .. ... .. ... .. ... ... .. ... .. .3.367 Wire .049 ..... .. ... .. ... .. ... .. ... .. ... .. ... ... .156.2

2 3/4 x .125 ..... ... .. ... .. ... ... .. ... .. ...3.501 Th ickn ess No. of Ft P er L b .0508 . .... ... .. ... .. ... ... .. ... .. ... .. ... .145.3

3 x . 095 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2. 944 . 006 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 0415. . 054 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 128. 6

3 x . 120 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3. 687 . 008 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 5858. . 058 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 111. 5

3 3/4 x . 120 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 4. 647 . 009 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 4629. . 0625 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 95. 98

3 3/4 x . 15625 . .. .. .. .. .. .. .. .. .. .. .. .. .. 5. 991 . 010 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3749. . 0641 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 91. 25

3 3/4 x . 1875 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 7. 127 . 011 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2936. . 071 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 72. 32

Tubin g-S tr ea mlin e .012 . .... ... ... .. ... .. ... ... .. ... .. ... .. .2604. .080 . .... .. ... ... .. ... .. ... .. ... ... .. ... .. ...58.58

S ize Lbs P er L inea r F t .013 . ..... .. ... .. ... ... .. ... .. ... ... .. ...2218. .0907 . .... ... .. ... ... .. ... .. ... ... .. ... .. ...45.58

1. 697 x .707 x .049 .. .. .. .. .. .. .. .. .. .0. 6279 . 014 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1913. . 101 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 36. 111. 70 x . 70 x .035 .. .. .. .. .. .. .. .. .. .. .. .0. 4537 . 016 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1465. . 118 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 26. 04

1. 874 x . 781 x . 035 .. .. .. .. .. .. .. .. .. .0. 5004 . 018 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1157. . 1285 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 22. 71

1. 875 x . 786 x . 049 .. .. .. .. .. .. .. .. .. .0. 6932 . 020 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 937. 3 . 162 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 14. 29

2.047 x .854 x .049...................0.7585

Tab le A-14 . Tab le of Weigh ts - Z inc 

S heet .032 . ..... .. ... .. ... .. ... ... .. ... .. ... ... .. ... .1.20 .0508 . .... ... .. ... ... .. ... .. ... .. ... ... .. ... ..1.87

Th ickn ess L bs P er S q F t .045 . .... ... .. ... .. ... .. ... ... .. ... .. ... .. ... ..1.68 .109 . ... .. ... .. ... ... .. ... .. ... .. ... .. ... .. ... .3.98

. 018 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 0. 67 . 049 . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .1 .87

A-16

Page 271: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 271/288

T.O. 1-1A-9

Table A-15. Temperatur e Conversion Chart 

A-17

Page 272: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 272/288

T.O. 1-1A-9

Table A-16. Standard B end Radi i for 90 oCold Form ing-Fl at Sheet 

A-18

Page 273: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 273/288

T.O. 1-1A-9

Tabl e A-16. Standard B end Radi i for 90 oCold Form in g-Flat Sheet - Conti nued 

Table A-17. M etal B endin g and B end Radi i Bend A l lowances Sheet M etal B end Al l owances Per Degree of Bend A lum inum All oys 

Stock Thickness

B E N D

RAD IU S 0.022 0.032 0.040 0.051 0.064 0.091 0.128 0.187Bend Allowance per One Degree

1/32 0.00072 0.00079 0.00086 0.00094 0.00104 0.00125 0.00154 0.002001/16 0.00126 0.00135 0.00140 0.00149 0.00159 0.00180 0.00209 0.002553/32 0.00180 0.00188 0.00195 0.00203 0.00213 0.00234 0.00263 0.003091/8 0.00235 0.00243 0.00249 0.00258 0.00268 0.00289 0.00317 0.00364

5/32 0.00290 0.00297 0.00304 0.00312 0.00322 0.00343 0.00372 0.004183/16 0.00344 0.00352 0.00358 0.00367 0.00377 0.00398 0.00426 0.004737/32 0.00398 0.00406 0.00412 0.00421 0.00431 0.00452 0.00481 0.005271/4 0.00454 0.00461 0.00467 0.00476 0.00486 0.00507 0.00535 0.00582

9/32 0.00507 0.00515 0.00521 0.00530 0.00540 0.00561 0.00590 0.006365/16 0.00562 0.00570 0.00576 0.00584 0.00595 0.00616 0.00644 0.00691

11/32 0.00616 0.00624 0.00630 0.00639 0.00649 0.00670 0.00699 0.007453/8 0.00671 0.00679 0.00685 0.00693 0.00704 0.00725 0.00753 0.00800

13/32 0.00725 0.00733 0.00739 0.00748 0.00758 0.00779 0.00808 0.008547/16 0.00780 0.00787 0.00794 0.00802 0.00812 0.00834 0.00862 0.0090815/32 0.00834 0.00842 0.00848 0.00857 0.00867 0.00888 0.00917 0.009631/2 0.00889 0.00896 0.00903 0.00911 0.00921 0.00943 0.00971 0.01017

17/32 0.00943 0.00951 0.00957 0.00966 0.00976 0.00997 0.01025 0.010729/16 0.00998 0.01005 0.01012 0.01020 0.01030 0.01051 0.01080 0.0112619/32 0.01051 0.01058 0.01065 0.01073 0.01083 0.01105 0.01133 0.01179

A-19

Page 274: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 274/288

T.O. 1-1A-9

Tabl e A-17. M etal Bending and Bend Radi i B end A ll owances Sheet M etal Bend Al lowances Per D egree of Bend A lumi num Al loys - 

Continued 

Stock Thickness

B E N D

RAD IU S 0.022 0.032 0.040 0.051 0.064 0.091 0.128 0.187Bend Allowance per One Degree

5/8 0.01107 0.01114 0.01121 0.01129 0.01139 0.01160 0.01189 0.01235

21/32 0.01161 0.01170 0.01175 0.01183 0.01193 0.01214 0.01245 0.0128911/16 0.01216 0.01223 0.01230 0.01238 0.01248 0.01268 0.01298 0.0134423/32 0.01269 0.01276 0.01283 0.01291 0.01301 0.01322 0.01351 0.013973/4 0.01324 0.01332 0.01338 0.01347 0.01357 0.01378 0.01407 0.01453

Example: To determine bend allowanceG iven: Stock = 0.064 aluminum alloy, Bend Ra dius = 1/8, Bend Angle = 50o

Find bend a llowa nce for 1o in colum n f or 0.064 Alum inum opposit e 1/8 in colum n ‘‘Bend Radius ’’.Multiply this bend allowance (0.00268 in this case) by the number of degrees of the desired bend angle:

0.00268 x 50 = 0.1340 = tota l bend allowa nce to be add ed to the length of the st ra ight sid es of the

part to determine the tota l length of the mat erial needed.

A-20

Page 275: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 275/288

T.O. 1-1A-9

Tab le A-18 . Bend Set Back Char t 

A-21

Page 276: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 276/288

T.O. 1-1A-9

Table A-19. Comparat i ve Table of Standard Gages 

1. Unit ed Sta tes Steel Wire Ga ge (STL.W.G.) Also known a s: National Wire, Sta ndard Steel Wire, Steel Wire, American Steel and

Wire Company, Roebling, Washburn and Moen G ages. Used for ba re wire of galva nized, black annealed, bright ba sic t inned or copper

coated, iron or steel, spring steel wire. Not used for telephone and telegraph wire.

2. Br it ish Imperial Standa rd Wire Gage (I .S .W.G.) or (N.B.S.) Also known as B rit ish Imperial Wire or English Legal Sta ndar d

Ga ges. Used for bar e copper telephone wires in the U .S. and for all w ires and a luminum sheets in Englan d.

3. Br owne & Sha rpe Gage (B.&S.G.) Also known a s American or American Wire Ga ges. Used for bare w ire of brass, phosphor

bronze, German silver, aluminum, zinc and copper (not for copper telephone or telegraph wire). Also resistance wire of German silver

and other a lloys, a nd for insulat ed wire of a luminum a nd copper. Also for rods of brass, copper, phosphor bronze and a luminum;

sheets of copper, brass, phosphor bronze, a luminum a nd G erman silver; brazed bra ss an d bra zed copper t ubing.

4. Birm ingham Wire Ga ge (B.W.G.) Also known as B irmingham , Stubs or Studs Iron Wire Gages. Used for iron and steel telephone

and telegraph w ire and strip steel, s teel bands, h oop steel, crucible spring steel, round-edged fla t w ire, and w ith limited usa ge for

copper sheets. Also for seamless brass, seamless copper, seamless steel, stainless steel and aluminum tubes, and for boiler tubes.

5 . S tanda rd B irmingham Sheet and Hoop Ga ge (B .G.) Used in England for i ron and s teel sheets and hoops .

6. United S ta tes S ta ndard (Revised) (U.S .S .G.) Also known a s U .S . S ta ndard Sheet Meta l or U .S . S tandard for S teel and I ron Sheets

and P lates G ages. This is a ga ge based on the weight per squa re foot of sheets rath er tha n on thickness. I t is used for commercial

iron and steel sheets a nd plates including planished, galvanized, t inned a nd terne plat es, black sheet iron, blue ann ealed soft s teel,

steel pla te, hot-rolled sheet st eel, cold-rolled sheet steel, hot-rolled monel m eta l, cold-rolled monel met al.

Other ga ges in use:

Trenton Iron Company G age.

Zinc gage for sheet zinc only.

Birm ingham Metal G age-in Engla nd for brass sheets . American Steel and Wire Company ’s music wire gage. Twist D rill and S teel

Wire Ga ge for t wist dr ill and steel drill rods.

THICKNESS IN DECIMALS OF AN INCH

United S ta tes S tandard

(Revised) U.S.S.G.

B rit ish S t a nda rd

G a ge U nit ed Imper ia l B irmingha m

Number S t a t es S t a nda rd B row ne & B irmingha m S heet a nd Thickness Weight

S t eel Wire Wire S ha rpe Wire H oop Approx. Oz/S q F t .

(S TL.W.G ) (I .S .W.G .) (B .& S .G .) (B .W.G .) (B .G .)

0000000 .4900 .500 ------- ------ .6666 ------ ------

000000 .4615 .464 .580000 ------ .6250 ------ ------

00000 .4305 .432 .516500 .500 .5883 ------ ------

0000 .3938 .400 .460000 .454 .5416 ------ ------

000 .3625 .372 .409642 .425 .5000 ------ ------

00 .3310 .348 .364796 .380 .4452 ------ ------

0 .3065 .324 .324861 .340 .3964 ------ ------

1 .2830 .300 .289297 .300 .3532 ------ ------

2 .2625 .276 .257627 .284 .3147 ------ ------

3 .2437 .252 .229423 .259 .2804 .2391 160

4 .2253 .232 .204307 .238 .2500 .2242 150

5 .2070 .212 .181940 .220 .2225 .2092 140

6 .1920 .192 .162023 .203 .1981 .1943 130

7 .1770 .176 .144285 .180 .1764 .1793 120

8 .1620 .160 .128490 .165 .1570 .1644 1109 .1483 .144 .114423 .148 .1398 .1494 100

10 .1350 .128 .101897 .134 .1250 .1345 90

11 .1205 .116 .090742 .120 .1113 .1196 80

12 .1055 .104 .080808 .109 .0991 .1046 70

13 .0915 .092 .071962 .095 .0882 .0897 60

14 .0800 .080 .064084 .083 .0785 .0749 50

15 .0720 .072 .057068 .072 .0699 .0673 45

16 .0625 .064 .050821 .065 .0625 .0598 40

17 .0540 .056 .045257 .058 .0556 .0538 36

18 .0475 .048 .040303 .049 .0495 .0478 32

A-22

Page 277: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 277/288

T.O. 1-1A-9

Tabl e A-19. Comparat ive Table of Stan dar d Gages - Contin ued 

THICKNE SS IN DEC IMALS OF AN INCH

United S ta tes S tandard

(Revised) U.S.S.G.

B rit ish S t a nda rdG a ge U nit ed Imperia l B irmingha m

Number S t a t es S t a nda rd B row ne & B irmingha m S heet a nd Thickness Weight

S t eel Wire Wire S ha rpe Wire H oop Approx. Oz/S q F t .

(S TL.W.G ) (I .S .W.G .) (B .& S .G .) (B .W.G .) (B .G .)

19 .0410 .040 .035890 .042 .0440 .0418 28

20 .0348 .036 .031961 .035 .0392 .0359 24

21 .03175 .032 .028462 .032 .0349 .0329 22

22 .0286 .028 .025346 .028 .03125 .0299 20

23 .0258 .024 .022572 .025 .02782 .0269 18

24 .0230 .022 .020101 .022 .02476 .0239 16

25 .0204 .020 .017900 .020 .02204 .0209 14

26 .0181 .018 .015941 .018 .01961 .0179 12

27 .0173 .0164 .014195 .016 .01745 .0164 11

28 .0162 .0148 .012641 .014 .015625 .0149 10

29 .0150 .0136 .011257 .013 .0139 .0135 930 .0140 .0124 .010025 .012 .0123 .0120 8

31 .0132 .0116 .008928 .010 .0110 .0105 7

32 .0128 .0108 .007950 .009 .0098 .0097 6.5

33 .0118 .0100 .007080 .008 .0087 .0090 6

34 .0104 .0092 .006305 .007 .0077 .0082 5.5

35 .0095 .0084 .005615 .005 .0069 .0075 5

36 .0090 .0076 .005000 .004 .0061 .0067 4.5

37 .0085 .0068 .004453 ------ .0054 .0064 4.25

38 .0080 .0060 .003965 ------ .0048 .0060 4

39 .0075 .0052 .003531 ------ .0043 ------ ------

40 .0070 .0048 .003144 ------ .0038 ------ ------

Tab le A-20 . M el t ing Poin ts Approx imate 

E LE ME NTS D E G RE E S

C F

ALU MINU M 660 1220ANTIMONY 631 1167B ARIU M 850 1562B E RYLIU M 1350 2462B IS MU TH 271 520CAD MIU M 321 610CALCIU M 810 1490CARB ON 3500 6332CH ROMIU M 1765 3209

COB ALT 1480 2696COP P E R 1083 1981G OLD 1063 1945IRON 1535 2795LE AD 327 621LITH IU M 186 367MAG NE S IU M 651 1204MANG ANE S E 1260 2300ME RCU RY -39 -38MOLYB D E NU M 2620 4748

A-23

Page 278: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 278/288

T.O. 1-1A-9

Tabl e A-20. M elti ng Point s Appr oxim ate - Conti nued 

E LE ME NTS D E G RE E S

C F

NIC KE L 1446 2635P H OS P H OROU S (YE LLOW) 44 111P LATINU M 1773 3223S ILICON 1420 2588S ILVE R 961 1761TIN 232 449TU NG S TE N 3400 6152VANAD IU M 1710 3110ZINC 420 787

A-24

Page 279: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 279/288

T.O. 1-1A-9

GLOSSARY

A

ACID BRITTLENESS--Brittleness of steel resulting from use of acid solutions to remove scale, clean andelectroplat e. B ritt leness is ca used by the absorption of hydr ogen into the metal from the acid solu-tions (also called hydrogen embrittlement).

AG ING --(a) G enerally a ny cha nge in properties with t ime w hich occurs a t r elat ively low temperature(room or elevat ed) af ter a f inal hea t t reatm ent of a cold ma rking operation. Aging is a process inwhich the trend is toward restoration of real equilibrium and away from an unstable conditioninduced by a prior operation. (b) Specifically the formation of a new phase by cooling a solid solutionto super saturated state and allowing the super saturated solution to partially return to equilibriumby th e forma tion of a less concentra ted solid solution and a new pha se.

AIR H ARDE NING --An a lloy wh ich does not require quenching from a high t empera ture to harden. Ha rd-ening of the ma teria l occurs simply by cooling in a ir from above critica l temperat ure. The term refersonly to the ability of the material to harden in air and does not imply any definite analysis orcomposition.

AIR C OOLING /QUE NC HI NG --Cooling from an eleva ted tempera tur e in air, still or forced.

ALLOY--A mixture with metallic properties composed of two or more elements of which at least one is ameta l. However, a meta l is not designa ted an ‘‘alloy ’’ based on elements incidenta l to its ma nufac-ture. For example; iron, carbon, manganese, silicon, phosphorus, sulphur, oxygen, nitrogen and hydro-gen are incidenta l to the ma nufacture of plain carbon steel. I t does not become an ‘‘alloy steel’’ unt i lthe elements are increased beyond regular composition or until other elements (metal) are added insignificant am ounts for a specif ic purpose.

ALLOY ELEMENTS--Chemical elements comprising an alloy, usually limited to the metallic elementsadded to modify the basic metal properties.

AMORP HOU S--Non-crysta lline.

ANNEALING--Generally it is a controlled heating procedure which leads to maximum softness, ductility

a nd forma bility. The an nea ling procedure is utilized for the followin g: (a ) Remove stresses. (b) Ind ucesoftness. (c) After ductility, toughness, electrical, magnetic, or physical properties. (d) Refine crystal-line structure. (e) Remove gases. (f) Produce a definite micro-structure.

ANNEALING FULL--A controlled heating procedure which leads to maximum softness, ductility andformability .

ANNEALING, ISOTHERMAL--Heating of a ferritic steel to a austenitic structure (fully or partial) followedby cooling to and holding at a temperature that causes transformation of the austenite to a relat ivelysof t ferrite an d carbide structure.

ANODIC OXIDE COATING--A thin film of aluminum oxide formed on the surface of aluminum andaluminum alloy parts by electro-chemical means.

AS CAST--Condition of a casting a s it leaves t he mold w ith no heat trea tment.

AU STEN ITE --A solid solution of iron ca rbide in gam ma iron. It forms w hen th e meta l solidif ies andremains a solution until it cools to about 732oC (1350oF). Theoretically the solution would remain ifthe iron or steel were cooled insta nta neously from a bright red h eat to a tmospheric temperat ure, butin practice, this degree of rapidity is impracticable, and only a portion of the austenite is preserved byrapid cooling. Addition of certain alloying elements such as nickel and manganese perserves austenitebelow - 17oC (0oF).

Glossary 1

Page 280: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 280/288

T.O. 1-1A-9

GLOSSARY - Continued

B

BARK--The decarburized skin or layer just beneath the scale found after heating steel in an oxidizingatmosphere.

BASE METAL--The metal to which other elements are added to form an alloy possessing specificproperties.

B ES SE MER P ROCE SS --A process for ma king steel by blowing a ir thr ough molten pig iron conta ined in asuita ble vessel. The process is one of ra pid oxidat ion primar ily of silicon and carbon.

BILLET--An ingot or bloom that has been reduced through rolling or hammering to an approximate squarera nging fr om 1 1/2 inches squar e to 6 inches squa re, or to an a pproxima te recta ngula r cross-section ofequivalent area. Billets are classified as semi-finished products for re-rolling or forging.

BINARY ALLOY--An alloy containing two elements, apart from minor impurities.

BLACK ANNEALING--A process of box annealing of sheets prior to tinning whereby a black color is

imparted to the surface of the product.B LU E ANNEALING --A process of annea ling sheets af ter rolling. The sheets, if fa irly heavy , are allowed

to cool slowly af ter th e hot rolling; if of lighter gage, a s is usually t he case, they a re passed singlythrough a n open furnace for heat ing to the proper annealing t empera ture. The sheets ha ve a bluish-black appeara nce.

B LU E B RITTLENE SS --B rit t leness occurring in steel when in the t emperat ure ra nge of 149o to 371oC(300o to 700oF), or when cold af ter being worked w ithin th is tempera ture ra nge.

B OX ANNEALING --Soft ening steel by heating it , usua lly at a sub-crit ical temperature, in a suitable closedmetal box or pot to protect it from oxidation, employing a slow heating and cooling cycle; also calledclosed an nealing or pot an nealing.

BRIGHT ANNEALING--A process of annealing, usually with reducing gases, such that surface oxidation isreduced to a minimum, th ereby yielding a r elat ively bright surface.

BRITTLENESS--Brittleness is the property of a material which permits little bending or deformationwith out fra cture. B rit t leness an d hardn ess ar e closely associated.

B UR NING --The heat ing of a meta l to temperat ures suff iciently close to the melting point to cause perma-nent injury. Such injury ma y be caused by the melting of the more fusible const ituent s, by th epenetra tion of gases such a s oxygen into the meta l wit h consequent reactions, or perhaps by t hesegregat ion of elements alrea dy present in the m etal.

B U TT-WE LD --The w elding of t w o a but tin g edges.

C

CARBON F REE --Metals a nd a lloys w hich are pra ctically free from carbon.

CARBURIZING (CEMENTATION)--Adding carbon to the surface of iron-base alloys by heating the metalbelow its melting point in contact with carbonaceous solids, liquids, or gases.

CASE--The surface layer of an iron-base a lloy w hich has been ma de substan tia lly har der tha n t he interiorby the process of case hardening.

CASE HARDENING--A heat treatment of a combination of heat treatments in which the surface layer ofan iron-base a lloy is ma de substant ially ha rder tha n th e interior by a ltering its composit ion bycarburizing, cyaniding, or nitriding.

Glossary 2

Page 281: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 281/288

T.O. 1-1A-9

GLOSSARY - Continued

C (Cont)

CH AP MANIZING --A process for ha rdening steel by bubbling a mmonia t hrough a cyaniding sa lt ba th a ndholding the finished part in th e gas stream. This method produces a case almost as ha rd a s nitridingat a t ime factor of slightly longer tha n required for cyaniding.

CH ARP Y IMP ACT--An impact t est ma de by measuring in a Cha rpy ma chine the energy required tofracture a sta nda rd notched specimen in bending. The values so obta ined are merely compara tivebetween different materials tested by the same method.

COLD DRAWING --The permanent deforma tion of meta l below its recrystallizat ion t emperat ure, by dra w-ing the bay through one or more dies.

COLD ROLLING --The permanent deforma tion of metal below its recrysta llizat ion temperature by rolling.This process is frequently applied in finishing rounds, sheets, strip, and tin plate.

COLD TREATING--Cooling to sub-zero temperature for various purposes, but primarily to promote trans-forma tion of a ustenite.

COLD WORKING--Plastic deformation of a metal at a temperature low enough to insure strain hardening.

CORE--The interior portion of an iron-base alloy which is substantially softer than the surface layer as theresult of case ha rdening. Also, tha t portion of a forging removed by trepan ning; th e inner par t of arolled section of rimmed steel as distinct from the rimmed portion or rim; a body of sand or otherma terial placed in a m old to produce a cavity in a casting.

CONVERSION COATING (CHEMICAL)--A film intentionally produced on a metal by subjection to aselected chemical solution for t he purpose of providing improved corrosion resista nce or to improvethe adhesion of subsequently applied organic coating.

CYANIDING--Surface hardening by carbon and nitrogen absorption of an iron-base alloy article or portionof it by heating at a suitable temperature in contact with a cyanide salt , followed by quenching.

COOLING--Any decrease in temperature; however, specific term usually applies to reducing metal temper-

ature in a gaseous environment rather than quenching in a liquid.

D

DE CALESC ENC E--When a piece of steel is heated, t he temperature r ises uniformly until it reaches apoint between 718oC and 732oC (1,325oF and 1,350oF). At this point the rise in temperature suddenlyha lts due to the fact tha t the meta l absorbs the heat necessary for the cha nge of stat e. Aft er thisha lt the temperature will continue its normal ra te of increase. It is the ha lt ing in the tempera turera nge tha t is termed decalescence. At th e point of deca lesence, the ca rbon and iron a re forming asolid solution and the steel is passing from its annealed condition into its hardened condition.

DE CARB U RIZATION--The remova l of carbon (usually refers to t he surfa ce of solid steel) by the (norma llyoxidizing) a ction of media w hich reacts w ith car bon. The deca rburized a rea is sometimes referred toas the bark.

Glossary 3

Page 282: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 282/288

T.O. 1-1A-9

GLOSSARY - Continued

D (Cont)

DE FE CTS IN METALS --Da ma ge occurring to meta l during man ufa cture/fa bricat ion process. Some typicaldefects are as follows: (a) Blister - a defect in metal produced by gas bubbles either on the surface orformed beneath th e surfa ce. Very f ine blisters a re called pinhead or pepper blisters. (b) B low hole - ahole produced during the solidification of metal by evolved gas which in falling to escape, is held inpockets. (c) Bursts -ruptures made in forging or rolling. (d) Fin (Flash) - a thin fin of metal formed atthe side of a forging or weld where a small portion of the metal is forced out between the edges of theforging or welding case. (e) Flake -Internal fissures (cracks or clefts) in large steel forgings or large(MASS) rolled shapes. In a fa ctured surfa ce or test piece, they appea r as siza ble a rea s of silverybrightness and coarser grain size than their surroundings. Sometimes known as ‘‘chrome checks ’’ a nd‘‘ha irline cracks.’’ (f) Ghost - (Ferrite ghost) a faint band of ferrite. (g) Lap - a surface defect appearingas a seam ca used from folding over hot m etal, f ins, or sha rp corners an d t hen rolling or forging, butnot welding, them into the surface. (h) Pipe - a cavity formed in metal (especially ingots) duringsolidification of the last portion of liquid metal causes the cavity or pipe. (i) Scab - a rough projectionon a ca sting caused by t he mold breaking or being wa shed by th e molten meta l; or occuring w here the

skin from a blowh ole has part ly burned a wa y a nd is not w elded. (j) Seam - a crack on t he surface ofmetal which has been closed but not welded; usually produced by blowholes which have becomeoxidized. If very fine, a seam ma y be called a h air crack or hair seam. (k) Segregation a m ixture ofcompounds and elements, which, when cooled from the molten state, solidify at different tempera-tures. (l) Ductility the ability of a m etal to withst an d plastic deforma tion without rupture. Ductilityis usually determined by tension test using a standard test (2″  ga uge lengt h) specimen. The testspecimen is loa ded in tension to rupture. The specimen is then assembled a nd mea sured for lengt han d diameter a t th e fracture. The increase in length is expressed a s per cent elongat ion a nd thedecrease in diameter as per cent reduction of area. The above terms measure ductility and since theyare comparative, considerable experience is required for proper evaluation of material for the purposeintended.

DUCTILITY--The property that permits permanent deformation before fracture by stress in tension.

E

ELASTIC LIMIT--The elastic limit of a material is the greatest load per unit area which will not produce ameasura ble perma nent deformation a f ter complete release of load.

ELONGATION--The amount of permanent extension at any stage in any process which continuouslyelongat es a body.

EMBRITTLEMENT--Loss of ductility of a metal, which may result in premature failure. (see acidbrittleness).

END U RANCE LIMIT--The highest unit st ress at which a ma terial can be subjected to a very large numberof repetitions of loading a nd st ill show no evidence of failur e. Above th is limit fa ilure occurs by t hegenera tion and growth of cra cks unt il fracture results in the rema ining section.

EN DU RANCE RATIO--The ra tio of the endura nce limit for cycles of reversed f lexural st ress to th e tensile

strength.

EQUALIZING--Intermediate heat treatment (special) which assists in developing desired properties, pri-ma ry u se is for equa lizing/relieving stresses result ing from cold working.

EU TEC TIC ALLOY--An a lloy wh ich has a lower melting point tha n neighboring compositions. More th enone eutectic composition may occur in a given alloy system.

EXF OLIATION--The cra cking or f lakin g off of t he outer la yer of a n object.

EXP OSU RE--Hea ting t o or subjecting to a n elevating temperature or environment for a certa in period oft ime.

Glossary 4

Page 283: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 283/288

T.O. 1-1A-9

GLOSSARY - Continued

E (Cont)

ETCH ING --Atta ck of meta ls structure by reagents. In meta llogra phy, the process of revealing str uctualdetails by the preferential attack of reagents on a metal surface. (a) Micro - etching is for theexamination of the sample under a microscope and for this purpose the sample must be very carefullypolished (by a n experienced person) prior to etching. (b) Ma cro-etching is for the exa mina tion of th esample under a low power magnifying glass or by unaided eye. High polishing for this purpose is nota bsolutely essentia l; however, a good polish is necessary . (c) Deep-etching is a form of ma cro-etchingin w hich the sa mple with regular cut surface ma y be immersed in hot h ydrocloric acid (50%a cqueoussolution) and then examined for major defects such as inclusions, segregations, cracks; etc.

F

FATIGUE--The phenomenon of the progressive fracture of a metal by means of a crack which spreadsunder repeated cycles of stress.

FATIG UE LIMIT--Usua lly used a s synonymous with endurance limit .FERRITE--A solution in which alpha iron is the solvent, and which is characterized by a body centered

cubic crystal structure.

FI LLE T--A concave junction of tw o surfa ces usually perpendicula r.

FLAME H ARDE NING --A process of ha rdening a ferrous a lloy by heat ing it above the tr an sforma tionra nge by means of a high-temperature f lame a nd th en cooling as required.

FORGING STRAINS--Elastic strains resulting from forging or from cooling from the temperature.

FORMI NG --To shape or fa shion w ith ha nd/tools or by a sha pe or mold.

FRACTURE TESTING--A test used to determine type of structure, carbon content and the presence ofinterna l defects . The test specimen is broken by any method tha t w ill produce a clean sha rp fracture.The fracture is then exam ined by eye or w ith th e aid of a low former magnifying glass. A tra ined/

experienced observer will determine grain size; approximate depth of carburized or decarburizedsurface area; the presence of inclusions of dirty steel; and defects such as seams, cracks, pipes burstsand f lakes .

FU LLY H ARDE NED --Applies generally to th e ma ximum ha rdness obta inable. (In pa rticular , a pplies toma terials th at ar e hardened by a stra in an d/or age ha rdening process).

FU SI B LE ALLOYS--A group of nonferrous a lloys wh ich melt at r elat ively low temperat ures. They usua llyconsist of bismuth, lead, tin, etc., in various proportions, and iron only as an impurity.

G

G ALVANIC SE RIE S--A list of metals a nd a lloys a rra nged in order of their relat ive potentia ls in a givenenvironment. The galva nic series indicat es th e tendency of th e serva l metals a nd a lloys to set upga lvan ic corrosion. The relative position with in a group sometimes cha nges with externa l conditions,

but it is only rarely that changes occur from group to group.

G RAINS--Individual crysta ls in metal. When meta l is in molten stat e, the atoms ha ve no uniform group-ing. However, upon solidification they ar ran ge themselves in a geometric pat tern.

GRAIN GROWTH--An increase in the grain size of metal.

Glossary 5

Page 284: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 284/288

T.O. 1-1A-9

GLOSSARY - Continued

H

HARDENABILITY--The ability of an alloy to harden fully throughout the entire section thickness either bycold working or heat trea tment. The maximum t hickness at w hich this may be a ccomplished can beused as a measure of hardenability .

HARDE NING --Ha rdening accomplished by heat ing the meta l to a specif ied tempera ture, then ra pidlycooling by quenching in oil, wa ter, or brine. This trea tm ent produces a fin e grain str ucture, extr emehardness, maximum tensile strength, and minimum ductility .

HARDNE SS --Ha rdness refers to the ability of a ma terial t o resist abra sion, penetra tion, indenta tion, orcutt ing action. The wearing qualit ies of a mat erial are in part dependent upon its hardness. Ha rd-ness and strength are properties wh ich a re closely relat ed for w rought a lloys.

HARD NE SS TES TING --Test used to determin e the ability of a m eta l to resist penetra tion. The testresults a re usually directly relat ed to tensile and yield strengt h of the meta l involved. An exceptionwould be case ha rdness. See Section VIII for t ypical testing m ethods.

HEAT TINTING--Heating a specimen with a suitable surface in air for the purpose of developing thestructure by oxidizing or otherwise a ffecting the different constituents.

HEAT TREATMENT--An operation, or combination of operations, involving the heating and cooling of ametal or alloy in the solid state for the purpose of obtaining certain desirable conditions or properties.Heating and cooling for the sole purpose of mechanical working are excluded from the meaning of thisdefinit ion.

HOMOG ENI ZING--Annealing or soaking a t very high t empera tures in order to reduce alloy segregation bydiffusion.

HOT SH ORTNES S--B rit t leness in meta l w hen hot. In iron w hen sulphur is in excess of the ma nga nesenecessary to combine with it to form manganese sulphide the excess sulphur combines with the ironto form iron sulphide. This constituent ha s a lower melting point t ha n th e iron a nd t he result can bethat steel may crack during hot working.

HYDROGEN EMBRITTLEMENT--See Acid Brittleness.

I

IMP ACT TES T--A test in w hich one or more blows a re suddenly a pplied t o a specimen. The results a reusually expressed in terms of energy absorbed or number of blows (of a given intensity) required tobreak the specimen. See Cha rpy Impact and Izod Impact .

INCLUSION--Particles of impurities, usually oxides, sulphides, silicates, and such which are mechanicallyheld during solidification or which are formed by subsequent reaction of the solid metal.

INDU CTION H ARDE NING --A process of ha rdening a ferrous a lloy by heating above the tr an sforma tionrange by means of electrical induction and then cooling as required.

M

MACH INABILI TY--The cutt ing cha ra cterist ic of meta l a nd r esult ing surfa ce finish using st an dar d cutt ingtools and coolan t/lubrican ts. There are var ious fa ctors th a t effect the machina bility of a met a l suchas hardness, grain size, alloy constituents, structure, inclusions; shape, type, condition of tool andcoolant . The sta nda rd ma china bility ra ting s are usua lly based on comparison to SAE 1112/Aisi B1112 Bessemer screw stock which is ra ted a t 100%ma chinability .

Glossary 6

Page 285: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 285/288

T.O. 1-1A-9

GLOSSARY - Continued

M (Cont)

MAGN A FL U X TE STING --A met hod of inspection used to detect/locat e defects such a s cavit ies, cra cks orseam s in steel par ts a t or very close to the surfa ce. The test is accomplished by mag netizing t he partwith equipment specially designed for th e purpose and applying ma gnetic powder, wet or dry, F law sare then indicated by the powder clinging to them (see Section VIII for addit ional data).

MALLEABILITY--Malleability is the property of a material which enables it to be hammered, rolled, or tobe pressed into various shapes without fracture. Malleability refers to compression deformation ascontra sted w ith ductility w here the deforma tion is tensile.

MARTEMP ER ING --This is a method of hardening st eel by q uenching from th e aust enit izing tempera tureinto a medium at a temperature in the upper part of or slightly above the martensite range andholding it in t he medium until temperature is substa ntia lly uniform t hroughout t he alloy is thenallowed to cool in a ir through the ma rtensite ran ge.

MARTE NSI TE--It is th e decomposition product wh ich results from very r a pid cooling of aus tenit e. The

lower the carbon content of the steel, the faster it must be cooled to obtain martensite.MECHANICAL HARDNESS--See Hardness.

MEC HANICAL P ROP ERTIE S--Those properties tha t reveal the rea ction, elastic a nd inelast ic, of a ma te-rial t o an a pplied force, or tha t involve the relat ionship between stress a nd st ra in; for example,tensile strength, yield strength, a nd fa t igue limit .

MECHANICAL TESTING--Testing methods by which mechanical properties are determined.

MECHANICAL WORKING--Subjecting metal to pressure exerted by rolls, presses, or hammers, to changeits form, or to af fect the str ucture and therefore the m echa nical a nd physical properties.

MODULUS OF ELASTICITY--The ratio, within the limit of elasticity, of the stress in the correspondingstra in. The stress in pounds per squa re inch is divided by the elonga tion in fractions of a n inch foreach inch of the original gage length of the specimen.

N

NITRID ING --Adding nitrogen to iron-base a lloys by heat ing the meta l in conta ct w ith a mmonia ga s orother suita ble nitrogenous ma terial. Nitriding is conducted at a t empera ture usually in the range502o-538oC (935o-1000oF) and produces surface har dening of the meta l with out q uenching.

NORMALIZING--Heating iron-base alloys to approximately 55oC (100oF) above the crit ical temperaturera nge, followed by cooling to below tha t ra nge in still air a t ordina ry tempera tur es. This process isused to remove stresses caused by machining, forging, bending, and welding.

O

OVERH EATING --Hea ting t o such high temperatures th at the gra ins ha ve become coar se, thus impairingthe properties of the metal.

P

PATENTING--Heating iron-base alloys above the critical temperature range followed by cooling below thatrange in air , or in molten lead, or a molten mixture of nitrate or nitrites maintained at a temperatureusually bet ween 427o-566oC (800-1050oF),depending on the carbon content of the steel and theproperties required of the f inished product. This trea tm ent is applied to wir e and t o medium or highcarbon steel as a treatment to precede further wire drawing.

Glossary 7

Page 286: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 286/288

T.O. 1-1A-9

GLOSSARY - Continued

P (Cont )

PHYSICAL PROPERTIES--Those properties exclusive of those described under mechanical properties; forexample, density, electrical conductivit y, coeff icient of therma l expan sion. This term ha s of ten beenused to describe mechanical properties, but this usage is not recommended.

P HYS IC AL TES TING --Testing meth ods by w hich physical properties are determin ed. This term is alsoinadvisedly used to mean the determina tion of the mechanical properties.

P ICK LING --Removing scale from steel by immersion in a diluted acid bat h.

PLASTIC DEFORMATION--The permanent change in size or shape of a material under stress.

POTENTIOMETER--Potentiometer 1s an instrument used to measure thermocouple voltage by balancing aknown battery voltage against it .

PROCESS ANNEALING--Heating iron-base alloys to a temperature below or close to the lower limit of thecritical tempera tur e ran ge, followed by coolings desired. This trea tm ent is commonly a pplied to sheet

an d w ire and t he tempera tures generally used are from 549

o

to 649

o

C (1020

o

to 1200

o

F).P ROOF STRES S--The proof stress of a ma terial is tha t load per unit a rea w hich a ma terial is capable of

withstanding without result ing in a permanent deformation of more than a specified amount per unitof gage length after complete release of load.

PROPORTIONAL LIMIT--The proportional limit of a material is the load per unit area beyond which theincreases in strain cease to be directly proportional to the increases in atress.

P YROMETER --An instrument for measuring temperature.

Q

QUENCHING--Rapid cooling by immersion in liquids or gases.

QUE NCH ING MED IA--Quenching media are liquids or gases in w hich metals a re cooled by immersion.

Some of th e more common a re brine (10 percent sodium chloride solution), wa ter 18oC (65oF), fish oil,paraffin base petroleum oil, machine oil, air, engine oil, and commercial quenching oil.

R

RECALESCENCE--When steel is slowly cooled from a point above the critical temperature, the coolingproceeds at a uniform rate until the piece reaches a point between 677o an d 704oC (1,250o a nd1,300oF). At t his t ime, the cooling is noticeably a rrested and the meta l actua lly rises in t empera turea s the change of sta te aga in ta kes place. This chang e is the opposite of deca lescence a nd is termedrecalescence.

REDUCTION OF AREA--The difference between the original cross-sectional area and that of the smallestarea at the point of rupture. It is usually sta ted as a percenta ge of the original ar ea; also called‘‘contra ction of a rea. ’’

REF INING TEMP ER ATUR E OR H EAT--A temperat ure employed in case ha rdening to refine t he case a ndcore. The fir st qu ench is from a high t emperat ure to refine th e core a nd th e second quench is from alower temperature to further refine and harden the case.

S

SCALE--A coating of metallic oxide that forms on heated metal.

SENSITIZING--Developing a condition in stainless steels, which is susceptible to intergranular corrosion.The condition is usually formed by heating the steel above 800oF and cooling slowly, e.g., welding.

Glossary 8

Page 287: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 287/288

T.O. 1-1A-9

GLOSSARY - Continued

S (Cont )

SH EE TS C OLD ROLLE D--The f lat products resulting from cold rolling of sheets previously produced byhot rolling.

SH EE TS H OT ROLL E D--The f lat -rolled products resulting from reducing sheet ba rs on a sh eet mill, orslabs, blooms, and billets on a continuous strip-sheet mill.

SOAKING --Holding steel at an elevat ed tempera ture for th e at ta inment of uniform t empera ture thr ough-out the piece.

SOLIDIFICATION RANGE--The temperature range through which metal freezes or solidifies.

SP ALLING --The cracking and f laking of sma ll particles of metal from t he surface.

SP HE ROIDAL OR SP HE ROIDI ZED CE METITE--The globular condition of iron car bide result ing from aspheroidizing treat ment. The init ial structure ma y be either pearlit ic or ma rtensit ic.

SPHEROIDIZING--Any process of heating and cooling steel that produces a rounded or globular form of

carbide. The spheroidizing methods genera lly used a re: (a ) P rolonged heat ing at a tempera tur e justbelow the lower critical temperature, usually followed by relatively slow cooling. (b) In the case ofsmall objects of high carbon steels, the spheroidizing result is achieved more rapidly by prolongedheat ing to temperat ures alt ernat ely within an d slightly below the crit ical temperatur e ra nge. (c) Toolsteel is generally spheroidized by heating to a temperature of 749o-804oC (1380o-1480oF) for carbonsteels and higher for many alloy tool steels, holding at heat from 1 to 4 hours, and cooling slowly inthe furna ce.

STRAIN--The elongation per unit length.

STRESS--The internal load per unit area.

STRESS-RELIEF--This is annealing process which removes or reduces residual stresses retained afterforming, heat treat ing, welding or ma chining. The an neal is a ccomplished a t ra ther low temperatur esfor the primary purposes of reducing residual stresses, without material affecting other properties.

T

TEMPERING (ALSO TERMED DRAWING)--Reheating hardened steel to some temperature below thelower critica l temperat ure, followed by a ny desired rat e of cooling. Alth ough the terms ‘‘tempering’’a nd ‘‘drawing’’ are practically synonymous as used in commercial practice, the term ‘‘tempering ’’ ispreferred.

TENS ILE STRE NG TH--The tensile strength is the ma ximum load per unit a rea w hich a m at erial iscapable of withst an ding before failure. It is computed from th e maximum load carried during atension test and the original cross-sectional area of the specimen.

TENSION--That force tending to increase the dimension of a body in the direction of the force.

THERMOCOUPLE--Thermocouple consists of a pair of wires of dissimilar metals connected at both ends.

When the two junctions are subjected to different temperatures an electric potential is set upbetw een them. This volta ge is a lmost in direct proportion to the temperat ure difference, a nd hence, avolta ge measuring instrum ent inserted in th e circuit will measure t empera ture. The volta ge measur-ing instrument is usually calibrated in oC or oF.

TOLERANCES--Slight deviations in dimensions or weight or both, allowable in the various products.

V

VISC OSI TY--Viscosity is the resista nce offered by a f luid to relat ive motion of its part s.

Glossary 9

Page 288: Aerospace Metals

7/16/2019 Aerospace Metals

http://slidepdf.com/reader/full/aerospace-metals 288/288

T.O. 1-1A-9

GLOSSARY Continued


Recommended