+ All Categories
Home > Documents > AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER...

AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER...

Date post: 20-Jan-2016
Category:
Upload: herbert-nichols
View: 223 times
Download: 0 times
Share this document with a friend
Popular Tags:
52
AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective environmental friendly molecules against plant pathogenic bacteria for reducing Cu" (AFTER-Cu)
Transcript
Page 1: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu AFTER-Cu LIFE (2014-2016)

Carlos García Izquierdo. CEBAS-CSIC

FLORENCE, JUNE 2015FLORENCE, JUNE 2015PARTNER CSIC (CEBAS-CSIC)PARTNER CSIC (CEBAS-CSIC)

Project LIFE12 ENV/IT/000336“Anti-infective environmental friendly

molecules against plant pathogenic bacteria for reducing Cu" (AFTER-Cu)

Page 2: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

Dr. Carlos GarciaDra. Teresa HernándezDr. J. MorenoLda. Mª Dolores CollIng. Carmen ChocanoCarmen MontesinosBlanca GonsalvezFrancisco Tomás

CEBAS-CSIC (AFTER-Cu)CEBAS-CSIC (AFTER-Cu)

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

EXPERIMENTAL GREENHOUSES (SANTOMERA-ABARÁNEXPERIMENTAL GREENHOUSES (SANTOMERA-ABARÁN

Page 3: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

CEBAS-CSIC EXPERIMENT (AFTER-Cu Project)CEBAS-CSIC EXPERIMENT (AFTER-Cu Project)

““EFFECT OF EFFECT OF COPPERCOPPER ON ON SOIL-PLANT SYSTEMSSOIL-PLANT SYSTEMS (DIFFERENT CROPS: kiwi, lemon, olive)(DIFFERENT CROPS: kiwi, lemon, olive)

OBJECTIVEOBJECTIVE: to demonstrate the environmentally impact of COOPER on to demonstrate the environmentally impact of COOPER on SOIL-PLANT SYSTEMSSOIL-PLANT SYSTEMS. It will be demonstrated at field level and on . It will be demonstrated at field level and on different crops different crops (kiwi, lemon and olive)(kiwi, lemon and olive)B1: B1: Demostration of the use of Cu for the control of bcterial diseases of plants important for the Demostration of the use of Cu for the control of bcterial diseases of plants important for the EUEU

C1: C1: Monitoring on the environmental impact of Cu for the crop defence against bacterial Monitoring on the environmental impact of Cu for the crop defence against bacterial phytopathogensphytopathogens

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

January to June 2014January to June 2014(six months)(six months)

Page 4: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

ON SOIL BIOLOGICAL AND BIOCHEMICAL PROPERTIES, CU ADDITION TO THE SOIL SHOWED A NEGATIVE ON SOIL BIOLOGICAL AND BIOCHEMICAL PROPERTIES, CU ADDITION TO THE SOIL SHOWED A NEGATIVE EFFECTEFFECT:-- Soil enzymes, particularly hydrolases implied in the N, C and P cycles (urease, b-glucosidase and phosphatase activities) showed a negative effect when Cu SO4 is added to the soil. This negative effect is observed only in the first days of experiment (15 days of application). It could be indicative that Cu can influence on microbial population which can synthetized the enzyme; but when Cu is long-term in the soil, this heavy metal could be complexed by organic or mineral colloid and it decreases your toxicity.For the dehydrogenase activity (endocellular enzyme), the negative effect on this enzyme by Cu is more weekly that on hydrolases. At initial point of our experiment, can be observed a little negative effect of Cu on soil dehydrogenase activity.

-- Soil respiration-- Soil respiration: at T15 a negative effect of Cu on soil microorganisms is observed particularly at higher doses; however, at the end of the experiment (T60), all Cu doses showed an increase on soil microbial respiration. It can be due to the possible complex formed in the soil with Cu, and there is a decrease of toxicity. It was already observed with some soil enzymes.

-- PLFAs analysis showed that at initial time (T0), the Bacteria/Fungi ratio decreased on control soil. This effect was not showed at the end of experiment (T60). It is indicative that the Cu changes your toxicity with the time. And we can indicate that Cu  As main Conclusion in this study we can say that the use of Cu in the soil should be avoid; a As main Conclusion in this study we can say that the use of Cu in the soil should be avoid; a negative effect of Cu on soil microbial populations has been showed. In addition, Cu is negative effect of Cu on soil microbial populations has been showed. In addition, Cu is accumulative in the soil, and is possible that the quantity of Cu can increase with the time. For accumulative in the soil, and is possible that the quantity of Cu can increase with the time. For this reason, new alternatives for not using CuSOthis reason, new alternatives for not using CuSO44 as fungicide and bactericide should be as fungicide and bactericide should be proposed. AFTER-Cu Project is in this way. proposed. AFTER-Cu Project is in this way.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)ACTIVITIES B1 and C1 (at lab level: microcosm)ACTIVITIES B1 and C1 (at lab level: microcosm)

Page 5: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

11 K Ps 5+ CuSO4-K Ps 5+ CuSO4- 2121 O Ps 6+ CuSO4+O Ps 6+ CuSO4+ 4141 K Ps 4+ CuSO4-K Ps 4+ CuSO4-

22 O Ps 10_ CONTROLO Ps 10_ CONTROL 2222 K Ps 6+ CuSO4-K Ps 6+ CuSO4- 4242 K Ps 8+ CuSO4-K Ps 8+ CuSO4-

33 O Ps 3+ CuSO4+O Ps 3+ CuSO4+ 2323 O Ps 8-CuSO4-O Ps 8-CuSO4- 4343 K Ps 2+ CuSO4-K Ps 2+ CuSO4-

44 K Ps 6+ CuSO4+K Ps 6+ CuSO4+ 2424 K Ps 8+ CuSO4+K Ps 8+ CuSO4+ 4444 O Ps 7-CuSO4-O Ps 7-CuSO4-

55 K Ps 7+ CuSO4+K Ps 7+ CuSO4+ 2525 K Ps 3+ CuSO4+K Ps 3+ CuSO4+ 4545 K Ps 10+ CuSO4+K Ps 10+ CuSO4+

66 K Ps 9+ CuSO4+K Ps 9+ CuSO4+ 2626 K Ps 5+ CuSO4+K Ps 5+ CuSO4+ 4646 K Ps 1+ CuSO4+K Ps 1+ CuSO4+

77 C Ps 4_ CONTROLC Ps 4_ CONTROL 2727 K Ps 4+ CuSO4+K Ps 4+ CuSO4+ 4747 K Ps 2+ CuSO4+K Ps 2+ CuSO4+

88 C Ps 6_ CONTROLC Ps 6_ CONTROL 2828 C Ps 2_CONTROLC Ps 2_CONTROL 4848 C Ps 1+ CuSO4-C Ps 1+ CuSO4-

99 C Ps 5_CONTROLC Ps 5_CONTROL 2929 C Ps9_CONTROLC Ps9_CONTROL 4949 C Ps 3+ CuSO4-C Ps 3+ CuSO4-

1010 O Ps 2_CONTROLO Ps 2_CONTROL 3030 O Ps 6+ CuSO4+O Ps 6+ CuSO4+ 5050 C Ps 10+ CuSO4-C Ps 10+ CuSO4-

1111 O Ps 1_CONTROLO Ps 1_CONTROL 3131 O Ps 5+ CuSO4+O Ps 5+ CuSO4+ 5151 C Ps 7+CuSO4-C Ps 7+CuSO4-

1212 O Ps 4_CONTROLO Ps 4_CONTROL 3232 O Ps 3+CuSO4-O Ps 3+CuSO4- 5252 C Ps 8+CuSO4-C Ps 8+CuSO4-

1313 O Ps 9_CONTROLO Ps 9_CONTROL 3333 K Ps 10_CONTROLK Ps 10_CONTROL 5353 K Ps 7_CONTROLK Ps 7_CONTROL

1414 KPs 1_ CONTROLKPs 1_ CONTROL 3434 K Ps 9_CONTROLK Ps 9_CONTROL 5454 K Ps 3_CONTROLK Ps 3_CONTROL

1515 O Ps 10+ CuSO4+O Ps 10+ CuSO4+ 3535 O Ps 5- CuSO4+O Ps 5- CuSO4+ 5555 O Ps 2+CuSO4-O Ps 2+CuSO4-

1616 O Ps 7+ CuSO4+O Ps 7+ CuSO4+ 3636 O Ps 9- CuSo4+O Ps 9- CuSo4+ 5656 O Ps 1+CuSO4-O Ps 1+CuSO4-

1717 O Ps 4+ CuSO4+O Ps 4+ CuSO4+ 3737 C Ps 7+ CuSO4+C Ps 7+ CuSO4+ 5757 C Ps 1+ CuSO4+C Ps 1+ CuSO4+

1818 O Ps 8+ CuSO4+O Ps 8+ CuSO4+ 3838 C Ps 2+ CuSO4+C Ps 2+ CuSO4+ 5858 C Ps 4+ CuSO4+C Ps 4+ CuSO4+

1919 C Ps 9+ CuSO4+C Ps 9+ CuSO4+ 3939 C Ps 3+ CuSO4+C Ps 3+ CuSO4+ 5959 C Ps 5+ CuSO4+C Ps 5+ CuSO4+

2020 C Ps 8+ CuSO4+C Ps 8+ CuSO4+ 4040 C Ps 6+ CuSO4+C Ps 6+ CuSO4+ 6060 C Ps 10+ CuSO4+C Ps 10+ CuSO4+

K= kiwifruit K= kiwifruit PsPs++= infected plant with pseudomone= infected plant with pseudomoneL= lemon L= lemon PsPs--= not infected plant with pseudomone = not infected plant with pseudomone O= Olive O= Olive CuSOCuSO4+4+= plant/soil treated with CuSO= plant/soil treated with CuSO4+4+ at 12k/Ha/year at 12k/Ha/yearControl= distilled water Control= distilled water CuSOCuSO4-4-= plant/soil not treated with CuSO= plant/soil not treated with CuSO4+4+ at 12k/Ha/year at 12k/Ha/year

AFTER-Cu (LIFE)AFTER-Cu (LIFE)GREENHOUSE PLANTS EXPERIMENT GREENHOUSE PLANTS EXPERIMENT

ACTIVITIES B1 and C1ACTIVITIES B1 and C1

Page 6: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

CONTROLCONTROL Ps+ CuSO4-Ps+ CuSO4- Ps+ CuSO4+Ps+ CuSO4+

P (g/100g)P (g/100g) 0,050a0,050a 0,051 a0,051 a 0,054 a0,054 a

K (g/100g)K (g/100g) 0,623 a0,623 a 0,643 a0,643 a 0,715 a0,715 a

Ca (g/100g)Ca (g/100g) 9,595 a9,595 a 11,280 a11,280 a 12,758 a12,758 a

S (g/100g)S (g/100g) 0,281 a0,281 a 0,311 a0,311 a 0,354 a0,354 a

Mg (g/100g)Mg (g/100g) 0,637 a0,637 a 0.716 a0.716 a 0,760 a0,760 a

Na (g/100g)Na (g/100g) 0,130 a0,130 a 0,146 a0,146 a 0,162 a0,162 a

Fe (mg/Kg)Fe (mg/Kg) 788,97 a788,97 a 9281,05 a9281,05 a 9484,84 a9484,84 a

Mn (mg/Kg)Mn (mg/Kg) 290,130 a290,130 a 325,20 a325,20 a 344,83 a344,83 a

Cu (mg/Kg)Cu (mg/Kg) 25.94 a25.94 a 24.,72 a24.,72 a 63.95 b63.95 bCd (mg/Kg)Cd (mg/Kg) 0,224 a0,224 a 0,246 a0,246 a 0,268 a0,268 a

Zn (mg/Kg)Zn (mg/Kg) 30,589 a30,589 a 34,331 a34,331 a 35,893 a35,893 a

Pb (mg/Kg)Pb (mg/Kg) 10,538 a10,538 a 12,256 ab12,256 ab 13,364 b13,364 b

Cr (mg/Kg)Cr (mg/Kg) 18,662 a18,662 a 21,485 a21,485 a 22,84422,844

Ni (mg/Kg)Ni (mg/Kg) 10,195 a10,195 a 12,184 a12,184 a 12,660 a12,660 a

For each parameter, different letters indicate significant differences between treatments according to Tukey test (p<0,05).For each parameter, different letters indicate significant differences between treatments according to Tukey test (p<0,05).

Kiwifruit_ T6 monthsKiwifruit_ T6 months

Concentrations of macro- and micronutrients and heavy metals in kiwi soils (dwt)Concentrations of macro- and micronutrients and heavy metals in kiwi soils (dwt)

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

Risk using CuSORisk using CuSO44 Soils showed > Cu concentration when CuSOSoils showed > Cu concentration when CuSO44 was used as bactericide. was used as bactericide. It could be negative on soil enzyme, It could be negative on soil enzyme, reducing the production of enzymes reducing the production of enzymes through its toxic effect on soil microflorathrough its toxic effect on soil microflora

ACTIVITIES B1 and C1ACTIVITIES B1 and C1

Page 7: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

  CONTROL Ps+ CuSO4- Ps+ CuSO4+

P (g/100g)P (g/100g) 0,146 a0,146 a 0,220 a0,220 a 0,205 a0,205 a

K (g/100g)K (g/100g) 2,686 a2,686 a 3,535 a3,535 a 3,302 a3,302 a

Ca (g/100g)Ca (g/100g) 1,116 a1,116 a 2,130 a2,130 a 1,932 a1,932 a

S (g/100g)S (g/100g) 0,438 a0,438 a 0,630 a0,630 a 0,585 a0,585 a

Mg (g/100g)Mg (g/100g) 0,244 a0,244 a 0,422 b0,422 b 0,380 b0,380 b

Na (g/100g)Na (g/100g) 0,072 a0,072 a 0,195 a0,195 a 0,102 a0,102 a

Fe (mg/Kg)Fe (mg/Kg) 189,336 a189,336 a 1461,815 a1461,815 a 1136,97 a1136,97 a

Mn (mg/Kg)Mn (mg/Kg) 43,924 a43,924 a 74,172 a74,172 a 94,797 a94,797 a

Cu (mg/Kg)Cu (mg/Kg) 8,582 a8,582 a 13,182 a13,182 a 25.62 b25.62 bCd (mg/Kg)Cd (mg/Kg) <0,1 a<0,1 a <0,1 a<0,1 a <0,1 a<0,1 a

Zn (mg/Kg)Zn (mg/Kg) 34,980 a34,980 a 66,585 a66,585 a 86,705 a86,705 a

Pb (mg/Kg)Pb (mg/Kg) 6,190 a6,190 a 10,392 a10,392 a 14,237 a14,237 a

Cr (mg/Kg)Cr (mg/Kg) 1,116 a1,116 a 3,247 a3,247 a 3,987 a3,987 a

Ni (mg/Kg)Ni (mg/Kg) 0,586 a0,586 a 1,800 a1,800 a 2,092 a2,092 a

For each parameter, different letters indicate significant differences between treatments according to Tukey test (p<0,05).For each parameter, different letters indicate significant differences between treatments according to Tukey test (p<0,05).

Concentrations of macro- and micronutrients and heavy metals in kiwi leaves (dwt)Concentrations of macro- and micronutrients and heavy metals in kiwi leaves (dwt)

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

Risk using CuSORisk using CuSO44. . Plants where CuSOPlants where CuSO44 was used as bactericide showed high was used as bactericide showed high quantity of Cu in leaves. It could be negative for fruits and quantity of Cu in leaves. It could be negative for fruits and alsoalso for human health for human health

ACTIVITIES B1 and C1ACTIVITIES B1 and C1

Page 8: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

KIWI CONTROL ( CuSO4- Ps-) Kiwi Ps+ CuSO4

- Kiwi Ps+ CuSO4+

T_6 months (27/10/2014)T_6 months (27/10/2014)T_6 months (27/10/2014)T_6 months (27/10/2014)

  

KIWI CONTROL KIWI CONTROL

( CuSO( CuSO44- - PsPs--))

Kiwi PsKiwi Ps+ + CuSOCuSO44-- Kiwi PsKiwi Ps+ + CuSOCuSO44

++

T_0 (07/05/2014T_0 (07/05/2014

n= 10n= 10 n=10n=10 n=10n=10T_6 months (27/10/2014)T_6 months (27/10/2014)

n= 10n= 10 n=3n=3 n=8n=8T9 monthsT9 months

n= 7n= 7 n=0n=0 n=4n=4

Survival kiwi plants Survival kiwi plants

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

Kiwi crop was affected by Kiwi crop was affected by bacteria inoculation.bacteria inoculation.CuSOCuSO4 4 seems to have aseems to have apossitive effect .possitive effect .

KIWIKIWI

ACTIVITIES B1 and C1ACTIVITIES B1 and C1

Page 9: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

CONCLUSIONS TO THE EXPERIMENT (Activities B1 and C1)CONCLUSIONS TO THE EXPERIMENT (Activities B1 and C1)1)1) Cu is a heavy metal which can cause some problems on soil quality Cu is a heavy metal which can cause some problems on soil quality(soil enzyme activities, microbial population, soil contamination,…) (soil enzyme activities, microbial population, soil contamination,…) Soils where CuSOSoils where CuSO44 is used, Cu accumulation was found. is used, Cu accumulation was found.

2)2) Our study indicates that Cu could move Our study indicates that Cu could move from soil to plant from soil to plant (leaves). (leaves).

3)3) The use of CuSO The use of CuSO44 as bactericide should be considered as a risk to as bactericide should be considered as a risk to the environmentthe environment

4)4) Results obtained in the AFTER-Cu Project showed that kiwi is Results obtained in the AFTER-Cu Project showed that kiwi isthe crop more affected by bacteria, and where the use of CuSO4the crop more affected by bacteria, and where the use of CuSO4seems be more effective , seems be more effective ,

January to June 2014 (six months)January to June 2014 (six months)

Page 10: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

CEBAS-CSIC EXPERIMENT (AFTER-Cu Project)CEBAS-CSIC EXPERIMENT (AFTER-Cu Project)

““EFFECT OF EFFECT OF PEPTIDESPEPTIDES ON ON SOIL-PLANT SYSTEMS SOIL-PLANT SYSTEMS (DIFFERENT CROPS: kiwi, lemon, olive)(DIFFERENT CROPS: kiwi, lemon, olive)

OBJECTIVEOBJECTIVE: C2. Monitoring of the in vitro peptides at laboratory levelC2. Monitoring of the in vitro peptides at laboratory level on different on different crops crops (kiwi, lemon and olive)(kiwi, lemon and olive)B5/C3: Collaboration. Demostration and Monitoring of the absence of B5/C3: Collaboration. Demostration and Monitoring of the absence of side effects for the PEPTIDES on soil microorganismsside effects for the PEPTIDES on soil microorganismsB2: (collaboration): to demonstrate the changes induced by PESTIDESB2: (collaboration): to demonstrate the changes induced by PESTIDES

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

C2 and B5/C3/B2: C2 and B5/C3/B2: April 2014-April 2015April 2014-April 2015

Page 11: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

ReferencesReferences DescriptionDescription

Control Control Plant not treated. Plant not treated.

Bac Bac Plant treated with Pseudomone spp.Plant treated with Pseudomone spp.

P1_30P1_30 Plants treated with Pseudomone+ antimicrobial peptide P1 (AP17) 30 µMPlants treated with Pseudomone+ antimicrobial peptide P1 (AP17) 30 µM

P1_100P1_100 Plants treated with Pseudomone+ antimicrobial peptide P1 (Ap17) 100 µMPlants treated with Pseudomone+ antimicrobial peptide P1 (Ap17) 100 µM

P2_30P2_30 Plants treated with Pseudomone+ antimicrobial peptide P2 (Li 27) 30 µMPlants treated with Pseudomone+ antimicrobial peptide P2 (Li 27) 30 µM

P2_100P2_100 Plants treated with Pseudomone+ antimicrobial peptide P2 (Li 27)100 µMPlants treated with Pseudomone+ antimicrobial peptide P2 (Li 27)100 µM

Peptide assays Peptide assays We have performed a co-inoculation assay (Pseudomone spp.+peptide) in kiwi, lemon and olive plants in order to verify the antimicrobial capacity of two different peptides known that P1: AP17 and P2: Li 27 P1: AP17 and P2: Li 27 at two concentrations (30 and 100 µM).For this, were prepared the bacterial solutions in sterile physiological solution and were added the peptide in the corresponding quantity to the final concentration in plant 30 and 100 µM.

Each plant was infected with the corresponding Pseudomone sp:Each plant was infected with the corresponding Pseudomone sp:Kiwi: Kiwi: P. syringae pv. actinidaeP. syringae pv. actinidaeLemon: P. syringae pv. syringaeLemon: P. syringae pv. syringaeOlive: Olive: P. savastanoi pv. NeriiP. savastanoi pv. Nerii

This final solution (bacteria+peptide) was sprayed on kiwi and lemon plants and in the olive case was incorporated to plant through stems wounds. The different references are showed in the following table:

Peptide assays Peptide assays We have performed a co-inoculation assay (Pseudomone spp.+peptide) in kiwi, lemon and olive plants in order to verify the antimicrobial capacity of two different peptides known that P1: AP17 and P2: Li 27 P1: AP17 and P2: Li 27 at two concentrations (30 and 100 µM).For this, were prepared the bacterial solutions in sterile physiological solution and were added the peptide in the corresponding quantity to the final concentration in plant 30 and 100 µM.

Each plant was infected with the corresponding Pseudomone sp:Each plant was infected with the corresponding Pseudomone sp:Kiwi: Kiwi: P. syringae pv. actinidaeP. syringae pv. actinidaeLemon: P. syringae pv. syringaeLemon: P. syringae pv. syringaeOlive: Olive: P. savastanoi pv. NeriiP. savastanoi pv. Nerii

This final solution (bacteria+peptide) was sprayed on kiwi and lemon plants and in the olive case was incorporated to plant through stems wounds. The different references are showed in the following table:

T_0 (before treatment) T_1 (after symptom onset)ICP (soil) ICP (soil and leaves)

microrespiration microrespirationSoluble C and Nitrogen Soluble C and Nitrogen

PLFAs PLFAs

AFTER-Cu (LIFE)AFTER-Cu (LIFE)ACTIVITIES C2; collaboration C3 and B5)ACTIVITIES C2; collaboration C3 and B5)

Page 12: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

Bacteria culture: Bacteria culture: Kiwi: P. syringae pv. Actinidae. Lemon: P. syringae pv. syringaeOlive: P. savastanoi pv. NeriiPeptidesPeptides: P1: AP17 P1: AP17 and and P2: Li 27 , produced by P2: Li 27 , produced by Florence University (Dr. S.Tegli)Florence University (Dr. S.Tegli)

Page 13: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

Kiwi control T0 Kiwi P1_30 T0 Kiwi P1_100 T0 Kiwi P2_30 T0 Kiwi P2 100 T_0

))

AFTER-Cu (LIFE)AFTER-Cu (LIFE)LEMON AND KIWI TREE (Peptide assay)LEMON AND KIWI TREE (Peptide assay)

ACTIVITIES C2ACTIVITIES C2

Page 14: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

Micro and macronutrients Micro and macronutrients was analyzed by ICP-OES (Inductively was analyzed by ICP-OES (Inductively coupled plasma-optical emision spectrometer) cuantitative coupled plasma-optical emision spectrometer) cuantitative determination, is an elemental analysis technic determination, is an elemental analysis technic (IONOMIC SERVICE).(IONOMIC SERVICE).

The The “Ionoma” “Ionoma” of soil is important to know the equilibrium of the of soil is important to know the equilibrium of the elements in the soil. It can be indicative of the influence of peptides on elements in the soil. It can be indicative of the influence of peptides on some macro and micro elements found in soils.some macro and micro elements found in soils.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

ICP-OES EQUIPMENTICP-OES EQUIPMENT

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

Page 15: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

CONTROLCONTROL BacBac P1_30P1_30 P1_100P1_100 P2_30P2_30 P2_100P2_100

P (g/100g)P (g/100g) 0,073 a0,073 a 0,070 a0,070 a 0,075 a0,075 a 0,066 a0,066 a 0,072 a0,072 a 0,064 a0,064 a

K (g/100g)K (g/100g) 0,590 a0,590 a 0,650 a0,650 a 0,641 a0,641 a 0,605 a0,605 a 0,640 a0,640 a 0,586 a0,586 a

Ca (g/100g)Ca (g/100g) 15,593 a15,593 a 17,056 ab17,056 ab 17,368 ab17,368 ab 17,353 ab17,353 ab 17,590 ab17,590 ab 18,390 b18,390 b

S (g/100g)S (g/100g) 0,210 a0,210 a 0,232 a0,232 a 0,240 a0,240 a 0,205 a0,205 a 0,216 a0,216 a 0,188 a0,188 a

Mg (g/100g)Mg (g/100g) 2,123 a2,123 a 2,322 a2,322 a 2,338 a2,338 a 2,295 a2,295 a 2,322 a2,322 a 2,382 a2,382 a

Na (g/100g)Na (g/100g) 0,070 a0,070 a 0,062 a0,062 a 0,068 a0,068 a 0,060 a0,060 a 0,060 a0,060 a 0,062 a0,062 a

Fe (mg/Kg)Fe (mg/Kg) 7282,38 a7282,38 a 7561,67 a7561,67 a 7703,34 a7703,34 a 7343,85 a7343,85 a 7468,72 a7468,72 a 6926,93 a6926,93 a

Mn (mg/Kg)Mn (mg/Kg) 252,34 a252,34 a 269,17 a269,17 a 271,95 a271,95 a 258,38 a258,38 a 265,46 a265,46 a 254,20 a254,20 a

Cu (mg/Kg)Cu (mg/Kg) 19,903 a19,903 a 17,342 a17,342 a 18,126 a18,126 a 19,150 a19,150 a 17,250 a17,250 a 18,554 a18,554 a

Cd (mg/Kg)Cd (mg/Kg) 0,193 a0,193 a 0,220 a0,220 a 0,215 a0,215 a 0,255 a0,255 a 0,228 a0,228 a 0,224 a0,224 a

Zn (mg/Kg)Zn (mg/Kg) 30,380 a30,380 a 29,820 a29,820 a 30,775 a30,775 a 30,261 a30,261 a 30,830 a30,830 a 29,876 a29,876 a

Pb (mg/Kg)Pb (mg/Kg) 12,486 a12,486 a 13,000 a13,000 a 49,820 b49,820 b 12,851 a12,851 a 13,050 a13,050 a 13,060 a13,060 a

Cr (mg/Kg)Cr (mg/Kg) 19,660 a19,660 a 20,728 a20,728 a 20,901 a20,901 a 21,296 a21,296 a 20,826 a20,826 a 19,684 a19,684 a

Ni (mg/Kg)Ni (mg/Kg) 10,403 a10,403 a 10,726 a10,726 a 10,661 a10,661 a 10,666 a10,666 a 10,790 a10,790 a 10,828 a10,828 a

For each parameter, different letters indicate significant differences between treatments according to Tukey test (p<0,05).For each parameter, different letters indicate significant differences between treatments according to Tukey test (p<0,05).

AFTER-Cu (LIFE)AFTER-Cu (LIFE)Concentrations of macro- and micronutrients and heavy metals in kiwi crop soil (dwt): Concentrations of macro- and micronutrients and heavy metals in kiwi crop soil (dwt):

Initial analysisInitial analysis

Bacteria + peptide inoculation. Our results showed no influence of peptides ON IONOMA Bacteria + peptide inoculation. Our results showed no influence of peptides ON IONOMA SOIL. Only for some elements (Ca) we could indicate an increase with peptides addition; It SOIL. Only for some elements (Ca) we could indicate an increase with peptides addition; It could be due to a possitive effect on element absorptioncould be due to a possitive effect on element absorption

KIWIKIWI

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

Page 16: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)Concentrations of macro- and micronutrients and heavy metals in kiwi crop soil (dwt): Concentrations of macro- and micronutrients and heavy metals in kiwi crop soil (dwt):

final analysisfinal analysis

KIWIKIWI

Table 4. Concentrations of macro- and micronutrients and heavy metals in kiwi Table 4. Concentrations of macro- and micronutrients and heavy metals in kiwi peptide soil (dwt)peptide soil (dwt)

CONTROLCONTROL BacBac P1_30P1_30 P1_100P1_100 P2_30P2_30 P2_100P2_100

P (g/100g)P (g/100g) 0,056 a0,056 a 0,063 a0,063 a 0,063 a0,063 a 0,057 a0,057 a 0,060 a0,060 a 0,052 a0,052 a

K (g/100g)K (g/100g) 0,0,546 a546 a 0,596 a0,596 a 0,620 a0,620 a 0,585 a0,585 a 0,566 a0,566 a 0,057 a0,057 a

Ca (g/100g)Ca (g/100g) 9,85 a9,85 a 10,52 a10,52 a 10,13 a10,13 a 10,32 a10,32 a 9,69 a9,69 a 10,72 a10,72 a

S (g/100g)S (g/100g) 0,190 a0,190 a 0,226 a0,226 a 0,216 a0,216 a 0,197 a0,197 a 0,186 a0,186 a 0,187 a0,187 a

Mg (g/100g)Mg (g/100g) 1,616 a1,616 a 1,683 a1,683 a 1,726 a1,726 a 1,682 a1,682 a 1,870 a1,870 a 1,717 a1,717 a

Na (g/100g)Na (g/100g) 0,070 ab0,070 ab 0,096 c0,096 c 0,083 bc0,083 bc 0,072 ab0,072 ab 0,060 a0,060 a 0,070 ab0,070 ab

Fe (mg/Kg)Fe (mg/Kg) 7059,8 a7059,8 a 7645,8 a7645,8 a 7866,0 a7866,0 a 7754,8 a7754,8 a 7641,3 a7641,3 a 7626,0 a7626,0 a

Mn (mg/Kg)Mn (mg/Kg) 234,5 a234,5 a 247,9 a247,9 a 254,6 a254,6 a 248,5 a248,5 a 245,0 a245,0 a 244,4 a244,4 a

Cu (mg/Kg)Cu (mg/Kg) 15,5 a15,5 a 16,0 a16,0 a 15,8 a15,8 a 15,9 a15,9 a 15,2 a15,2 a 16,7 a16,7 a

Cd (mg/Kg)Cd (mg/Kg) 0,260 a0,260 a 0,260 a0,260 a 0,270 a0,270 a 0,260 a0,260 a 0,263 a0,263 a 0,267 a0,267 a

Zn (mg/Kg)Zn (mg/Kg) 21,5 a21,5 a 22,9 a22,9 a 22,3 a22,3 a 22,0 a22,0 a 23,5 a23,5 a 21,7 a21,7 a

Pb (mg/Kg)Pb (mg/Kg) 9,5 a9,5 a 10,2 a10,2 a 10,4 a10,4 a 10,2 a10,2 a 10,0 a10,0 a 11,4 a11,4 a

Cr (mg/Kg)Cr (mg/Kg) 17,0 a17,0 a 18,3 a18,3 a 18,7 a18,7 a 18,5 a18,5 a 17,9 a17,9 a 18,4 a18,4 a

Ni (mg/Kg)Ni (mg/Kg) 7,29 a7,29 a 7,70 a7,70 a 7,68 a7,68 a 7,71 a7,71 a 7,24 a7,24 a 8,00 a8,00 a

For each parameter, different letters indicate significant differences between treatments For each parameter, different letters indicate significant differences between treatments according to Tukey test (p<0,05),according to Tukey test (p<0,05),

No differences on No differences on IONOMA soilIONOMA soil were detected at end of the experiment were detected at end of the experimentACTIVITIES C2ACTIVITIES C2

Page 17: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

Microbial biomass: PhosphoLipid Fatty Acids (PLFAs)

Bligh & Dyer, 1959Frostegard et al., 1993

Bligh & Dyer, 1959Frostegard et al., 1993

PhosphoLipid Fatty Acids (PLFAs)

Microbial biomass C and N (Powlson et al., 1987)ATP, Ergosterol, etc.

Page 18: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

PLFAs EXTRACTION AND DETERMINATIONPLFAs EXTRACTION AND DETERMINATION

PLFAs are only found in intact cells and certain PLFAs are only found in intact cells and certain groups of microorganisms have different groups of microorganisms have different signature fatty acids, changes in the PLFAs signature fatty acids, changes in the PLFAs pattern represent changes in the soil microbial pattern represent changes in the soil microbial community structure. The PLFA profile can give community structure. The PLFA profile can give an overall picture of the community structure, an overall picture of the community structure, and it has been used to evaluate soil and it has been used to evaluate soil environmental quality environmental quality

Page 19: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

Kiwi PLFAKiwi PLFA (nmol g-1)(nmol g-1)

Control T0Control T0 BacBac P1 30P1 30 P1 100P1 100 P2 30P2 30 P2 100P2 100

BacteriaBacteria 15.515.5 11.5711.57 11.0611.06 20.3520.35 8.388.38 12.2112.21Gram+ BacteriaGram+ Bacteria 8.588.58 6.776.77 6.276.27 9.479.47 4.244.24 7.157.15Gram- BacteriaGram- Bacteria 6.926.92 4.84.8 4.784.78 10.8710.87 4.144.14 5.065.06FungiFungi 1.51.5 0.190.19 0.730.73 1.331.33 0.340.34 1.251.25Total saturated Total saturated PLFAsPLFAs

27.1427.14 14.5314.53 14.5714.5729.5629.56 9.869.86 21.9321.93

Total monoin. Total monoin. PLFAsPLFAs

2.622.62 1.921.92 1.961.966.046.04 2.362.36 2.282.28

ActinobacteriaActinobacteria 0.570.57 0.410.41 0.440.44 0.620.62 0.240.24 0.440.44

Kiwi PLFAKiwi PLFA (nmol g-1)(nmol g-1)

Control T0Control T0 BacBac PP1 301 30 P1 100P1 100 P2 30P2 30 P2 100P2 100

Total PLFA Total PLFA 32.0132.01 17.0917.09 17.6717.67 37.5537.55 12.6912.69 26.326.3Fung/BacFung/Bac 0.10.1 0.020.02 0.070.07 0.070.07 0.040.04 0.10.1Gram+/Gram-Gram+/Gram- 1.241.24 1.411.41 1.311.31 0.870.87 1.021.02 1.411.41Sat PLFa/Mono Sat PLFa/Mono PLFAPLFA

10.1510.15 7.587.587.447.44 4.94.9 4.184.18 9.69.6

Bacterial. fungi. GramBacterial. fungi. Gram++. Gram. Gram--. satured and monosatured PLFAs concentration in kiwi soils T0 before treatments.. satured and monosatured PLFAs concentration in kiwi soils T0 before treatments.The total PLFA and fungi/bacteria. GramThe total PLFA and fungi/bacteria. Gram++/Gram/Gram-- and satured/monounsatured ratios in kiwi soils T0 before treatments. and satured/monounsatured ratios in kiwi soils T0 before treatments.

Bacterial. fungi. GramBacterial. fungi. Gram++. Gram. Gram--. satured and monosatured PLFAs concentration in kiwi soils T0 before treatments.. satured and monosatured PLFAs concentration in kiwi soils T0 before treatments.The total PLFA and fungi/bacteria. GramThe total PLFA and fungi/bacteria. Gram++/Gram/Gram-- and satured/monounsatured ratios in kiwi soils T0 before treatments. and satured/monounsatured ratios in kiwi soils T0 before treatments.

PLFAsPLFAsAFTER-Cu (LIFE)AFTER-Cu (LIFE)

Microbial biomass Microbial biomass was affected by bacteria and peptides (also by peptide doses)was affected by bacteria and peptides (also by peptide doses)Changes were showed on total microbial biomass (bacteria and fungi)Changes were showed on total microbial biomass (bacteria and fungi)

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

Page 20: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

At the end of the experiment, also the At the end of the experiment, also the microbial biomass microbial biomass was affected by bacteria and was affected by bacteria and peptides. The soil biodiversity was changed regarding to the control soil. It is indicative peptides. The soil biodiversity was changed regarding to the control soil. It is indicative that peptides are actives in the soils.that peptides are actives in the soils.

PLFAsPLFAs

Bacterial. fungal. GramBacterial. fungal. Gram++. Gram. Gram--. satured and monosatured PLFAs concentration in kiwi soils T0 before treatments.. satured and monosatured PLFAs concentration in kiwi soils T0 before treatments.The total PLFA and fungi/bacteria. GramThe total PLFA and fungi/bacteria. Gram++/Gram/Gram-- and satured/monounsatured ratios in kiwi soils T0 before treatments. and satured/monounsatured ratios in kiwi soils T0 before treatments.

Bacterial. fungal. GramBacterial. fungal. Gram++. Gram. Gram--. satured and monosatured PLFAs concentration in kiwi soils T0 before treatments.. satured and monosatured PLFAs concentration in kiwi soils T0 before treatments.The total PLFA and fungi/bacteria. GramThe total PLFA and fungi/bacteria. Gram++/Gram/Gram-- and satured/monounsatured ratios in kiwi soils T0 before treatments. and satured/monounsatured ratios in kiwi soils T0 before treatments.

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

Page 21: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

SOIL RESPIRATIONSOIL RESPIRATIONThe degradation of organic matter is a property of all The degradation of organic matter is a property of all heterotrophs, and its rate is commonly used to indicate heterotrophs, and its rate is commonly used to indicate the level of microbial activitythe level of microbial activity

SOIL BIODIVERSITY: FUNCTIONALITYSOIL BIODIVERSITY: FUNCTIONALITY

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

Page 22: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

The degradation of organic matter is a The degradation of organic matter is a property of all heterotrophs, and its rate is property of all heterotrophs, and its rate is commonly used to indicate the level of commonly used to indicate the level of microbial activitymicrobial activity

The introduction of peptides The introduction of peptides In the soil have an effect onIn the soil have an effect onsoil respiration (metabolic soil respiration (metabolic biota activity); it decreasedbiota activity); it decreasedwhen peptides are usedwhen peptides are used

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

Page 23: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

Peptide Li 21 assay two months laterPeptide Li 21 assay two months laterPeptide Li 21 assay two months laterPeptide Li 21 assay two months laterPeptide AP17 assay two months laterPeptide AP17 assay two months later

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

Kiwi leaves infected by bacteriaKiwi leaves infected by bacteria

Kiwi trees showed a negative effect on plant Kiwi trees showed a negative effect on plant with bacteria inoculo; peptide (particularly with bacteria inoculo; peptide (particularly Li21) was showed useful to eliminate this Li21) was showed useful to eliminate this negative effectnegative effect

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

Page 24: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

A NEW EXPERIMENT FROM CEBAS-CSICA NEW EXPERIMENT FROM CEBAS-CSIC

““Effect of peptides addition on some pathogen Effect of peptides addition on some pathogen microorganismsmicroorganismsin soils”. EFFECT ON SOIL BIODIVERSITYin soils”. EFFECT ON SOIL BIODIVERSITY

SOIL + PathogenSOIL + PathogenSOIL + PEPTIDES + PathogenSOIL + PEPTIDES + PathogenCONTROL SOIL CONTROL SOIL

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

Page 25: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)NºNº DescriptionDescription NºNº DescriptionDescription

11 Control destilled waterControl destilled water 1818 Compost (10%) Control destilled waterCompost (10%) Control destilled water

22 Control SFS (0.85%)Control SFS (0.85%) 1919 Compost (10%) Control SFS (0.85%)Compost (10%) Control SFS (0.85%)

33 Bac 1Bac 1 2020 Compost (10%) Bac 1Compost (10%) Bac 1

44 Bac 2Bac 2 2121 Compost (10%) Bac 2Compost (10%) Bac 2

55 Bac 3Bac 3 2222 Compost (10%) Bac 3Compost (10%) Bac 3

66 Bac 1 P1 30Bac 1 P1 30 2323 Compost (10%) Bac 1 P1 30Compost (10%) Bac 1 P1 30

77 Bac 1 P1 100Bac 1 P1 100 2424 Compost (10%) Bac 1 P1 100Compost (10%) Bac 1 P1 100

88 Bac 1 P2 30Bac 1 P2 30 2525 Compost (10%) Bac 1 P2 30Compost (10%) Bac 1 P2 30

99 Bac 1 P2 100Bac 1 P2 100 2626 Compost (10%) Bac 1 P2 100Compost (10%) Bac 1 P2 100

1010 Bac 2 P1 30Bac 2 P1 30 2727 Compost (10%) Bac 2 P1 30Compost (10%) Bac 2 P1 30

1111 Bac 2 P1 100Bac 2 P1 100 2828 Compost (10%) Bac 2 P1 100Compost (10%) Bac 2 P1 100

1212 Bac 2 P2 30Bac 2 P2 30 2929 Compost (10%) Bac 2 P2 30Compost (10%) Bac 2 P2 30

1313 Bac 2 P2 100Bac 2 P2 100 3030 Compost (10%) Bac 2 P2 100Compost (10%) Bac 2 P2 100

1414 Bac 3 P1 30Bac 3 P1 30 3131 Compost (10%) Bac 3 P1 30Compost (10%) Bac 3 P1 30

1515 Bac 3 P1 100Bac 3 P1 100 3232 Compost (10%) Bac 3 P1 100Compost (10%) Bac 3 P1 100

1616 Bac 3 P2 30Bac 3 P2 30 3333 Compost (10%) Bac 3 P2 30Compost (10%) Bac 3 P2 30

1717 Bac 3 P2 100Bac 3 P2 100 3434 Compost (10%) Bac 3 P2 100Compost (10%) Bac 3 P2 100

ParametersParameters C/N hidrosolubleC/N hidrosolublePLFAsPLFAsMicrobial respirationMicrobial respirationGlucoaminopeptidase Glucoaminopeptidase SENSIBLE PARAMETERS SENSIBLE PARAMETERS

Β- GlucosidaseΒ- GlucosidaseFosfataseFosfatase

PEPTIDE MICROCOMS ASSAYPEPTIDE MICROCOMS ASSAYTable 1. Sample descriptionTable 1. Sample descriptionSampling: T0, T15, T30 and T60 daysSampling: T0, T15, T30 and T60 daysBac 1: Bac 1: P. syringae pv. actinidaeP. syringae pv. actinidaeBac 2: P. syringae pv. syringaeBac 2: P. syringae pv. syringaeBac:3Bac:3 P. savastanoi pv. nerii P. savastanoi pv. neriiBac (1,2,3) P1 30: Pseudomone+ antimicrobial peptide P1 (AP17) 30 Bac (1,2,3) P1 30: Pseudomone+ antimicrobial peptide P1 (AP17) 30 µµMMBac (1,2,3) P1 100: Pseudomone+ antimicrobial peptide P1 (Ap17) 100 Bac (1,2,3) P1 100: Pseudomone+ antimicrobial peptide P1 (Ap17) 100 µµMMBac (1,2,3) P2 30: Pseudomone+ antimicrobial peptide P2 (Li 27) 30 Bac (1,2,3) P2 30: Pseudomone+ antimicrobial peptide P2 (Li 27) 30 µµMMBac (1,2,3) P2 100: Pseudomone+ antimicrobial peptide P2 (Li 27)100 Bac (1,2,3) P2 100: Pseudomone+ antimicrobial peptide P2 (Li 27)100 µµMMSample (soil and soil 10% compost) were disposed in 100 c.c. Sample (soil and soil 10% compost) were disposed in 100 c.c.

Several containers, each one with one hundred g of soil or soli Several containers, each one with one hundred g of soil or soli amendment with 10% compost , were treated as show in Table 1, and amendment with 10% compost , were treated as show in Table 1, and placed in a growth chamber.Each treatment was replicated three times and placed placed in a growth chamber.Each treatment was replicated three times and placed in a random design into the growth chamber set at 16h photoperiod with a day/night in a random design into the growth chamber set at 16h photoperiod with a day/night temperature regime of 24/15temperature regime of 24/15ººC.C.

PEPTIDE MICROCOMS ASSAYPEPTIDE MICROCOMS ASSAYTable 1. Sample descriptionTable 1. Sample descriptionSampling: T0, T15, T30 and T60 daysSampling: T0, T15, T30 and T60 daysBac 1: Bac 1: P. syringae pv. actinidaeP. syringae pv. actinidaeBac 2: P. syringae pv. syringaeBac 2: P. syringae pv. syringaeBac:3Bac:3 P. savastanoi pv. nerii P. savastanoi pv. neriiBac (1,2,3) P1 30: Pseudomone+ antimicrobial peptide P1 (AP17) 30 Bac (1,2,3) P1 30: Pseudomone+ antimicrobial peptide P1 (AP17) 30 µµMMBac (1,2,3) P1 100: Pseudomone+ antimicrobial peptide P1 (Ap17) 100 Bac (1,2,3) P1 100: Pseudomone+ antimicrobial peptide P1 (Ap17) 100 µµMMBac (1,2,3) P2 30: Pseudomone+ antimicrobial peptide P2 (Li 27) 30 Bac (1,2,3) P2 30: Pseudomone+ antimicrobial peptide P2 (Li 27) 30 µµMMBac (1,2,3) P2 100: Pseudomone+ antimicrobial peptide P2 (Li 27)100 Bac (1,2,3) P2 100: Pseudomone+ antimicrobial peptide P2 (Li 27)100 µµMMSample (soil and soil 10% compost) were disposed in 100 c.c. Sample (soil and soil 10% compost) were disposed in 100 c.c.

Several containers, each one with one hundred g of soil or soli Several containers, each one with one hundred g of soil or soli amendment with 10% compost , were treated as show in Table 1, and amendment with 10% compost , were treated as show in Table 1, and placed in a growth chamber.Each treatment was replicated three times and placed placed in a growth chamber.Each treatment was replicated three times and placed in a random design into the growth chamber set at 16h photoperiod with a day/night in a random design into the growth chamber set at 16h photoperiod with a day/night temperature regime of 24/15temperature regime of 24/15ººC.C.

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

Page 26: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

Enzyme activitiesEnzyme activities

b-Glucosidase enzymes b-Glucosidase enzymes catalyze the final limiting step of cellulose degradation

Carbon cycleCarbon cycle

Phosphatase enzymes Phosphatase enzymes catalyze the hydrolysis of various organic phosphate esters

Phosphorus cycle Phosphorus cycle

O

CH2OH

OH

OH

OH

OH

O OH

OH

CH2OH

OB-glucosidasi

O

CH2OH

OH

OH

OH

D-glucosioCellobiosio

2OH

H2O

R-O-PO32- + H2O R-O-H + HO-PO3

2-

Indicator of specific microbial Indicator of specific microbial metabolismmetabolism

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

Page 27: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

REF, T0 T15 

T30 T60

Control destilled water

1,473 abc 1,390 abc 1,356 a 1,790 a

Control SFS (0,85%)

1,38 a 1,413 abc 1,423 a 1,650 a

Bac 1 1,530 c 1,356 ab 1,353 a 1,750 aBac 1 P1 30 1,423 abc 1,350 a 1,383 a 1,763 a

Bac 1 P1 100 1,480 abc 1,340 a 1,403 a 1,630 aBac 1 P2 30 1,490 abc 1,353 ab 1,420 a 1,740 a

Bac 1 P2 100 1,433 abc 1,426 abc 1,330 a 1,760 aBac 2 1,526 bc 1,370 abc 1,356 a 1,843 a

Bac 2 P1 30 1,433 abc 1,346 a 1,343 a 1,693 aBac 2 P1 100 1,420 ab 1,400 abc 1,320 a 1,950 a

Bac 2 P2 30 1,450 abc 1,346 a 1,350 a 1,743 aBac 2 P2 100 1,640 d 1,543 c 1,450 a 1,936 a

Bac 3 1,503 bc 1,323 a 1,423 a 1,880 aBac 3 P1 30 1,490 abc 1,530 bc 1,426 a 1,730 a

Bac 3 P1 100 1,710 d 1,423 abc 1,290 a 1,760 aBac 3 P2 30 1,696 d 1,420 abc 1,283 a 1,753 a

Bac 3 P2 100 1,516 bc 1,480 abc 1,396 a 1,650 a

REF, T0 T15 

T30 T60

Control destilled water

1,783 bcd 1,530 a1,77 cd 1,628 cd

Control SFS (0,85%)

1,706 abc 1,570 a

1,58 abc 1,454 abcBac 1 1,666 abc 1,546 a 1,76 cd 1,592 bcdBac 1 P1 30 1,686abc 1,560 a 1,82 ab 1,663 dBac 1 P1 100 1,660 abc 1,450 a 1,56 ab 1,633 cdBac 1 P2 30 1,826 cd 1,486 a 1,56 abc 1,469 abcdBac 1 P2 100 1,710 abc 1,550 a 1,54 abc 1,520 bcdBac 2 1,740 abc 1,550 a 1,59 d 1,645 dBac 2 P1 30 1,940 d 1,450 a 1,60 bcd 1,514 bcdBac 2 P1 100 1,700 abc 1,453 a 1,69 a 1,538 bcdBac 2 P2 30 1,770 abcd 1,516 a 1,41 abc 1,541 bcdBac 2 P2 100 1,670 abc 1,630 a 1,59 bcd 1,577 bcdBac 3 1,663 abc 1,576 a 1,36 ab 1,651 dBac 3 P1 30 1,560 a 1,500 a 1,66 bcd 1,504 abcdBac 3 P1 100 1,756 abcd 1,490 a 1,59 abc 1,661 dBac 3 P2 30 1,736 abc 1,520 a 1,64 bcd 1,336 aBac 3 P2 100 1,586 ab 1,420 a 1,54 ab 1,409 ab

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

Glucosidase (µmoles PNF /g,h)Glucosidase compost (µmoles PNF /g,h)

B-GlucosidaseB-Glucosidase is a hydrolase included in the C cycle. It is important is a hydrolase included in the C cycle. It is important for soil quality. When compost is added, the enzyme increases the for soil quality. When compost is added, the enzyme increases the value in the soil. This enzyme no changed with peptidesvalue in the soil. This enzyme no changed with peptides

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

Page 28: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

REF, T0 T15 

T30 T60

Control destilled water

3,625 a 3,099 abc 3,377 abcde3,503 a

Control SFS (0,85%)

3,425 ab 3,244 abcd 3,433 abcde3,426 a

Bac 1 3,580 abcd 3,224 abcd 3,277 abc 3,491 aBac 1 P1 30 3,416 ab 3,334 abcd 3,247 ab 3,253 aBac 1 P1 100 3,425 ab 3,349 bcd 3,210 ab 3,269 aBac 1 P2 30 3,470 ab 3,117 abcd 3,261 abc 3,340 aBac 1 P2 100 3,968 d 3,286 abcd 3,739 e 3,334 aBac 2 3,506 abc 3,217 abcd 3,242 ab 3,364 aBac 2 P1 30 3,877 cd 3,300 abcd 3,313 abcd 3,159 aBac 2 P1 100 3,895 ab 3,421 d 3,256 abcde 3,186 aBac 2 P2 30 3,459 abcd 3,137 abcd 3,713 de 3,452 aBac 2 P2 100 3,679 abcd 3,029 ab 3,452 abcde 3,510 aBac 3 3,629 abcd 3,238 abcd 3,572 bcde 3,332 aBac 3 P1 30 3,770 bcd 3,388 cd 3,383 abcde 3,230 aBac 3 P1 100 3,650 abcd 3,295 abcd 3,404 abcde 3,458 aBac 3 P2 30 3,888 d 3,0153 a 3,671 cde 3,322 aBac 3 P2 100 3,953 d 3,281 abcd 3,099 a 3,264 a

REF, T0 T15 

T30 T60

Control destilled water 6,500 bcd 5,638 bcd 6,389 bc 6,924 dControl SFS (0,85%) 3,624 a 5,443 abcd 5,522 ab 5,831 abBac 1 7,035 bcd 5,729 cd 7,529 c 6,148 bcBac 1 P1 30 6,348 bc 5,88 d 5,663 ab 6,164 bcBac 1 P1 100 6,040 bcd 4,897 a 4,626 a 5,932 abcBac 1 P2 30 6,170 bc 5,163 abc 6,375 bc 5,799 abBac 1 P2 100 6,478 d 4,942 a 7,538 c 6,255 bcBac 2 6,403 bc 5,497 abcd 6,858 bc 6,557 bcdBac 2 P1 30 7,954 bcd 5,541 abcd 7,551 c 6,352 bcBac 2 P1 100 6,593 bc 4,985 ab 5,711 ab 6,211 bcBac 2 P2 30 6,270 cd 5,159 abc 5,486 ab 6,370 bcdBac 2 P2 100 5,915 bc 5,539 abcd 6,616 a 5,479 aBac 3 7,606 b 5,425 abcd 6,277 bc 6,403 bcdBac 3 P1 30 6,170 bc 5,457 abcd 6,796 bc 6,239 bcBac 3 P1 100 7,108 bcd 5,570 abcd 6,833 bc 6,048 abcBac 3 P2 30 7,010 bcd 5,229 abcd 7,276 c 6,072 abcBac 3 P2 100 6,621 bcd 5,047 abc 5,765 ab 6,059 abc

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

Phosphatase Compost (µmoles PNF /g,h) Phosphatase (µmoles PNF /g,h)

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

PhosphatasePhosphatase is a hydrolase of P cycle. It increased when compost was is a hydrolase of P cycle. It increased when compost was added to the soil. No changes were showed at the end of the experimentadded to the soil. No changes were showed at the end of the experiment

Page 29: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

REF, T0 T15 

T30 T60

Control destilled water 0,713 ef 0,701 abc 0,750 defg 0,592 a

Control SFS (0,85%) 0,680 cde 0,706 abc 0,777 efg 0,632 abc

Bac 1 0,687 def 0,726 abc 0,690 abcd 0,602 a

Bac 1 P1 30 0,705 ef 0,737 abc 0,710 abcdef 0,640 abc

Bac 1 P1 100 0,615 abc 0,726 bc 0,710 abcde 0,663 abc

Bac 1 P2 30 0,593 a 0,665 abc 0,770 afg 0,695 c

Bac 1 P2 100 0,703 ef 0,753 a 0,730 cdef 0,611 ab

Bac 2 0,661 bcde 0,701 abc 0,720 bcdef 0,652 abc

Bac 2 P1 30 0,612 ab 0,632 abc 0,703 abcd 0,667 abc

Bac 2 P1 100 0,675 bcde 0,710 abc 0,647 ab 0,661 abc

Bac 2 P2 30 0,675 bcde 0,677 ab 0,693 abcd 0,655 bc

Bac 2 P2 100 0,591 a 0,637 abc 0,719 cdef 0,686 abc

Bac 3 0,710 ef 0,734 abc 0,779 fg 0,647 abc

Bac 3 P1 30 0,635 abcd 0,768 c 0,668 abc 0,620 abc

Bac 3 P1 100 0,671 bcde 0,659 abc 0,805 g 0,626 abc

Bac 3 P2 30 0,619 abc 0,721 abc 0,826 g 0,621 abc

Bac 3 P2 100 0,710 f 0,665 abc 0,638 a 0,661 abc

REF T0 T15 

T30 T60

Control destilled water 0,527 ab 0,592 abc 0,707 cde 0,661 fControl SFS (0,85%) 0,558 abc 0,581 abc 0,638 abc 0,622 defBac 1 0,540 abc 0,590 abc 0,709 cde 0,615 cdefBac 1 P1 30 0,533 ab 0,478 a 0,781 abc 0,592 abcdeBac 1 P1 100 0,518 ab 0,564 abc 0,591 abcd 0,623 defBac 1 P2 30 0,460 a 0,557 abc 0,611 abc 0,515 abcBac 1 P2 100 0,503 ab 0,526 abc 0,656 de 0,609 cdefBac 2 0,520 ab 0,568 abc 0,616 abcde 0,616 cdefBac 2 P1 30 0,468 a 0,500 abc 0,748 ab 0,598 abcdefBac 2 P1 100 0,589 bc 0,493 ab 0,585 a 0,607 bcdefBac 2 P2 30 0,524 ab 0,527 abc 0,559 bcde 0,560 abcdeBac 2 P2 100 0,492 a 0,594 bc 0,684 abcd 0,510 abBac 3 0,526 ab 0,571 abc 0,664 ab 0,643 efBac 3 P1 30 0,486 a 0,572 abc 0,690 bcde 0,553 abcdeBac 3 P1 100 0,462 a 0,488 ab 0,660 abcd 0,523 abcdBac 3 P2 30 0,470 a 0,537 abc 0,684 acde 0,504 aBac 3 P2 100 0,627 c 0,600 c 0,710 abcd 0,556 abcde

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

Urease Compost (µmoles PNF /g,h) Urease (µmoles PNF /g,h)

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

UreaseUrease is an enzyme of the N cycle. This hydrolase showed some diffrences is an enzyme of the N cycle. This hydrolase showed some diffrencesat the end of the experiment at the end of the experiment

Page 30: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

PLFA (nmol g-1) PLFA (nmol g-1) T0T0

Control Control D.W.D.W.

Control Control SFS(0,85%)SFS(0,85%) Bac 1Bac 1 Bac2Bac2 Bac3Bac3

Bac1 Bac1 P130P130

Bac1 P1 Bac1 P1 100100

Bac1 Bac1 P2 30P2 30

Bac2 P2 Bac2 P2 100100

Bac 2 Bac 2 P130P130

Bac2 P1 Bac2 P1 100100

Bac2 P2 Bac2 P2 3030

Bac2 Bac2 P2 100P2 100

Bac3 P1 Bac3 P1 3030

Bac 3 Bac 3 P21 100P21 100

Bac 3 Bac 3 P2 30P2 30

Bac 3 P2 Bac 3 P2 100100

BacteriaBacteria 3,50 ab3,50 ab 5,01 ab5,01 ab 4,86 ab4,86 ab 4,88 ab4,88 ab5,44 5,44 abab

6,44b6,44b5,66 b5,66 b 3,65 ab3,65 ab 5,13 ab5,13 ab 6,72 b6,72 b 4,95 ab4,95 ab 4,25 ab4,25 ab

4,59 4,59 abab 6,30 b6,30 b 1,70 a1,70 a 4,76 ab4,76 ab 6,95 b6,95 b

Gram +BacteriaGram +Bacteria 1,97 ab1,97 ab 3,09 abc3,09 abc2,57 2,57 abcabc

2,50 2,50 abcabc

2,87 2,87 abcabc

3,46 3,46 abcabc 3,47 abc3,47 abc

1,10 1,10 abcabc 3,49 abc3,49 abc 4,74 c4,74 c 3,53 abc3,53 abc 2,67 abc2,67 abc

2,70 2,70 abcabc 4,14 bc4,14 bc 1,29 a1,29 a

2,81 2,81 abcabc 4,07 bc4,07 bc

Gram -BacteriaGram -Bacteria 1,52 ab1,52 ab 1,92 ab1,92 ab 2,28 ab2,28 ab 2,38 ab2,38 ab2,56 2,56

bb2,97 b2,97 b

2,19 ab2,19 ab 2,55 b2,55 b 1,64 ab1,64 ab 1,98 ab1,98 ab 1,41 ab1,41 ab 1,57 ab1,57 ab1,89 1,89 abab 2,15 ab2,15 ab 0,41 a0,41 a 1,94 ab1,94 ab 2,88 b2,88 b

FungiFungi 0,10 a0,10 a 0,07 a0,07 a 0,18 a0,18 a 1,04 a1,04 a0,01 0,01

aa0,96 a0,96 a

0,08 a0,08 a 0,12 a0,12 a 0,20 a0,20 a 1,15 a1,15 a 0,05 a0,05 a 0,09 a0,09 a0,03 a0,03 a

0,18 a0,18 a 0,03 a0,03 a 0,11 a0,11 a 0,17 a0,17 a Total saturated Total saturated PLFAPLFA

4,64 ab4,64 ab 5,65 ab5,65 ab 5,95 ab5,95 ab 5,91 ab5,91 ab7,09 7,09

bb6,88 b6,88 b

6,33 b6,33 b 3,62 ab3,62 ab 5,91 ab5,91 ab 7,39 b7,39 b 6,62 b6,62 b 5,08 ab5,08 ab5,21 5,21 abab 7,42 b7,42 b 1,51 a1,51 a 5,31 ab5,31 ab 7,04 b7,04 b

Total monoin. Total monoin. PLFAPLFA

0,93 abc0,93 abc 1,12 abc1,12 abc1,31 1,31 abcabc

1,73 bc1,73 bc1,46 1,46 abcabc

2,04 c2,04 c1,32 abc1,32 abc

1,25 1,25 abcabc 1,42 abc1,42 abc

1,31 1,31 abcabc 0,71 abc0,71 abc 0,61 ab0,61 ab

0,85 0,85 abcabc

0,92 0,92 abcabc 0,38 a0,38 a

1,07 1,07 abcabc 1,71 abc1,71 abc

ActinobacteriaActinobacteria 0,12 a 0,12 a 0,14 a0,14 a 0,11 a0,11 a 0,85 a0,85 a0,36 0,36

aa 0,51 a0,51 a 0,86 a0,86 a 0,13 a0,13 a 0,72 a0,72 a 0,65 a0,65 a 0,30 a0,30 a 0,13 a0,13 a0,05 a0,05 a

0,26 a0,26 a 0,02 a0,02 a 0,14 a0,14 a 0,25 a0,25 a

PLFA (nmol g-PLFA (nmol g-1) T01) T0

Control Control D.W.D.W.

Control Control SFS(0,85%)SFS(0,85%) Bac 1Bac 1 Bac2Bac2 Bac3Bac3

Bac1 Bac1 P130P130

Bac1 P1 Bac1 P1 100100

Bac1 P2 Bac1 P2 3030

Bac2 P2 Bac2 P2 100100

Bac 2 Bac 2 P130P130

Bac2 P1 Bac2 P1 100100

Bac2 P2 Bac2 P2 3030

Bac2 Bac2 P2 100P2 100

Bac3 Bac3 P1 30P1 30

Bac 3 P21 Bac 3 P21 100100

Bac 3 P2 Bac 3 P2 3030

Bac 3 P2 Bac 3 P2 100100

Total PLFATotal PLFA 5,71 ab5,71 ab 6,86 ab6,86 ab7,45 7,45 abab

8,71 8,71 abab

8,57 8,57 abab

10,45 b10,45 b8,33 ab8,33 ab 5,01 ab5,01 ab 8,05 ab8,05 ab 10,61 b10,61 b 7,40 ab7,40 ab 5,80 ab5,80 ab

6,11 ab6,11 ab8,56 8,56 abab

1,92 a1,92 a6,50 ab6,50 ab 8,94 b8,94 b

Fungi/BacFungi/Bac 0,02 ab0,02 ab 0,01 ab0,01 ab0,04 0,04 abab

0,20 b0,20 b 0,00 a0,00 a 0,16 ab0,16 ab0,01 ab0,01 ab 0,03 ab0,03 ab 0,04 ab0,04 ab 0,17 ab0,17 ab 0,01 ab0,01 ab 0,02 ab0,02 ab

0,00 ab0,00 ab0,03 0,03 abab

0,01 ab0,01 ab0,02 ab0,02 ab 0,02 ab0,02 ab

Gram+/Gram-Gram+/Gram- 1,28 ab1,28 ab 1,61 ab1,61 ab1,10 1,10 abab

1,22 1,22 abab

1,57 1,57 abab

1,37 ab1,37 ab1,59 ab1,59 ab 0,43 a0,43 a 1,42 ab1,42 ab 2,43 ab2,43 ab 3,35 b3,35 b 1,71 ab1,71 ab

1,42 ab1,42 ab1,92 1,92 abab

3,18 b3,18 b1,52 ab1,52 ab 1,41 ab1,41 ab

Sat PLFa/Mono Sat PLFa/Mono PLFAPLFA

4,94 abc4,94 abc 4,95 abc4,95 abc4,56 4,56 abcabc

3,58 3,58 abab

5,47 5,47 abcabc

3,63 ab3,63 ab4,67 abc4,67 abc 2,55 a2,55 a 2,56 a2,56 a 7,07 abc7,07 abc 9,49 c9,49 c 8,36 bc8,36 bc

6,11 6,11 abcabc

8,00 8,00 abcabc

4,15 abc4,15 abc5,68 abc5,68 abc 4,12 abc4,12 abc

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

Bacterial. fungal. GramBacterial. fungal. Gram++. Gram. Gram--. satured and monosatured, actinobacteria PLFAs concentration in peptide microcoms T0... satured and monosatured, actinobacteria PLFAs concentration in peptide microcoms T0..The total PLFA and bacteria/fungi. GramThe total PLFA and bacteria/fungi. Gram++/Gram/Gram-- and monounsatured/satured ratios in in peptide microcoms T0. and monounsatured/satured ratios in in peptide microcoms T0.

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

Peptides and Peptides and soil biodiversitysoil biodiversity. The use of peptides showed. The use of peptides showedsome infuence on soil biodiversitysome infuence on soil biodiversity

Page 31: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

PLFA (nmol g-PLFA (nmol g-1) T01) T0

Control Control D.W.D.W.

Control Control SFS(0,85%SFS(0,85%

)) Bac 1Bac 1 Bac2Bac2 Bac3Bac3Bac1 Bac1 P130P130

Bac1 P1 Bac1 P1 100100

Bac1 P2 Bac1 P2 3030

Bac2 P2 Bac2 P2 100100

Bac 2 Bac 2 P130P130

Bac2 P1 Bac2 P1 100100

Bac2 P2 Bac2 P2 3030

Bac2 Bac2 P2 P2 100100

Bac3 Bac3 P1 30P1 30

Bac 3 P21 Bac 3 P21 100100

Bac 3 P2 Bac 3 P2 3030

Bac 3 P2 Bac 3 P2 100100

BacteriaBacteria 6,33 a6,33 a 5,23 a5,23 a 4,40 a4,40 a 5,26 a5,26 a 5,20 a5,20 a 4,17 a4,17 a 4,34 a4,34 a 3,79 a3,79 a 5,74 a5,74 a 4,75 a4,75 a 3,81 a3,81 a 4,59 a4,59 a 4,83 a4,83 a 5,44 a5,44 a 4,51 a4,51 a 4,24 a4,24 a 5,30 a5,30 a Gram Gram +Bacteria+Bacteria

3,73 b3,73 b 2,43 ab2,43 ab 2,83 ab2,83 ab3,24 3,24 abab

3,11 3,11 abab

2,46 ab2,46 ab2,53 ab2,53 ab 1,88 a1,88 a 3,24 ab3,24 ab 2,45 ab2,45 ab 2,21 a2,21 a 2,34 ab2,34 ab

2,45 2,45 abab

3,23 3,23 abab 2,11 a2,11 a 2,36 ab2,36 ab 3,30 ab3,30 ab

Gram -BacteriaGram -Bacteria 2,59 a2,59 a 2,80 a2,80 a 1,57 a1,57 a 2,02 a2,02 a 2,08 a2,08 a 1,70 a1,70 a1,81 a1,81 a 1,91 a1,91 a 2,50 a2,50 a 2,29 a2,29 a 1,59 a1,59 a 2,25 a2,25 a 2,38 a2,38 a

2,20 a2,20 a 2,40 a2,40 a 1,89 a1,89 a 2,00 a2,00 a

FungiFungi 0,16 bcd0,16 bcd 0,21 d0,21 d 0,03 a0,03 a0,07 0,07 abcabc

0,14 0,14 abcdabcd

0,14 0,14 abcdabcd

0,13 0,13 abcdabcd 0,06 abc0,06 abc 0,17 cd0,17 cd

0,11 0,11 abcdabcd

0,11 0,11 abcdabcd

0,12 0,12 abcdabcd

0,05 0,05 abab

0,06 0,06 abcabc 0,11 abcd0,11 abcd 0,04 a0,04 a 0,13 abcd0,13 abcd

Total saturated Total saturated PLFAPLFA

7,56 b7,56 b 6,50 ab6,50 ab 4,43 a4,43 a6,87 6,87 abab

5,33 5,33 abab

4,29 a4,29 a4,49 a4,49 a 4,31 a4,31 a 6,86 ab6,86 ab 5,59 ab5,59 ab 5,52 ab5,52 ab 6,16 ab6,16 ab

5,53 5,53 abab

7,04 7,04 abab 4,35 ab4,35 ab 4,36 a4,36 a 5,99 ab5,99 ab

Total monoin. Total monoin. PLFAPLFA

1,53 b1,53 b 1,36 b1,36 b 1,07 ab1,07 ab1,18 1,18 abab

1,20 1,20 abab

1,03 ab1,03 ab1,03 ab1,03 ab 1,03 ab1,03 ab 1,54 b1,54 b 1,15 ab1,15 ab 0,59 a0,59 a 1,37 b1,37 b

1,02 1,02 abab

1,10 1,10 abab 1,35 b1,35 b 0,89 a0,89 a 1,05 ab1,05 ab

ActinobacteriaActinobacteria 0,21 b0,21 b 0,21 b0,21 b 0,13 ab0,13 ab 0,16 b0,16 b 0,17 b0,17 b 0,12 ab0,12 ab 0,11 ab0,11 ab 0,12 ab0,12 ab 0,19 b0,19 b 0,16 b0,16 b 0,02 a0,02 a 0,18 b0,18 b 0,18 b0,18 b 0,18 b0,18 b 0,16 b0,16 b 0,13 ab0,13 ab 0,18 b0,18 b

PLFA (nmol g-PLFA (nmol g-1) T01) T0

Control Control D.W.D.W.

Control Control SFS(0,85%)SFS(0,85%)

Bac Bac 11 Bac2Bac2 Bac3Bac3

Bac1 Bac1 P130P130

Bac1 P1 Bac1 P1 100100

Bac1 P2 Bac1 P2 3030

Bac2 P2 Bac2 P2 100100

Bac 2 Bac 2 P130P130

Bac2 P1 Bac2 P1 100100

Bac2 P2 Bac2 P2 3030

Bac2 Bac2 P2 P2 100100

Bac3 Bac3 P1 30P1 30

Bac 3 P21 Bac 3 P21 100100

Bac 3 P2 Bac 3 P2 3030

Bac 3 P2 Bac 3 P2 100100

Total PLFATotal PLFA 9,28 b9,28 b 8,09 ab8,09 ab5,53 5,53

aa8,12 8,12 abab

7,17 7,17 abab

5,46 a5,46 a5,65 a5,65 a 5,41 a5,41 a 8,57 ab8,57 ab 6,85 ab6,85 ab 6,23 ab6,23 ab 7,66 ab7,66 ab

6,60 6,60 abab

8,20 8,20 abab

5,82 ab5,82 ab5,30 a5,30 a 7,18 ab7,18 ab

Fungi/BacFungi/Bac 0,02 abc0,02 abc 0,04 c0,04 c0,01 0,01 abab

0,01 0,01 abab

0,03 0,03 abcabc

0,03 bc0,03 bc0,03 abc0,03 abc 0,01 abc0,01 abc 0,03 abc0,03 abc 0,02 abc0,02 abc 0,03 abc0,03 abc 0,03 abc0,03 abc

0,00 0,00 aa

0,01 0,01 abab

0,02 abc0,02 abc0,00 a0,00 a 0,02 abc0,02 abc

Gram+/Gram-Gram+/Gram- 4,13 ab4,13 ab 0,92 a0,92 a1,78 1,78

bb1,64 1,64 abab

1,49 1,49 abab

1,44 ab1,44 ab1,40 ab1,40 ab 0,97 a0,97 a 0,86 a0,86 a 1,14 ab1,14 ab 1,37 ab1,37 ab 1,04 ab1,04 ab

1,16 1,16 abab

1,48 1,48 abab

0,87 a0,87 a1,22 ab1,22 ab 1,65 ab1,65 ab

Sat PLFa/Mono Sat PLFa/Mono PLFAPLFA

4,94 a4,94 a 4,75 a4,75 a4,22 4,22

aa5,97 5,97

aa4,45 a4,45 a 4,16 a4,16 a

4,34 a4,34 a 2,78 a2,78 a 2,96 a2,96 a 5,40 a5,40 a 9,97 b9,97 b 4,50 a4,50 a5,32 5,32

aa6,43 a6,43 a 3,23 a3,23 a

4,87 a4,87 a 5,66 a5,66 a

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

Bacterial. fungal. GramBacterial. fungal. Gram++. Gram. Gram--. satured and monosatured, actinobacteria PLFAs concentration in peptide microcoms T60... satured and monosatured, actinobacteria PLFAs concentration in peptide microcoms T60..The total PLFA and bacteria/fungi. GramThe total PLFA and bacteria/fungi. Gram++/Gram/Gram-- and monounsatured/satured ratios in in peptide microcoms T60. and monounsatured/satured ratios in in peptide microcoms T60.

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

Peptides and Peptides and soil biodiversitysoil biodiversity. Bacteria and fungi are influenced by peptides. Bacteria and fungi are influenced by peptidesAddition at the end of the experiment. It would be considered in the future.Addition at the end of the experiment. It would be considered in the future.

Page 32: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

Cs Bac_1

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

The dynamic of The dynamic of labile Clabile C and andN no showed any variationN no showed any variationwith peptides with peptides

Page 33: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

Page 34: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

ACTIVITIES C2-C3/B5ACTIVITIES C2-C3/B5

Soil respiration Soil respiration was influenced by peptides use.was influenced by peptides use.This parameter decreased regarding soil control.This parameter decreased regarding soil control.

Page 35: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

CONCLUSIONSCONCLUSIONS

•Peptides could alter soil biodiversityPeptides could alter soil biodiversity

•Peptides can influence on the activity of soil microorganisms (soil respiration)Peptides can influence on the activity of soil microorganisms (soil respiration)

•Peptides could change the biodiverdity at functional level (biota size)Peptides could change the biodiverdity at functional level (biota size)

•Peptides not showed any effect on biogeochemical cycles of C, P and NPeptides not showed any effect on biogeochemical cycles of C, P and N

Page 36: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

2015. NEW ASSAY WITH PEPTIDES2015. NEW ASSAY WITH PEPTIDES

ACTIVITIES B5 and C3: ACTIVITIES B5 and C3: Effects of some PEPTIDES on Effects of some PEPTIDES on Phytotoxicity Phytotoxicity

and and EcotoxicityEcotoxicity

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

Page 37: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

ACTIVITIES B3/C5ACTIVITIES B3/C5

Peptides placed directly on Petri dishPeptides placed directly on Petri dishagainst phatogens bacteria showed a litleagainst phatogens bacteria showed a litlebiopesticide effect.biopesticide effect.

Page 38: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE) PHYTOTOXICITYPHYTOTOXICITY. Germination experiment (Biostimulant and Phytotoxic effect). Germination experiment (Biostimulant and Phytotoxic effect)The objective of this assay will be determined if the obtained digestates contained some phytotoxic compound that could make them The objective of this assay will be determined if the obtained digestates contained some phytotoxic compound that could make them inadvisable for agronomic use. To this, germination tests using seeds of rye grass (inadvisable for agronomic use. To this, germination tests using seeds of rye grass (Lollium perenneLollium perenne) or barley () or barley (Hordeum vulgarisHordeum vulgaris) will ) will be carried out. Rye-grass seeds will be used due to its high sensitivity to phytotoxic compounds and salinity, and barley seeds due to be carried out. Rye-grass seeds will be used due to its high sensitivity to phytotoxic compounds and salinity, and barley seeds due to its greater resistance to these compounds.its greater resistance to these compounds.This study is carried out in laboratory growth chambers with control of temperature, humidity, and light conditions. This study is carried out in laboratory growth chambers with control of temperature, humidity, and light conditions.

ACTIVITIES B3/C5ACTIVITIES B3/C5

Page 39: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

Control Li 27 Ap 17 PSA 21

cm

Root Length (cm)

0,0

50,0

100,0

150,0

200,0

250,0

Control Li 27 Ap 17 PSA 21

%

Germination Index (%)

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

Some Some biostimulant effects biostimulant effects has been observed in has been observed in Petri dishs with peptides. A possible Petri dishs with peptides. A possible phytohormonal effect could be responsible of phytohormonal effect could be responsible of this behaoviur.this behaoviur.

ACTIVITIES B3/C5ACTIVITIES B3/C5

Page 40: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

Reference Ecotoxicity (mg/l)

Li 27 479.105.000

Ap 17  

PSA 21 13.475.000

Ensayo de EcotoxicidadLos ensayos de Ecotoxicidad se realizaron sobre los tres péptidos objeto de estudio a una concentración de 60 µM (concentración de trabajo en planta).Resultados de ecotoxicidad de los péptidosSegún BOE 10 de noviembre de 1989, número 270/1989 se considera que una sustancia es tóxica si los lixiviados presentan una EC50 (quince minutos, 15ºC) inferior o igual a 3000 mg/l. Según esto, ninguno de los péptidos presentan toxicidad.

Ensayo de EcotoxicidadLos ensayos de Ecotoxicidad se realizaron sobre los tres péptidos objeto de estudio a una concentración de 60 µM (concentración de trabajo en planta).Resultados de ecotoxicidad de los péptidosSegún BOE 10 de noviembre de 1989, número 270/1989 se considera que una sustancia es tóxica si los lixiviados presentan una EC50 (quince minutos, 15ºC) inferior o igual a 3000 mg/l. Según esto, ninguno de los péptidos presentan toxicidad.

Ecotoxicity assay Ecotoxicity assay A toxicity test was carried out using luminescent bacteria (Microtox), in which the inhibition of the luminescence of Photobacterium phosphoreum was measured using a luminometer (Kapanen and Itävaara, 2001) after adding extracts of the samples. This assay uses a suspension of luminescent bacteria (Photobacterium phosphoreum) as bioassay organism for measuring acute toxicity in aqueous extracts (Bulich, 1979; Matthews and Hastings, 1987). Lyophilized bacteria were used after rehydration in the commercial solution. All assays were carried out at 15 ºC with 15 min and 30 min contact periods between 0.5 ml of bacterial suspension and compost suspension. Compost suspension was prepared by mixing 1g sample with 10ml of 2 % NaCl (w/w) solution

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

ACTIVITIES B3/C5ACTIVITIES B3/C5

Page 41: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

CONCLUSIONSCONCLUSIONS

•Peptides showed a bioestimulant effect on plantsPeptides showed a bioestimulant effect on plants

•Ecotoxicity measured on peptides did not show any problemEcotoxicity measured on peptides did not show any problem

•Peptides show a litle biopesticide effect on Petri dish assaysPeptides show a litle biopesticide effect on Petri dish assays

Page 42: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

2015-- NEW ASSAY WITH PLANTS2015-- NEW ASSAY WITH PLANTS

Greenhouse and field experimentsGreenhouse and field experiments

ACTIVITIES B6 AND C5ACTIVITIES B6 AND C5Demostration and monitoring of the effectDemostration and monitoring of the effect

of PEPTIDES on plants systemof PEPTIDES on plants system

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

B6 and C5: October 2014-December 2015B6 and C5: October 2014-December 2015

Page 43: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

KIWI TREES IN MURCIA (SPAIN)KIWI TREES IN MURCIA (SPAIN)

ACTIVITIES B6/C5ACTIVITIES B6/C5

Page 44: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)KIWI TREES IN MURCIA (SPAIN)KIWI TREES IN MURCIA (SPAIN)

ACTIVITIES B6/C5ACTIVITIES B6/C5

Kiwi trees inoculationKiwi trees inoculation

Page 45: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)KIWI TREES IN MURCIA (SPAIN)KIWI TREES IN MURCIA (SPAIN)

ACTIVITIES B6/C5ACTIVITIES B6/C5

Possible Possible disease symtomsdisease symtoms

Page 46: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)

LEMON TREES IN MURCIA (SPAIN)LEMON TREES IN MURCIA (SPAIN)

ACTIVITIES B6/C5ACTIVITIES B6/C5

Lemon trees inoculationLemon trees inoculation

Page 47: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

Leave zone with Ps. Syr. Leave zone with Ps. Syr. SyringaeSyringae..

AFTER-Cu (LIFE)AFTER-Cu (LIFE)LEMON CROP IN MURCIA (SPAIN)LEMON CROP IN MURCIA (SPAIN)

ACTIVITIES B6/C5ACTIVITIES B6/C5

Lemon leave with some disease symtomsLemon leave with some disease symtoms

Page 48: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

Planta pulverizada con peptido Li 27 Planta pulverizada con péptido AP 27 Planta control

Planta pulverizada con peptido Li 27

Planta pulverizada con péptido AP 27

Planta control

AFTER-Cu (LIFE)AFTER-Cu (LIFE)LEMON CROP IN MURCIA (SPAIN)LEMON CROP IN MURCIA (SPAIN)

ACTIVITIES B6/C5ACTIVITIES B6/C5Lemon leaves with some disease symtomsLemon leaves with some disease symtoms

Page 49: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)OLIVE TREES IN MURCIA (SPAIN)OLIVE TREES IN MURCIA (SPAIN)

Olive plants inoculation process.Olive plants inoculation process.

ACTIVITIES B6/C5ACTIVITIES B6/C5

Page 50: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)OLIVE TREES IN MURCIA (SPAIN)OLIVE TREES IN MURCIA (SPAIN)

Olive trees inoculation. Disease symtoms of these plants should be notedOlive trees inoculation. Disease symtoms of these plants should be notedafter some weeks.after some weeks.

ACTIVITIES B6/C5ACTIVITIES B6/C5

Page 51: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

CEBAS WORKING GROUPCEBAS WORKING GROUP

THANK YOU FOR YOUR ATTENTIONTHANK YOU FOR YOUR ATTENTION

Page 52: AFTER-Cu AFTER-Cu LIFE (2014-2016) Carlos García Izquierdo. CEBAS-CSIC FLORENCE, JUNE 2015 PARTNER CSIC (CEBAS-CSIC) Project LIFE12 ENV/IT/000336 “Anti-infective.

AFTER-Cu (LIFE)AFTER-Cu (LIFE)


Recommended