+ All Categories
Home > Documents > Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine...

Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine...

Date post: 31-Aug-2019
Category:
Upload: others
View: 4 times
Download: 1 times
Share this document with a friend
141
Affine algebraic geometry and a symmetric key application Stefan Maubach December 2011
Transcript
Page 1: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Affine algebraic geometry and a

symmetric key application

Stefan Maubach

December 2011

Page 2: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

How this talk is organised:

I What cryptographic/security problem will I work

towards?

I Affine algebraic geometry

I Polynomial maps over Fq: theoretically interesting things

I Polynomial maps over Fq: cryptographic aspects

Page 3: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Symmetric key-key

Alice TheWorld Bob

Secretkey K K

Message M

EncryptionEK (M)−→

Decryption DK (EK (M))

Page 4: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Session-keys

Alice TheWorld Bob

Secret key K K

∗Protocol∗Session key S S

Message M

EncryptionES (M)−→

Decryption DS(ES(M))

Page 5: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Session-keys: Diffie-Hellmann protocol

Alice TheWorld Bob

Secret key K (x) K (x)

Known formula f (x , y)

Random value a b

Send :f (K ,a)−→f (K ,b)←−

Compute f (f (K , b), a) f (f (K , a), b)

Session key S := S :=

I f (f (x , y), z) = f (f (x , z), y)

I f (x , y) gives no info on x if y is random

Page 6: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What is affine algebraic geometry?

Subfield of Algebraic Geometry (duh!).

Typical objects:

kn ↔ k[X1, . . . ,Xn]

V ↔ O(V ) := k[X1, . . . ,Xn]/I (V )

Geometrically sometimes “more difficult” than projective

geometry (affine spaces are rarely compact).

Algebraically, more simple! (There’s always a ring.)

Subtopic - but of fundamental importance to the whole of

Algebraic geometry.

We do all kinds of advanced things with algebraic geometry,

but still we don’t understand affine n-space kn !

Page 7: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What is affine algebraic geometry?

Subfield of Algebraic Geometry (duh!).

Typical objects:

kn ↔ k[X1, . . . ,Xn]

V ↔ O(V ) := k[X1, . . . ,Xn]/I (V )

Geometrically sometimes “more difficult” than projective

geometry (affine spaces are rarely compact).

Algebraically, more simple! (There’s always a ring.)

Subtopic - but of fundamental importance to the whole of

Algebraic geometry.

We do all kinds of advanced things with algebraic geometry,

but still we don’t understand affine n-space kn !

Page 8: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What is affine algebraic geometry?

Subfield of Algebraic Geometry (duh!).

Typical objects:

kn ↔ k[X1, . . . ,Xn]

V ↔ O(V ) := k[X1, . . . ,Xn]/I (V )

Geometrically sometimes “more difficult” than projective

geometry (affine spaces are rarely compact).

Algebraically, more simple! (There’s always a ring.)

Subtopic - but of fundamental importance to the whole of

Algebraic geometry.

We do all kinds of advanced things with algebraic geometry,

but still we don’t understand affine n-space kn !

Page 9: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What is affine algebraic geometry?

Subfield of Algebraic Geometry (duh!).

Typical objects:

kn ↔ k[X1, . . . ,Xn]

V ↔ O(V ) := k[X1, . . . ,Xn]/I (V )

Geometrically sometimes “more difficult” than projective

geometry (affine spaces are rarely compact).

Algebraically, more simple! (There’s always a ring.)

Subtopic - but of fundamental importance to the whole of

Algebraic geometry.

We do all kinds of advanced things with algebraic geometry,

but still we don’t understand affine n-space kn !

Page 10: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What is affine algebraic geometry?

Subfield of Algebraic Geometry (duh!).

Typical objects:

kn ↔ k[X1, . . . ,Xn]

V ↔ O(V ) := k[X1, . . . ,Xn]/I (V )

Geometrically sometimes “more difficult” than projective

geometry (affine spaces are rarely compact).

Algebraically, more simple! (There’s always a ring.)

Subtopic - but of fundamental importance to the whole of

Algebraic geometry.

We do all kinds of advanced things with algebraic geometry,

but still we don’t understand affine n-space kn !

Page 11: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

A Very Brief History

“Originally”: geometry and algebra different things.

Zariski −→ Grothendieck −→ etc.: algebraic geometry.

+- 1970: What if we apply algebraic geometry to the original

simple objects, like Cn, or C[X1,X2, . . . ,Xn]?

(“Birth” of the field and many of its current questions.)

Since then: steady growth of the field.

(2000: separate AMS classification.)

Page 12: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

kn ↔ k[X1, . . . ,Xn]

V ↔ O(V ) := k[X1, . . . ,Xn]/I (V )

Objects, hence morphisms!

F : kn −→ kn

polynomial map if F = (F1, . . . ,Fn), Fi ∈ k[X1, . . . ,Xn].

Example: F = (X + Y 2,Y ) is polynomial map C2 −→ C2.

Set of polynomial automorphisms of kn:

Autn(k), also denoted by GAn(k) - similarly to GLn(k) !

Page 13: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

kn ↔ k[X1, . . . ,Xn]

V ↔ O(V ) := k[X1, . . . ,Xn]/I (V )

Objects, hence morphisms!

F : kn −→ kn

polynomial map if F = (F1, . . . ,Fn), Fi ∈ k[X1, . . . ,Xn].

Example: F = (X + Y 2,Y ) is polynomial map C2 −→ C2.

Set of polynomial automorphisms of kn:

Autn(k), also denoted by GAn(k) - similarly to GLn(k) !

Page 14: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

kn ↔ k[X1, . . . ,Xn]

V ↔ O(V ) := k[X1, . . . ,Xn]/I (V )

Objects, hence morphisms!

F : kn −→ kn

polynomial map if F = (F1, . . . ,Fn), Fi ∈ k[X1, . . . ,Xn].

Example: F = (X + Y 2,Y ) is polynomial map C2 −→ C2.

Set of polynomial automorphisms of kn:

Autn(k), also denoted by GAn(k) - similarly to GLn(k) !

Page 15: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

A topic is defined by its problems.

Many problems in AAG: inspired by linear algebra!

(In some sense: AAG most “natural generalization of linear

algebra”. . . )

Will show two problems: (1) Jacobian Conjecture, (2)

generators problem

Page 16: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Problems in AAG: Jacobian Conjecture

char(k) = 0

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ?? det(Jac(F )) ∈ k∗

F invertible, i.e.

G ◦ F = (X1, . . . ,Xn).

Page 17: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Problems in AAG: Jacobian Conjecture

char(k) = 0

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ?? det(Jac(F )) ∈ k∗

F invertible, i.e.

G ◦ F = (X1, . . . ,Xn).

Page 18: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Problems in AAG: Jacobian Conjecture

char(k) = 0

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ?? det(Jac(F )) ∈ k∗

F invertible, i.e.

G ◦ F = (X1, . . . ,Xn).

Page 19: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Problems in AAG: Jacobian Conjecture

char(k) = 0

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ?? det(Jac(F )) ∈ k∗

F invertible, i.e.

Jac(G ◦ F ) = Jac(X1, . . . ,Xn).

Page 20: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Problems in AAG: Jacobian Conjecture

char(k) = 0

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ?? det(Jac(F )) ∈ k∗

F invertible, i.e.

Jac(G ◦ F ) = I .

Page 21: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Problems in AAG: Jacobian Conjecture

char(k) = 0

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ?? det(Jac(F )) ∈ k∗

F invertible, i.e.

Jac(F ) · (Jac(G ) ◦ F ) = I .

Page 22: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Problems in AAG: Jacobian Conjecture

char(k) = 0

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ?? det(Jac(F )) ∈ k∗

F invertible, i.e.

det(Jac(F )) · det(Jac(G ) ◦ F ) = det I = 1.

Page 23: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Problems in AAG: Jacobian Conjecture

char(k) = 0

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ?? det(Jac(F )) ∈ k∗

F invertible, i.e.

det(Jac(F )) · det(blabla) = det I = 1.

Page 24: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Problems in AAG: Jacobian Conjecture

char(k) = 0

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ?? det(Jac(F )) ∈ k∗

F invertible, i.e.

det(Jac(F )) ∈ k[X1, . . . ,Xn]∗ = k∗.

Page 25: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Problems in AAG: Jacobian Conjecture

char(k) = 0

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible =⇒ det(Jac(F )) ∈ k∗

F invertible, i.e.

det(Jac(F )) ∈ k[X1, . . . ,Xn]∗ = k∗.

Page 26: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Problems in AAG: Jacobian Conjecture

char(k) = 0

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible =⇒ det(Jac(F )) ∈ k∗

Jacobian Conjecture:

F ∈ GAn(k)invertible ⇐= det(Jac(F )) ∈ k∗

Page 27: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

“Visual” version of Jacobian ConjectureVolume-preserving polynomial maps are invertible.

Figure: Image of raster under (X + 12Y 2,Y + 1

6(X + 1

2Y 2)2).

Page 28: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Jacobian Conjecture very particular for polynomials:

F : (x , y) −→ (ex , ye−x)

Jac(F ) =

(ex 0

−ye−x e−x

)det(Jac(F )) = 1

Page 29: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Jacobian Conjecture in char(k) = p:

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ⇒ det(Jac(F )) ∈ k∗

F : k1 −→ k1

X −→ X − X p

Jac(F ) = 1 but F (0) = F (1) = 0.

Jacobian Conjecture in char(k) = p: Suppose

det(Jac(F )) = 1 and p 6 |[k(X1, . . . ,Xn) : k(F1, . . . ,Fn)]. Then

F is an automorphism.

Page 30: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Jacobian Conjecture in char(k) = p:

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ⇒ det(Jac(F )) ∈ k∗

F : k1 −→ k1

X −→ X − X p

Jac(F ) = 1 but F (0) = F (1) = 0.

Jacobian Conjecture in char(k) = p: Suppose

det(Jac(F )) = 1 and p 6 |[k(X1, . . . ,Xn) : k(F1, . . . ,Fn)]. Then

F is an automorphism.

Page 31: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Jacobian Conjecture in char(k) = p:

L linear map;

L ∈ GLn(k) invertible ⇐⇒ det(L) = det(Jac(L)) ∈ k∗

F ∈ GAn(k) invertible ⇒ det(Jac(F )) ∈ k∗

F : k1 −→ k1

X −→ X − X p

Jac(F ) = 1 but F (0) = F (1) = 0.

Jacobian Conjecture in char(k) = p: Suppose

det(Jac(F )) = 1 and p 6 |[k(X1, . . . ,Xn) : k(F1, . . . ,Fn)]. Then

F is an automorphism.

Page 32: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Jacobian Conjecture in char(k) = p:

char(k) = 0 :

F = (X + a1X 2 + a2XY + a3Y 2,Y + b1X 2 + b2XY + b3Y 2)

1 = det(Jac(F ))

= 1+

(2a1 + b2)X +

(a2 + 2b3)Y +

(2a1b2 + 2a2b1)X 2+

(2b2a2 + 4a1b3 + 4a3b1)XY +

(2a2b3 + 2a3b2)Y 2

In char(k)=2 : (parts of) equations vanish. Question: What

are the right equations in char(k) = 2? (or p?)

Page 33: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Enough about the Jacobian Problem! Another problem:

Generator problem

Page 34: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Understanding polynomial automorphisms

A map F : kn −→ kn given by n polynomials:

F = (F1(X1, . . . ,Xn), . . . ,Fn(X1, . . . ,Xn)).

Example: F = (X + Y 2,Y ).

Various ways of looking at polynomial maps:

I A map kn −→ kn.

I A list of n polynomials: F ∈ (k[X1, . . . ,Xn])n.

I A ring automorphism of k[X1, . . . ,Xn] sending

g(X1, . . . ,Xn) to g(F1, . . . ,Fn).

Page 35: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Understanding polynomial automorphisms

A map F : kn −→ kn given by n polynomials:

F = (F1(X1, . . . ,Xn), . . . ,Fn(X1, . . . ,Xn)).

Example: F = (X + Y 2,Y ).

Various ways of looking at polynomial maps:

I A map kn −→ kn.

I A list of n polynomials: F ∈ (k[X1, . . . ,Xn])n.

I A ring automorphism of k[X1, . . . ,Xn] sending

g(X1, . . . ,Xn) to g(F1, . . . ,Fn).

Page 36: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Understanding polynomial automorphisms

A map F : kn −→ kn given by n polynomials:

F = (F1(X1, . . . ,Xn), . . . ,Fn(X1, . . . ,Xn)).

Example: F = (X + Y 2,Y ).

Various ways of looking at polynomial maps:

I A map kn −→ kn.

I A list of n polynomials: F ∈ (k[X1, . . . ,Xn])n.

I A ring automorphism of k[X1, . . . ,Xn] sending

g(X1, . . . ,Xn) to g(F1, . . . ,Fn).

Page 37: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Understanding polynomial automorphisms

A map F : kn −→ kn given by n polynomials:

F = (F1(X1, . . . ,Xn), . . . ,Fn(X1, . . . ,Xn)).

Example: F = (X + Y 2,Y ).

Various ways of looking at polynomial maps:

I A map kn −→ kn.

I A list of n polynomials: F ∈ (k[X1, . . . ,Xn])n.

I A ring automorphism of k[X1, . . . ,Xn] sending

g(X1, . . . ,Xn) to g(F1, . . . ,Fn).

Page 38: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Understanding polynomial automorphisms

A map F : kn −→ kn given by n polynomials:

F = (F1(X1, . . . ,Xn), . . . ,Fn(X1, . . . ,Xn)).

Example: F = (X + Y 2,Y ).

Various ways of looking at polynomial maps:

I A map kn −→ kn.

I A list of n polynomials: F ∈ (k[X1, . . . ,Xn])n.

I A ring automorphism of k[X1, . . . ,Xn] sending

g(X1, . . . ,Xn) to g(F1, . . . ,Fn).

Page 39: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Understanding polynomial automorphisms

A map F : kn −→ kn given by n polynomials:

F = (F1(X1, . . . ,Xn), . . . ,Fn(X1, . . . ,Xn)).

Example: F = (X + Y 2,Y ).

Various ways of looking at polynomial maps:

I A map kn −→ kn.

I A list of n polynomials: F ∈ (k[X1, . . . ,Xn])n.

I A ring automorphism of k[X1, . . . ,Xn] sending

g(X1, . . . ,Xn) to g(F1, . . . ,Fn).

Page 40: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Understanding polynomial automorphisms

A map F : kn −→ kn given by n polynomials:

F = (F1(X1, . . . ,Xn), . . . ,Fn(X1, . . . ,Xn)).

Example: F = (X + Y 2,Y ).

Various ways of looking at polynomial maps:

I A map kn −→ kn.

I A list of n polynomials: F ∈ (k[X1, . . . ,Xn])n.

I A ring automorphism of k[X1, . . . ,Xn] sending

g(X1, . . . ,Xn) to g(F1, . . . ,Fn).

Page 41: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Understanding polynomial automorphisms

A polynomial map F is a polynomial automorphism if there is

a polynomial map G such that F (G ) = (X1, . . . ,Xn).

Example: (X + Y 2,Y ) has inverse (X − Y 2,Y ).

(X + Y 2,Y ) ◦ (X − Y 2,Y ) = ([X − Y 2] + [Y ]2, [Y ])

= (X − Y 2 + Y 2,Y )

= (X ,Y ).

(X p,Y ) : F2p −→ F2

p is not a polynomial automorphism, even

though it induces a bijection of Fp !

(X 3,Y ) : R2 −→ R2 is not a polynomial automorphism, even

though it induces a bijection of R!

Page 42: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Understanding polynomial automorphisms

A polynomial map F is a polynomial automorphism if there is

a polynomial map G such that F (G ) = (X1, . . . ,Xn).

Example: (X + Y 2,Y ) has inverse (X − Y 2,Y ).

(X + Y 2,Y ) ◦ (X − Y 2,Y ) = ([X − Y 2] + [Y ]2, [Y ])

= (X − Y 2 + Y 2,Y )

= (X ,Y ).

(X p,Y ) : F2p −→ F2

p is not a polynomial automorphism, even

though it induces a bijection of Fp !

(X 3,Y ) : R2 −→ R2 is not a polynomial automorphism, even

though it induces a bijection of R!

Page 43: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Understanding polynomial automorphisms

A polynomial map F is a polynomial automorphism if there is

a polynomial map G such that F (G ) = (X1, . . . ,Xn).

Example: (X + Y 2,Y ) has inverse (X − Y 2,Y ).

(X + Y 2,Y ) ◦ (X − Y 2,Y ) = ([X − Y 2] + [Y ]2, [Y ])

= (X − Y 2 + Y 2,Y )

= (X ,Y ).

(X p,Y ) : F2p −→ F2

p is not a polynomial automorphism, even

though it induces a bijection of Fp !

(X 3,Y ) : R2 −→ R2 is not a polynomial automorphism, even

though it induces a bijection of R!

Page 44: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Understanding polynomial automorphisms

A polynomial map F is a polynomial automorphism if there is

a polynomial map G such that F (G ) = (X1, . . . ,Xn).

Example: (X + Y 2,Y ) has inverse (X − Y 2,Y ).

(X + Y 2,Y ) ◦ (X − Y 2,Y ) = ([X − Y 2] + [Y ]2, [Y ])

= (X − Y 2 + Y 2,Y )

= (X ,Y ).

(X p,Y ) : F2p −→ F2

p is not a polynomial automorphism, even

though it induces a bijection of Fp !

(X 3,Y ) : R2 −→ R2 is not a polynomial automorphism, even

though it induces a bijection of R!

Page 45: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Understanding polynomial automorphisms

A polynomial map F is a polynomial automorphism if there is

a polynomial map G such that F (G ) = (X1, . . . ,Xn).

Example: (X + Y 2,Y ) has inverse (X − Y 2,Y ).

(X + Y 2,Y ) ◦ (X − Y 2,Y ) = ([X − Y 2] + [Y ]2, [Y ])

= (X − Y 2 + Y 2,Y )

= (X ,Y ).

(X p,Y ) : F2p −→ F2

p is not a polynomial automorphism, even

though it induces a bijection of Fp !

(X 3,Y ) : R2 −→ R2 is not a polynomial automorphism, even

though it induces a bijection of R!

Page 46: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Understanding polynomial automorphisms

Remark: If k is algebraically closed, then a polynomial

endomorphism kn −→ kn which is a bijection, is an invertible

polynomial map.

(X p,Y ) : F2p −→ F2

p is not a polynomial automorphism, even

though it induces a bijection of Fp !

(X 3,Y ) : R2 −→ R2 is not a polynomial automorphism, even

though it induces a bijection of R!

Page 47: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

The Automorphism Group

(This whole talk: n ≥ 2)

GLn(k) is generated by

I Permutations X1 ←→ Xi

I Map (aX1 + bXj ,X2, . . . ,Xn) (a ∈ k∗, b ∈ k)

GAn(k) is generated by ???

Page 48: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

The Automorphism Group

(This whole talk: n ≥ 2)

GLn(k) is generated by

I Permutations X1 ←→ Xi

I Map (aX1 + bXj ,X2, . . . ,Xn) (a ∈ k∗, b ∈ k)

GAn(k) is generated by ???

Page 49: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

The Automorphism Group

(This whole talk: n ≥ 2)

GLn(k) is generated by

I Permutations X1 ←→ Xi

I Map (aX1 + bXj ,X2, . . . ,Xn) (a ∈ k∗, b ∈ k)

GAn(k) is generated by ???

Page 50: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

The Automorphism Group

(This whole talk: n ≥ 2)

GLn(k) is generated by

I Permutations X1 ←→ Xi

I Map (aX1 + bXj ,X2, . . . ,Xn) (a ∈ k∗, b ∈ k)

GAn(k) is generated by ???

Page 51: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Elementary map: (X1 + f (X2, . . . ,Xn),X2, . . . ,Xn),

invertible with inverse

(X1 − f (X2, . . . ,Xn),X2, . . . ,Xn).

Triangular map: (X + f (Y ,Z ),Y + g(Z ),Z + c)

= (X ,Y ,Z + c)(X ,Y + g(Z ),Z )(X + f (X ,Y ),Y ,Z )

Jn(k):= set of triangular maps.

Affn(k):= set of compositions of invertible linear maps and

translations.

TAn(k) :=< Jn(k),Affn(k) >

Page 52: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Elementary map: (X1 + f (X2, . . . ,Xn),X2, . . . ,Xn),

invertible with inverse

(X1 − f (X2, . . . ,Xn),X2, . . . ,Xn).

Triangular map: (X + f (Y ,Z ),Y + g(Z ),Z + c)

= (X ,Y ,Z + c)(X ,Y + g(Z ),Z )(X + f (X ,Y ),Y ,Z )

Jn(k):= set of triangular maps.

Affn(k):= set of compositions of invertible linear maps and

translations.

TAn(k) :=< Jn(k),Affn(k) >

Page 53: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Elementary map: (X1 + f (X2, . . . ,Xn),X2, . . . ,Xn),

invertible with inverse

(X1 − f (X2, . . . ,Xn),X2, . . . ,Xn).

Triangular map: (X + f (Y ,Z ),Y + g(Z ),Z + c)

= (X ,Y ,Z + c)(X ,Y + g(Z ),Z )(X + f (X ,Y ),Y ,Z )

Jn(k):= set of triangular maps.

Affn(k):= set of compositions of invertible linear maps and

translations.

TAn(k) :=< Jn(k),Affn(k) >

Page 54: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Elementary map: (X1 + f (X2, . . . ,Xn),X2, . . . ,Xn),

invertible with inverse

(X1 − f (X2, . . . ,Xn),X2, . . . ,Xn).

Triangular map: (X + f (Y ,Z ),Y + g(Z ),Z + c)

= (X ,Y ,Z + c)(X ,Y + g(Z ),Z )(X + f (X ,Y ),Y ,Z )

Jn(k):= set of triangular maps.

Affn(k):= set of compositions of invertible linear maps and

translations.

TAn(k) :=< Jn(k),Affn(k) >

Page 55: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Elementary map: (X1 + f (X2, . . . ,Xn),X2, . . . ,Xn),

invertible with inverse

(X1 − f (X2, . . . ,Xn),X2, . . . ,Xn).

Triangular map: (X + f (Y ,Z ),Y + g(Z ),Z + c)

= (X ,Y ,Z + c)(X ,Y + g(Z ),Z )(X + f (X ,Y ),Y ,Z )

Jn(k):= set of triangular maps.

Affn(k):= set of compositions of invertible linear maps and

translations.

TAn(k) :=< Jn(k),Affn(k) >

Page 56: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

In dimension 1: we understand the automorphism group.

(They are linear.)

In dimension 2: famous Jung-van der Kulk-theorem:

GA2(K) = TA2(K) = Aff 2(K)|× J2(K)

Jung-van der Kulk is the reason that we can do a lot in

dimension 2 !

Page 57: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

In dimension 1: we understand the automorphism group.

(They are linear.)

In dimension 2: famous Jung-van der Kulk-theorem:

GA2(K) = TA2(K) = Aff 2(K)|× J2(K)

Jung-van der Kulk is the reason that we can do a lot in

dimension 2 !

Page 58: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What about dimension 3?

Stupid idea: everything will be

tame?

1972: Nagata: “I cannot tame the following map:”

N := (X − 2Y ∆− Z ∆2,Y + Z ∆,Z ) where ∆ = XZ + Y 2.

Nagata’s map is the historically most important map for

polynomial automorphisms. It is a very elegant but

complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

N is not tame!! . . . in characteristic ZERO. . .

(Difficult and technical proof. ) (2007 AMS Moore paper

award.)

Page 59: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What about dimension 3? Stupid idea: everything will be

tame?

1972: Nagata: “I cannot tame the following map:”

N := (X − 2Y ∆− Z ∆2,Y + Z ∆,Z ) where ∆ = XZ + Y 2.

Nagata’s map is the historically most important map for

polynomial automorphisms. It is a very elegant but

complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

N is not tame!! . . . in characteristic ZERO. . .

(Difficult and technical proof. ) (2007 AMS Moore paper

award.)

Page 60: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What about dimension 3? Stupid idea: everything will be

tame?

1972: Nagata: “I cannot tame the following map:”

N := (X − 2Y ∆− Z ∆2,Y + Z ∆,Z ) where ∆ = XZ + Y 2.

Nagata’s map is the historically most important map for

polynomial automorphisms. It is a very elegant but

complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

N is not tame!! . . . in characteristic ZERO. . .

(Difficult and technical proof. ) (2007 AMS Moore paper

award.)

Page 61: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What about dimension 3? Stupid idea: everything will be

tame?

1972: Nagata: “I cannot tame the following map:”

N := (X − 2Y ∆− Z ∆2,Y + Z ∆,Z ) where ∆ = XZ + Y 2.

Nagata’s map is the historically most important map for

polynomial automorphisms. It is a very elegant but

complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

N is not tame!! . . . in characteristic ZERO. . .

(Difficult and technical proof. ) (2007 AMS Moore paper

award.)

Page 62: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What about dimension 3? Stupid idea: everything will be

tame?

1972: Nagata: “I cannot tame the following map:”

N := (X − 2Y ∆− Z ∆2,Y + Z ∆,Z ) where ∆ = XZ + Y 2.

Nagata’s map is the historically most important map for

polynomial automorphisms. It is a very elegant but

complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

N is not tame!!

. . . in characteristic ZERO. . .

(Difficult and technical proof. ) (2007 AMS Moore paper

award.)

Page 63: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What about dimension 3? Stupid idea: everything will be

tame?

1972: Nagata: “I cannot tame the following map:”

N := (X − 2Y ∆− Z ∆2,Y + Z ∆,Z ) where ∆ = XZ + Y 2.

Nagata’s map is the historically most important map for

polynomial automorphisms. It is a very elegant but

complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

N is not tame!!

. . . in characteristic ZERO. . .

(Difficult and technical proof. ) (2007 AMS Moore paper

award.)

Page 64: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What about dimension 3? Stupid idea: everything will be

tame?

1972: Nagata: “I cannot tame the following map:”

N := (X − 2Y ∆− Z ∆2,Y + Z ∆,Z ) where ∆ = XZ + Y 2.

Nagata’s map is the historically most important map for

polynomial automorphisms. It is a very elegant but

complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

N is not tame!! . . . in characteristic ZERO. . .

(Difficult and technical proof. ) (2007 AMS Moore paper

award.)

Page 65: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

AMS E.H. Moore Research Article Prize

Ivan Shestakov

(center) and Ualbai Umirbaev (right) with Jim Arthur.

Page 66: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What about TAn(k) ⊆ GAn(k) if k = Fq is a finite field?

Denote Bijn(Fq) as set of bijections on Fnq. We have a natural

map

GAn(Fq)πq−→ Bijn(Fq).

What is πq(GAn(Fq))? Can we make every bijection on Fnq as

an invertible polynomial map?

Simpler question: what is πq(TAn(Fq))?

Page 67: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What about TAn(k) ⊆ GAn(k) if k = Fq is a finite field?

Denote Bijn(Fq) as set of bijections on Fnq. We have a natural

map

GAn(Fq)πq−→ Bijn(Fq).

What is πq(GAn(Fq))? Can we make every bijection on Fnq as

an invertible polynomial map?

Simpler question: what is πq(TAn(Fq))?

Page 68: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What about TAn(k) ⊆ GAn(k) if k = Fq is a finite field?

Denote Bijn(Fq) as set of bijections on Fnq. We have a natural

map

GAn(Fq)πq−→ Bijn(Fq).

What is πq(GAn(Fq))? Can we make every bijection on Fnq as

an invertible polynomial map?

Simpler question: what is πq(TAn(Fq))?

Page 69: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What about TAn(k) ⊆ GAn(k) if k = Fq is a finite field?

Denote Bijn(Fq) as set of bijections on Fnq. We have a natural

map

GAn(Fq)πq−→ Bijn(Fq).

What is πq(GAn(Fq))? Can we make every bijection on Fnq as

an invertible polynomial map?

Simpler question: what is πq(TAn(Fq))?

Page 70: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Theorem:

If q is odd, or q = 2, then

πq(TAn(Fq)) = Sym(qn).

If q = 4, 8, 16, . . . then

πq(TAn(Fq)) = Alt(qn).

Obvious question: π4(TAn(F4)) = Alt(4n) or Sym(4n)?

(open since 2000). So, if π4(N) 6∈ Alt, then N is not tame!

−→ 1-page paper in Inventiones Mathematicae ! So, let’s

check: . . . dromroll. . . how sad, π4(N) even.

Also, πq(N) even if and only if q = 2m,m ≥ 2. . . bummer!

Page 71: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Theorem:

If q is odd, or q = 2, then

πq(TAn(Fq)) = Sym(qn).

If q = 4, 8, 16, . . . then

πq(TAn(Fq)) = Alt(qn).

Obvious question: π4(TAn(F4)) = Alt(4n) or Sym(4n)?

(open since 2000). So, if π4(N) 6∈ Alt, then N is not tame!

−→ 1-page paper in Inventiones Mathematicae ! So, let’s

check: . . . dromroll. . . how sad, π4(N) even.

Also, πq(N) even if and only if q = 2m,m ≥ 2. . . bummer!

Page 72: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Theorem:

If q is odd, or q = 2, then

πq(TAn(Fq)) = Sym(qn).

If q = 4, 8, 16, . . . then

πq(TAn(Fq)) = Alt(qn).

Obvious question: π4(TAn(F4)) = Alt(4n) or Sym(4n)?

(open since 2000).

So, if π4(N) 6∈ Alt, then N is not tame!

−→ 1-page paper in Inventiones Mathematicae ! So, let’s

check: . . . dromroll. . . how sad, π4(N) even.

Also, πq(N) even if and only if q = 2m,m ≥ 2. . . bummer!

Page 73: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Theorem:

If q is odd, or q = 2, then

πq(TAn(Fq)) = Sym(qn).

If q = 4, 8, 16, . . . then

πq(TAn(Fq)) = Alt(qn).

Obvious question: π4(TAn(F4)) = Alt(4n) or Sym(4n)?

(open since 2000). So, if π4(N) 6∈ Alt, then N is not tame!

−→ 1-page paper in Inventiones Mathematicae !

So, let’s

check: . . . dromroll. . . how sad, π4(N) even.

Also, πq(N) even if and only if q = 2m,m ≥ 2. . . bummer!

Page 74: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Theorem:

If q is odd, or q = 2, then

πq(TAn(Fq)) = Sym(qn).

If q = 4, 8, 16, . . . then

πq(TAn(Fq)) = Alt(qn).

Obvious question: π4(TAn(F4)) = Alt(4n) or Sym(4n)?

(open since 2000). So, if π4(N) 6∈ Alt, then N is not tame!

−→ 1-page paper in Inventiones Mathematicae ! So, let’s

check:

. . . dromroll. . . how sad, π4(N) even.

Also, πq(N) even if and only if q = 2m,m ≥ 2. . . bummer!

Page 75: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Theorem:

If q is odd, or q = 2, then

πq(TAn(Fq)) = Sym(qn).

If q = 4, 8, 16, . . . then

πq(TAn(Fq)) = Alt(qn).

Obvious question: π4(TAn(F4)) = Alt(4n) or Sym(4n)?

(open since 2000). So, if π4(N) 6∈ Alt, then N is not tame!

−→ 1-page paper in Inventiones Mathematicae ! So, let’s

check: . . . dromroll. . .

how sad, π4(N) even.

Also, πq(N) even if and only if q = 2m,m ≥ 2. . . bummer!

Page 76: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Theorem:

If q is odd, or q = 2, then

πq(TAn(Fq)) = Sym(qn).

If q = 4, 8, 16, . . . then

πq(TAn(Fq)) = Alt(qn).

Obvious question: π4(TAn(F4)) = Alt(4n) or Sym(4n)?

(open since 2000). So, if π4(N) 6∈ Alt, then N is not tame!

−→ 1-page paper in Inventiones Mathematicae ! So, let’s

check: . . . dromroll. . . how sad, π4(N) even.

Also, πq(N) even if and only if q = 2m,m ≥ 2. . . bummer!

Page 77: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Theorem:

If q is odd, or q = 2, then

πq(TAn(Fq)) = Sym(qn).

If q = 4, 8, 16, . . . then

πq(TAn(Fq)) = Alt(qn).

Obvious question: π4(TAn(F4)) = Alt(4n) or Sym(4n)?

(open since 2000). So, if π4(N) 6∈ Alt, then N is not tame!

−→ 1-page paper in Inventiones Mathematicae ! So, let’s

check: . . . dromroll. . . how sad, π4(N) even.

Also, πq(N) even if and only if q = 2m,m ≥ 2. . . bummer!

Page 78: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Equivalence of polynomials

Let p, q ∈ k[x1, . . . , xn]. Define p ∼ q if exists ϕ, τ ∈ GAn(k)

such that ϕ(p, x2, . . . , xn)τ = (q, x2, . . . , xn).

Example: x2 ∼ (x + y 2)2 + y in k[x , y ].

Lemma: p(x) ∼ q(x) in k[x , y1, . . . , yn] then p′(x) ∼ q′(x) in

k[x ].

If chark = 0, this implies p(x) ∼ q(x) in k[x ].

If chark = p . . .

Are x8 + x4 + x and x8 + x2 + x equivalent in F2[x , y , z ]?

Page 79: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Equivalence of polynomials

Let p, q ∈ k[x1, . . . , xn]. Define p ∼ q if exists ϕ, τ ∈ GAn(k)

such that ϕ(p, x2, . . . , xn)τ = (q, x2, . . . , xn).

Example: x2 ∼ (x + y 2)2 + y in k[x , y ].

Lemma: p(x) ∼ q(x) in k[x , y1, . . . , yn] then p′(x) ∼ q′(x) in

k[x ].

If chark = 0, this implies p(x) ∼ q(x) in k[x ].

If chark = p . . .

Are x8 + x4 + x and x8 + x2 + x equivalent in F2[x , y , z ]?

Page 80: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Equivalence of polynomials

Let p, q ∈ k[x1, . . . , xn]. Define p ∼ q if exists ϕ, τ ∈ GAn(k)

such that ϕ(p, x2, . . . , xn)τ = (q, x2, . . . , xn).

Example: x2 ∼ (x + y 2)2 + y in k[x , y ].

Lemma: p(x) ∼ q(x) in k[x , y1, . . . , yn] then p′(x) ∼ q′(x) in

k[x ].

If chark = 0, this implies p(x) ∼ q(x) in k[x ].

If chark = p . . .

Are x8 + x4 + x and x8 + x2 + x equivalent in F2[x , y , z ]?

Page 81: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Equivalence of polynomials

Let p, q ∈ k[x1, . . . , xn]. Define p ∼ q if exists ϕ, τ ∈ GAn(k)

such that ϕ(p, x2, . . . , xn)τ = (q, x2, . . . , xn).

Example: x2 ∼ (x + y 2)2 + y in k[x , y ].

Lemma: p(x) ∼ q(x) in k[x , y1, . . . , yn] then p′(x) ∼ q′(x) in

k[x ].

If chark = 0, this implies p(x) ∼ q(x) in k[x ].

If chark = p . . .

Are x8 + x4 + x and x8 + x2 + x equivalent in F2[x , y , z ]?

Page 82: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Mock automorphisms

F ∈ MAn(Fq) is called a mock automorphism if

I det(Jac(F )) ∈ F∗q

I πq(F ) is a bijection

x8 + x4 + x and x8 + x2 + x are mock automorphisms for F2m

if 7 6 |m.

Page 83: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Equivalence classes of Mock

automorphisms

Theorem: If F ∈ MA3(F2) of degree ≤ 2, then F is

equivalent to:

I (x , y , z)

I (x4 + x2 + x , y , z)

I (x8 + x2 + x , y , z)

I (x8 + x4 + x , y , z)

. . . but are there 3 or 4 equivalence classes?

Page 84: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Equivalence classes of Mock

automorphisms

Theorem: If F ∈ MA3(F2) of degree ≤ 2, then F is

equivalent to:

I (x , y , z)

I (x4 + x2 + x , y , z)

I (x8 + x2 + x , y , z)

I (x8 + x4 + x , y , z)

. . . but are there 3 or 4 equivalence classes?

Page 85: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Equivalence classes of Mock

automorphisms

Theorem: If F ∈ MA3(F2) of degree ≤ 2, then F is

equivalent to:

I (x , y , z)

I (x4 + x2 + x , y , z)

I (x8 + x2 + x , y , z)

I (x8 + x4 + x , y , z)

. . . but are there 3 or 4 equivalence classes?

Page 86: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Equivalence classes of Mock

automorphisms

Theorem: If F ∈ MA3(F2) of degree ≤ 2, then F is

equivalent to:

I (x , y , z)

I (x4 + x2 + x , y , z)

I (x8 + x2 + x , y , z)

I (x8 + x4 + x , y , z)

. . . but are there 3 or 4 equivalence classes?

Page 87: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Equivalence classes of Mock

automorphisms

Theorem: If F ∈ MA3(F2) of degree ≤ 2, then F is

equivalent to:

I (x , y , z)

I (x4 + x2 + x , y , z)

I (x8 + x2 + x , y , z)

I (x8 + x4 + x , y , z)

. . . but are there 3 or 4 equivalence classes?

Page 88: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Degree 3 over F2

Representant Bijection over #

1. (x , y , z) all 400

2. (x , y , z + x3z4 + xz2) F2,F4,F16,F32 56

3. (x , y , z + x3z2 + x3z4) F2,F4 168

4. (x , y , z + xz2 + xz6) F2 336

5. (x , y , z + x3z2 + xy2z4 + x2yz4 + x3z6) F2 336

6. (x , y , z + x3z2 + xy2z2 + x2yz4 + x3z6) F2 168

7. (x + y2z , y + x2z + y2z , z + x3 + xy2 + y3) F2 56

Page 89: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Public key crypto

(By T.T. Moh - called it Tame Transformation Method, or

TTM. . . )

Secret key: decomposition

(elementary) × (affine) × (elementary) × . . .× (elementary)

= (complicated map) ←− Public key.

Nice idea - basic idea still uncracked, but: a lot of attacks on

implementations (Goubin, Courtois, etc.)

Page 90: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Public key crypto

(By T.T. Moh - called it Tame Transformation Method, or

TTM. . . )

Secret key: decomposition

(elementary) × (affine) × (elementary) × . . .× (elementary)

= (complicated map) ←−

Public key.

Nice idea - basic idea still uncracked, but: a lot of attacks on

implementations (Goubin, Courtois, etc.)

Page 91: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Public key crypto

(By T.T. Moh - called it Tame Transformation Method, or

TTM. . . )

Secret key: decomposition

(elementary) × (affine) × (elementary) × . . .× (elementary)

=

(complicated map) ←− Public key.

Nice idea - basic idea still uncracked, but: a lot of attacks on

implementations (Goubin, Courtois, etc.)

Page 92: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Public key crypto

(By T.T. Moh - called it Tame Transformation Method, or

TTM. . . )

Secret key: decomposition

(elementary) × (affine) × (elementary) × . . .× (elementary)

=

(complicated map) ←− Public key.

Nice idea - basic idea still uncracked, but: a lot of attacks on

implementations (Goubin, Courtois, etc.)

Page 93: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Public key crypto

(By T.T. Moh - called it Tame Transformation Method, or

TTM. . . )

Secret key: decomposition

(elementary) × (affine) × (elementary) × . . .× (elementary)

= (complicated map) ←− Public key.

Nice idea - basic idea still uncracked, but: a lot of attacks on

implementations (Goubin, Courtois, etc.)

Page 94: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Public key crypto

(By T.T. Moh - called it Tame Transformation Method, or

TTM. . . )

Secret key: decomposition

(elementary) × (affine) × (elementary) × . . .× (elementary)

= (complicated map) ←− Public key.

Nice idea - basic idea still uncracked, but: a lot of attacks on

implementations (Goubin, Courtois, etc.)

Page 95: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Additive group actionsCharacteristic 0: (k ,+)-action on kn

Example:

t × (x , y , z) −→ (x + ty +t2 + t

2z , y + tz , z)

(1× (x , y , z) −→ (x + y + z , y + z , z))

Is the same as:

t × (x , y , z) −→ (exp(tD)(x), exp(tD)(y), exp(tD)(z))

where

D := (y +1

2z)∂

∂x+ z

∂y.

(a locally nilpotent derivation)

Page 96: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Additive group actionsCharacteristic 0: (k ,+)-action on kn

Example:

t × (x , y , z) −→ (x + ty +t2 + t

2z , y + tz , z)

(1× (x , y , z) −→ (x + y + z , y + z , z))

Is the same as:

t × (x , y , z) −→ (exp(tD)(x), exp(tD)(y), exp(tD)(z))

where

D := (y +1

2z)∂

∂x+ z

∂y.

(a locally nilpotent derivation)

Page 97: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Additive group actionsCharacteristic 0: (k ,+)-action on kn

Example:

t × (x , y , z) −→ (x + ty +t2 + t

2z , y + tz , z)

(1× (x , y , z) −→ (x + y + z , y + z , z))

Is the same as:

t × (x , y , z) −→ (exp(tD)(x), exp(tD)(y), exp(tD)(z))

where

D := (y +1

2z)∂

∂x+ z

∂y.

(a locally nilpotent derivation)

Page 98: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Additive group actions

Characteristic p: (k ,+)-action on kn

Example:

t × (x , y , z) −→ (F1(t, x , y , z),F2(t, x , y , z),F3(t, x , y , z))

Is the same as:

t × (x , y , z) −→ (exp(tD)(x), exp(tD)(y), exp(tD)(z))

where

D

(is a locally finite iterative higher derivation)

Page 99: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Additive group actions char. p: problems

Characteristic 2: (k ,+)-action on kn

Example:

t × (x , y , z) −→ (x + ty +t2 + t

2z , y + tz , z)

is NOT a (k ,+) action! In particular,

(x + y + z , y + z , z)

is not the exponent of a locally finite iterative higher

derivation. Any k-action has order p !

Page 100: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Additive group actions char. p: solution

t × (x , y , z) −→ (x + ty +t2 + t

2z , y + tz , z)

Do not consider F2-actions but consider Z-actions!

Theorem: If f (x) ∈ Q[x ] such that f (Z) ⊆ Z then

f ∈ Z[(

x

n

); n ∈ N

].

Theorem: If f (x) ∈ Q[x ] such that f (Zp) ⊆ Zp then

f ∈ Z[(

x

pn

); n ∈ N

].

Corollary: If f (x) ∈ Q[x ] such that f mod p makes sense,

then

f ∈ Z[(

x

pn

); n ∈ N

].

Page 101: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Additive group actions char. p: solution

t × (x , y , z) −→ (x + ty +t2 + t

2z , y + tz , z)

Do not consider F2-actions but consider Z-actions!

Theorem: If f (x) ∈ Q[x ] such that f (Z) ⊆ Z then

f ∈ Z[(

x

n

); n ∈ N

].

Theorem: If f (x) ∈ Q[x ] such that f (Zp) ⊆ Zp then

f ∈ Z[(

x

pn

); n ∈ N

].

Corollary: If f (x) ∈ Q[x ] such that f mod p makes sense,

then

f ∈ Z[(

x

pn

); n ∈ N

].

Page 102: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Additive group actions char. p: solution

t × (x , y , z) −→ (x + ty +t2 + t

2z , y + tz , z)

Do not consider F2-actions but consider Z-actions!

Theorem: If f (x) ∈ Q[x ] such that f (Z) ⊆ Z then

f ∈ Z[(

x

n

); n ∈ N

].

Theorem: If f (x) ∈ Q[x ] such that f (Zp) ⊆ Zp then

f ∈ Z[(

x

pn

); n ∈ N

].

Corollary: If f (x) ∈ Q[x ] such that f mod p makes sense,

then

f ∈ Z[(

x

pn

); n ∈ N

].

Page 103: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Additive group actions char. p: solution

t × (x , y , z) −→ (x + ty +t2 + t

2z , y + tz , z)

Do not consider F2-actions but consider Z-actions!

Theorem: If f (x) ∈ Q[x ] such that f (Z) ⊆ Z then

f ∈ Z[(

x

n

); n ∈ N

].

Theorem: If f (x) ∈ Q[x ] such that f (Zp) ⊆ Zp then

f ∈ Z[(

x

pn

); n ∈ N

].

Corollary: If f (x) ∈ Q[x ] such that f mod p makes sense,

then

f ∈ Z[(

x

pn

); n ∈ N

].

Page 104: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Additive group actions char. p: solution

t × (x , y , z) −→ (x + ty +t2 + t

2z , y + tz , z)

Do not consider F2-actions but consider Z-actions!

Theorem: If f (x) ∈ Q[x ] such that f (Z) ⊆ Z then

f ∈ Z[(

x

n

); n ∈ N

].

Theorem: If f (x) ∈ Q[x ] such that f (Zp) ⊆ Zp then

f ∈ Z[(

x

pn

); n ∈ N

].

Corollary: If f (x) ∈ Q[x ] such that f mod p makes sense,

then

f ∈ Z[(

x

pn

); n ∈ N

].

Page 105: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Additive group actions char. p: solution

Char= 0: (x + ty + t2+t2

z , y + tz , z) ∈ k[t][x , y , z ]

Char= 2: (x + ty + (Q1 + t)z , y + tz , z) ∈ k[t,Q1][x , y , z ]

where Q1 :=(t2

).

In general:

R := k[Qi ; i ∈ N] where Qi :=

(t

pi

).

F ∈ GAn(R)

Page 106: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Additive group actions char. p: solution

Char= 0: (x + ty + t2+t2

z , y + tz , z) ∈ k[t][x , y , z ]

Char= 2: (x + ty + (Q1 + t)z , y + tz , z) ∈ k[t,Q1][x , y , z ]

where Q1 :=(t2

).

In general:

R := k[Qi ; i ∈ N] where Qi :=

(t

pi

).

F ∈ GAn(R)

Page 107: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Additive group actions char. p: solution

Char= 0: (x + ty + t2+t2

z , y + tz , z) ∈ k[t][x , y , z ]

Char= 2: (x + ty + (Q1 + t)z , y + tz , z) ∈ k[t,Q1][x , y , z ]

where Q1 :=(t2

).

In general:

R := k[Qi ; i ∈ N] where Qi :=

(t

pi

).

F ∈ GAn(R)

Page 108: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Strictly upper triangular group

Bn(k) := {(x1+f1, . . . , xn+fn ; fi ∈ k[xi+1, . . . , xn]} < GAn(k).

Bn(Fp) := πp(Bn(Fp))

Bn(Fp) < sym(Fnp), #Bn(Fp) = vp(pn!)

Bn(Fp) is p-sylow subgroup of sym(Fnp) !

(x1 + f1, . . . , xn + fn) ∈ Bn(Fp)

fi ∈ k[xi+1, . . . , xn]/(xpi+1 − xi+1, . . . , x

pn − xn)

(*)

Page 109: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Strictly upper triangular group

Bn(k) := {(x1+f1, . . . , xn+fn ; fi ∈ k[xi+1, . . . , xn]} < GAn(k).

Bn(Fp) := πp(Bn(Fp))

Bn(Fp) < sym(Fnp), #Bn(Fp) = vp(pn!)

Bn(Fp) is p-sylow subgroup of sym(Fnp) !

(x1 + f1, . . . , xn + fn) ∈ Bn(Fp)

fi ∈ k[xi+1, . . . , xn]/(xpi+1 − xi+1, . . . , x

pn − xn)

(*)

Page 110: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Strictly upper triangular group

Bn(k) := {(x1+f1, . . . , xn+fn ; fi ∈ k[xi+1, . . . , xn]} < GAn(k).

Bn(Fp) := πp(Bn(Fp))

Bn(Fp) < sym(Fnp), #Bn(Fp) = vp(pn!)

Bn(Fp) is p-sylow subgroup of sym(Fnp) !

(x1 + f1, . . . , xn + fn) ∈ Bn(Fp)

fi ∈ k[xi+1, . . . , xn]/(xpi+1 − xi+1, . . . , x

pn − xn)

(*)

Page 111: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Strictly upper triangular group

Bn(k) := {(x1+f1, . . . , xn+fn ; fi ∈ k[xi+1, . . . , xn]} < GAn(k).

Bn(Fp) := πp(Bn(Fp))

Bn(Fp) < sym(Fnp), #Bn(Fp) = vp(pn!)

Bn(Fp) is p-sylow subgroup of sym(Fnp) !

(x1 + f1, . . . , xn + fn) ∈ Bn(Fp)

fi ∈ k[xi+1, . . . , xn]/(xpi+1 − xi+1, . . . , x

pn − xn)

(*)

Page 112: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Strictly upper triangular group

Bn(k) := {(x1+f1, . . . , xn+fn ; fi ∈ k[xi+1, . . . , xn]} < GAn(k).

Bn(Fp) := πp(Bn(Fp))

Bn(Fp) < sym(Fnp), #Bn(Fp) = vp(pn!)

Bn(Fp) is p-sylow subgroup of sym(Fnp) !

(x1 + f1, . . . , xn + fn) ∈ Bn(Fp)

fi ∈ k[xi+1, . . . , xn]/(xpi+1 − xi+1, . . . , x

pn − xn)

(*)

Page 113: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Strictly upper triangular group

Bn(k) := {(x1+f1, . . . , xn+fn ; fi ∈ k[xi+1, . . . , xn]} < GAn(k).

Bn(Fp) := πp(Bn(Fp))

Bn(Fp) < sym(Fnp), #Bn(Fp) = vp(pn!)

Bn(Fp) is p-sylow subgroup of sym(Fnp) !

(x1 + f1, . . . , xn + fn) ∈ Bn(Fp)

fi ∈ k[xi+1, . . . , xn]/(xpi+1 − xi+1, . . . , x

pn − xn)

(*)

Page 114: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Session-keys: Diffie-Hellmann protocol

Alice TheWorld Bob

Secret key K (x) K (x)

Known formula f (x , y)

Random value a b

Send :f (K ,a)−→f (K ,b)←−

Compute f (f (K , b), a) f (f (K , a), b)

Session key S := S :=

I f (f (x , y), z) = f (f (x , z), y)

I f (x , y) gives no info on x if y is random

Page 115: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Session-keys: Diffie-Hellmann protocol

Alice TheWorld Bob

Secret key σ(x) σ(x)

Known formula σy (x)

Random value a b

Send :σa(0)−→σb(0)←−

Compute σaσb(0) σbσa(0)

Session key S := S :=

I f (f (x , y), z) = f (f (x , z), y)

I σa(0) gives no info on σ if a is random

Page 116: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What do we want?

I A criterion to decide when σ ∈ Bn(Fp) is a permutation

of Fnp having one orbit,

I Knowing several session keys gives no/little information

on guessing the next session key hearing σb(0), σa(0),

I To compute σa(v) easily for any a ∈ N, v ∈ Fnp.

Theorem 1.

σ := (x1 + f1, . . . , xn + fn)

has one orbit if and only if for each 1 ≤ i ≤ n: the coefficient

of (xi+1 · · · xn)p−1 of fi is nonzero.

Page 117: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What do we want?

I A criterion to decide when σ ∈ Bn(Fp) is a permutation

of Fnp having one orbit,

I Knowing several session keys gives no/little information

on guessing the next session key hearing σb(0), σa(0),

I To compute σa(v) easily for any a ∈ N, v ∈ Fnp.

Theorem 1.

σ := (x1 + f1, . . . , xn + fn)

has one orbit if and only if for each 1 ≤ i ≤ n: the coefficient

of (xi+1 · · · xn)p−1 of fi is nonzero.

Page 118: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Maps having one orbit onlyTheorem 1.

σ := (x1 + f1, . . . , xn + fn)

has one orbit if and only if for each 1 ≤ i ≤ n: the coefficient

of (xi+1 · · · xn)p−1 of fi is nonzero.

Proofsketch. By induction: case n = 1 is clear. So,

σ = (x1 + f1, σ̃). Consider (c , α) ∈ Fnp.

σ(c , α) = (c + f1(α), σ(α)). So:

σpn−1

(c , α) = (c +

pn−1∑i=1

f1(σ̃iα), α)

To prove:∑pn−1

i=1 f (σ̃iα) = 0 if and only if coefficient of

(xi+1 · · · xn)p−1 of f1 is nonzero.

Page 119: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Maps having one orbit onlyTheorem 1.

σ := (x1 + f1, . . . , xn + fn)

has one orbit if and only if for each 1 ≤ i ≤ n: the coefficient

of (xi+1 · · · xn)p−1 of fi is nonzero.

Proofsketch. By induction: case n = 1 is clear.

So,

σ = (x1 + f1, σ̃). Consider (c , α) ∈ Fnp.

σ(c , α) = (c + f1(α), σ(α)). So:

σpn−1

(c , α) = (c +

pn−1∑i=1

f1(σ̃iα), α)

To prove:∑pn−1

i=1 f (σ̃iα) = 0 if and only if coefficient of

(xi+1 · · · xn)p−1 of f1 is nonzero.

Page 120: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Maps having one orbit onlyTheorem 1.

σ := (x1 + f1, . . . , xn + fn)

has one orbit if and only if for each 1 ≤ i ≤ n: the coefficient

of (xi+1 · · · xn)p−1 of fi is nonzero.

Proofsketch. By induction: case n = 1 is clear. So,

σ = (x1 + f1, σ̃).

Consider (c , α) ∈ Fnp.

σ(c , α) = (c + f1(α), σ(α)). So:

σpn−1

(c , α) = (c +

pn−1∑i=1

f1(σ̃iα), α)

To prove:∑pn−1

i=1 f (σ̃iα) = 0 if and only if coefficient of

(xi+1 · · · xn)p−1 of f1 is nonzero.

Page 121: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Maps having one orbit onlyTheorem 1.

σ := (x1 + f1, . . . , xn + fn)

has one orbit if and only if for each 1 ≤ i ≤ n: the coefficient

of (xi+1 · · · xn)p−1 of fi is nonzero.

Proofsketch. By induction: case n = 1 is clear. So,

σ = (x1 + f1, σ̃). Consider (c , α) ∈ Fnp.

σ(c , α) = (c + f1(α), σ(α)).

So:

σpn−1

(c , α) = (c +

pn−1∑i=1

f1(σ̃iα), α)

To prove:∑pn−1

i=1 f (σ̃iα) = 0 if and only if coefficient of

(xi+1 · · · xn)p−1 of f1 is nonzero.

Page 122: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Maps having one orbit onlyTheorem 1.

σ := (x1 + f1, . . . , xn + fn)

has one orbit if and only if for each 1 ≤ i ≤ n: the coefficient

of (xi+1 · · · xn)p−1 of fi is nonzero.

Proofsketch. By induction: case n = 1 is clear. So,

σ = (x1 + f1, σ̃). Consider (c , α) ∈ Fnp.

σ(c , α) = (c + f1(α), σ(α)). So:

σpn−1

(c , α) = (c +

pn−1∑i=1

f1(σ̃iα), α)

To prove:∑pn−1

i=1 f (σ̃iα) = 0 if and only if coefficient of

(xi+1 · · · xn)p−1 of f1 is nonzero.

Page 123: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Maps having one orbit onlyTheorem 1.

σ := (x1 + f1, . . . , xn + fn)

has one orbit if and only if for each 1 ≤ i ≤ n: the coefficient

of (xi+1 · · · xn)p−1 of fi is nonzero.

Proofsketch. By induction: case n = 1 is clear. So,

σ = (x1 + f1, σ̃). Consider (c , α) ∈ Fnp.

σ(c , α) = (c + f1(α), σ(α)). So:

σpn−1

(c , α) = (c +

pn−1∑i=1

f1(σ̃iα), α)

To prove:∑pn−1

i=1 f (σ̃iα) = 0 if and only if coefficient of

(xi+1 · · · xn)p−1 of f1 is nonzero.

Page 124: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Maps having one orbit onlyTheorem 1.

σ := (x1 + f1, . . . , xn + fn)

has one orbit if and only if for each 1 ≤ i ≤ n: the coefficient

of (xi+1 · · · xn)p−1 of fi is nonzero.

Proofsketch.

σpn−1

(c , α) = (c +

pn−1∑i=1

f1(σ̃iα), α)

LemmaLet M(x1, . . . , xn) = xa1

1 xa22 · · · xan

n where 0 ≤ ai ≤ p − 1 for

each 1 ≤ i ≤ n. Then∑

α∈Fnp

M(α) = 0 unless

a1 = a2 = . . . = an = p − 1, when it is (−1)n.

Page 125: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Maps having one orbit onlyTheorem 1.

σ := (x1 + f1, . . . , xn + fn)

has one orbit if and only if for each 1 ≤ i ≤ n: the coefficient

of (xi+1 · · · xn)p−1 of fi is nonzero.

Proofsketch.

σpn−1

(c , α) = (c +

pn−1∑i=1

f1(σ̃iα), α)

LemmaLet M(x1, . . . , xn) = xa1

1 xa22 · · · xan

n where 0 ≤ ai ≤ p − 1 for

each 1 ≤ i ≤ n. Then∑

α∈Fnp

M(α) = 0 unless

a1 = a2 = . . . = an = p − 1, when it is (−1)n.

Page 126: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What do we want?

I A criterion to decide when σ ∈ Bn(Fp) is a permutation

of Fnp having one orbit,

I Knowing several session keys gives no/little help on

guessing the next session key hearing σa(0), σb(0).

I To compute σm(v) easily for any m ∈ N, v ∈ Fnp.

Page 127: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Some degree of forward security

Situation: cracking m session keys means: adversary knows

m triples σai (0), σbi (0), σai+bi (0)

Claim: less or equal to giving m pairs (σ(vi), vi) where vi is

random.

Now we can prove: If there are logp(m) pairs (σ(vi), vi)

known, then the last [logp(m)] coordinates of a new key are

computable, and the first n− [logp(m)] no information is given

on.

−→ don’t use σ, but use ϕ−1σϕ where ϕ is some easily

computable permutation!

Page 128: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Some degree of forward security

Situation: cracking m session keys means: adversary knows

m triples σai (0), σbi (0), σai+bi (0)

Claim: less or equal to giving m pairs (σ(vi), vi) where vi is

random.

Now we can prove: If there are logp(m) pairs (σ(vi), vi)

known, then the last [logp(m)] coordinates of a new key are

computable, and the first n− [logp(m)] no information is given

on.

−→ don’t use σ, but use ϕ−1σϕ where ϕ is some easily

computable permutation!

Page 129: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Some degree of forward security

Situation: cracking m session keys means: adversary knows

m triples σai (0), σbi (0), σai+bi (0)

Claim: less or equal to giving m pairs (σ(vi), vi) where vi is

random.

Now we can prove: If there are logp(m) pairs (σ(vi), vi)

known, then the last [logp(m)] coordinates of a new key are

computable, and the first n− [logp(m)] no information is given

on.

−→ don’t use σ, but use ϕ−1σϕ where ϕ is some easily

computable permutation!

Page 130: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Some degree of forward security

Situation: cracking m session keys means: adversary knows

m triples σai (0), σbi (0), σai+bi (0)

Claim: less or equal to giving m pairs (σ(vi), vi) where vi is

random.

Now we can prove: If there are logp(m) pairs (σ(vi), vi)

known, then the last [logp(m)] coordinates of a new key are

computable, and the first n− [logp(m)] no information is given

on.

−→ don’t use σ, but use ϕ−1σϕ where ϕ is some easily

computable permutation!

Page 131: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What do we want?

I A criterion to decide when σ ∈ Bn(Fp) is a permutation

of Fnp having one orbit,

I Knowing several session keys gives no/little help on

guessing the next session key hearing σa(0), σb(0).

I To compute σm(v) easily for any m ∈ N, v ∈ Fnp.

Page 132: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Conjugacy classes in Bn(Fp)

Theorem 2. Let

σ := (x1 + f1, . . . , xn + fn)

have only one orbit. Then representants of the conjugacy

classes are the (p − 1)n maps where fi = λi(xi+1 · · · xn)p−1.

Proof is very elegant but too long to elaborate on in this talk.

Page 133: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Conjugacy classes in Bn(Fp)Theorem 2. Let

σ := (x1 + f1, . . . , xn + fn)

have only one orbit. Then representants of the conjugacy

classes are the (p − 1)n maps where fi = λi(xi+1 · · · xn)p−1.

Theorem 3. After that, conjugating by a diagonal linear map

D ∈ GLn(Fp) one can get all of them equivalent!

Hence, any σ ∈ Bn(Fp) having only one orbit can be written as

D−1τ−1∆τD

where τ ∈ Bn(Fp), D linear diagonal, and ∆ is one particular

map you choose in Bn(Fp).

Page 134: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Conjugacy classes in Bn(Fp)Theorem 2. Let

σ := (x1 + f1, . . . , xn + fn)

have only one orbit. Then representants of the conjugacy

classes are the (p − 1)n maps where fi = λi(xi+1 · · · xn)p−1.

Theorem 3. After that, conjugating by a diagonal linear map

D ∈ GLn(Fp) one can get all of them equivalent!

Hence, any σ ∈ Bn(Fp) having only one orbit can be written as

D−1τ−1∆τD

where τ ∈ Bn(Fp), D linear diagonal, and ∆ is one particular

map you choose in Bn(Fp).

Page 135: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What is an easy map ∆?

∆ := (x1 + g1, . . . , xn + gn)

where gi(p − 1, . . . , p − 1) = 1 and gi(α) = 0 for any other

α ∈ Fn−ip .

Then ∆ is very simple:

Let ζ : Fnp −→ Z/pnZ be defined as

ζ(a1, a2, . . . , an) −→ a1 + pa2 + . . . + pn−1an

Then

ζ∆ζ−1(a) = a + 1, a ∈ Z/pnZ

i.e. ∆m is easy to compute! −→ Cryptographic application is

happy!

Page 136: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What is an easy map ∆?

∆ := (x1 + g1, . . . , xn + gn)

where gi(p − 1, . . . , p − 1) = 1 and gi(α) = 0 for any other

α ∈ Fn−ip .

Then ∆ is very simple:

Let ζ : Fnp −→ Z/pnZ be defined as

ζ(a1, a2, . . . , an) −→ a1 + pa2 + . . . + pn−1an

Then

ζ∆ζ−1(a) = a + 1, a ∈ Z/pnZ

i.e. ∆m is easy to compute! −→ Cryptographic application is

happy!

Page 137: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What is an easy map ∆?

∆ := (x1 + g1, . . . , xn + gn)

where gi(p − 1, . . . , p − 1) = 1 and gi(α) = 0 for any other

α ∈ Fn−ip .

Then ∆ is very simple:

Let ζ : Fnp −→ Z/pnZ be defined as

ζ(a1, a2, . . . , an) −→ a1 + pa2 + . . . + pn−1an

Then

ζ∆ζ−1(a) = a + 1, a ∈ Z/pnZ

i.e. ∆m is easy to compute! −→ Cryptographic application is

happy!

Page 138: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

What is an easy map ∆?

∆ := (x1 + g1, . . . , xn + gn)

where gi(p − 1, . . . , p − 1) = 1 and gi(α) = 0 for any other

α ∈ Fn−ip .

Then ∆ is very simple:

Let ζ : Fnp −→ Z/pnZ be defined as

ζ(a1, a2, . . . , an) −→ a1 + pa2 + . . . + pn−1an

Then

ζ∆ζ−1(a) = a + 1, a ∈ Z/pnZ

i.e. ∆m is easy to compute! −→ Cryptographic application is

happy!

Page 139: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Just one more slide/ conclusions:

Polynomial maps over finite fields show promise in

cryptographic applications - they are very natural permutation

maps.

THANK YOU(for enduring 142 .pdf slides. . . )

Page 140: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Just one more slide/ conclusions:

Polynomial maps over finite fields show promise in

cryptographic applications - they are very natural permutation

maps.

THANK YOU(for enduring 142 .pdf slides. . . )

Page 141: Affine algebraic geometry and a symmetric key applicationstefanm/Slides/BremenUni_v08.pdfAffine algebraic geometry and a symmetric key application

Just one more slide/ conclusions:

Polynomial maps over finite fields show promise in

cryptographic applications - they are very natural permutation

maps.

THANK YOU(for enduring 142 .pdf slides. . . )


Recommended