+ All Categories
Home > Documents > Afeasibilitystudyofon-linedrillwearmonitoringbyDDSmethodology

Afeasibilitystudyofon-linedrillwearmonitoringbyDDSmethodology

Date post: 06-Apr-2018
Category:
Upload: michaeldinh6
View: 216 times
Download: 0 times
Share this document with a friend

of 13

Transcript
  • 8/3/2019 Afeasibilitystudyofon-linedrillwearmonitoringbyDDSmethodology

    1/13

    Int. J. M ach. To ol De s. Re s. V ol . 26. No. 3. pp. 245-2 57. 1986. 11112(I-7357/86$3.0ll+.l}l)Printed in Gre at Britain Pcrgamon Journals Ltd.

    A F E A S I B I L I T Y S T U D Y O F O N - L I N E D R I L L W E A RM O N I T O R I N G B Y D D S M E T H O D O L O G Y

    P U L A K B A N DY O PA D H YA Y ,* E V E RS M O L I N A G O N Z A L E Z , * R E N H U A N G t a n d S . M . W u *(Received 4 June 1985)

    A h s t r a c t - - A n e w a p p r o a c h t o a c h i e v e o n - l i n e dr i ll l if e m o n i t o r i n g is i n t r o d u c e d u s i n g t h e D y n a m i c D a t aS y s t e m ( D D S ) m e t h o d o l o g y . C h a n g e s i n th e t h r u s t a n d t o r q u e o f t h e d r il l in g p r o c e s s w e r e i n v e s t i g a t e d . As t a t ic a n a l y s i s p r o v i d e d p o o r c o r r e l a t i o n a n d l o w s e n s i ti v i ty b e t w e e n a v e r a g e t h r u s t / t o r q u e a n d d r i ll f la n k w e a r .T h e d y n a m i c p a r a m e t e r s ( n a t u r a l f r e q u e n c i e s a n d d a m p i n g r a t io s ) o f t h e d r il l in g p r o c e s s w e r e s t r o n g l y re l a t e dw i t h th e a v e r a g e d r il l f la n k w e ar . H e n c e , a n e w p a r a m e t e r " N o r m a l i z e d D a m p i n g R a t i o " ( N D R ) w a s f o r m e df r o m t h e D D S a n a l y s is u s i n g t h e d y n a m i c p a r t o f t h e s i g n a l w h i c h c o r r e l a t e s w i t h d r i ll w e a r . T h e p o s s i b il i ty o fd e v e l o p i n g a n o n - l i n e d r i l l f l a n k w e a r m o n i t o r i n g s c h e m e u s i n g t h e N D R i n d e x i s p o i n t e d o u t .

    1 . I N T R O D U C T I O NFR OM THE t i m e w h e n F . W . T a y l o r [1 ] fi rs t d e v e l o p e d t h e t o o l l i f e e q u a t i o n , s e v e r a la t t e m p t s w e r e m a d e t o i m p r o v e t h e T a y l o r 's e q u a t i o n b y in c o r p o r a ti n g t h e e f f e c ts o fd i f f e r e n t m a c h i n i n g v a r i a b l e s [ 2-- 4] a s w e l l a s s t o c h a s t ic n a t u r e o f t h e p r o b l e m [ 5 - 7 ].W i t h t h e i n t r o d u c t i o n o f a d a p t i v e c o n t r o l i n m a c h i n i n g , t h e c o n c e p t o f " o n - l i n et o o l - l i f e m o n i t o r i n g " c a m e i n t o l i g h t w h e r e t h e c u t t i n g t o o l - l i f e i s m o n i t o r e d a n de s t i m a t e d d u r i n g c u t t i n g u s i n g a p p r o p r i a t e t r a n s d u c e r s a n d s i g n a l a n a l y s i s d e v i c e s .B a s i c a l l y , t w o t y p e s o f o n - l i n e t o o l - l i f e m o n i t o r i n g s c h e m e s p r e v a i l :1. D i r ec t M e t h o d - - w h e r e t h e c o n d i t i o n o f t h e t o o l i s m o n i t o r e d i n t e r m s o f i ts p h y s i c a l

    p a r a m e t e r s l i k e t o o l w e a r [ 8 , 9 ] .2 . I n d ir e c t M e t h o d - - w h e r e o t h e r p a r a m e t e r s s u c h a s t h r u s t , t o r q u e o r v i b r a t i o n i sm e a s u r e d o n - l in e a n d c o r r e l a t e d t o t h e p h y s i c a l c o n d i t i o n o f t h e t o o l [1 0 - 1 2 ] .

    M o s t o f t h e s e m e t h o d s c a n s u c c e s s fu l ly d e t e c t a n d p r e d i c t s u d d e n f a il u re o f t h e c u t ti n gt o o l. H o w e v e r , t h e p r o b l e m t o m o n i t o r a n d f o r e c a s t th e t o o l l if e s ti ll re m a i n s , b e c a u s e o ft h e l a ck o f p r o p e r c o r r e l a t io n b e t w e e n t h e m e a s u r e d p a r a m e t e r a n d g r a d u a l to o l w e a r , a sw e l l a s u n a v a i l a b i l it y o f s i g n a l a n a ly s i s p r o c e d u r e s u i t a b l e f o r o n - l i n e u s e .W i t h t h e i n t r o d u c t io n o f t h e D y n a m i c D a t a S y s t e m ( D D S ) m e t h o d o l o g y , i t is p o s s i b let o i d e n ti fy t h e d y n a m i c s o f a c o n t i n u o u s s y s t e m b y d e v e l o p i n g a m a t h e m a t i c a l m o d e l i nt h e f o r m o f a l i n e a r d if f e r e n t ia l e q u a t i o n ( A p p e n d i x A ) .U n d e r p r a c t i c a l c i rc u m s t a n c e s , i t is m o r e c o n v e n i e n t t o r e c o r d a n d a n a l y s e t h e d i s c r e t ed a t a o b t a i n e d f r o m t h e s y s t e m . T h e d y n a m i c s o f a c o n t i n u o u s s y s t e m , s a m p l e d a tu n i f o r m s a m p l i n g i n t e r v a l, A , c a n b e r e p r e s e n t e d b y a s t o c h a s t i c d i f f e r e n c e e q u a t i o n i nt h e f o r m o f a t i m e s e r i e s [ 1 4 ] . T h e s e m o d e l s a r e k n o w n a s A u t o r e g r e s s i v e M o v i n gA v e r a g e ( A R M A ) m o d e l s o f o r d e r (n , m ) .O n c e t h e a d e q u a t e o r d e r o f th e A R M A m o d e l is f o u n d f ro m t h e d a t a , t h e d y n a m i cc h a r a c t e r i s ti c s o f t h e s y s t e m n a m e l y n a t u r a l f r e q u e n c i e s a n d d a m p i n g r a t i o s c a n a l s o b ei d en t if ie d . T h e A R M A m o d e l c a n p r o v id e f u r t h e r in f o r m a t io n s u c h a s d i s p e rs i o n o rp o w e r a t e a c h m o d e o f v i b r a ti o n , a n d f r e q u e n c y r e s p o n s e o f t h e s y s t e m in t e r m s o fa u t o - s p e c t r u m .T h e D D S m e t h o d o l o g y h a s b e e n a p p l i e d t o i d e n ti fy t h e d y n a m i c s o f m a c h i n i n gp r o c e s s e s o n - l i n e . A l s o t h i s t e c h n i q u e w a s u s e d t o m o n i t o r a s i n g l e p o i n t c u t t i n g t o o lw e a r [ 13 ] as w e l l a s d ri ll c o n d i t i o n m o n i t o r i n g b a s e d o n h o l e q u a l i t y [ 17 ]. I n b o t h c a s e s ,* U n i v e r s i t y o f W i s c o n s i n - - M a d i s o n , M a d i s o n , W i s c o n s i n 5 3 7 0 6 , U . S . A .t V i s i ti n g s c h o la r a t U W - - M a d i s o n f r o m N a n j i n g I n s t. o f T e c h n o l . , P e o p l e s R e p u b l i c o f C h i n a .

    24 5

  • 8/3/2019 Afeasibilitystudyofon-linedrillwearmonitoringbyDDSmethodology

    2/13

    246 P. BANDYOPADHYAYe t a l .

    the dynamics of the machining process was evaluated and successfully correlated to thephysical parameters of the system.In the present work, an analysis is carried out to correla te the flank wear of drills withthe dynamics of the drilling process using DDS methodology. The objectives of thepresent work is two-fold:1. To develop a simple and reliable criterion for drill life which can be measured and

    monitored on-line.2. Also to investigate how the developed criterion change for different cuttingconditions, i.e. for different drill diameters and cutting speeds.

    2. E X P E R I M E N T A T I O N

    2.1. Experimental planFor the purposes of experimenta tion, the following criteria and operating conditions

    are selected:(a) Tool l i fe cri terion--The average flank wear (Fig. 1) is used as the criterion to

    characterize the drill condition.

    A v e . f l a n k w e a r = - -B+C+D4

    FIG. 1.

    (b) Choice o f performance indice s--The static and dynamic components of boththrust and torque are used as indirect parameters to be correlated with averageflank wear of the drill.(c) Cutt ing condit ions--Three different sets of experiments were run to study theeffects of change in drill diameter and drilling speeds separately. The cuttingconditions are indicated in Table 1.

    TABLE 1. CUT I~ING CONDITIONS

    C a s e D r il l R P M F e e d r a t e D e p t h o fd i a m e t e r ( I P R ) h o l eI 3/8" 825 0.00 9 14'"II 3/8" 665 0.00 9 14'"I I I 1 /4" 825 0 .009 ~"

  • 8/3/2019 Afeasibilitystudyofon-linedrillwearmonitoringbyDDSmethodology

    3/13

    A Feasibility Study of On-line Drill Wear 247( d ) M ater ia l and geom et ry - -T he c h o i c e o f w o r k p i e c e - t o o l m a t e r i a l c o m b i n a t i o n is

    k e p t f i x e d i n a l l t h r e e c a s e s .T o o l m a t e r ia l - H S S ( H a r d n e s s 5 8 ~ 6 0 R C )T o o l g e o m e t r y - 1 18 p o i n t a n g l e , s t d . t w i s t d r i ll .W o r k p i e c e m a t e r ia l - G r a y C a st i r o n , 1 8 0 ~ 2 2 0 B H N .

    2 . 2 . Experimental procedureI n a l l t h e t h r e e c a s e s , e x t e n s i v e t o o l l if e t e s ts w e r e c a r r i e d o u t i n a s i n g le s p i n d l e

    d r il li n g m a c h i n e . T h e p r o g r e s s i v e w e a r w a s m e a s u r e d o f f - li n e a f t e r a c e r t a i n n u m b e r o fh o l e s w e r e d r i l l e d u s i n g a d r i l l p a r a m e t e r m e a s u r i n g m i c r o s c o p e . T h e t h r u s t a n d t o r q u es ig n al s c o m i n g f r o m a " K I S T L E R 9 2 7 1 A " t w o c h a n n e l d y n a m o m e t e r ( F ig . 2 ) w e r er e c o r d e d f o r t h e n e x t h o l e . T h e e n d o f d ri ll l if e is c h a r a c t e r i z e d b y t h e r a p i d g r o w t h i nf l a n k w e a r d u r i n g d r i l l i n g .

    C "

    k .Fir. 2.

    I

    T h e r e c o r d e d s i g n al s a r e d i g it iz e d f o r o ff - li n e a n a ly s is . D D S m o d e l i n g t e c h n i q u e isu s e d t o a n a l y z e t h e d y n a m i c s o f th r u s t / t o r q u e s ig n a ls f o r e a c h c a s e a n d f o r e v e r y s t a g e o fw e a r , s o th a t a s u i ta b l e c o r r e l a t i o n b e t w e e n a v e r a g e f la n k w e a r a n d t h e d y n a m i c s o f t h es i g n a l c a n b e o b t a i n e d .2 . 3 . G row th o f dr il l fl ank w ear

    T h e a v e r a g e f la n k w e a r i s c o m p u t e d b y m e a s u r i n g t h e w e a r a t e a c h s e c ti o n A , B , C

  • 8/3/2019 Afeasibilitystudyofon-linedrillwearmonitoringbyDDSmethodology

    4/13

    248 P. BANDYOPADHYAY t at.a n d D ( F ig . 1 ) a n d t h e n t a k i n g t h e ir a r i th m e t i c a v e r a g e . T h e g r o w t h o f th e a v e r a g e f l a n kw e a r f o r a l l t h e c a s e s i s g i v e n i n F i g . 3 .F r o m t h is f ig u r e , it c a n b e s e e n f o r s a m e d i a m e t e r i n c a se s 1 a n d I I , t h e w e a r g r o w t hr a t e is f a s t e r f o r h i g h e r s p e e d . O n t h e o t h e r h a n d , f o r th e s a m e s p e e d i n c a se s I a n dI I I , t h e w e a r g r o w t h r a t e i s f a s t e r f o r s m a l l e r d i a m e t e r . A l s o , t h e c r i ti c a l w e a r v a l u e i sb i g g e r f o r la r g e r d i a m e t e r , b u t d o e s n o t c h a n g e m u c h f o r s a m e d i a m e t e r a n d d i f f e r e n ts p e e d s .

    '~1- ! /[ . o . / ___ /__ /EE o.15~ O.lO3g / ~ - I 3 / 8 " ~ , 665rpm

    0 . 0 { 5 [ / / / " - I 3 / 8 " ~ , 8 2 5 rp m- I o - I I / 4 " ( ~ , 8 2 5 r p mo I Y /Y t I I I l0 ~00 300 500T L 3 T L n T L 2

    N u m b e r o f h o le s

    FIG. 3.

    2 . 4 . Analys i s o f s ta tic components o f thrus t and torqueT o f in d th e c o r r e l a t i o n b e t w e e n a v e r a g e f l an k w e a r a n d s ta ti c c o m p o n e n t o f t h ru s t /t o r q u e s i g n a l , t h e a v e r a g e v a l u e s o f t h r u s t a n d t o r q u e f o r a ll t h e t h r e e c a s e s u n d e rv a r i o u s l e v e l s o f w e a r w e r e c a l c u l a t e d a n d a r e s h o w n i n F i g s 4 ( a ) a n d ( b ) .(1 ) Average thrus t - - f rom F i g . 4 ( a ) , i t c a n b e s e e n f o r a l l t h e t h r e e c a s e s , t h e a v e r a g e

    c o m p o n e n t d o e s n o t c h a n g e s ig n i fi ca n tl y w i t h w e a r . F o r e x a m p l e , i n C a s e I , t h ei n c r e a s e i n a v e r a g e t h r u s t w i t h w e a r i s o n l y a b o u t 7 % , w h i c h i s v e r y s m a l l .M o r e o v e r , t h e a v e r a g e v a l u e i s n o t n e c e s s ar i ly m o n o t o n i c a l l y i n cr e a s in g w i t h f l a n kw e a r , s h o w i n g t h e c o r r e l a t i o n i s n o t v e r y r e li a b l e .

    (2 ) Average torque-- from F i g . 4 ( b ) , t h e s a m e t r e n d c a n b e o b s e r v e d f o r a v e r a g e t o r q u ei n a l l t h r e e c a s e s , w h i c h d i s p l a y e d s m a l l i n c r e a s e ( 5 - 1 0 % ) a n d p o o r r e l a t i o n w i t ha v e r a g e f l a n k w e a r o f t h e d r i ll .

    I t m a y b e m e n t i o n e d t h a t s i m i l a r i n c o n s i s t e n t r e l a t i o n s h i p s w e r e o b t a i n e d b e f o r eb e t w e e n a v e r a g e t h r u s t / t o r q u e w i th d r il l f la n k w e a r [ 15 ]. I t w a s f o u n d t h a t t h e a v e r a g et h r u s t / t o r q u e v a r i e s d i r ec t l y w i t h th e h a r d n e s s o f t h e w o r k p i e c e m a t e r i a l, a n d c a n n o t b eu s e d a s a s u cc e ss f u l p a r a m e t e r t o p r e d i c t a v e r a g e t o o l f la n k w e a r . S i n c e , t h e w o r k p i e c em a t e r i a l h a r d n e s s v a r i e d f r o m 1 80 t o 2 2 0 B h n i n th e a b o v e e x p e r i m e n t s , t h e r e s u l t sr e f le c te d th e s a m e p h e n o m e n a .

    3 . ANALYSIS OF DRILLING DYNAMICSS i n c e t h e a v e r a g e t h r u s t / t o r q u e c o m p o n e n t d i d n o t s h o w g o o d c o r r e l a t i o n w i t h d r i l l

    w e a r , D D S a n a ly s is w a s c a r r i e d o u t t o i n v e st ig a t e t h e c h a n g e s i n d y n a m i c c o m p o n e n t s o ft h e s e s i g n a ls w i t h w e a r . B e f o r e t h e a n a l y s is o f t h e s i g n a ls , t h e d y n a m i c s o f t h e m a c h i n et o o l s t r u c t u r e a n d t h e d y n a m o m e t e r w e r e f ir st i d e n ti f ie d i n te r m s o f t h e ir n a t u r a lf r e q u e n c i e s . F o r t h i s p u r p o s e , i m p a c t t e s t s w e r e c a r r i e d o u t u s i n g a m o d a l l y - t u n e di m p a c t h a m m e r . F i g u r e s 5 ( a ) an d ( b ) s h o w t h e f r e q u e n c y r e s p o n s e o f t h e d y n a m o m e t e r

  • 8/3/2019 Afeasibilitystudyofon-linedrillwearmonitoringbyDDSmethodology

    5/13

    A F e a s i b i l i t y S t u d y o f O n - l i n e D r i l l Wear 249

    ( a )

    .Qv2

    ot .>

    1 2 0 0

    I 0 0 0

    C O O

    60 0

    4 00

    ~ - 3 / 8 " ~ , 6 6 5 r p m - 3 / 8 " ~ , 8 2 5 r p mo - I / 4 " ~ , 8 2 5 r t 0 m

    /

    o o o o ~ o , ~ ' a

    I I I0.05 0.10 0 .I 5A v e r a g e f l a n k w e a r (m m )

    ( b )

    UC

    =-o"o4a

    o

    2 0 0

    1 5 0

    I 0 0

    50

    - 3 / 8 " ~ , 6 6 5 r p m - 3 / 8 " ~ , 8 2 5 r p mo - I / 4 " ~ , 8 2 5 r p m

    /

    o jt I io.o ~ o.i o O.i 5

    A v e r a g e f l a n k w e a r ( m m )

    Fic. 4,

    in ax ia l and t or s iona l d i r e c t ions . The se nat ur a l f r e que nc ie s c or r e spond t o 350 and 600H z r e s p e c t i v e l y .

    The nat ur a l f r e que nc y o f t he dr i l l he ad in t he ax ia l d i r e c t ion w as ide nt i f i e d us ing ap i e z o - e l e c t r i c a c c e l e r o m e t e r . F i g u r e 5 ( c ) s h o w s t h e a u t o s p e c t r u m o f t h e d r i l l h e a d ,s h o w i n g i t s n a t u r a l f r e q u e n c y c o r r e s p o n d s t o n e a r l y 7 5 H z .3.1. P rel iminar y tests fo r dril ling d ynam ics

    T o a n a l y z e t h e d y n a m i c c o m p o n e n t o f t h e t h r u s t / t o r q u e s i g n a l s , t h e p r e r e c o r d e ds i g n a ls w e r e p l a y e d b a c k t o i d e n t i fy t h e d o m i n a n t m o d e s o f v i b r a ti o n u s i n g t h e s p e c t r u ma n a l y z e r a n d i d e n t i f y i n g t h e p e a k f r e q u e n c i e s . I n a l l t h e c a s e s , t h e m o s t d o m i n a n tf r e q u e n c i e s w e r e f o u n d a s f o l l o w s :

    (a ) For thrust dynamics: T h e d o m i n a n t p e a k f r e q u e n c i e s a p p e a r a t d r i l l r o t a t i o n a lf r e que nc y m od e ( i . e . dr i ll r e v . pe r se c on d = 12 H z ) , ax ia l v ibr at ion o f t he he adand i t s f i r s t har monic s ( 75 H z and 150 H z ) and ax ia l nat ur a l f r e que nc y o f t hed y n a m o m e t e r ( 5 8 0 H z ) .(b ) For torque dynamics: T h e d o m i n a n t p e a k f r e q u e n c i e s o c c u r a t t h e r o t a t i o n a lf r e q u e n c y ( 1 2 H z ) , t w i c e t h e r o t a t i o n a l f r e q u e n c y ( = 2 5 H z ) , a n d t o r s i o n a lv i b r a t i o n f r e q u e n c i e s o f t h e d y n a m o m e t e r ( 3 2 0 H z ) a n d p r o b a b l y t h e d r i l l h e a d( 1 2 0 H z ) .

    MTDR 26:3-3

  • 8/3/2019 Afeasibilitystudyofon-linedrillwearmonitoringbyDDSmethodology

    6/13

    25 0 P. BANDYOPADHYAYet al.

    "o

    tOfl_

    "otOn

    .Qa0-

    - 5 . 0

    - I 0 . 0

    - 1 5 . 0

    - 5 . 0

    - I 0 . 0

    - 1 5 . 0

    - 1 5

    - 2 0

    - 2 5

    - 3 0

    - 3 5 0

    - ( a )

    I I I250 ~ 750

    H z

    ( b )

    I I I250 500 7'50H z

    ( c }

    r!tt head

    l I I5 0 I O O 1 5 0H z

    F i e . 5 .

    From the prel iminary tests for various levels of dri l l f lank wear, i t was found that thedynam i c s c or r e spondi ng to the dr i l l r o tat i onal f r e que nc y and twi c e the r otat i onalfr e que nc y m ode s ar e qu i te s e ns it i ve to dr il l f lank we ar , be c a use the p e ak pat te r ns c hangeat the se f r e que nc i e s wi th we ar .3 . 2 . D D S a n a l y s i s

    Si nc e the dynam i c s o f the thr us t and tor que s i gnal s c or r e spondi ng to the dr i l lr otat i onal f r e que nc y m ode and twi c e the r otat i onal f r e que nc y m ode ar e o f i n te r e s t tom oni tor the ave r age dr i l l f l ank we ar , a l l the s i gnal s we r e passe d thr ough an anal ogband-pass f i lt e r to ge t r id o f the o the r dynam i c m o de s . Th e se t t i ng o f the l ow e r and uppe rlimits of the band-pass fi l ter were 10 and 30 Hz in cases I and III, and 8 and 25 Hz forCase II . The f i l tered s ignals were digi t ized us ing a sampl ing interval of A = 0.01 s , andc o r r e sp o n d i n g N y q u i s t f r e q u e n c y o f 5 0 H z .

  • 8/3/2019 Afeasibilitystudyofon-linedrillwearmonitoringbyDDSmethodology

    7/13

    A Feasib i l i ty Study of On- l ine Dri l l We ar 251D D S m o d e l i n g te c h n i q u e w a s u s e d t o e s t i m a t e th e d y n a m i c p a r a m e t e r s , f r o m 1 02 4

    d a t a p o i n t s f o r e a c h s e t o f th e f i l t e r e d s ig n a l .3 . 2 . 1 . No r m al i z ed dam p i ng r a tio ( ND R) - - a new par am e t er f o r ana ly si s. S i n c e t h e

    d y n a m i c s o f b o t h t h r u s t a n d t o r q u e s i g n a ls a r e e v a l u a t e d f o r e a c h l e v e l o f w e a r , a n e wp a r a m e t e r d e s i g n a t e d a s N o r m a l i z e d d a m p i n g r a t i o w a s f o r m e d t o q u a n t i f y t h e r e l a t i v ec h a n g e i n d r i l l i n g d y n a m i c s w i t h w e a r a t e a c h m o d e o f v i b r a t i o n . M a t h e m a t i c a l l y , N D Ri s d e f i n e d a s f o l l o w s :

    N D R i j = (~j/~o) ( l )w h e r e ,~ij = d a m p i n g r a t i o a t i th v i b r a t i o n m o d e a n d j t h l e v e l o f d r i l l w e a r~io = d a m p i n g r a t i o a t i th v i b r a t i o n m o d e a n d n o d r i l l w e a r .3 . 3 . Dyn am ics o f thrus t s ignal

    A R M A m o d e l s w e r e f i t te d t o th e s e d y n a m i c t h ru s t d a t a fo r th r e e d i f fe r e n t ca s e s a n ds e v e r a l le v e l s o f w e a r . I n a l l t h e c a s e s , t h e a d e q u a t e m o d e l w a s f o u n d t o b e A R M A ( 4 ,3 ) . T h e n a t u r a l f r e q u e n c i e s , a b s o l u t e d a m p i n g r a t i o s , N D R a n d d i s p e r s i o n v a l u e s fo r th et h r e e c a s e s a r e s h o w n i n T a b l e 2 .

    TABLE 2. DYNA MIC CHARACTERISTICS OF THRUST SIGNAL FROM A R M A ( 4, 3 ) MODEL1st Mo de 2nd Mo de

    Case . no . Average Freq . Dam p- ND Rl j D i sper - Freq . D amp- NDR2j Di sper -f lank (Hz) ing rat io s ion (Hz) ing rat io s ionw e a r ~ ( % ) ~ ( % )( r am)Case 1 0 13 .2 0 .0 36 2 1 .00 85 26.9 0 .1 18 1 1 .00 150.070 1 3. 0 0 .0 28 9 0 .80 83 26.8 0 .1 96 5 1 .66 17d=3/8"~b 0.127 1 3. 0 0 .0 33 8 0 .93 84 27.0 0 .1206 1 .02 15speed = 0 .133 13 .2 0 .0 47 6 1 .31 83 26.8 0 .1108 0 .94 17825 rpm 0 .155 12 .5 0 .2 48 7 6 .87 86 23.8 0 .6 41 0 5 .42 140.174 1 4. 2 0 .2 83 3 7 .82 87 26.8 0 .0 241 0 .20 13Case I I 0 10 .7 0 .05 61 1 .00 81 20.6 0 .1326 1 .00 100.059 1 0. 6 0 .0 64 9 1 .16 78 20.4 0 .1 41 7 1 .07 22d=3/8"~b 0 .088 10 .5 0 .0 67 2 1 .20 83 21 .1 0 .1 42 1 1 .07 17speed = 0 .123 10 .4 0 .0 73 6 1 .31 80 21.6 0 .1628 1 .23 20665 rpm 0.140 1 0 .6 0. 08 47 1.51 81 21.7 0.2372 1.79 190.179 1 0. 0 0 .1 76 7 3 .15 85 19 .1 0 .2204 1 .66 15Case I l l 0 12 .9 0 .043 1 1 .00 82 26 .2 0 .112 1 1 .00 180.076 1 2. 8 0 .0 78 3 1 .82 83 25.7 0 .1 32 2 1 .18 17d=l/4"d~ 0 .089 11 .8 0 .22 50 5 .22 84 24 .5 0 .18 31 1 .63 16spee d = 0 .110 12 .4 0 .2 26 9 5 .26 82 25.8 0 .1 18 2 1 .05 18825 rpm 0 .120 11 .3 0 .2 53 4 5 .88 85 24.6 0 .2 481 2 .21 150 .140 13 .5 0 .41 79 9 .70 87 27 .1 0 .16 31 1 .45 13

    T h e f o l l o w i n g o b s e r v a t i o n s c a n b e m a d e f r o m t h e a n a l y s is s h ow n i n T a b l e 2 :( 1 ) I n al l t h e c a s e s , t h e A R M A ( 4 , 3 ) m o d e l s r e f l e c t t w o m o d e s o f v i b r a t i o n c o r -

    r e s p o n d i n g t o t h e d r i l l r o t a t i o n a l f r e q u e n c y a n d t w i c e t h e r o t a t i o n a l f r e q u e n c y .( 2) T h e v i b r a t i o n a t t h e r o ta t i o n a l f r e q u e n c y m o d e i s m o r e d o m i n a n t b e c a u s e i t

    c o n t r i b u t e s t o n e a r l y 8 0 - 8 5 % o f t h e t o t a l p o w e r o f th e f i l t e r e d t h r u s t d y n a m i c s .( 3) A l s o , th e ' N D R ' v a l u e s c o r r e s p o n d i n g t o t h e r o t a t io n a l f r e q u e n c y m o d e i n c r e a s e s

    w i t h i n c r e a s e i n d r il l f l a n k w e a r f o r a ll t h e t h r e e c a s e s . F i g u r e 6 ( a ) s h o w s h o w" N D R " a t t h is f ir st m o d e c h a n g e s w i t h i n c r e a s e i n d r i l l w e a r . I t c a n b e s e e n t h a ta t t h e e n d o f t o o l l if e , t h e N D R v a l u e c h a n g e s a b o u t 8 t i m e s f o r C a s e I , w h e r e a s

  • 8/3/2019 Afeasibilitystudyofon-linedrillwearmonitoringbyDDSmethodology

    8/13

    25 2

    E3COn

    IO0

    - I O

    - 2 0

    - 3 0

    - 4 0

    I 0

    ( 3Z 8v.o

    6

    Eo 4

    2

    Z 0

    C A S E IS p e e d - 8 2 5 r pmD i a m e t e r - 3 / 8 " ~

    0 - , , 4 " , , 8 2 5m j / o / /

    l I I0 .0 5 o . lo o .15A v e r a g e f L a n k w e a r ( r a m )

    FIG. 6. (a) .C A S E T rS p e e d - 6 6 5 r pmD i a m e t e r - 3 / 8 " ~

    FW = O.070m m F W = O . 0 5 9 m m

    IO

    O- I 0

    - 2 0- 3 0

    - 4 0

    F W = O . 1 2 7 m m

    p

    I I I

    F W = O . 1 2 3 m m

    I i I

    I O

    0

    - I O

    - 2 0- 3 0

    - 4 0

    I 00

    - f O

    - 2 0

    - 3 0- 4 0

    F W = O . 1 3 3 m m

    I I I

    F W = O . 1 7 4 m m

    fO 2 0 3 0

    F W = 0 1 4 0 m m

    I I

    F W = O . 1 7 9 m m

    if O 2 1 0F r e q u e n c y ( H z )

    F i G . 6 . ( b ) .

    C A S E T r rS p e e d - 8 2 5 r p mD i a m e t e r - I / 4 " ~

    F W = O . 0 7 6 m m

    FW = 0.089 mm

    F W = O . I l O m m

    F W = 0 . 1 4 0 m m

    I I II O 2 0 3 0

  • 8/3/2019 Afeasibilitystudyofon-linedrillwearmonitoringbyDDSmethodology

    9/13

    A Feasibility Study of On-line Dr ill Wear 253

    (4 )

    it c h a n g e s a b o u t 3 a n d 1 0 t i m e s f o r C a s e s I I a n d I I I r e s p e c t i v e l y . T h i s s h o w s t h a tt h e p a r a m e t e r NDR for thrust i s r e a s o n a b l y s e n s i t i v e t o d r i ll w e a r . A l s o , t h es e n s i t i v i t y i n c r e a s e s a t h i g h e r s p e e d s ( f r o m C a s e s I & I I I ) .T h e A R M A s p e c t r u m p l o ts fo r th e t h r e e c a s e s a r e s h o w n i n F ig u r e 6 ( b ). I t c a n b es e e n f r o m t h e s e p l o t s t h a t t h e p e a k a t t h e r o t a t i o n a l f r e q u e n c y m o d e ( i .e . 1 3 H z f o rC a s e s I a n d I I I , a n d 1 0 . 6 3 H z f o r c a s e I I ) g r a d u a l l y d a m p e d o u t w i t h i n c r e a s e i n dr il lf l a n k w e a r .

    3 . 4 . Dynam ics of torque signalA R M A m o d e l s w e r e a l s o f it te d f o r t h e d y n a m i c t o r q u e s ig n al s a n d A R M A ( 4, 3)

    m o d e l w a s a l so f o u n d a d e q u a t e i n a ll t h r e e c a s e s. T h e n a t u r a l f r e q u e n c ie s , d a m p i n gr a t i o s, N D R a n d d i s p e r s i o n v a l u e s a r e i n d i c a t e d in T a b l e 3 .

    TABLE 3. DYNAMIC CHARACTERISTICS OF TORQUE SIGNAL FROM A R M A ( 4, 3 ) MODEL

    1st Mode 2nd ModeCase no . Average Freq . Damp- N D R 1 j Disper- Freq . Damp- ND R 2) Disper-flank (Hz) ing ratio sion (Hz) ing ratio sionwear ~ (%) ~ (%)(ram)Case 1 0 13 .2 0 .01 86 1 .00 81 26 .8 0 .00 09 1 .00 190 .070 1 3 .3 0 .01 54 0 .83 79 26 .8 0 .00 19 2.11 21d=3/8" (b 0 .127 1 3. 2 0 .0 18 2 0 .98 83 26 .8 0 .00 21 2 .33 17speed = 0 .133 13 .3 0 .0141 0 .76 85 26 .7 0 .00 27 3 .00 15825 rpm 0.155 13 .4 0 .1 47 9 7 .95 84 26.9 0 .0 15 5 17.22 160 .1 74 1 2 . 6 0 . 1 3 3 3 7 .1 6 8 6 2 3 . 5 0 . 1 2 8 3 1 4 2 . 55 14

    Case II 0 10 .6 0 .0 07 6 1 .00 85 21.6 0 .0 01 3 1 .00 150.059 10 .8 0 .0 09 4 1 .24 82 21.4 0 .0 02 8 2 .15 18d= 3/8" + 0 .088 10 .5 0 .0 07 2 0 .95 80 21.7 0 .0 04 8 3 .69 20speed = 0 .123 10 . 7 0 .00 64 0 .84 83 21 .3 0 .00 84 6 .46 17665 rpm 0.140 1 0. 8 0 .0 35 9 4 .72 84 21.6 0 .0 14 5 11.15 160 .1 79 1 0 . 8 0 . 0 0 8 3 1 .0 9 8 7 2 2 . 3 0 . 1 9 2 8 1 4 8 . 3 0 13Case l I I 0 13 .8 0 .01 67 1 .00 79 26 .8 0 .00 07 1 .00 210.076 1 3. 3 0 .0 26 8 1 .61 81 26.6 0 .0 00 8 1.17 19d - 1 /4" (b 0 .089 13 .3 0 .0 10 7 0 .64 83 26 .7 0 .0 02 3 3 .28 17speed = 0 .110 13 .4 0 .0 29 4 1 .76 86 26.8 0 .0 02 5 3 .57 14825 rpm 0 .120 13 .5 0 .01 98 1 .18 88 26 .7 0 .00 35 5.00 120 .140 13 .5 0 .01 52 0 .91 89 28 .4 0 . 1 0 7 3 153 .28 11

    T h e f o l lo w i n g o b s e r v a t i o n s w e r e m a d e f r o m T a b l e 3 :( 1) L i k e t h ru s t , t h e t o r q u e d y n a m i c s al so s h o w e d t w o m o d e s o f v i b r a t io n a t t h e

    r o t a t i o n a l f r e q u e n c y a n d t w i ce t h e r o t a ti o n a l f r e q u e n c y m o d e . T h e v i b r a t io n a t t h er o t a t i o n a l f r e q u e n c y m o d e c o n t r i b u t e s 8 0 -- 8 5% , a n d t w i c e t h e r o t a ti o n a l f r e q u e n c ym o d e c o n t r i b u te s 1 5 - 2 0 % o f t h e t o ta l p o w e r o f t h e f il te r e d t o r q u e d y n a m i c s .

    ( 2 ) U n l i k e t h r u s t , th e " N D R " v a l u e s a t t h e d r il l r o t a t i o n a l f r e q u e n c y m o d e d o n o ts h o w a n y d e f i n i t e r e l a t i o n s h i p w i t h d ri ll f l a n k w e a r .

    ( 3) H o w e v e r , t he " N D R " v a l u e s a t t w i c e t h e r o t a t i o n a l f r e q u e n c y m o d e s h o w e d ad e f i n it e r e l a t i o n s h i p w i t h d ri ll f l a n k w e a r . T h e c h a n g e o f N D R v a l u e s w i t h w e a r a tt h is s e c o n d m o d e f o r a ll t h r e e c a s e s a r e p l o t t e d i n s e m i - l o g s c a le i n F ig . 7 ( a ) . I t c a nb e s e e n t h a t a t th e e n d o f d r il l l if e , t h e N D R v a l u e c h a n g e s a s m u c h a s 1 40 t o 1 5 0t i m e s i n d i f f e r e n t c a s e s , s h o w i n g t h i s p a r a m e t e r i s h i g h l y s e n s i t iv e t o d r il l f l a n kw e a r .

    ( 4 ) A l s o t h e A R M A s p e c t r u m p l o t s f o r a ll t h r e e c a s e s a r e s h o w n i n F i g . 7 ( b ) . T h e s ep l o t s a l s o s h o w t h a t a t t w i c e t h e r o t a t i o n a l f r e q u e n c y m o d e , t h e p e a k g r a d u a l l yg o e s d o w n w i t h dr il l w e a r s h o w i n g t h e i n c r e a se i n d a m p i n g .

  • 8/3/2019 Afeasibilitystudyofon-linedrillwearmonitoringbyDDSmethodology

    10/13

    2 543 0 0

    C IZ._o

    I 0 0c~ s oE

    I 0" 0NE

    Z

    C A S E IS p e e d - 8 2 5 r p mD i a m e t e r - 3 / 8 " ~

    F W = O . O T O m mtO0

    - I 0

    - 2 0

    - 3 0

    - 4 0

    ICO

    - I O- 2 0

    - 3 0

    - 4 0A.Q"0tl~ 10a .

    0

    - I 0

    -20

    -30

    -40

    rO

    0

    --I0

    -20

    -30

    -4(;

    I I I

    F W = O . 1 2 7 m m

    I I I

    F W = O . 1 3 3 m m

    I I I

    F W = O . 1 7 4 m m

    I O 2 0 3 0

    ~ - 3 / 8 ; :q ~ , 6 6 5 r p m - 3 / 8 ~ , 8 2 5 r p m o

    ,

    0 . 0 5 0 . 1 0A v e r a g e f l u n k w e u r ( m m )

    F v J , 7 . ( a ) .C A S E T rS p e e d - 6 6 5 r p mD i u m e t e r - 3 / 8 " ~

    F W = 0 . 0 5 9 m m

    l I l

    0 . 1 5

    C A S E T rTS p e e d - S 2 5 r p mD i a m e t e r - I / 4 " ~

    F W = 0 . 0 7 6 m m

    l I I

    F W - - O . 1 2 3 m m F W = O . 0 8 9 m m

    I I I

    F W = O . 1 4 O m m

    F W = O . 1 7 9 m m

    10 15 20F r e q u e n c y ( H z )

    FIG. 7.(b).

    F W = O . I l O m m

    l I 1

    F W = O . 1 4 O m m

    I, ~ 2 'o ~ o

  • 8/3/2019 Afeasibilitystudyofon-linedrillwearmonitoringbyDDSmethodology

    11/13

    A Fe a s i b i l i t y S t u d y o f O n - l i n e D r i l l W e a r 2 5 54. G E N E R A L O B S E R V A T I O N S A N D P H Y S IC A L I N T E R P R E T A T I O N

    4 . 1 . C o m m e n t s o n t h e D D S r es u lt sF r o m t h e a n a l y si s o f t h r u st a n d t o r q u e d y n a m i c s , t h e f o l lo w i n g g e n e ra l o b s e r v a t i o n sc a n b e m a d e :

    ( 1) T h e N o r m a l i z e d D a m p i n g R a t i o ( N D R ) v a l u e s a t t h e r o t a ti o n a l f r e q u e n c y m o d e o ft h e t h r u s t s i g n a l a n d a t tw i c e t h e r o t a ti o n a l f r e q u e n c y m o d e o f t h e t o r q u e s i g na ls h o w g o o d c o r r e l a t i o n w i t h w e a r . H o w e v e r , t h e N D R v a l u e s f o r t h e t o r q u ed y n a m i c s i s f a r m o r e s e n s i t i v e t o d r i l l w e a r a s i t c h a n g e s 1 4 0 - 1 5 0 t i m e s i nc o m p a r i s o n t o 3 - 1 0 ti m e s c h a n g e i n th r u s t d y n a m i c s . H e n c e , i t s e e m s j u s t i fi e d t ou s e t h e N D R v a l u e s o f t h e t o r q u e s ig n al a s a b e t t e r p e r f o r m a n c e i n d e x t os u c c e s s f u l ly m o n i t o r d r il l f la n k w e a r .( 2) T h e f r e q u e n c y a t w h i c h th e d a m p i n g r a ti o s ar e to b e m o n i t o r e d i s i n d e p e n d e n t o fd r il l d i a m e t e r , w o r k p i e c e a n d t o o l m a t e r i a l , a n d f e e d r a t e . I n f a c t, i t c a n b e d i r e c t l yc a l c u l a t e d f r o m t h e s p e e d o f t h e d r i l l i n g o p e r a t i o n . H e n c e , t h e r e s u l t s a r e f a i r l yg e n e r a l a n d c a n b e e a s i ly i m p l e m e n t e d f o r t h e p u r p o s e s o f o n - li n e d r i ll - w e a rm o n i t o r i n g .(3 ) A l s o f rom Fig . 7 ( a ) , i t can be seen tha t once the c r it i ca l w ear l imi t is r eac hed , t heN D R v a l u e s f o r t h e t o r q u e d y n a m i c s i n c r e a s e s e x p o n e n t i a l l y , r e f l e c t i n g t h e r a p i dw e a r g r o w t h o f th e d r i ll a t t h e e n d o f it s li fe . A s a r e s u l t , t h is N D R v a l u e c o u l db e u s e d a s a p h y s i c a l p a r a m e t e r t o p r e d i c t t h e e n d o f t h e d r i l l l i f e .( 4 ) F r o m T a b l e s 2 a n d 3 , t h e a b s o l u t e d a m p i n g r a t i o ( ~ i) v a l u e s at t h e r e l e v a n t m o d e s ,h a v e s i g n i f i c a n t d i f f e r e n c e s f o r t h e t h r e e d i f f e r e n t c a s e s u n d e r s e v e r a l l e v e l s o fw e a r . T h i s s h o w s th e e f f e c t s o f d if f e r e n t d ri ll s iz e s a n d s p e e d s o n t h e s e p e r f o r m a n c ei n d e x v a lu e s . H o w e v e r , b y n o r m a l iz i ng t h e d a m p i n g r a ti o s ( i. e . N D R v a l u e s ) , t h e s ee f f e c t s a r e r e d u c e d t o a g r e a t e x t e n t a n d p r a c t i c a l l y s a m e t r e n d c a n b e s e e n i n a l lt h r e e c a s e s ( s e e F i g s 6 ( a ) a n d 7 ( a ) ) .

    4 .2 . P hy s ic a l in te rpre ta t ionT h e i n c r e a s e o f d a m p i n g r a t i o a t th e r o t a t i o n a l f r e q u e n c y m o d e f o r t h e t h r u s t s i g n ala n d t w i c e t h e r o t a t i o n a l c u t t i n g f r e q u e n c y m o d e f o r t h e t o r q u e s i g n a l w i t h t h e i n c r e a s e i nd r il l f la n k w e a r c a n b e p h y s i c a l ly e x p l a i n e d a s f o ll o w s :

    ( 1) W i t h t h e g r o w t h o f f la n k w e a r , t h e f ri c ti o n b e t w e e n t h e w o r k p i e c e a n d t h e t o o li n c r e a s e s , w h i c h i n t u r n i n c r e a s e s t h e d a m p i n g o f t h e c u t t i n g p r o c e s s .( 2 ) S i n c e th e d r i ll h a s tw o c u t t i n g e d g e s , t h e d y n a m i c s o f t h e t o r q u e s i g n al in t h er o t a t i o n a l d i r e c t i o n i s a f f e c t e d m o r e b y d r i l l f l a n k w e a r a t t w i c e t h e r o t a t i o n a lf r e q u e n c y m o d e ( i . e . t h e f o r c i n g f r e q u e n c y ) i n t e r m s o f i n c r e a s e d f r i c t i o n a n dd a m p i n g .( 3 ) H o w e v e r , f o r t h e th r u s t d y n a m i c s in t h e a x ia l d i r e c t i o n , t h e r o t a t io n a l f r e q u e n c ym o d e i s a f f e c t e d m o r e w i t h w e a r , b e c a u s e t h e d y n a m i c c u t t i n g f o r c e f o r t h e t w oe d g e s i n t h i s a x i a l d i r e c t i o n a d d u p a t t h i s p a r t i c u l a r f r e q u e n c y .

    I n c i d e n t a l l y , t h e i n c r e a s e o f d a m p i n g r a t i o w i t h t h e i n c r e a s e o f t o o l w e a r h a s b e e nr e p o r t e d b e f o r e f o r t u r n i n g o p e r a t i o n s [ 1 3 , 1 6 ] . S o t h e p r e s e n t a n a l y s i s a g r e e t h e s a m ep h e n o m e n o n f o r d r i l l i n g .

    4 .3 . F e a s i b il i ty f o r o n - l i n e d r i l l l if e m o n i t o r i n gF r o m t h e a b o v e a n a l y s i s , it is e v i d e n t t h a t i f t h e N D R v a l u e a t t w i c e th e r o t a t i o n a lf r e q u e n c y m o d e f o r t h e t o r q u e s i g n a l c a n b e c o m p u t e d o n - l i n e , t h e s t a t e o f t h e d r il l i nt e r m s o f a v e r a g e f l an k w e a r c a n b e m o n i t o r e d a n d e x a c t t im e t o r e p l a c e t h e t o o l c a n b ep r e d i c t e d .

  • 8/3/2019 Afeasibilitystudyofon-linedrillwearmonitoringbyDDSmethodology

    12/13

    25 6 P. BANDYOPADHYAY et al.

    Thi s s c he m e c an be e as i l y i m pl e m e nte d us i ng a m i c r opr oc e s sor and sof twar e us i ngDDS m ode l i ng te c hni que . The s i gnal c an be c o l l e c te d fr om a su i tab l y de s i gne d tor quese nsor , and the n passe d thr ough a band pass f i l t e r , be for e fe e d i ng i n to the m i c r o-pr oc e s sor . In the m i c r opr oc e s sor , the data wi l l be sam pl e d and DD S m e tho dol o gy w i l l beuse d to c a l c u l ate the natur al f r e que n c i e s and "ND R" va l ue s o f the s i gnal. Co m p ar i ng the"NDR" value wi th i ts predetermined cr i t ical value can predict the condi t ion of the dr i l lon- l i ne .

    5 . C O N C L U S I O N S1 . A ne w c on c e pt o f on- l i ne m oni tor i ng of dr il l f lank we ar by r e la t i ng i t to the dynam i c s

    of the thrust or torque s ignal i s introduced.2 . D D S m e thod ol og y c an be use d to suc c e s sfu l ly c har ac te r iz e the se si gnal dynam i c s i n

    terms of natural frequencies and damping rat ios .3. Th e damping rat ios at the dri ll rotat iona l frequ ency for the thrust dyn am ics and at

    twi c e the r otat i onal f r e que nc y for the tor que dynam i c s show good c or r e l at i on wi thave r age f l ank we ar for d i f fe r e nt dr il l s i z e s and spe e ds . H ow e ve r , the s e ns i t iv i ty o f thetor que dynam i c s dam pi ng r at i o i s m uc h h i ghe r ( i nc r e ase 140-150 t i m e s ) andr e c o m m e n d e d f o r o n - l i n e u s e .

    4. From the s tat ic analys i s , the average thrust and torque pro vided poo r corre la t ionand l ow se ns i ti v i ty (on l y 5 -10% i nc r e ase ) wi th dr il l f lank we ar . He nc e , the y ar e notgood pe r for m anc e i nd i c e s for dr i l l we ar m oni tor i ng .

    5 . A n e w p a r a m e t e r, d e s ig n a t e d a s " N o r m a l i ze d D a m p i n g R a t io " ( N D R ) i s f o r m e d t obe use d as a r e l i ab l e pe r for m anc e i nde x for dr i l l we ar m oni tor i ng . Al so , thenor m al i z at i on he l ps i n nu l l i fy i ng the e f fe c t s o f d i f fe r e nt ope r at i ng c ondi t i ons anddri l l s izes on this performance index value .

    6 . F i na l ly , it s e e m s feas i b l e to de ve l op a m i c r oc om pute r base d s im pl e dr il l f lank we a rm o n i t o r in g s c h e m e u s in g t h is t o r q u e d y n a m i c s N D R i n d e x f o r o n - li n e p u r p o s e s .

    R E F E R E N C E S[1] F. W. TAYLOR, A S M E J . 2 8 , 3 1 - 3 5 0 ( 1 9 0 6 ) .[2] Y . S. LEE, J . E n g n g In d . T r a ns . A S M E , 1 0 5 1 ( 1 9 7 1 ) .[3] C. RUBENSTEIN,J . Eng ng I nd . Trans . ASM E, 221 (1976) .[4] A. BHAXTACHARVA,A . G H O SH a n d I . H A M . J . E n g n g I n d . T r a n s . A S M E 109 (1970) .[5] S. RAMALINGAMand J . D. WATSON, J . Engng hTd . Trans . AS M E 519-531 (1977) 193--2(19 (1978) .[6] S. M. Wu, J . E n g n g I n d . T r a ns . A S M E B 8 6 , 101)5 (1964 ).[7] K. HITOMI, N. NAKAMURA an d S. INOUE. J . Eng ng hzd . Trans . A S M E 101, 185-190 (1979) .[8] K. YAMAZAKI, A . YAMADA e t a l. , Ann CI RP 23 (1974) .[9] A. J . WILKINSON, P r o c . I E E E , 18, (1971) .[10] K. TARAMAN, R. SWANDO an d W. YUMAUCm, Re l a t i o n s h i p b e t we e n t o o l f o r c e a n d f l a n k we a r , S M E

    T e c h n i c a l P a p e r , N o . M R 7 4 ( 1 9 7 4 ) .[11] P. MA~T1N, B. MUTELS an d J. P. DRAIPEI~,P r o c . 1 5 t h . M T D R C o n f . p p . 2 5 1 - 2 5 7 ( 1 9 7 5 ) .[ 12 ] K . W . Y EE a n d D . B L O M Q U m A n o n - l in e m e t h o d f o r d e t e r mi n i n g t o o l we a r b y t i me d o m a i n a n a l y s i s, S M E

    t echnica l paper , N o . M R 8 2 - 9 0 1 ( 1 9 8 2 ) .[13] S. M . PANDH, H. SUZUKI an d C . H . KIaANG,A S M E J . M ec h . D e s. 102, 233--241 (1980).[14] S. M. PANDIT and S. M. W u. T i m e S e ri e s a n d S y s t e m A n a l y s i s w i t h A p p l i c a t i o n s , J o h n W i l e y , N e w Y o r k ,( 1 9 8 3 ) .[15] N. H. COOK an d K . SUBRAMAINIAN,J . Engn g I nd . Trans . AS M E 2 9 5 - 3 0 1 ( 1 9 7 7 ) .[16] J . TULSTY, T. MORJWAK1 an d B. S. GOEL , P r o c . N A M R C I V , 287 (1976) .[17] T. RADnAKRISnNAN, Dri l l po in t geometry opt imizat ion and on- l ine moni tor ing o f dr i l l condi t ion , P h . D .Disser ta t ion , M echanica l Eng ineer ing , U nivers i ty o f W iscons in - M adison , 1980.

    A P P E N D I X ATt tE PARAMETRIC epresenta t ion of the dynamics of a sys tem in c o n t i n u o u s t i me d o ma i n ma y b e wr i t t e n a s :

    ( D " + c ~. , i D '~ i + o L , , 2 D " ~- + . . . . . . + o q D + o q , ) X ( O

    - ( b , , , D ' " + b . . ~ D ' " ~ + . . . . . . + b . ) Z ( O ( AI )F [ Z ( t ) ] = 0 : E i Z ( t ) Z ( r - u ) ] = a ( u ) , r :

  • 8/3/2019 Afeasibilitystudyofon-linedrillwearmonitoringbyDDSmethodology

    13/13

    A Fe a s i b i l i t y S t u d y o f O n - l i n e D r i l l W e a r 2 5 7

    w h e r e . X( t ) i s t h e s y s t e m r e s p o n s e ; Z ( t ) i s t h e w h i t e n o i s e ; ~ (u ) i s t h e d i r a c d e l t a f u n c t i o n ; E d e n o t e s t h ee x p e c t a t i o n o p e r a t o r ; c to , a l . . . , c t, ,_ , a r e a u t o r e g r e s s i v e a n d b ~ , b 2 . . . . . b ,, a r e m o v i n g a v e r a g e p a r a m e t e r s .A l s o s uc h m o d e l s a re d e n o t e d a s C o n t i n u o u s A u t o r e g r e s s iv e M o v i n g A v e r a g e A M ( n , m ) m o d e l s .T h e a b o v e c o n t i n u o u s s y s t e m ( A 1 ) s a m p l e d a t u n i f o r m s a m p l i n g i n t e r v a l s , A . c a n b e r e p r e s e n t e d b y as t o c h a s t i c d i f f e r e n c e e q u a t i o n i n t h e f o r m o f a t i m e s e r e i s .(1 - + , B - ~2 B2 - . . . - d~, ,B")X, = (1 - 0 j B - 0 2 B 2 " - . . . - O,, ,B")a,

    E[a,] = 0 ; E[a,a, -k] = 5ktr,, 2 (A 2)w h e re X , is s y s t e m r e s p o n s e , a , is w h i t e n o i s e , + ~ . ~b2 . . . . + , , a r e a u t o r e g re s s i v e a n d 0 ~ , 0 2 . . . . . 0 ,, , a r e m o v i n ga v e r a g e p a r a m e t e r s . E q u a t i o n ( A 2 ) i s c a l le d U n i f o r m l y S a m p l e d A u t o r e g r e s s i v e m o v i n g a v e r a g e m o d e l o fo r d e r n , m ; a n d i s d e n o t e d b y A R M A ( n ,m ) .T h e a d e q u a t e o r d e r o f t h e A R M A ( n , m ) m o d e l c a n b e f o u n d u s i n g s o m e s t a t i st i ca l c r i t e r ia ( f o r d e t a i ls ) r e f e rt o [ 1 4 ]) . O n c e t h e a d e q u a t e m o d e l i s f o u n d , i t i s p o s s i b l e t o id e n t i f y t h e d y n a m i c c h a ra c t e r i s t i c s o f t h e s y s t e m i nt e r m s o f n a t u r a l f r e q u e n c i e s a n d d a m p i n g r a t i os . F o r e x a m p l e , i f t h e s y s te m h a s a n u n d e r d a m p e d m o d e . i t c a nb e g i v e n b y

    l / [ l n ( 4h* )]2 [ ( ~ -+h* ' ~12~o,k = - ~ + c o s- ' \ 2 ~ ] ] (A 31

    ;k = J [ l n (XX*)]2 (A4 )Y r , ( ~ , + ~ , * ) 1 2tln(X~,*)l2 + 4 [ co s 2 ~ S ' ]where , co , ,k a n d ~ k a r e t h e n a t u r a l f r e q u e n c i e s a n d d a m p i n g r a t io o f t h e k - t h m o d e o f v i b r a t i o n , k a n d h * a r e ap a i r o f c o m p l e x c o n j u g a t e c h a r a c t e r i s t i c r o o t s w h i c h c a n b e o b t a i n e d f r o m t h e f o l l o w i n g e q u a t i o n

    h " - ~ qb/h - j = 0 . ( A 5 )j = l

    A l s o . t h e n o r m a l i z e d p o w e r s p e c t r u m d e n s i t y c a n b e f o u n d f r o m t h e m o d e l p a r a m e t e r s a n d i s g i v e n b y

    2 o " 2S Of t ~ . . . . .'Y o

    1 - k'~~ ~bk -j2kTrfA 2

    1 - ,~ , +k e - j 2k'~1a 2 (A6 )

    w h e re f is t h e f r e q u e n c y o f H z , % i s t h e v a r i a n c e o f X , .