+ All Categories

Agenda

Date post: 23-Feb-2016
Category:
Upload: conan
View: 48 times
Download: 0 times
Share this document with a friend
Description:
EuCARD -HFM ESAC review of the high field dipole design FRESCA2 conceptual design Attilio Milanese 20 January 2011. Agenda. 2D design magnetic mechanical 3D design magnetic mechanical Extras (parametric analyses, what-if, details, …). Magnetic cross section. 1140 mm. 100 mm. - PowerPoint PPT Presentation
Popular Tags:
47
EuCARD-HFM ESAC review of the high field dipole design FRESCA2 conceptual design Attilio Milanese 20 January 2011
Transcript
Page 1: Agenda

EuCARD-HFM ESAC reviewof the high field

dipole design

FRESCA2conceptual design

Attilio Milanese 20 January 2011

Page 2: Agenda

20 Jan. 2011, A. Milanese 2

Agenda2D design• magnetic• mechanical

3D design• magnetic• mechanical

Extras(parametric analyses, what-if, details, …)

Page 3: Agenda

20 Jan. 2011, A. Milanese 3

Magnetic cross section

1140 mm100 mm

Page 4: Agenda

20 Jan. 2011, A. Milanese 4

Magnetic cross section156 turns (per pole)

36 + 36 + 42 + 42Bcenter = 13.0 T

I13 T = 10.5 kA

Bpeak = 13.2 T

82.7 % load line @ 4.2 K76.3 % load line @ 1.9 K[ 15.7 T s. s. 4.2 K 17.0 T s. s. 1.9 K ]

DBy/Bcenter < 0.2 % (2/3 bore, Bcenter > 10 T)

E = 3.58 MJ/m

L = 46.8 mH/m

Page 5: Agenda

20 Jan. 2011, A. Milanese 5

Effect of the ironunit no

ironiron

≈ 7.6 t

Bcenter [T] 13.0 13.0

I13 T [kA] 12.8 10.5

Bpeak [T] 13.9 13.2

load line 4.2 K [%] 89.8 82.7

Bss at 4.2 K [T] 14.5 15.7

Bstray 570 mm [mT] 465 270

Bstray 1000 mm [mT] 150 82

Bstray 2000 mm [mT] 38 20

The distance for Bstray is taken from the center.

plus the effect on field quality

Page 6: Agenda

20 Jan. 2011, A. Milanese 6

What happens without prestress?1

X

Y

Z

13 T at warm with no prestress

DISPLACEMENT

STEP=1SUB =3TIME=1DMX =.001504

Lorentz forces at 13 T:Fx,qua = 7.70 MN/mFy,qua = −3.81 MN/mapplied at warm with no prestress

coil not gluedto the poles

displ. scale x 15

horiz. displ. ≈ 1.5 mm

Page 7: Agenda

20 Jan. 2011, A. Milanese 7

Structure, 2D

iron

Ti alloy

potted coil

Al bronze

G10

steel

The coil pack.

Page 8: Agenda

20 Jan. 2011, A. Milanese 8

70 mm

Structure, 2D

iron

Al alloy

The yoke and the shrinking

cylinder.

409 mm

1000 mm

Page 9: Agenda

20 Jan. 2011, A. Milanese 9

Structure, 2D

iron

Ti alloy

potted coil

Al bronze

G10

steel

Al alloy

bladders

Structure partially prestressed at warm.

Page 10: Agenda

20 Jan. 2011, A. Milanese 10

Structure, 2D

iron

Ti alloy

potted coil

Al bronze

G10

steel

Al alloy

The full prestress is achieved at cold.

Page 11: Agenda

20 Jan. 2011, A. Milanese 11

0

20

40

60

80

100

120

140

layer 1 layer 2 layer 3 layer 4

p ave

[MPa

]

warm

cold

13 T

Prestress in the cross section• horizontal keys with 700 mm interference• vertical keys with 300 mm interference• Al alloy shell: I.D. = 1000, O.D. = 1140 mm• the bottom layers remain prestressed under excitation

average stress between coil and pole

layer 1

layer 2

layer 3

layer 4

Page 12: Agenda

20 Jan. 2011, A. Milanese 12

Stresses on the coil

max s [MPa] warm cold 13 Tcoil, sx 55 142 138coil, sy 38 47 75

warm cold 13 T

The potted coil stays below 150 MPa, the

“comfort zone” for Nb3Sn.

sx

1

X

Y

Z

no tube, 13 T, ix = 0.700 mm, iy = 0.300 mm

-.150E+09-.133E+09

-.117E+09-.100E+09

-.833E+08-.667E+08

-.500E+08-.333E+08

-.167E+080

NODAL SOLUTION

STEP=3SUB =1TIME=3SX (AVG)RSYS=0DMX =.686E-03SMN =-.138E+09SMX =.342E+07

1

X

Y

Z

no tube, warm, ix = 0.700 mm, iy = 0.300 mm

-.150E+09-.133E+09

-.117E+09-.100E+09

-.833E+08-.667E+08

-.500E+08-.333E+08

-.167E+080

NODAL SOLUTION

STEP=1SUB =1TIME=1SX (AVG)RSYS=0DMX =.156E-03SMN =-.556E+08SMX =-.192E+08

1

X

Y

Z

no tube, cold, ix = 0.700 mm, iy = 0.300 mm

-.150E+09-.133E+09

-.117E+09-.100E+09

-.833E+08-.667E+08

-.500E+08-.333E+08

-.167E+080

NODAL SOLUTION

STEP=2SUB =1TIME=2SX (AVG)RSYS=0DMX =.739E-03SMN =-.142E+09SMX =-.405E+08

1

X

Y

Z

no tube, warm, ix = 0.700 mm, iy = 0.300 mm

-.150E+09-.133E+09

-.117E+09-.100E+09

-.833E+08-.667E+08

-.500E+08-.333E+08

-.167E+080

NODAL SOLUTION

STEP=1SUB =1TIME=1SX (AVG)RSYS=0DMX =.156E-03SMN =-.556E+08SMX =-.192E+08

Page 13: Agenda

20 Jan. 2011, A. Milanese 13

Coil geometry, 3D

straight

hard-way bendRmin = 700 mm

inclined straight17 deg

easy way bend

(no spacers)

Total axial length of coil: 1500 mm about 730 mm of straight section

Page 14: Agenda

20 Jan. 2011, A. Milanese 14

Field on coil without iron, 3D

Without the iron there is fieldconcentration on the ends (+ 0.7 T).

14.6 T13.9 T

Page 15: Agenda

20 Jan. 2011, A. Milanese 15

Iron geometry, 3D

yoke (laminations)

top pole(solid piece)

vertical pad(laminations)

365 mm 135

Page 16: Agenda

20 Jan. 2011, A. Milanese 16

Field on the coil with iron, 3D

Bcenter = 13.0 T

I13 T = 10.2 kA

Bpeak = 13.4 TThe peak field is in the straight section.

Page 17: Agenda

20 Jan. 2011, A. Milanese 17

Magnetic field in the bore, 3D

0

+2%

+1%

−1%

− 2%

field on 100 mm diameter circle, z = 0

Page 18: Agenda

20 Jan. 2011, A. Milanese 18

Plot of |B| on the axis

no iron

reference layout

no extra block in

vertical pad12.5

12.6

12.7

12.8

12.9

13.0

13.1

0 50 100 150 200 250 300 350 400

|B|

[T]

z [mm]

365 extra365no iron1%2%straight

The field on the axis is within 2% of the central field, almost for the all length of the straight section.

Page 19: Agenda

20 Jan. 2011, A. Milanese 19

Structure, 3D

Page 20: Agenda

20 Jan. 2011, A. Milanese 20

Structure, 3D

Page 21: Agenda

20 Jan. 2011, A. Milanese 21

3D stress effectsTo be more investigated, in a full 3D FEM:• different thermal contractions• Poisson effect• axial preload• local effects on the coil near the ends

1

XY

Z

cold

DISPLACEMENT

STEP=2SUB =1TIME=2DMX =.003832

model with dummy coil

Page 22: Agenda

20 Jan. 2011, A. Milanese 22

Estimated weights[kg] x [kg]

impregnated bottom coil 95 2 190

impregnated top coil 112 2 224

yoke 3569 2 7138

shell 985 1 985

top plate / vertical pad 307 2 614

horizontal rail and pad 225 2 449other (end plate, wedge, end shoe, rod, keys) 424

total 10024

Cailler of Switzerland, Sublim retails at 30 CHF/kg (for WS’ law)

1

2

3

4

5

6

7

Page 23: Agenda

20 Jan. 2011, A. Milanese 23

Thank you.

Page 24: Agenda

20 Jan. 2011, A. Milanese 24

Extras

Page 25: Agenda

20 Jan. 2011, A. Milanese 25

Extras: magnetic design 2D• only two layers closer to the midplane• only two layers farther away from the midplane• nonlinear sextupole• no iron in top pole• sensitivity analysis on multipoles• more / less turns?• a different cable / strand (modified HD2)• breakdown of Lorentz forces in 2D

Page 26: Agenda

20 Jan. 2011, A. Milanese 26

Extras: mechanical design 2D

• pressure in the bladders• table of stresses in the structure• stresses in various components (pole pieces, horizontal pad, vertical plate / pad, yoke, shell)• dimensioning the yoke and the shell • stresses on the coil, different friction among them• alternative coil pack structure, with inner tube• material properties for 2D analyses

Page 27: Agenda

20 Jan. 2011, A. Milanese 27

Only layers 1 & 2

I = 10.5 kA

Bcenter = 8.0 T[8.0/13.0 = 61.5 %]

Bpeak = 9.4 T

63.4 % load line @ 4.2 K58.5 % load line @ 1.9 K[ 12.6 T s. s. 4.2 K 13.7 T s. s. 1.9 K ]

b3 = 512.1b5 = 20.0

• same current as for the full dipole, 13 T case• same iron configuration

Page 28: Agenda

20 Jan. 2011, A. Milanese 28

Only layers 3 & 4

I = 10.5 kA

Bcenter = 6.8 T[6.8/13.0 = 52.3 %]

Bpeak = 8.3 T

57.6 % load line @ 4.2 K53.2 % load line @ 1.9 K[ 11.9 T s. s. 4.2 K 12.9 T s. s. 1.9 K ]

b3 = −625.5b5 = −64.4

• same current as for the full dipole, 13 T case• same iron configuration

Page 29: Agenda

20 Jan. 2011, A. Milanese 29

Nonlinear sextupole

• due to the highly saturated iron close to the bore (in particular, in the pole area)• the decapole b5 sees only ≈1 unit variation from 5 to 15 T

-100

-75

-50

-25

0

25

50

75

100

125

150

175

200

5 6 7 8 9 10 11 12 13 14 15

b 3[/

]

Bcenter [T]

all ironno top poleno iron

Page 30: Agenda

20 Jan. 2011, A. Milanese 30

• no iron in top pole (only vertical pad and yoke)• that piece can make a difference on the margin / short sample

No iron in top pole

I = 10.8 kA

Bcenter = 13.0 T

Bpeak = 13.8 T

86.1 % load line @ 4.2 K79.4 % load line @ 1.9 K[ 15.1 T s. s. 4.2 K 16.4 T s. s. 1.9 K ]

b3 = 110.3b5 = −19.1

Page 31: Agenda

20 Jan. 2011, A. Milanese 31

Sensitivity analysis on multipoles• current is kept the same (I = 10.5 kA) • same iron configuration

case B1[T]

b3[/]

b5[/]

b7[T]

b9[T]

load line [%]

nominal 13.00 57.3 −20.1 0.7 −0.0 82.7

Dx = −1 mm all coil 13.06 53.1 −20.4 0.6 −0.1 83.7

Dx = +1 mm all coil 12.94 61.4 −19.8 0.7 0.1 82.4

Dy = −1 mm all coil 13.09 76.0 −17.5 1.6 0.2 83.6

Dy = +1 mm all coil 12.91 38.7 −22.8 −0.2 −0.2 82.1

insulation 100 mm 13.25 69.2 −22.1 0.3 −0.0 84.4

Page 32: Agenda

20 Jan. 2011, A. Milanese 32

More / less turns?

case Bcenter[T]

I13 T[kA]

load line 4.2K [%]

Bss, 4.2 K[T]

b3[/]

b5[/]

140 turns 13.0 11.5 84.2 15.4 45.8 −22.0

148 turns 13.0 11.0 83.3 15.6 51.9 −21.0

156 turns (nom.) 13.0 10.5 82.7 15.7 57.3 −20.1

164 turns 13.0 10.1 82.1 15.8 62.0 −19.3

172 turns 13.0 9.8 81.6 15.9 66.0 −18.6

• current changed to reach 13 T in the bore• same midplane thickness • same iron configuration• the turns are added / subtract on the far sides

Page 33: Agenda

20 Jan. 2011, A. Milanese 33

Different cable / strand?• HD2 naked cable dimensions used: 22.0 × 1.4 mm• but insulation kept at 200 mm• 51 strands 0.8 mm in diameter, but Cu/nonCu kept at 1.25 • same iron configuration (center blocks on top pole)• 188 turns instead of 156 (similar potted coil size)

• according to and with the above

assumptions, only the filling factor k has an effect• the filling factor changes slightly, for this HD2 (modified) case being about 2% lower than for the FRESCA2 cable• simulation confirms the guess: Bcenter = 13.0 T at I13 T = 8.7 kA 83.6 % load line @ 4.2 K, 15.5 T s. s. 4.2 K (instead of 15.7 T)• inductance increase significantly, L = 68.5 mH/m (+46%)

strong impact on k

Page 34: Agenda

20 Jan. 2011, A. Milanese 34

Lorentz forces in 2D

13 T 1

3

2

4

Block Fx [MN/m]

Fy [MN/m]

Fx/w [MPa]

1 1.73 -0.00 792 1.65 -0.47 763 2.24 -1.15 1034 2.08 -2.18 95

total 7.70 -3.80 n. a.

Page 35: Agenda

20 Jan. 2011, A. Milanese 35

Pressure in the bladders, 2D

opening of the yoke+

opening of the horiz. pad[mm]

friction coefficient betweeniron yoke and Al alloy shell

0.1 0.2 0.5 1.0

only top bladders(yoke / yoke) 246 + 0 230 + 0 190 + 0 143 + 0

only bottom bladders(yoke / horizontal pad) 199 + 40 188 + 40 159 + 39 129 + 38

all horizontal bladders 446 + 40 420 + 39 347 + 36 271 + 33

• for full prestress at 13 T, an horiz. interference of ≈ 700 mm is needed• add 100-200 mm for the clearance• interferences open for horizontal keys, pbladders = 10 MPa = 100 bar• wbladd = 75 mm (all the same)

Page 36: Agenda

20 Jan. 2011, A. Milanese 36

Stresses in the structure, 2Dmaterial [MPa] warm cold 13 T

bottom pole Ti alloy seqv 270* 670* 600*

top pole ironseqv 240 560* 614*s1 15 25 50

horizontal pad steel seqv 120* 250* 315*

yoke ironseqv 280* 320* 345*s1 135 100 100

shell Al alloy seqv 75 200 205

* = corner value; seqv = Von Mises stress, s1 = 1st principal stress[ values computed in plane stress ]

They are all within the yield values of the various materials.

[At 15 T, about 33% more (pre)stress is needed.]

Page 37: Agenda

20 Jan. 2011, A. Milanese 37

1

X

Y

Z

no tube, cold, ix = 0.700 mm, iy = 0.300 mm

0

.556E+08

.111E+09

.167E+09

.222E+09

.278E+09

.333E+09

.389E+09

.444E+09

.500E+09

NODAL SOLUTION

STEP=2SUB =1TIME=2SEQV (AVG)DMX =.287E-03SMN =.268E+08SMX =.669E+09

1

X

Y

Z

no tube, 13 T, ix = 0.700 mm, iy = 0.300 mm

0

.556E+08

.111E+09

.167E+09

.222E+09

.278E+09

.333E+09

.389E+09

.444E+09

.500E+09

NODAL SOLUTION

STEP=3SUB =1TIME=3SEQV (AVG)DMX =.349E-03SMN =.503E+07SMX =.614E+09

Stresses on top and bottom poles

cold cold, 13 T

seq

1

X

Y

Z

no tube, 13 T, ix = 0.700 mm, iy = 0.300 mm

0

.556E+08

.111E+09

.167E+09

.222E+09

.278E+09

.333E+09

.389E+09

.444E+09

.500E+09

NODAL SOLUTION

STEP=3SUB =1TIME=3SEQV (AVG)DMX =.271E-03SMN =.233E+08SMX =.598E+09

Page 38: Agenda

20 Jan. 2011, A. Milanese 38

1

no tube, 13 T, ix = 0.700 mm, iy = 0.300 mm

0

.333E+08

.667E+08

.100E+09

.133E+09

.167E+09

.200E+09

.233E+09

.267E+09

.300E+09

NODAL SOLUTION

STEP=3SUB =1TIME=3SEQV (AVG)DMX =.934E-03SMN =326.63SMX =.314E+09

1

no tube, cold, ix = 0.700 mm, iy = 0.300 mm

0

.333E+08

.667E+08

.100E+09

.133E+09

.167E+09

.200E+09

.233E+09

.267E+09

.300E+09

NODAL SOLUTION

STEP=2SUB =1TIME=2SEQV (AVG)DMX =.992E-03SMN =275.933SMX =.247E+09

Stresses on horizontal pad / rails

cold

seqcold13 T

1

no tube, 13 T, ix = 0.700 mm, iy = 0.300 mm

0

.333E+08

.667E+08

.100E+09

.133E+09

.167E+09

.200E+09

.233E+09

.267E+09

.300E+09

NODAL SOLUTION

STEP=3SUB =1TIME=3SEQV (AVG)DMX =.934E-03SMN =326.63SMX =.314E+09

Page 39: Agenda

20 Jan. 2011, A. Milanese 39

1

no tube, cold, ix = 0.700 mm, iy = 0.300 mm

0

.333E+08

.667E+08

.100E+09

.133E+09

.167E+09

.200E+09

.233E+09

.267E+09

.300E+09

NODAL SOLUTION

STEP=2SUB =1TIME=2SEQV (AVG)DMX =.614E-03SMN =884774SMX =.307E+09

Stresses on vertical pad / platecold

seq

cold, 13 T

1

no tube, 13 T, ix = 0.700 mm, iy = 0.300 mm

0

.333E+08

.667E+08

.100E+09

.133E+09

.167E+09

.200E+09

.233E+09

.267E+09

.300E+09

NODAL SOLUTION

STEP=3SUB =1TIME=3SEQV (AVG)DMX =.661E-03SMN =562700SMX =.303E+09

1

no tube, 13 T, ix = 0.700 mm, iy = 0.300 mm

0.333E+08

.667E+08.100E+09

.133E+09.167E+09

.200E+09.233E+09

.267E+09.300E+09

NODAL SOLUTION

STEP=3SUB =1TIME=3SEQV (AVG)DMX =.661E-03SMN =562700SMX =.303E+09

Page 40: Agenda

20 Jan. 2011, A. Milanese 40

Stresses on yoke, part 1cold

seq

cold, 13 T1

no tube, 13 T, ix = 0.700 mm, iy = 0.300 mm

0.389E+08

.778E+08.117E+09

.156E+09.194E+09

.233E+09.272E+09

.311E+09.350E+09

NODAL SOLUTION

STEP=3SUB =1TIME=3SEQV (AVG)DMX =.001064SMN =.617E+07SMX =.346E+09

1

no tube, cold, ix = 0.700 mm, iy = 0.300 mm

0.389E+08

.778E+08.117E+09

.156E+09.194E+09

.233E+09.272E+09

.311E+09.350E+09

NODAL SOLUTION

STEP=2SUB =1TIME=2SEQV (AVG)DMX =.001004SMN =.261E+07SMX =.321E+09

1

no tube, 13 T, ix = 0.700 mm, iy = 0.300 mm

0.389E+08

.778E+08.117E+09

.156E+09.194E+09

.233E+09.272E+09

.311E+09.350E+09

NODAL SOLUTION

STEP=3SUB =1TIME=3SEQV (AVG)DMX =.001064SMN =.617E+07SMX =.346E+09

Page 41: Agenda

20 Jan. 2011, A. Milanese 41

Stresses on yoke, part 2cold

s1

cold, 13 T1

no tube, 13 T, ix = 0.700 mm, iy = 0.300 mm

0.111E+08

.222E+08.333E+08

.444E+08.556E+08

.667E+08.778E+08

.889E+08.100E+09

NODAL SOLUTION

STEP=3SUB =1TIME=3S1 (AVG)DMX =.001064SMX =.989E+08

1

no tube, cold, ix = 0.700 mm, iy = 0.300 mm

0.111E+08

.222E+08.333E+08

.444E+08.556E+08

.667E+08.778E+08

.889E+08.100E+09

NODAL SOLUTION

STEP=2SUB =1TIME=2S1 (AVG)DMX =.001004SMX =.118E+09

1

no tube, 13 T, ix = 0.700 mm, iy = 0.300 mm

0.111E+08

.222E+08.333E+08

.444E+08.556E+08

.667E+08.778E+08

.889E+08.100E+09

NODAL SOLUTION

STEP=3SUB =1TIME=3S1 (AVG)DMX =.001064SMX =.989E+08

Page 42: Agenda

20 Jan. 2011, A. Milanese 42

Stresses on shellcold

seqv

cold, 13 T1

no tube, 13 T, ix = 0.700 mm, iy = 0.300 mm

.100E+09.111E+09

.122E+09.133E+09

.144E+09.156E+09

.167E+09.178E+09

.189E+09.200E+09

NODAL SOLUTION

STEP=3SUB =1TIME=3SEQV (AVG)DMX =.001403SMN =.127E+09SMX =.204E+09

1

no tube, cold, ix = 0.700 mm, iy = 0.300 mm

.100E+09.111E+09

.122E+09.133E+09

.144E+09.156E+09

.167E+09.178E+09

.189E+09.200E+09

NODAL SOLUTION

STEP=2SUB =1TIME=2SEQV (AVG)DMX =.001349SMN =.133E+09SMX =.200E+09

1

no tube, cold, ix = 0.700 mm, iy = 0.300 mm

.100E+09.111E+09

.122E+09.133E+09

.144E+09.156E+09

.167E+09.178E+09

.189E+09.200E+09

NODAL SOLUTION

STEP=2SUB =1TIME=2SEQV (AVG)DMX =.001349SMN =.133E+09SMX =.200E+09

Page 43: Agenda

20 Jan. 2011, A. Milanese 43

Dimensioning the yoke and the shell• avg. pressure 3rd layer coil / pole, for ix = 700 mm and iy = 300 mm • the (AA) shell thickness dictates the prestress increase at cold• steel doesn’t buy enough at cold aDT = 2.84 10∙ −3 vs. 4.02 10∙ −3

• stresses tend to go down when there is more material, and “real estate” is important

-60

-40

-20

0

20

40

60

80

100

120

30 mm Al 50 mm Al 70 mm Al 30 mm steel

p ave

,3[M

Pa]

ryoke400 mm

warm

cold

13 T

-60

-40

-20

0

20

40

60

80

100

120

30 mm Al 50 mm Al 70 mm Al 30 mm steel

p ave

,3[M

Pa]

ryoke450 mm

warm

cold

13 T

-60

-40

-20

0

20

40

60

80

100

120

30 mm Al 50 mm Al 70 mm Al 30 mm steel

p ave

,3[M

Pa]

ryoke500 mm

warm

cold

13 T

chosen

Page 44: Agenda

20 Jan. 2011, A. Milanese 44

Stresses on the coil

warm cold 13 Tsx

1

X

Y

Z

no tube, warm, ix = 0.700 mm, iy = 0.300 mm

-.150E+09-.133E+09

-.117E+09-.100E+09

-.833E+08-.667E+08

-.500E+08-.333E+08

-.167E+080

NODAL SOLUTION

STEP=1SUB =1TIME=1SX (AVG)RSYS=0DMX =.156E-03SMN =-.556E+08SMX =-.192E+08

1

X

Y

Z

no tube, warm, ix = 0.700 mm, iy = 0.300 mm

-.150E+09-.133E+09

-.117E+09-.100E+09

-.833E+08-.667E+08

-.500E+08-.333E+08

-.167E+080

NODAL SOLUTION

STEP=1SUB =1TIME=1SX (AVG)RSYS=0DMX =.156E-03SMN =-.546E+08SMX =-.198E+08

1

X

Y

Z

no tube, cold, ix = 0.700 mm, iy = 0.300 mm

-.150E+09-.133E+09

-.117E+09-.100E+09

-.833E+08-.667E+08

-.500E+08-.333E+08

-.167E+080

NODAL SOLUTION

STEP=2SUB =1TIME=2SX (AVG)RSYS=0DMX =.739E-03SMN =-.145E+09SMX =-.429E+08

1

X

Y

Z

no tube, 13 T, ix = 0.700 mm, iy = 0.300 mm

-.150E+09-.133E+09

-.117E+09-.100E+09

-.833E+08-.667E+08

-.500E+08-.333E+08

-.167E+080

NODAL SOLUTION

STEP=3SUB =1TIME=3SX (AVG)RSYS=0DMX =.688E-03SMN =-.139E+09SMX =-.337E+07

top / bottom sliding

(friction 0.2)

top / bottom glued

1

X

Y

Z

no tube, 13 T, ix = 0.700 mm, iy = 0.300 mm

-.150E+09-.133E+09

-.117E+09-.100E+09

-.833E+08-.667E+08

-.500E+08-.333E+08

-.167E+080

NODAL SOLUTION

STEP=3SUB =1TIME=3SX (AVG)RSYS=0DMX =.686E-03SMN =-.138E+09SMX =.342E+07

1

X

Y

Z

no tube, warm, ix = 0.700 mm, iy = 0.300 mm

-.150E+09-.133E+09

-.117E+09-.100E+09

-.833E+08-.667E+08

-.500E+08-.333E+08

-.167E+080

NODAL SOLUTION

STEP=1SUB =1TIME=1SX (AVG)RSYS=0DMX =.156E-03SMN =-.556E+08SMX =-.192E+08

1

X

Y

Z

no tube, cold, ix = 0.700 mm, iy = 0.300 mm

-.150E+09-.133E+09

-.117E+09-.100E+09

-.833E+08-.667E+08

-.500E+08-.333E+08

-.167E+080

NODAL SOLUTION

STEP=2SUB =1TIME=2SX (AVG)RSYS=0DMX =.739E-03SMN =-.142E+09SMX =-.405E+08

It’s the same, as the contact is “sticking”.

Page 45: Agenda

20 Jan. 2011, A. Milanese 45

Alternative coil pack structure, 2D

iron

Ti alloy

potted coil

Al bronze

G10

steel

An inner steel support tube is

present.

Page 46: Agenda

20 Jan. 2011, A. Milanese 46

Material properties for 2D analysis ! potted Nb3Sn coil [1]mptemp,1,4.3,293mpdata,ex,1,1,42000e6,30000e6mpdata,prxy,1,1,0.3,0.3mp,alpx,1,1.16E-5 !3.36e-3

! stainless steel [2]mptemp,1,4.3,293mpdata,ex,2,1,210000e6,193000e6mpdata,prxy,2,1,0.28,0.28mp,alpx,2,9.83E-6 !2.84e-3

! aluminum bronze [3]mptemp,1,4.3,293mpdata,ex,3,1,120000e6,110000e6mpdata,prxy,3,1,0.3,0.3mp,alpx,3,1.08E-5 !3.12e-3

! iron [4]mptemp,1,4.3,293mpdata,ex,4,1,224000e6,213000e6mpdata,prxy,4,1,0.28,0.28mp,alpx,4,6.82E-6 !1.97e-3

! aluminum [5]mptemp,1,4.3,293mpdata,ex,5,1,79000e6,70000e6mpdata,prxy,5,1,0.34,0.34mp,alpx,5,1.45E-5 !4.2e-3

! G10 [6]mptemp,1,4.3,293mpdata,ex,6,1,30000e6,30000e6mpdata,prxy,6,1,0.3,0.3mp,alpx,6,2.44E-5 !7.06e-3

! Nitronic 40 [7]mptemp,1,4.3,293mpdata,ex,7,1,225000e6,210000e6mpdata,prxy,7,1,0.28,0.28mp,alpx,7,0.90E-5 !2.6e-3

! titanium [8]mptemp,1,4.3,293mpdata,ex,8,1,120000e6,110000e6mpdata,prxy,8,1,0.3,0.3mp,alpx,8,6.25E-6 !1.8e-3

Page 47: Agenda

20 Jan. 2011, A. Milanese 47

Lorentz forces in 3D


Recommended