+ All Categories
Home > Documents > AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH...

AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH...

Date post: 22-Jan-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
165
Annual Report 2019 i
Transcript
Page 1: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Annual Report

2019

i

Page 2: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

ii

• ADDRESS OF THE FACULTY OFFICE

• AGH University of Science and Technology(Akademia Górniczo-Hutnicza im. Stanisława Staszica)al. Mickiewicza 30, 30-059 Kraków, Poland

• Faculty of Physics and Applied Computer Science(Wydział Fizyki i Informatyki Stosowanej)ul. Reymonta 19, 30-059 Kraków, Building D-10

• ADDRESS FOR THE CORRESPONDENCEAGH University of Science and TechnologyFaculty of Physics and Applied Computer Scienceal. Mickiewicza 30, PL-30059 Kraków, Poland

• PHONES++48 12 633 37 40, ++48 12 617 29 53

• FAX++48 12 634 00 10

• E-MAIL [email protected]

• WEB-PAGEwww.fis.agh.edu.pl

Page 3: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Contents

Preface ixAuthorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiPhysicists—Doctors Honoris Causa of AGH University of Science and Technology . . . . . . . . . . . . . . xiPhysicist—Honorary Consul of AGH University of Science and Technology . . . . . . . . . . . . . . . . . xiPhysicist—AGH–UST Honorary Professor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiLong-term visitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiiAwards in 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

I Departments, Groups and Leaders, Achievements and Selected Results in 20191

1 Department of Solid State Physics 31.1 Staff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.2 Magnetic Bulk and Nanomaterials Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.3 Magnetic, Electrical and Structural Research Group . . . . . . . . . . . . . . . . . . . . . . . 31.1.4 Superconducting and Magnetic Materials Group . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.5 Surface Nanostructures Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.1.6 Quantum Effects in Nanostructures Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.1.7 Supporting Staff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Magnetic Bulk- and Nanomaterials Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.3.2 Magnetic, Electrical and Structural Research Group . . . . . . . . . . . . . . . . . . . . . . . 51.3.3 Superconducting and Magnetic Materials Group . . . . . . . . . . . . . . . . . . . . . . . . . 61.3.4 Surface Nanostructures Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.3.5 Quantum Effects in Nanastructures Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Department of Medical Physics and Biophysics 92.1 Staff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.1.2 Biomedical and Environmental Research Group . . . . . . . . . . . . . . . . . . . . . . . . . . 92.1.3 Biomedical Imaging and Modelling Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

iii

Page 4: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

iv CONTENTS

2.2 Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.2.1 Biomedical and Environmental Research Group . . . . . . . . . . . . . . . . . . . . . . . . . . 102.2.2 Biomedical Imaging and Modeling Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.3.1 Biomedical and Environmental Reserch Group . . . . . . . . . . . . . . . . . . . . . . . . . . 112.3.2 Biomedical Imaging and Modeling Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Department of Condensed Matter Physics 173.1 Staff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.1.2 Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.3 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.4 Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Department of Applied Informatics and Computational Physics 234.1 Staff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234.1.2 Complex Systems Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234.1.3 Information Technology and Systems Research Group . . . . . . . . . . . . . . . . . . . . . . 234.1.4 Nanostructures and Nanodevices Theory Group . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244.2.1 Complex Systems Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244.2.2 Information Technology and Systems Research Group . . . . . . . . . . . . . . . . . . . . . . 244.2.3 Nanostructures and Nanodevices Theory Group . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.3.1 Complex Systems Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.3.2 Information Technology and Systems Research Group . . . . . . . . . . . . . . . . . . . . . . 254.3.3 Nanostructures and Nanodevices Theory Group . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Department of Particle Interaction and Detection Techniques 295.1 Staff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295.1.2 Elementary Particles Physics Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295.1.3 Nuclear Electronics and Radiation Detection Group . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305.3 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315.4 Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Department of Applied Nuclear Physics 356.1 Staff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.1 Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356.1.2 Environmental Physics Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356.1.3 Physics of Strongly Interacting Systems Group . . . . . . . . . . . . . . . . . . . . . . . . . . 356.1.4 Molecular Biophysics and Bioenergetics Group . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Page 5: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

CONTENTS v

6.2 Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366.3 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366.4 Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Teaching Services Team 397.1 Staff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1.1 Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397.1.2 Teachers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397.1.3 Laboratory for Physics Demonstrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397.1.4 Physics Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 PhD students 41

9 Selected Results 459.1 Radioactivity in the Gas Pipeline Network in Poland . . . . . . . . . . . . . . . . . . . . . . . . . . . 459.2 Signs of Reduced Biospheric Activity with Progressing Global Warming . . . . . . . . . . . . . . . . 489.3 Observation of Light-by-Light Scattering in ATLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . 519.4 Anisotropic Bone Response Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549.5 Noncollinear Ordering of the Orbital Magnetic Moments in Magnetite . . . . . . . . . . . . . . . . . 579.6 Hole Pocket–driven Superconductivity and its Universal Features in the Electron-doped Cuprates . . 599.7 How a Ferromagnet Drives an Antiferromagnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619.8 Electrical Conductivity and Magnetic Susceptibility of Thallium 1223-Based Superconductor in the

Fluctuation Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629.9 Critical Currents of Tl2Ba2Ca2Cu3Oz Bulk Superconductors . . . . . . . . . . . . . . . . . . . . . . 639.10 Applications of Magnetic Nanoparticles for Environment Protection . . . . . . . . . . . . . . . . . . 649.11 Dynamics of Superparamagnetic Iron Oxide Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . 679.12 The Potential of FTIR Imaging as a Tool Supporting Neuropathologist . . . . . . . . . . . . . . . . . 709.13 Determination of Magnetic Phase Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

II Dissemination of Scientific Results 77

10 Publications 7910.1 Papers in journals registred in Web of Science or Scopus databases . . . . . . . . . . . . . . . . . . . 7910.2 Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10910.3 Chapters in Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

11 Conferences 11111.1 Invited conference presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11111.2 Contributed conference presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11411.3 Conferences organized by the Faculty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

12 Seminars 13312.1 Seminar presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13312.2 Seminars organized by the Faculty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Page 6: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

vi CONTENTS

III Promotion proceedings137

13 Defended PhD thesis 139

14 Habilitations in physics by the Faculty Council 141

15 Habilitations of the employees in the external institutions 143

IV Grants 145

16 National Research Council (NCN) grants 147

17 Grants of Ministry of Science and Higher Education (MNiSW) 151

18 EU grants and other foreign sources 153

Page 7: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Preface

vii

Page 8: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława
Page 9: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

CONTENTS ix

The Faculty of Physics and Applied Computer Science (FPACS) is one of the fifteen Faculties of the AGHUniversity of Science and Technology in Cracow. The origins of the Faculty date back to foundation of the Academyof Mining in 1919 including the Chair of Physics. Over the following decades the Chair has undergone severalorganizational transformations until in 1991 the AGH Senate has decided to form the Faculty of Physics andNuclear Techniques. In 2004 the name was changed to Faculty of Physics and Applied Computer Science, to followthe changes in the fields of scientific and educational activity.

Scientific activity of the Faculty comprises both basic and applied research in solid state physics, nuclear andelementary particles physics, medical physics, physics of the environment and computer science.

The Faculty is the Leader of the Marian Smoluchowski Kraków Scientific Consortium that has been awardedthe status of the Leading National Research Centre (KNOW) for 2012-2017.

The Faculty since 2013 has the highest (A+) category of research units in Poland. The A+ category wasmaintained in the evaluation of research units in 2017.

There are six departments within the Faculty:

1. Department of Applied Informatics and Computational Physics (Katedra Informatyki Stosowanej i FizykiKomputerowej)

2. Department of Applied Nuclear Physics (Katedra Zastosowań Fizyki Jądrowej)

3. Department of Medical Physics and Biophysics (Katedra Fizyki Medycznej i Biofizyki)

4. Department of Solid State Physics (Katedra Fizyki Ciała Stałego)

5. Department of Particle Interaction and Detection Techniques (Katedra Oddziaływań i Detekcji Cząstek)

6. Department of Condensed Matter Physics (Katedra Fizyki Materii Skondensowanej)

The faculty staff includes 180 employees: 136 teachers and researchers, including 25 holders of professor title, aswell as 24 technical, 14 administrative officers and 6 service.

The Faculty leads B.Sc., M.Sc. and Ph.D. studies. The undergraduate studies consist of seven-semester bachelorprograms in four distinct majors: technical physics, medical physics, micro- and nanotechnologies in biophysics andapplied computer science. They are followed by three-semester graduate programs, leading to the M.Sc. degree.

• Area: Physical Sciences

– Major: Technical Physics

– Major: Medical Physics

– Major: Micro- and Nanotechnologies in Biophysics

• Area: Technical Computing and Telecommunications

– Major: Applied Computer Science; teaching paths:

∗ Data Modeling and Analysis,∗ Computer Graphics and Image Processing,

– Major: Computer Science (in English, 1st degree only)—studies are conducted by Faculty of ElectricalEngineering, Automatics, Computer Science and Biomedical Engineering in cooperation with Faculty ofComputer Science, Electronics and Telecommunications, Faculty of Physics and Applied ComputerScience, and Faculty of Metals Engineering and Industrial Computer Science.

Page 10: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

x CONTENTS

The Faculty leads teaching in both general and specialized physics for students of all the Faculties of the AGH–UST at both undergraduate and graduate levels. The teaching covers lectures, auditorial classes and laboratorywork. Some of lectures are offered in English, in particular the entire PhD study course. Faculty organizescomplementary courses for the 1st year students of the University in physics (parallel to complementary courses inmathematics, organized by the Faculty of Applied Mathematics). The aim of the courses is to fill possible gaps inthe high-school education to increase the efficiency of the training for the candidates who undertook such studies.

The Faculty hosts four-year programs of Ph.D. Studies in Physics: in physics and biophysics. In 2017 theFaculty obtained UE POWER Funds to run an interdisciplinary Ph.D. Studies ‘Physical, Chemical and BiophysicalFoundations for Modern Technologies and Material Engineering’.

The Faculty offers also a three semester Post-diploma (part-time) Study for Teachers. The studies are intendedfor primary and secondary school teachers, who want to gain additional qualifications giving them right to teach:physics, mathematics, chemistry, computer science, natural sciences and technical education.

Page 11: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

CONTENTS xi

Authorities

• Deanprof. dr hab. Janusz Wolny

• Deputy Dean for Science and Cooperationprof. dr hab. inż. Bartłomiej Szafran

• Deputy Dean for Educationdr hab. inż. Krzysztof Malarz

• Deputy Dean for Student Affairsdr inż. Paweł Armatys

• Administrative Directordr inż. Marek Ciechanowski

Physicists—Doctors Honoris Causa of AGH University of Science andTechnology

• Prof. Marian Mięsowicz 1979

• Prof. Andrzej Oleś 1995

• Prof. Michał Heller 1996

• Prof. Andrzej Z. Hrynkiewicz 1999

• Prof. Manuel Ricardo Ibarra 2008

• Prof. Jurgen M. Honig 2010

Physicist—Honorary Consul of AGH–UST

• Prof. Rolf-Dieter Heuer (General Director of CERN) 2009

Physicist—AGH–UST Honorary Professor

• Prof. Jerzy Niewodniczański 2009

• Prof. Kazimierz Jeleń 2019

• Prof. Danuta Kisielewska 2019

Page 12: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

xii CONTENTS

Long-term visitors

• 03.11–19.11.2019: Manuel Ricardo Ibarra, Uniwesytet w Saragossie

• 10.10–15.11.2019: Janez Dolinsek, University of Ljubljana

• 17.10–16.11.2019: Nabendu Chaki, University of Calcutta

• 01.10–30.10.2019: Rituparna Chaki, University of Calcutta

• 04.05–27.06.2019: Laurent Chaput, Lorraine University

• 04.05–01.06.2019: Gerardo Goya Rossetti, Universidad de Zaragoza

• 22.04–23.05.2019: Sankhayan Choudhury, University of Calcutta

• 23.04–25.04.2019: Laszlo T. Koczy, Budapest University of Technology and Economics

Awards in 2019

• prof. dr hab. Danuta Kisielewska: Prime Minster Award

• dr hab. Renata Szymańska: Polish Intelligent Development Award 2019, for the implementation of the projectSONATA X.

• Diamond Mine Award for the Faculty for the largest number of Diamonds AGH Awards for the best mastertheses at the University

Page 13: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Part I

Departments, Groups and Leaders,Achievements and Selected Results

in 2019

1

Page 14: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława
Page 15: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 1

Department of Solid State Physics

1.1 Staff

1.1.1 Head

• dr hab. Wiesław Marek Woch, associated professor

1.1.2 Magnetic Bulk and Nanomaterials Group

• prof. dr hab. Czesław Kapusta, professor, group leader• dr hab. Janusz Przewoźnik, associated professor• dr hab. inż. Damian Rybicki, associated professor• dr inż. Jan Michalik, assistant professor• dr inż. Sylwia Fiejdasz, assistant professor• mgr inż. Andrzej Lemański, teaching assistant

1.1.3 Magnetic, Electrical and Structural Research Group

• dr hab. Łukasz Gondek, associated professor, group leader• dr Joanna Czub, assistant professor

1.1.4 Superconducting and Magnetic Materials Group

• prof. dr hab. inż. Zbigniew Tarnawski, professor, group leader• prof. dr hab. inż. Zbigniew Kąkol, professor• prof. dr hab. inż. Andrzej Kozłowski, professor• dr hab. Wiesław Marek Woch, associated professor• dr inż. Waldemar Tokarz, assistant professor• dr inż. Wojciech Tabiś, assistant professor• dr Ryszard Zalecki, assistant professor• dr inż. Marcin Kowalik, research assistant• dr inż. Janusz Niewolski, teaching assistant

3

Page 16: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

4 CHAPTER 1. DEPARTMENT OF SOLID STATE PHYSICS

1.1.5 Surface Nanostructures Group

• dr hab. Tomasz Ślęzak, associated professor, group leader• prof. dr hab. Józef Korecki, professor• prof. dr hab. Tomasz Stobiecki, professor• dr inż. Michał Ślęzak, assistant professor• dr inż. Anna Kozioł-Rachwał, assistant professor• dr inż. Krzysztof Matlak, research assistant

1.1.6 Quantum Effects in Nanostructures Group

• prof. dr hab. inż. Marek Przybylski, professor, group leader• dr inż. Maciej Chrobak, assistant professor

1.1.7 Supporting Staff

• mgr inż. Wacław Musiał• mgr inż. Tomasz Strączek• mgr Agnieszka Dziok• mgr Marek Giebułtowski• mgr Karol Rulewicz

1.2 Profile

Scientific activity of the Department concentrates on the studies of structural, magnetic and electronic propertiesin the nano- and sub-nanometric thin films, metal-oxide nanostructures and multilayers for magnetic and catalyticapplications, intermetallics and their hydrides, novel materials and systems for hydrogen storage and their in-situinvestigation with neutron scattering, in superconductors, including the HTc ones, in magnetic oxides, includingmagnetite and the colossal - and low field magnetoresistive ones, in topological insulators, in nanoparticle magneticmaterials for MRI contrast and magnetic hyperthermia, in shape memory materials, in molecular magnets as wellas in disordered metallic materials.

The experimental facilities of the Department include:

• MBE set-up for preparation and analysis of thin films and nanostructures, equipped with LEED, AES, MOKEand CEMS with UHV sample transfer possibility,

• ARUPS-XPS spectrometer,

• Scanning Tunneling Microscope, 30–300 K temperature range with Molecular Beam Epitaxy chamber,

• VSM, AC susceptometer, ESR spectrometer, set-up for magnetoresistance measurements with closed circlerefrigerator and calorimeter for specific heat measurements in 2–300 K range,

• X-ray diffractometers (Siemens D5000 and Panalytical Empyrean) with temperature controll within 2–450 Kand 300–1450 K range,

• Physical Property Measurement System (Quantum Design model, closed circle liquifier) equipped with 9 Teslamagnet, 2–400 K (VSM: 2–1100 K) temperature range, options: DC susceptibility, magnetisation, torque mag-netometry, AC susceptibility, resistance/magnetoresistance, thermal expansion & magnetostriction, thermaltransport & thermoelectric properties, specific heat,

Page 17: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

1.3. ACHIEVEMENTS 5

• Mossbauer spectrometers (4), transmission & CEMS, for six isotopes, 4–1000 K temperature range,

• NMR spectrometers for proton resonance (15 MHz, 17 MHz) and for magnetic materials, 5–1000 MHz, closedcircle refrigerator, 2–300 K,

• Setaram PCT-PRO automatic sorption analyser (H, He, N, hydrocarbon-gases) operating in pressures up to200 bar and temperatures from 77 K up to 650 K,

• Fritsch Pulverisette 7 Premium line high-energy planetary mills (2) with equipment for milling in reactive orinert atmosphere or in suspensions.

• Graphene Growth Chamber,

• Low vacuum Scanning Electron Microscope with Energy Dispersive X-Ray Spectroscopy system,

• Tube furnace,

• Rotator for angle-dependent magneto-resistance measurement in milikelvin temperaure range.

1.3 Achievements

1.3.1 Magnetic Bulk- and Nanomaterials Group

• Determination of dynamics of various maghemite based nanoparticles and containing them nanocapsules inrelation to their applied properties for: magnetically navigated nanoreactors, biomedicine (MRI, magnetichyperthermia) and environmental purposes (nanoparticle impregnated adsorbents of polluters).

• Observation of the enhanced perpendicular exchange bias in the Co/Pd antidot system and spin dependenttransport in the IrMn-Co/Pd multilayer.

• Determination of properties of NiTi shape memory alloy micro-foils obtained by pulsed-current sintering andobservation of the Ge enhanced exchange bias effect in Ni50Mn37.5Sn12.5 metamagnetic shape memory system.

• A successful focused electron beam-induced deposition and post-growth purification of Ru nanostructure usinga heteroleptic Ru complex.

1.3.2 Magnetic, Electrical and Structural Research Group

It was shown that p-electron doping in an extremely useful tool for tuning magnetic properties of REPdIn1−xSnx,where RE—rare earth element. The REPdIn crystallize in the hexagonal ZrNiAl-type structure, while the REPdSnadopt the orthorhombic TiNiSi one. Surprisingly, the hexagonal structure is stable up to quite hight Sn doping(x = 0.8). We proved that this is a uniform behavior across the whole family. Moreover, the anomalous behavior ofthe c-lattice parameter was found for all alloys from the hexagonal part of the phase diagram. It was also evidencedthat all hexagonal alloys are prone to hydrogen introduction. The hydrides of REPdIn1−xSnxHy with y rangingfrom 1 to 1.3 were obtained. Apart from Ce-based compounds hydrogen uptake diminishes ordering temperatures.

Another part of scientific interest is related to metal-hydride systems for hydrogen storage, compression andpurification. We developed construction of efficient and fast hydrogen container. Advanced nanocomposites ofHydralloy active material and thermal matrix material together with efficient hydrogen supplying system let us topresent such solution for marine application. The system was tested on a model boat, showing a good stability andresistance towards operational wear.

Page 18: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

6 CHAPTER 1. DEPARTMENT OF SOLID STATE PHYSICS

1.3.3 Superconducting and Magnetic Materials Group

Studies of high-TC superconductors (HTC) were carried out on polycrystals as well as single crystalline samples.Research on Tl-based polycrystalline superconductors (SC) in the 1223 and 2223 systems concerned the improvementof critical temperatures and critical current densities. Thermal fluctuations of metal-SC transition were examinedand critical exponents of electrical conductivity and magnetic susceptibility in the region of the critical temperaturefor Tl-based SC in the 1223 system were determined. Structural, transport and magnetic properties of Er-Dy SCin the 123 system and YBCO-YMnO3 composites were also examined.

Electronic transport measurements in the model hole-doped cuprate single-crystalline superconductor HgBa2CuHg Ba2CuO4+δ suggests that the pseudo-gap phenomenon is associated with the gradual, non-uniform localizationof one hole per planar CuO2 unit. Electron-doped cuprate Nd2−xCexCuO4+δ reveals characteristics of the normaland superconducting state that consistently point to hole pocket–driven superconductivity. In particular, detailedmeasurements revealed that the approximate Uemura scaling between the superconducting transition temperatureand the superfluid density found for hole-doped cuprates also holds for the small hole component of the superfluiddensity in the electron-doped cuprates.

XMCD and RIXS studies of the orbital magnetic moment in magnetite at 300 K showed noncollinear orbitalmagnetic ordering with spin and orbital moments decoupled. Magnetite was also suggested as a possible geobarom-eter after the results of magnetization measurements under shock-pressure up to 5 GPa in natural and syntheticsamples were analyzed. Finally, the magnetism of iron oxide nanoparticles in halloysite and LDH was studied.

1.3.4 Surface Nanostructures Group

Scientific activity of the Surface Nanostructures Group in 2019 can be divided into three classes. First classconcerns studies of magnetic anisotropy of ultrathin epitaxial layers of 3d metals. For Au/Fe(110) system a strongmodification of Fe(110) magnetic anisotropy by the quantum well states in Au overlayer has been observed. Secondpart of studies was devoted to the magnetic multilayers based on FeRh alloy. In FeRh/Co bilayers the largeenhancement of Co coercivity was induced by the phase transition from the antiferromagnetic to the ferromagneticstate of FeRh sublayer. In case of gold coated FeRh films on MgO(001) perpendicular magnetic anisotropy wasobserved for the first time. The third part of our experimental studies was devoted to the magnetic properties ofantiferromagnets with potential spintronic applications such as Mn2Au and NiO.

1.3.5 Quantum Effects in Nanastructures Group

1. In cooperation with ACMiN, we conducted low-temperature measurements using a TRITON dilution refrig-erator, in particular:

(a) Electrical transport measurements of U-Pt superconductors doped with Ru and Ti,

(b) Magnetotransport properties studies of Bi2Se3 and Bi2Te3 single crystals doped with metals,

2. Performing tests on the preparation chamber installed on the STM microscope. Carrying out topography andSTS measurements of topological insulators.

1.4 Activity

J. Czub

• Member of the Małopolska Regional Committee of the Physics Competition

Page 19: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

1.4. ACTIVITY 7

Ł. Gondek

• Member of the Scientific Selection Panel of Helmholtz–Zentrum Berlin• Member of the Advisory Board of AGH–UST International Courses Database

J. Korecki

• Chairman of the Ethics Commission at AGH–UST• Member of Scientific Council of Academic Centre for Materials and Nanotechnology AGH, Kraków• Member of Scientific Council of Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of

Sciences, Kraków• Member of Polish Synchrotron Consortium Council• Member of the Scientific Advisory Committee of the National Synchrotron Radiation Centre Solaris

M. Przybylski

• Member of Scientific Advisory Committees of the European Schools on Magnetism• Member of International Advisory Committee of the Centre for Advanced Materials and Technologies –

PROMATECH, Kosice, Słowacja• Member of Committee on Material Science of Polish Academy of Sciences• Member of Scientific Board of Polish Synchrotron Consortium (SOLARIS, Kraków)• Member of Commission for Strategy and Development of InnoTechKrak• Member of Senate of AGH University of Science and Technology• Member of Scientific Council of Institute of Metallurgy and Material Engineering of Polish Academy of Sciences

in Kraków• Member of the International Advisory Committee (IAC) of the International Colloquium on Magnetic Thin

Films and Surfaces (ICMFS)

Page 20: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

8 CHAPTER 1. DEPARTMENT OF SOLID STATE PHYSICS

Page 21: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 2

Department of Medical Physics andBiophysics

2.1 Staff

2.1.1 Head

• dr hab. inż. Joanna Chwiej, associated professor

2.1.2 Biomedical and Environmental Research Group

• dr hab. inż. Magdalena Szczerbowska-Boruchowska, associated professor, group leader• prof. dr hab. inż. Marek Lankosz, professor• dr hab. inż. Zdzisław Stęgowski, associated professor• dr hab. inż. Dariusz Węgrzynek, associated professor• dr inż. Joanna Dudała, assistant professor• dr inż. Leszek Furman, assistant professor• dr Beata Ostachowicz, assistant professor• dr inż. Lucyna Samek, assistant professor• dr inż. Aleksandra Wandzilak, assistant professor• dr inż. Paweł Wróbel, assistant professor• dr inż. Mateusz Czyżycki, teaching assistant• dr inż. Artur Surówka, teaching assistant

2.1.3 Biomedical Imaging and Modelling Group

• dr hab. Zenon Matuszak, associated professor, group leader• prof. dr hab. Stanisław M. Dubiel, professor• dr hab. inż. Joanna Chwiej, associated professor• dr hab. inż. Jakub Cieślak, associated professor• dr hab. inż. Aleksandra Jung, associated professor• dr inż. Agnieszka Dróżdż, assistant professor

9

Page 22: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10 CHAPTER 2. DEPARTMENT OF MEDICAL PHYSICS AND BIOPHYSICS

• dr inż. Katarzyna Matusiak, assistant professor• dr inż. Krzysztof Kłodowski, teaching assistant

2.2 Profile

The Department of Medical Physics and Biophysics consists of two research groups. The research activities ofBiomedical Imaging and Modeling Group cover the subjects of magnetic resonance and optical imaging, modelingof physiological processes, nuclear medicine imaging and dosimetry in diagnostics and therapy with the applicationof radioactive elements, toxicity of selected nanoparticles and application of advanced spectroscopic methods inbiomedical research. The research interests include also the study of various physical properties of technologicallyimportant alloys, oxides and compounds as well as the use of Mossbauer Spectroscopy in the investigation of Fe-containing samples of organic or/and pharmaceutical origin or application (like ferritin, antianemic medicamentsetc).

The research at Biomedical and Environmental Research Group relates mainly to the investigation of the role ofbiomodulators in the biochemical mechanism of the pathogenesis and progress of cancers and neurodegeneration.Scientific subject in the frame of environmental pollution focuses on determination of chemical content of particulatematter fractions as well as source identification and apportionment.

2.2.1 Biomedical and Environmental Research Group

The research at the Biomedical and Environmental Research Group relates to the development and application ofanalytical methods based on X-ray and infrared spectroscopy. The main topics of interest are biomedical research,environmental science, and protection of cultural heritage. Of particular importance is the investigation of the roleof elements and biomolecules in the biochemical mechanisms of the pathogenesis and progress of ovarian cancersand neuromuscular disorders. The elemental and molecular chemical micro imagings are performed with the useof the techniques based on synchrotron radiation, e.g. synchrotron radiation X-ray fluorescence (SRXRF), X-rayabsorption near edge structure (XANES) spectroscopy and Fourier transform infrared micro spectroscopy (FTIR).Moreover, the research aimed at investigating the impact of structural properties of thin brain tissue sections onquantitative elemental distributions recorded by the synchrotron X-ray fluorescence microprobe. Scientific subjectin the frame of environmental pollution focuses on collecting and determination of chemical content of PM1 andPM2.5 fractions as well as source identification and apportionment by receptor model PMF. The laboratory isequipped with state-of-art facilities including X-ray fluorescence and infrared confocal microscopes, multifunctionalX-ray fluorescence spectrometer for localized and bulk elemental ultra trace analysis.

2.2.2 Biomedical Imaging and Modeling Group

The research activities of Biomedical Imaging and Modeling Group cover, as previously mentioned, Magnetic Reso-nance Imaging based on Nuclear Magnetic Resonance including diffusion weighted, diffusion tensor imaging, opticalimaging, photodynamic therapy, modeling of physiological processes, nuclear medicine imaging and dosimetry indiagnostics and therapy with application of radioactive elements, application of advanced spectroscopic methodsin biomedical research (UV-VIS-IR, EPR, Mossbauer spectroscopy) and some issues from solid state physics (HighEntropy Alloys).

The research activities of Biomedical Imaging and Modeling Group cover, as previously mentioned, imaging basedon nuclear magnetic resonance, including diffusion weighted diffusion tensor imaging, optical imaging, photodynamictherapy, modeling of physiological processes, nuclear medicine imaging and dosimetry in diagnostics and therapy

Page 23: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

2.3. ACHIEVEMENTS 11

with application of radioactive elements, application of advanced spectroscopic methods in biomedical research(UV-VIS-IR, EPR, Mossbauer spectroscopy) and some issues from solid state physics (High Entropy Alloys).

2.3 Achievements

2.3.1 Biomedical and Environmental Reserch Group

• The discovery of the link between certain trace metals and their role in the growth of brain and ovariancancers cells which could help to redefine the way for identification of tumors, allowing for earlier diagnosisand better therapy.

• The discovery of the link between certain biomolecules and their role in the degeneration of muscle fibers inmyopathy and dystrophy.

• Identification of different type of ovarian cancers with the use of Positive Matrix Factorization (PMF) statis-tical method.

• Application of the total reflection X-ray fluorescence method for analysis of the medical and environmentalsamples.

• The finding of the role of biochemical processes involving structural properties of lipids and proteins , as wellas the ions of: Fe, Cu, Zn, Na, Cl, K and Ca in the mechanisms of appetite regulation upon experimentaltreatment by transcranial direct current stimulation (tDCS).

• The development of new procedure for delineating between various brain structures based on their element aland macromolecular composition.

• The study of PM2.5 fraction of particulate matter. Determination of seasonal variations of elemental concen-trations and contribution of sources. The receptor modelling by positive matrix factorization.

• The study of PM10 fraction of particulate matter. Determination of seasonal variations of elemental con-centrations and the contribution of sources. Receptor modeling (PMF). The comparison of results for twodifferent monitoring stations located in Kraków.

• The identification of the following sources of PM10 fraction: combustion of fossil fuel, secondary inorganicaerosols, traffic, traffic/industry/construction work.

• Development of a procedure to correct FTIR spectra, involving an MLR-MR algorithm (Multiple LinearRegression – Multi-Reference), for micro-imaging of thin samples of brain tissue.

• Analysis of radiation damage, induced in SLEXRF-STXM experiments (Synchrotron Low Energy X-ray Flu-orescence – Scanning Transmission soft X-ray Microscopy) in thin sections of central nervous tissue.

2.3.2 Biomedical Imaging and Modeling Group

• The mathematical model of bile acids kinetics during extracorporeal liver support therapy was proposed andvaluated.

Page 24: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

12 CHAPTER 2. DEPARTMENT OF MEDICAL PHYSICS AND BIOPHYSICS

• The research on environmental application of termoluminescent detectors (TLDs) has been continued. Firstattempts were made to verify mobile glass for retrospective dosimetry purposes. Investigations on regenerativeand standard MCP-N detectors have been started. Additionally TLDs were used in clinical practice to evaluateradiation dose obtained by the medical staff during nuclear medical procedures.

• In cooperation with the University Children’s Hospital in Kraków, research on optimization of selected ele-ments of the planning process in conventional radiotherapy were carried out.

• The regular study concerning the potential toxicities of selected nanoparticles in living organisms has beencontinued. Early and long-term elemental anomalies occurring in selected body organs as a result of animalexposition to the low doses of magnetic iron oxides nanoparticles (IONPs) were determined. Additionally,IONPs induced biochemical of selected organs were determined using FTIR microspectroscopy.

• Regular in vitro study concerning the toxicity and therapeutic potential of different IONPs has been started.

• Different spectroscopic methods were applied to look for the elemental and biochemical markers of the inva-siveness of the primary brain tumours implanted to the rat brain.

• Previous studies of selected High Entropy Alloys have been expanded to include palladium-containing systems,investigations on High Entropy Ooxides with spinel structure are also being developed. Various theoreticalmodels of analysis of the electron structure calculation results of these materials have been developed.

• Investigations on the optimization of photodynamic therapy of tumors (PDT) were continued. The experi-mental part of the study was focused on the study of the transport of light emitted by excited fluorophores inoptically turbid media containing melanin. The experimental results were simulated using both Monte Carloand analytical methods for solving radiative transport equation (RTE). A good agreement between simulationand experimental results was obtained.

• The scope of research on PDT has been extended: (1) artificial intelligence methods have been introduced forthe analysis of photosensitizer optical spectra and (2) analysis of diffusive oxygen transport in cell layers andspheroids.

• Determination of magnetic phase diagrams in the H-T coordinates for a sigma-phase Fe-Re and Fe-Mo com-pounds.

2.4 Activity

M. Szczerbowska-Boruchowska

• Head of the Biomedical and Environmental Research Group• Member of the Faculty Committee for Habilitation• Member of the Faculty Committee for Doctorates• Reviewer for journals: Spectrochimica Acta Part B, Neuropathology and Applied Neurobiology

M. Czyżycki

• Member of the European X-ray Spectrometry Association (since 2010)

J. Dudała

Page 25: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

2.4. ACTIVITY 13

• Deputy of the Radiological Protection Inspector at the Faculty of Physics and Applied Computer ScienceAGH–UST

• The Radiological Protection Inspector at the Academic Centr for Materials and Nanotechnology AGH–UST• The head of the Radiochemical Laboratory at the Faculty of Physics and Applied Computer Science AGH–

UST• Member of the Commission to conduct an engineering exam for the Medical Physics• Member of the Faculty Team for Quality of Education

L. Furman

• Secretary of the International Society for Tracer and Radiation Applications (ISTRA) Vienna, Austria (from2016)

• Supervisor of students trainings for Technical Physics and Applied Computer Science• Coordinator of internships for Technical Physics and Applied Computer Science students, as a part of the

Power 3.5 program• Member of Physical Sciences Discipline Council• Member of Faculty Advisory Council

M. Lankosz

• Member of X-Ray Spectrometry Advisory Board (since 2008)• Member of Scientific Council of the Institute of Nuclear Chemistry and Technology (since 2002)• Member of Scientific Council of the National Centre for Nuclear Research (since 2017)• Member of Editorial Board of Nukleonika (since 2010)• Member of the interdisciplinary committee for research infrastructure advancement under Polish Science and

Technology Fund• Representative of Faculty of Physics and Applied Computer Science AGH in the Consortium XFEL-Poland

B. Ostachowicz

• Supervisor of the BOZON Scientific Association of Technical Physics Students

L. Samek

• Member of Editorial Board of European Journal of Environmental Sciences (since 2012)• Member of Enrolment Committee at the Faculty of Physics and Applied Computer Science, AGH• Member of Physical Sciences Discipline Council• Member of the Research Priorities and Quality Committee• Supervisor of a project realized by students of BOZON Scientific Association• Member of the committee assessing presentations and posters at the conference 7th Iberian Meeting, Aerosols

Science and Technology,RICTA19, 9-11 July 2019, Lisbon• Chairperson of the RER 7/011 Final Project Coordination Meeting and resulting implications for the im-

plementation of project RER/7/012, “Enhancing the Inventory of Aerosol Source Profiles Characterized byNuclear Analytic Techniques in Support of Air Quality Management” Lisbon, Portugal, 25-29 November 2019,IAEA TC Project RER 1011 and RER 7012

• Reviewer for Aerosol and Air Quality Research, Air Quality, Atmosphere and Health, Journal of Radioana-lytical and Nuclear Chemistry

Z. Stęgowski

Page 26: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

14 CHAPTER 2. DEPARTMENT OF MEDICAL PHYSICS AND BIOPHYSICS

• Member of the University Enrolment Committee AGH• Member of the Faculty Recruitment Team• Chairman of the electoral commission FP&ACS AGH–UST• Member of the University Electoral Commission

A. Surówka

• External Referee for: Metallomics, Analyst, Spectrochimica Acta Part A, Physical Chemistry ChemicalPhysics, Neurochemistry International, Sensors, Chemical Communications, X-ray Spectrometry, Journalof Analytical Atomic Spectrometry, International Journal of Experimental Spectroscopic Techniques

P. Wróbel

• Head of the XRF Laboratory

Z. Matuszak

• President of Cracow Branch of the Polish Biophysical Society• Member of the Radiobiology and Radiation Hygiene Team, Committee of Medical Physics, Radiobiology and

Imaging Diagnosis, Department V Medical Sciences, Polish Academy of Sciences• Member of Polish Electron Magnetic Resonance Group (PG EMR)• Member of the Faculty Election Committee• Member of the Faculty Commission for Didactic Audit• Head of Postgraduate Study - Radiation Hygiene (from May 2019)• Reviewer for PLOS One, Pharmaceuticals

J. Chwiej

• V-ce Director of the Kraków School of Interdisciplinary PhD Studies• Head of the Department of Medical Physics and Biophysics• Supervisor of the KERMA Scientific Association of Medical Physics Students• Member of the management board of the Polish Society of Medical Physics• Member of Physical Sciences Discipline Council• Member of Faculty Advisory Council• Member of the Commissions of the Physical Sciences Discipline Council for the Research Equipment, the PhD

studies and the Priorities and Quality of the Scientific Research• Reviewer for journals: Metallomics, Journal of Trace Elements in Medicine and Biology, NeuroImage, Talanta,

Acta Physica Polonica A, Polish Journal of Medical Physics and Engineering• Co-organizer of the Medical Physics and Biophysics Session at the 45th Congress of Polish Physicists in

Kraków

J. Cieślak

• Dean’s Plenipotentiary for Quality of Education

S. Dubiel

• Fellow of the Institute of Physics, London (2002–2019)• Member of the Mossbauer Century Club, USA (since 2005)• Reviewer for Intermetallics, Philosophical Magazine, Hyperfine Interactions, Journal of Nanocrystalline Ma-

terials, Nuclear Instruments and Methods in Physics Research B

Page 27: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

2.4. ACTIVITY 15

• Member of the Editorial Board for Applied Sciences• Member of International Committee for 5th Mediterranean Conference on the Applications of the Mossbauer

Effect and 41st Workshop of the French speaking Group of Mossbauer Spectroscopy, Montpellier 2019• Member of International Advisory Borad for International Conference on Advanced Nanomaterials, Nanosciences

and Applications, ICAMANA 2019, Oujda, Morocco• Member of International Advisory Borad for 6th Mediterranean Conference on the Applications of the

Mossbauer Effect, MECAME2020, Athens 2020

A. Jung

• Vice Chairman of the Kraków Branch of the Polish Society of Medical Physics• Coordinator of educational cooperation with Nałęcz Institute Biocybernetics and Biomedical Engineering

Polish Academy of Sciences• Reviewer for ASAIO Journal and Biocybernetics and Biomedical Engineering• Member of Polish Radiation Research Society• Member of Polish Society for Biomedical Engineering• Member of the Faculty Library Commission• Member of the Faculty Election Committee• Member of the Faculty Committee for Habilitation• The head of the Dosimetry Laboratory at the Faculty of Physics and Applied Computer Science AGH–UST• Member of the Commission to conduct an engineering exam for the Biomedical Engineering students• Member of Physical Sciences Discipline Council• Member of Faculty Advisory Council• Faculty coordinator of the Jubilee of 100 Years of AGH–UST in Kraków

K. Kłodowski

• Head of the Magnetic Resonance Imaging Laboratory

K. Matusiak

• Member of the Polish Society of Medical Physics• Chairman of the Faculty Commission for Education Quality at the Faculty of Physics and Applied Computer

Science• Dean’s Plenipotentiary for the students practice for the Medical Physics (WFiIS)• Coordinator of internships for the Medical Physics students, as a part of the Power 3.5 program• Member of Physical Sciences Discipline Council• Member of Faculty Advisory Council• Member of the Commission of the Physical Sciences Discipline Council for the Staff Employment• Member of the Commission of the Physical Sciences Discipline Council for the Awards

Page 28: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

16 CHAPTER 2. DEPARTMENT OF MEDICAL PHYSICS AND BIOPHYSICS

Page 29: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 3

Department of Condensed MatterPhysics

3.1 Staff

3.1.1 Head

• prof. dr hab. inż. Krzysztof Wierzbanowski, professor

3.1.2 Group

• prof. dr hab. inż. Andrzej Baczmański, professor• prof. dr hab. inż. Wojciech Łużny, professor• prof. dr hab. inż. Janusz Toboła, professor• prof. dr hab. Janusz Wolny, professor• dr hab. inż. Andrzej Bernasik, associated professor• dr hab. inż. Jakub Haberko, associated professor• dr hab. Jacek Nizioł, associated professor• dr hab. inż. Jacek Tarasiuk, associated professor• dr hab. inż. Bartłomiej Wiendlocha, associated professor• dr inż. Sebastian Wroński, associated professor• dr inż. Paweł Armatys, assistant professor• dr inż. Mariusz Jędrychowski, assistant professor• dr inż. Jan Kulka, assistant professor• dr inż. Kamil Kutorasiński, assistant professor• dr Łucjan Pytlik, assistant professor• dr inż. Radosław Strzałka, assistant professor• dr inż. Maciej Śniechowski, assistant professor• dr inż. Roman Wawszczak, assistant professor• dr inż. Marcin Wroński, assistant professor• Ryszard Skotnicki, technical assistant

17

Page 30: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

18 CHAPTER 3. DEPARTMENT OF CONDENSED MATTER PHYSICS

3.2 Profile

• Studies of aperiodic structures.

• Deformation, recrystallization and internal stresses in polycrystalline materials.

• Structure investigations using X-ray micro-tomography.

• Electronic structure, transport and magnetic properties of the solid state.

• Polymer research.

3.3 Achievements

• New samples of Zn-Mg-Hf,Tm F-type icosahedral quasicrystals were grown and structure analysis was per-formed using statistical method

• By energy-based calculations for protein system Hyp-1/ANS angles and ADPs were verified

• New approach to phonons and phasons was applied to decagonal AlCuRh system with implementation of themoments’ series expansion method.

• Relaxation of thermal stress in metal matrix composites was investigated during deformation using neutrondiffraction. This process was described using a new version of the self-consistent model.

• The microstructural and mechanical properties of ultra-fine grade 2 grade titanium obtained in the hydrostaticextrusion process were examined in the aspect of its biomedical applications. It was found that the propertiesof pure titanium with this microstructure are as good as the properties of titanium alloys (e.g. grade 5),which, however, contain harmful dopant elements.

• The correlation between the electronic states near the Fermi energy, the preference for magnetic ordering andthe strong magnetocaloric effect was found in the Mn(Ru–Rh)As alloy system.

• The electronic structure of the minerals with complex structure of tetrahedrite-tenantite was calculated,explaining qualitatively strong thermoelectric properties in the disordered Cu12(Sb-As)4S13 system.

• The effect of relativistic spin-orbit interaction on the electron-phonon interaction and superconductivity in theCaBi2 compound was investigated. Calculations have shown a huge impact of this interaction on the electron-phonon coupling, resulting in an almost two-fold decrease in the electron-phonon coupling parameter.

• Based on theoretical calculations, the experimentally observed increase in critical temperature in the super-conducting high entropy alloy Ta-Nb-Hf-Zr-Ti was explained.

• The mechanisms of interaction between selected self-assembled molecular layers (SAM) based on thiols andpoly (methyl methacrylate), also known as PMMA or plexiglas, were investigated. The simulations of theinteraction between selected self-assembled molecular layers allowed for a precise description of the essenceof the interaction, which was a significant advance on the previous, purely postulative explanation. Thesestudies are important in the perspective of the use of such systems in optoelectronics.

Page 31: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

3.4. ACTIVITY 19

• The influence of dopant particle size on structure ordering and dynamics of various polymer systems of thePEDOT doped poly (ethylenedioxythyphene) type was investigated. Molecular dynamics (MD) simulationscarried out at different timescales and DFT calculations proved to be very helpful in the experimental studyof system dynamics using quasi-elastic and inelastic neutron scattering (QUENS) (INS). The obtained resultsof the structure, dynamics and transport properties of PEDOT systems are important in the perspective oftheir application as thermoelectric materials.

• A method of thermal decomposition synthesis was developed to obtain zinc ferrite nanoparticles with controlledcomposition, shape and structure. Research using VSM methods, Mossbauer spectroscopy, and XPS depthprofiling with the Ar–GCIB revealed non-homogeneous distribution of Zn within the particles, suggestingtheir core/shell character.

• It was demonstrated that the complex consisting of deoxyribonucleic acid (DNA) and hexadecyltrimethy-lammonium chloride spontaneously organizes when processed through the Langmuir-Blodgett technique. Ex-tended linear structures have been obtained, that quality is systematically improved. DNA is known as a hastmatrix for metal grains. This procedure applied to the obtained structures can be used to produce anisotropicelectronic conductor.

• It was proved that the thermal strength of natural DNA in solid form is much lower than previously thought.Irreversible decomposition was observed already at the temperature of about 130◦C, i.e. almost 80◦C lowerthan the one most frequently reported in the literature. The literature value was determined using thermo-gravimetry, a standard method used to determine thermal strength of polymers. In case of DNA it turnedout that it leads to wrong conclusions.

• Finite element method computer simulations of mechanical response to light impulse of polymer microrobots.Two robot geometries were analyzed, good agreement between simulations and experiment was achieved.

• The most important achievements of the Micro and Nano Tomography Laboratory in 2019 are:- Research and analysis of the silicon arrowhead preserved in the mammoth bone. These studies helped toprove the earliest forms of hunting in Europe.- Research and analysis of the shape and distribution of grenade inclusions in the Międzygórze rocks, sheddingnew light on the evolution of mountain massifs in the Sudetes.- Research and analysis of PCL composites–nanotubes as a material for medical applications accelerating boneregeneration.

3.4 Activity

P. Armatys

• Deputy Dean for Students Affairs.

A. Baczmański

• Member of Scientific Committees of International Conferences: “European Conference on Residual Stresses(ECRS)” and “Size-Strain Conference”,

• Member of the Election Committee of the Faculty,• Member of the Committee for the Research Equipment of the Faculty,• Member of the Board IV for Scientific Research of AGH University of Science and Technology.

Page 32: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

20 CHAPTER 3. DEPARTMENT OF CONDENSED MATTER PHYSICS

J. Haberko

• Member of the Faculty Committee for the Quality of Teaching,• Member of the University Committee for the Quality of Teaching,• Board member of the St. Staszic Scholarship Fund.

W. Łużny

• Vice-Rector of AGH–UST for Education,• Chairman of the Organizing Committee for the 100th Anniversary of AGH–UST,• Member of the Senate of AGH University of Science and Technology,• Member of the Presidium of the Physics Committee of the Polish Academy of Sciences,• Member of the International Advisory Board for 11th International Conference on X-Ray Investigations of

Polymer Structure, December 2019, Ustroń,• Member of the Scientific Committee of M. Smoluchowski Scientific Consortium “Matter–Energy–Future”

(KNOW).

J. Nizioł

• Coordinator of ERASMUS bilateral agreement between AGH–UST and Universite d’Angers, France,• Member of the Disciplinary Board for Students,• Member of the Committee for the Research Equipment of the Faculty.

R. Strzałka

• Member of the commission of employment within the Discipline Council “Physics”,• Member of the Faculty committee for quality of teaching,• Member of the Committee for grants for young scientists.

J. Tarasiuk

• Rector’s representative for quality of teaching,• Member of the jury for Lecture Notes in Internet, under the patronage of the Rector,• Member of the Program Centre for Distance Education at AGH University,• Member of the reward jury for the quality of teaching Sapere Auso—Małopolska Scholarship Foundation,• Expert of the Polish Accreditation Commission.

J. Toboła

• Head of Doctoral Studies of the Faculty of Physics and Applied Computer Science AGH–UST,• Member of the Programme Board of the AGH Doctoral School,• Board member of the European Thermoelectric Society,• Board member of the Polish Hydrogen and Fuel Cells Association,• Member of the University Electoral Collegium.

K. Wierzbanowski

• Head of the Department of Condensed Matter Physics,• Chairman of the Board IV for Scientific Research of AGH University of Science and Technology,• Member of the University Election Committee,• Coordinator of ERASMUS bilateral agreement between AGH–UST and Universite de Lorraine, France,

Page 33: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

3.4. ACTIVITY 21

• Member of International Scientific Committees of Conferences on: Mechanical Stress Evaluation by Neutronsand Synchrotron Radiation (MECA SENS),

• Member of the Board of Reviewers in: Archives of Metallurgy and Materials.

J. Wolny

• Dean of the Faculty of Physics and Applied Computer Science,• Member of the Senate of AGH University of Science and Technology,• Member of Committee of Crystallography, Polish Academy of Science,• Member of Commission on Aperiodic Structure of the International Union of Crystallography,• Director of postgraduate studies for teachers at AGH University of Science and Technology,• Deputy chairman of the Central Committee of the “Olympiad with diamond index of AGH”.

Page 34: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

22 CHAPTER 3. DEPARTMENT OF CONDENSED MATTER PHYSICS

Page 35: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 4

Department of Applied Informatics andComputational Physics

4.1 Staff

4.1.1 Head

• prof. dr hab. Zdzisław Burda, professor

4.1.2 Complex Systems Group

• prof. dr hab. Zdzisław Burda, professor, group leader• prof. dr hab. Krzysztof Kułakowski, professor• dr hab. inż. Przemysław Gawroński, associated professor• dr hab. inż. Małgorzata Krawczyk, associated professor• dr hab. inż. Krzysztof Malarz, associated professor• dr hab. inż. Maciej Wołoszyn, associated professor• dr inż. Antoni Dydejczyk, assistant professor• dr inż. Piotr Gronek, assistant professor• dr inż. Barbara Kawecka-Magiera, assistant professor• dr inż. Grażyna Krupińska, assistant professor• dr inż. Janusz Malinowski, assistant professor• mgr inż. Michał Dwużnik, assistant• mgr inż. Aleksandra Świercz, supporting staff• mgr inż. Patryk Szymkiewicz, supporting staff

4.1.3 Information Technology and Systems Research Group

• prof. dr hab. inż. Piotr Kulczycki, professor, group leader• dr hab. inż. Piotr Andrzej Kowalski, associated professor• dr inż. Szymon Łukasik, assistant professor• mgr inż. Grzegorz Gołaszewski, teaching assistant

23

Page 36: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

24 CHAPTER 4. DEPARTMENT OF APPLIED INFORMATICS AND COMPUTATIONAL PHYSICS

4.1.4 Nanostructures and Nanodevices Theory Group

• prof. dr hab. Stanisław Bednarek, professor, group leader• prof. dr hab. Janusz Adamowski, professor• prof. dr hab. inż. Bartłomiej Szafran, professor• dr hab. inż. Tomasz Chwiej, associated professor• dr hab. inż. Bartłomiej Spisak, associated professor• dr hab. inż. Paweł Wójcik, associated professor• dr inż. Alina Mreńca-Kolasińska, assistant professor• dr inż. Elżbieta Strzałka, assistant professor• dr inż. Dariusz Żebrowski, teaching assistant

4.2 Profile

4.2.1 Complex Systems Group

We conduct research on emergence and complexity and on interdisciplinary applications of statistical mechanicsand game theory to modeling of sociological processes and to financial engineering as well as to system biology andbiophysics. We work in the field of random matrices and complex networks. In collaboration with the TechnicalUniversity, Vienna, we work on developing computational methods for the analysis of electronic transport based onthe Wigner Monte Carlo Method. We also carry out research on micromagnetism in collaboration with laboratoriesof material science at the Universidad del Pais Vasco, San Sebastian, and Instituto de Ciencia de Materiales deMadrid, CSIC. In particular, we work on modeling of hysteresis loops in micro- and nanoscopic systems within theproject “Harmonia 8” of the Polish National Science Centre.

4.2.2 Information Technology and Systems Research Group

The research group carries out highly specialized investigations into broadly understood information technologyand systems research, in particular that pertaining to data analysis and exploration, computational intelligence,biometrics and control engineering. The work is conducted in close cooperation with the Systems Research Instituteof the Polish Academy of Sciences in Warsaw.

4.2.3 Nanostructures and Nanodevices Theory Group

We conduct research on: quantum computer logic gates, electron transport in semiconductor nanowires and bi-layer semiconductor nanostructures, superconductivity in the nanoscale. We model spintronics devices, semi- andsuperconductor nanodevices. We study spin-orbit coupling effects in quantum dots, spin and charge transport inmesoscopic systems. We conduct research on applications of the phase space formulation of quantum mechanics toelectron transport in semiconductor nanosystems. We study Majorana fermions in semiconductor nanowires. Weconduct research on applications of the classical and quantum kinetic models based on the phase-space distributionfunctions to electron dynamics in open and closed nanosystems. Theory and computer simulation of electronicstructure in qunatum rings under the transient terahertz magnetic pulses.

Page 37: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

4.3. ACHIEVEMENTS 25

4.3 Achievements

4.3.1 Complex Systems Group

• Formulation of the principle of universality for random matrix dynamics

• Analysis of aging processes for complex networks

• Analysis of impacts of various tax schemes on wealth inequality

• Construction of rationally invariant estimators of covariance matrices for autocorrelated data

• Formulation of the multi-choice opinion dynamics model based on Latane theory

• Implementation of the efficient space virtualisation for Hoshen–Kopelman algorithm

• Formulation of mean field approach to the problem of self-organized criticality

• Identification of jammed states in an adaptive algorithm of rewiring nodes

• Identification and classification of jammed states in the Heider dynamics with asymmetric bonds

• Model description of the transformation between spiral and circular magnetic domain structures in microwires

4.3.2 Information Technology and Systems Research Group

• Applications of nonparametric methods for data analysis and decision support

• Properties of advanced metaheuristics based on biological mechanisms

• Theory and practice of selected artificial neural structures

• Applications of exploratory data analysis for particle physics and astronomy

• Mathematical statistics

• Systems research

• Automatic control

4.3.3 Nanostructures and Nanodevices Theory Group

• Dynamics of Wigner distribution function in finite closed system. Analysis of effective algorithms for quantumdynamics in phase space.

• Kinetic approach to transport of electrons in open systems. Analysis of transient phenomena. Influence ofthe elastic and inelastic scattering processes on transport characteristics.

• Finite difference method for confined Dirac particles

• Theory of topological wave packets in buckled silicene

• Theoretical description of the hinge and surface states in 3D quantum Hall systems with charge densitymodulation

Page 38: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

26 CHAPTER 4. DEPARTMENT OF APPLIED INFORMATICS AND COMPUTATIONAL PHYSICS

• Characterisation of the spin density profile of the zero energy Majorana end states and bulk states in Rashbananowires with spin polarized STM tip.

• Application of the spectral split-operator method to the analysis of time evolution of quantum states

• Analysis of spin-orbit effects in charged qunatum rings interacting with terahertz magnetic pulses

4.4 Activity

Z. Burda

• Secretary of the Commission of Complex Systems of the Polish Academy of Arts and Sciences• Referee of scientific journals: Physical Review Letters, Physical Review etc.

P. Gawroński

• Referee of scientific journal: Journal of Magnetism and Magnetic Materials

M. J. Krawczyk

• Member of the Electoral Comission of the Faculty

K. Kułakowski

• Member of Committee of Complex Systems of the Polish Academy of Arts and Sciences• Co-organization of the sessions on Complex Systems during the 45th Congress of the Polish Physical Society

K. Malarz

• Deputy Dean for Education• Member of the Steering Committee for Education in the Area of IT• Member of the Advisory Board of AGH–UST International Courses Database• Coordinator of the Scholarship Program of the J. Dormann ABB Foundation• Member of the Faculty Jury of the Competition for the Best Master’s Thesis “Diamenty AGH”• Departmental coordinator of the project “POWER 3.5”• Member of AGH–UST “H2O” Team• Member of the Home Audit Committee, Polish Physical Society• Senior Editor, Open Physics• Referee of scientific journals: Physical Review Letters, Physical Review E, Physical Review X, Physica A:

Statistical Mechanics and Its Applications, Physica D: Nonlinear Phenomena, International Journal of ModernPhysics B, International Journal of Modern Physics C, Modern Physics Letters B, Journal of Artificial Societiesand Social Simulation, Computer Physics Communications, Frontiers in Physics, Scientific Reports, TheEuropean Physical Journal B, Physics Letters A, European Journal of Physics, Europhysics Letters

• Member of the Program Committee of the 4th International Conference on Complexity, Future InformationSystems and Risk

• Member of the Program Committee of the 6th Workshop on Complex Collective Systems

M. Wołoszyn

• Member of the Examination Board for Final Exam for Computer Science Students

Page 39: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

4.4. ACTIVITY 27

P. A. Kowalski

• Member of Scientific Council of the Systems Research Institute, Polish Academy of Sciences• Expert for the National Centre for Research and Development• Member of scientific committees of scientific journals• Co-Chair of Doctoral Symposium on Recent Advances in Information Technology (DS-RAIT 2019)• Member of program or scientific committee of international conferences• Member of scientific organizations, including IEEE, IEEE Computational Intelligence Society,IEEE Systems

Council, IEEE Biometrics Council, Polish Information Processing Society• Reviewer of numerous scientific journals including Journal of Dynamic Systems, Measurement and Control,

Algorithms, Artificial Intelligence Review, Neural Computing and Applications, Pattern Recognition Letters• Member of the Management Committee in DIGFORASP COST ACTION 17124, vice-leader of WG, coordi-

nator of ITC conference grants.

P. Kulczycki

• Head of the Division for Information Technology and Systems Research• Head of the Center of Information Technology for Data Analysis Methods Systems Research Institute, Polish

Academy of Sciences• Member of the Committee of Automatic Control and Robotics of the Polish Academy of Sciences• Member of Scientific Council of the Systems Research Institute, Polish Academy of Sciences• Member of 10 scientific organizations, including Senior Member IEEE, and IFAC Technical Committees

“Distributed Parameter Systems” and “Modelling, Identification and Signal Processing”• Member of numerous program committees of scientific journals• Member of numerous program committee of international conferences• Referee of numerous reputable scientific journals

S. Łukasik

• Expert for the National Centre for Research and Development and European Commission (Horizon 2020)• Member of the program board of the Association of TOP 500 Innovators• Co-Chair of Doctoral Symposium on Recent Advances in Information Technology (DS-RAIT 2019)• Reviewer of reputable scientific journals, e.g. Information Sciences, Applied Soft Computing, IEEE Transac-

tions on Evolutionary Computation, IET Computer Vision and Journal of Intelligent and Fuzzy Systems• Member of scientific organizations, including IEEE, IEEE Computational Intelligence Society, IEEE Big Data

Initiative

S. Bednarek

• Referee of scientific journals: Physical Review Letters, Physical Review B etc.

T. Chwiej

• Referee of scientific journals: Semiconductor Science and Technology, Journal of Physics: Condensed Matteretc.

• Member of the Faculty Board for Quality of Education

B. Spisak

• Referee of scientific journal: International Journal of Physics B, Physica E

Page 40: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

28 CHAPTER 4. DEPARTMENT OF APPLIED INFORMATICS AND COMPUTATIONAL PHYSICS

• Member of the Auditing Commission at the Kraków Branch Council of the Polish Physical Society.• Head of Interdisciplinary Doctoral Studies FCB.• Member of Kraków School of Interdisciplinary PhD Studies Council (KISD)• Member of the Faculty Board for PhD Studies.• Member of the Faculty Board for Quality of Education.

B. Szafran

• Member of the Library Council

P. Szumniak

• Referee of scientific journals: Physical Review Letters, Physical Review, etc.

P. Wójcik

• Member of the faculty college• Referee of scientific journals: Physical Review Letters, Physical Review B, Semiconductor Science and Tech-

nology, Journal of Physics: Condensed Matter etc.

Page 41: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 5

Department of Particle Interaction andDetection Techniques

5.1 Staff

5.1.1 Head

• prof. dr hab. inż. Władysław Dąbrowski, professor

5.1.2 Elementary Particles Physics Group

• dr hab. inż. Iwona Grabowska-Bołd, associated professor, group leader• prof. dr hab. Danuta Kisielewska, professor• prof. dr hab. inż. Mariusz Przybycień, professor• dr hab. inż. Tomasz Bołd, associated professor• dr hab. inż. Agnieszka Obłąkowska-Mucha, associated professor• dr hab. inż. Tomasz Szumlak, associated professor• dr inż. Leszek Adamczyk, assistant professor• dr inż. Klaudia Maj, assistant professor• dr Palni Prabhakar, assistant professor• dr inż. Bartłomiej Rachwał, assistant professor• dr Barbara Winiarska, assistant

5.1.3 Nuclear Electronics and Radiation Detection Group

• prof. dr hab. inż. Władysław Dąbrowski, professor, group leader• prof. dr hab. inż. Marek Idzik, professor• dr hab. inż. Tadeusz Kowalski, associated professor• dr hab. inż. Bartosz Mindur, associated professor• dr inż. Mirosław Firlej, assistant professor• dr inż. Tomasz Fiutowski, assistant professor

29

Page 42: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

30 CHAPTER 5. DEPARTMENT OF PARTICLE INTERACTION AND DETECTION TECHNIQUES

• dr inż. Paweł Hottowy, assistant professor• dr inż. Stefan Koperny, assistant professor• dr inż. Jakub Moroń, assistant professor• dr inż. Andrzej Skoczeń, assistant professor• dr inż. Krzysztof Świentek, assistant professor• dr inż. Piotr Wiącek, assistant professor• mgr inż. Roma Bugiel, assistant• mgr inż. Szymon Bugiel, assistant• mgr inż. Andrzej Korba• inż. Przemysław Terlecki

5.2 Profile

The scientific activity of Department covers three areas of research:

• basic research of elementary constituents of the matter and their interactions in high energy collisions,

• design and construction of detectors and readout electronics for high energy physics experiments,

• development of detectors and readout electronics for neuroscience experiments and for medical imaging.

The high energy physics experiments are long term projects and because of the high cost of large accelerators anddetection facilities they are performed by large international collaborations. Our participation in these experimentsis as complete as possible and covers all phases of the projects: preparations of the research programs, design andconstruction of the experimental apparatus, data analyses as well as maintaining and upgrading detector systems.

Since mid of 1990’s the Department members participated in design and construction of new experiments at theLHC accelerator at CERN:

• ATLAS p-p, p-Pb and Pb-Pb,

• LHCb p-p and p-Pb,

and after start of the LHC in 2010 they contribute to running of the experiments and to data analysis. A specialattention is paid to processes leading to New Physics, particularly to Higgs and supersymmetric particles discoveriesin ATLAS experiment, to study of CP violation in beauty and charm sector in the LHCb experiment to explainmatter - antimatter asymmetry of the Universe. Also, search for rare decays of mesons containing b and c quarksthat can also be sensitive to phenomena beyond Standard Model is performed. Since 2011 Department participatesin the STAR p-p and ion-ion experiment on the relativistic heavy ion interactions at the RHIC accelerator inBrookhaven National Laboratory.

The activity in the area of detectors and readout electronics focuses on development of position sensitive de-tectors and readout systems employing Application Specific Integrated Circuits. These projects are carried out incollaboration with individual abroad partners as well as in the frame of large international projects:

• ATLAS and LHCb Detectors upgrade

• RD50 – Radiation hard semiconductor devices for very high luminosity colliders,

• RD51 – Development of micro-pattern gas detector technologies.

• International Linear Collider – ILC,

Page 43: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

5.3. ACHIEVEMENTS 31

• Compact Linear Collider – CLIC.

In the area of neuroscience we develop systems for imaging of neural activity in live neural tissues, including retinaand cortex. A common aim of various research projects carried out in collaboration with neuroscientists is todevelop techniques for bidirectional communication between live neurons and electronic circuits.

5.3 Achievements

• Leading contributions to diffractive and elastic analyses of data collected in proton-proton collisions. Firstmeasurement of the total inelastic cross section at RHIC energies. First measurement of Central ExclusiveProduction of pairs of charged hadrons in tagged proton-proton collisions.

• Leading role in the multi-experimental group preparing update of the heavy-ion physics program for Run3 and 4 at the LHC. This work resulted in a contribution to a document called CERN Yellow Report inpreparation for future ECFA meetings.

• Leading role in lead-lead and proton-proton data analysis at the energy of 5.02 TeV. In particular an analysisof W boson production in lead-lead collisions was finalized what resulted in an EPJC publication. Also ameasurement of the mean transverse momenta and flow harmonics correlation was published in lead-leadcollisions.

• An observation of light-by-light scattering with 8.2σ significance based on analysis of lead-lead data at 5.02TeV collected in 2018. Results of the analysis were presented at the Moriond 2019 conference. The AGH USTgroup had a leading role in the measurement.

• Leading contribution to the development of the new ATLAS High Level Trigger software for Run 3.

• Precise determination of the particle fluence maps for the strip and pixel velo detector using latest FLUKA/-DPMJET-III and GEANT4/Pythia tunings to the LHC data.

• First observation of the hadronic rare decays of the Bs to the final states with open charm: B0s → D∓s K

∗±

and B0s → D∗∓s K∗±.

• Leading contribution to the development of the VHDL code for new digital quench detectors for mainquadrupoles of the LHC accelerator.

5.4 Activity

D. Kisielewska

• Member of the Organising Committee of 58th Cracow School of Theoretical Physics, Zakopane 2019

W. Dąbrowski

• Member of the Central Commission for Degrees and Titles, Section V—Mathematical, Physical, Chemicaland Earth Sciences (2017–2020)

• Member of the Consortium Council of the National Centre for Hadron Radiotherapy• Member of the editorial board of the Journal of Instrumentation

Page 44: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

32 CHAPTER 5. DEPARTMENT OF PARTICLE INTERACTION AND DETECTION TECHNIQUES

• Representative of AGH-UST in the Scientific Committee of the Scientific-Industrial Consortium “ELA-MATPodkarpackie”

• Representative of the Polish groups (AGH-UST, Jagiellonian University, and Institute of Nuclear PhysicsPAS) in the Upgrade Advisory Board of the ATLAS collaboration

• Member of the Scientific Board of the TWEPP 2019 Topical Workshop on Electronics for Particle Physics

T. Bołd

• Member of Trigger/DAQ Institute Board in ATLAS experiment, CERN• Coordinator of the High Level Trigger Upgrade of the ATLAS experiment

M. Idzik

• Deputy Coordinator of FCAL (International Collaboration for Forward Detectors in future Linear ColliderILC/CLIC)

• AGH group leader and coordinator of the SALT readout ASIC development for LHCb Upgrade UpstreamTracker

• AGH representative in the PANDA experiment at FAIR• AGH representative in CLICdp collaboration at CERN

B. Mindur

• Coordinator of AGH RD51 group at CERN• Member of TRT Institute Board in ATLAS experiment at CERN

I. Grabowska-Bołd

• Representative of AGH-UST and Jagiellonian University in the Collaboration Board of the ATLAS experimentat CERN

• Convener of the Electroweak-Onia group in the ATLAS experiment item Member of the european HonexCombproject, contact person in the ATLAS Collaboration.

• Chair of the Research Priorities and Quality Committee at FPACS, AGH-UST• Leading organiser of the XIV Polish Workshop on Relativistic Heavy-Ion Collisions: Interplay between soft

and hard probes of heavy-ion collisions, Kraków, Poland• Convener of the Heavy-Ion Session of the EPS-HEP Conference 2019 in Ghent, Belgium• Convener of the Heavy-Ion Session of the 45 Congress of the Polish Physical Society in Kraków, Poland• Reviewer in the National Science Center

T. Szumlak

• Honorary Fellowship position with School of Physics and Astronomy, University of Glasgow (2016–2020)• Honorary Fellowship position with School of Physics and Astronomy, University of Manchester (2016–2020)• LHCb Upgrade Coordinator for Poland (2013–present)• Member of the LHCb Collaboration Board (2015–present)• Member of the LHCb Speakers Bureau (2015–present)

A. Obłąkowska-Mucha

• Coordinator of the AGH RD50 group

L. Adamczyk

Page 45: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

5.4. ACTIVITY 33

• Convener of the software, simulation and integration group of ATLAS ARP project• Member of ATLAS ARP project Management Board• Diffraction physics convener of the ATLAS Forward Detector subsystem• ARP data preparation coordinator

M. Przybycień

• Representative of AGH UST in the Council of the STAR experiment at BNL• Representative of AGH UST in the Institutional Board of the Electron-Ion Collider User Group

B. Rachwał

• Coordinator of the “CERN Master Classes” initiative

Page 46: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

34 CHAPTER 5. DEPARTMENT OF PARTICLE INTERACTION AND DETECTION TECHNIQUES

Page 47: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 6

Department of Applied Nuclear Physics

6.1 Staff

6.1.1 Head

• prof. dr hab. Piotr Bożek, professor

6.1.2 Environmental Physics Group

• prof. dr hab. inż. Kazimierz Różański, professor, group leader• dr hab inż. Marek Duliński, associated professor• dr hab inż. Mirosław Zimnoch, associated professor• dr hab inż. Wojciech Przybyłowicz, associated professor• dr inż. Jarosław Nęcki, assistant professor• dr inż. Przemysław Wachniew, assistant professor• dr Andrzej Bolewski, assistant professor• dr inż. Marek Ciechanowski, assistant professor• dr inż. Jakub Nowak, assistant professor• dr inż. Jakub Bartyzel, assistant professor• dr inż. Michał Gałkowski, assistant professor• dr inż. Zbigniew Gorczyca, assistant professor• dr inż. Paweł Jodłowski, assistant professor• dr inż. Marcin Kapusta• mgr inż. Michał Marzec• Robert Czub

6.1.3 Physics of Strongly Interacting Systems Group

• prof. dr hab. Piotr Bożek, professor, group leader• dr hab. Adam Bzdak, associated professor• dr hab. Piotr Kotko, associated professor• dr Wilhelm Czapliński, assistant professor

35

Page 48: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

36 CHAPTER 6. DEPARTMENT OF APPLIED NUCLEAR PHYSICS

6.1.4 Molecular Biophysics and Bioenergetics Group

• prof. dr hab. Kvetoslava Burda, professor, group leader• dr hab. Reanata Szymańska, associated professor• dr Joanna Fiedor, assistant professor• dr Aleksandra Orzechowska, assistant professor

6.2 Profile

Department of Applied Nuclear Physics (DANP) is composed of three groups: (i) Environmental Physics Group, (ii)Physics of Strongly Interacting Systems Group, and (iii) Molecular Biophysics and Bioenergetics Group. Researchactivities of DANP cover selected topics of nuclear physics and their applications in areas such as environmentalsciences and industrial applications of nuclear methodologies. DANP is active also in fundamental research relatedto properties and dynamics of many-body systems in connection to experiments at the LHC and RHIC. Reserchtopics of DANP include as well photosynthesis, dye-protein-lipid systems, studies of cell properties. Moreover,DANP is strongly involved in teaching in the framework of the disciplines of Technical Physics, Medical Physics,Biophysics, and Applied Computer Science, being offered by the Faculty at B.Sc. and M.Sc. level.

Major instrumentation:

• electrolytic enrichment system for low-level tritium assay in natural waters,

• analytical systems for determination of trace gas concentrations in the atmosphere,

• analytical system to measure fluxes of trace gases exchanged between the atmosphere and the ground surface

• analytical systems for determination of stable isotope ratios of light elements (H, C, O, N) in environmentalmaterials,

• liquid scintillation spectrometers for measurements of low-level activities of selected radionuclides (3H, 14C,90Sr, 210Pb, 222Rn, isotopes of uranium, thorium and radium) in environmental materials,

• low-level gamma spectrometry for measurements of low-level activities of selected radionuclides in environ-mental materials,

• analytical set-up for measuring neutron parameters of materials.

6.3 Achievements

• Series of laboratory experiments aimed at quantifying isotope effects accompanying evaporation of water wereconducted. In particular, kinetic fractionation parameter for 17O was established.

• Methodology of conducting mobile measurements of air quality of air quality was further developed andimproved. In particular, first mobile measurements of 16 different fractions of suspended particulate matterwere conducted from surface platform (cars) in the metropolitan area of Kraków. Also, drones were adoptedto perform measurements of vertical profiles of suspended particulate matter and meteorological parametersin the lower troposphere.

• TiO2(IV) and WO3 nanoparticles (NPs) influence on the heterogeneity of photosynthetic oxygen evolution andon the action of the acceptor side in photosystems of type II. Observed changes show oscillatory dependenceon the increasing NPs concentrations.

Page 49: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

6.4. ACTIVITY 37

• Potential of plant pigments in FRET-based nanocommunication.

• Optimization of extraction and detection methods for prenyllipid analysis. Identification of novel prenyllipids’structure in plant-derived materials.

• Recognition of unexpected, unfavourable effect of β-carotene on erythrocytes’ stability and molecular prop-erties of hemoglobin.

• Determination of structures of prophyrazines substituted with metals. Demonstrating that peripheral ligandsaffect their physico-chemical properties.

• Predcitions for femtoscopy proton correlations signaling inhomogeneous distributions of baryon number inrapidity.

• Stimulatory and inhibitory action of nanoparticles TiO2(IV) on isolated photosystem II shows oscillatorydependence on increasing concentrations of TiO2.

• Heterogeneous character of photosynthetic oxygen evolution is proved; depletion of external proteins modifiesthe action of both channels of O2 evolution; the slow and fast channels of O2 evolution depend differently onvarious concentrations of TiO2 nanoparticles.

• Optimization of extraction and detection method for prenyllipid analysis.

• Identification of novel prenyllipids in plant-derived materials, identification of their structure.

• Optimization of experimental conditions of IR measurements in photosynthetic systems. Fluorescence imagingof plant physiological activity using OIJP method.

• Confirmation that in low light conditions plants exibit changes in the relative contribution of PSII antenna incomparison to those of PSI.

• Optimization of experimental conditions of IR measurements for thermoactive filters with high SPF factor.

• Estimation of nanocomunication in organic structures of plant origin based on FRET phenomenon.

• A method of β-carotene incorportation into erythrocythes membranes has been developed.

• The effect of β-carotene on the red blood cells membranes stability and hemoglobin transportation propertieswere demonstrated in erythrocytes from healthy donors.

• Determination of structures of prophyrazines substituted with metals and studies of peripheral ligands influ-ence on their physico-chemical properties.

6.4 Activity

P. Bożek

• Member of Committee of Physics, Polish Academy of Science

K. Burda

• Member of the Scientific Council at Multidisciplinary School of Engineering in Biomedicine, AGH Universityof Science and Technology

Page 50: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

38 CHAPTER 6. DEPARTMENT OF APPLIED NUCLEAR PHYSICS

• Member of GMM and GMO Safety Commission

A. Orzechowska

• Member of GMM and GMO Safety Commission

J. Fiedor

• Member of GMM and GMO Safety Commission

K. Różański

• Member of the Editorial Board of the journal “Isotopes in Environmental and Health Studies (since 2000)• Vice-chairman of the Society of Research on Environmental Changes “GEOSPHERE”• Chair of Disciplinary Commission for Academic and Research Staff at AGH University of Science and Tech-

nology

R. Szymańska

• Member of GMM and GMO Safety Commission

M. Zimnoch

• Member of the Council of School of Environmental Protection and Engineering at AGH University of Scienceand Technology

Page 51: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 7

Teaching Services Team

7.1 Staff

7.1.1 Head

• dr Anna Wnęk, assistant professor

7.1.2 Teachers

• dr Joanna Janik-Kokoszka, assistant professor• dr inż. Ewa Olejarz-Mieszaniec, assistant professor• dr inż. Joanna Świebocka-Więk, assistant professor

7.1.3 Laboratory for Physics Demonstrations

• dr inż. Paweł Janowski, assistant, group leader• inż. Michał Kud, supporting staff• Mariusz Bąkowski, supporting staff• Adam Ciślak, supporting staff

7.1.4 Physics Laboratory

• mgr inż. Roman Kokoszka, supporting staff• inż. Andrzej Skalski, supporting staff• Franciszek Jędrzejowski, supporting staff

39

Page 52: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

40 CHAPTER 7. TEACHING SERVICES TEAM

Page 53: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 8

PhD students

Name Supervisor Studies

1st year:

Michał Barej dr hab. Adam Bzdak Doctoral SchoolPaweł Jagoda prof. dr hab. inż. Kazimierz Rożański Doctoral SchoolWeronika Janus dr hab. Tomasz Ślęzak Doctoral SchoolErnest Jęczmionek dr hab. inż. Piotr Kowalski Doctoral SchoolKakkad Hiren prof. dr hab. Piotr Bożek Doctoral SchoolGabrielKuderowicz dr hab. inż. Bartłomiej Wiendlocha Doctoral SchoolAleksandra Molenda prof. dr hab. inż. Marek Idzik Doctoral SchoolNayyef Hashim dr hab. Tomasz Ślęzak Doctoral SchoolMagdalena Peter prof. dr hab. Kvetoslava Burda Doctoral SchoolMichał Prokop prof. dr hab. Tomasz Stobiecki Doctoral SchoolRadosław Szostak dr hab. inż. Mirosław Zimnoch Doctoral SchoolMarcin Szpytma dr hab. Tomasz Ślęzak Doctoral SchoolPatrycja Śliż prof. dr hab. inż. Marek Lankosz Doctoral SchoolAnna Turek-Fijak dr hab. inż. Zdzisław Stęgowski Doctoral School

2nd year:

Grochot Krzysztof prof. dr hab. Tomasz Stobiecki physicsJurgielewicz Paweł dr hab. inż. Bartosz Mindur FCBJurkowski Piotr prof. dr hab. inż. Bartłomiej Szafran FCBKot Przemysław prof. dr hab. inż. Andrzej Baczmański FCBPutaj Krzysztof dr hab. inż. Bartłomiej Spisak physicsRzońca Paweł dr hab. inż. Artur Kułak physicsTrynkiewicz Elżbieta dr hab. inż. Marcin Sikora physicsRyżka Jakub dr hab. inż. Tomasz Szumlak physicsMazur Weronika prof. dr hab. inż. Czesław Kapusta FCBSkiba Alicja prof. dr hab. inż. Kazimierz Różański FCB

41

Page 54: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

42 CHAPTER 8. PHD STUDENTS

Janik Olchawa dr hab. inż. Joanna Chwiej FCBPłaneta Karolina dr hab. inż. Joanna Chwiej FCBKaprzyk Paula prof. dr hab. inż. Marek Lankosz FCBŚmietańska Joanna prof. dr hab. inż. Janusz Wolny FCB

3rd year:

Gilarska Adriana prof. dr hab. Czesław Kapusta FCBGutowska Sylwia prof dr hab. inż. Janusz Toboła FCBGumieniczek-Chłopek Elżbieta prof. dr hab. Czesław Kapusta FCBJanas Krzysztof prof dr hab. inż. Mariusz Przybycień physicsKołaczek Damian dr hab. inż. Bartłomiej Spisak FCBKasper Kaja dr hab. inż Magdalena Szczerbowska-Boruchowska biophysicsKopciewicz Paweł dr hab. inż. Tomasz Szumlak physicsKrupa Wojciech dr hab. inż. Tomasz Szumlak physicsKrysiak Sonia prof. dr hab. Kvetoslava Burda FCBKulinowski Karol dr hab. inż. Bartłomiej Spisak FCBŁach Bartłomiej prof. dr hab. inż. Władysław Dąbrowski FCBŁakomiec Inga prof dr hab. inż. Mariusz Przybycień physicsMaćkosz Krzysztof dr hab. inż. Marcin Sikora physicsNowak Kamil prof. dr hab. inż. Marek Przybylski FCBOgrodnik Agnieszka dr hab. inż. Iwona Grabowska-Bołd physicsOponowicz Adrian prof.dr hab. inż. Andrzej Baczmański FCBPrzyczyna Dawid prof. dr hab. inż. Marek Przybylski FCBPrzetocki Mateusz prof. dr hab. Kvetoslava Burda biophysicsRzeszotarski Bartłomiej prof. dr hab. inż. Bartłomiej Szafran FCBSekuła Piotr dr hab. inż. Mirosław Zimnoch FCBStanisavljevic Mila dr hab. inż. Mirosław Zimnoch physicsTrela Agnieszka dr hab. Renata Szymańska FCBTrzpil-Jurgielewicz Beata prof dr hab. inż. Władysław Dąbrowski FCBWirecka Roma dr hab. inż. Andrzej Bernasik FCBWit Adrian dr hab. inż. Jacek Tarasiuk FCBWojtas Daniel prof. dr hab. inż. Krzysztof Wierzbanowski FCBZarzecka Anna dr hab. Łukasz Gondek FCBPaszcza Paweł dr hab. Zenon Matuszak FCBZawal Piotr prof. dr hab. Konrad Szaciłowski FCBKuciakowski Juliusz dr hab. inż. Marcin Sikora FCBPawlak Jakub prof. dr hab. inż. Marek Przybylski FCB

4rd year:

Biało Izabela prof. dr hab. inż. Andrzej Kozłowski physicsChudyba Monika prof. dr hab. inż. Władysław Dąbrowski physicsJurczyk Jakub prof. dr hab. Czesław Kapusta physicsMajewski Witold dr hab. inż. Tomasz Szumlak physicsMichoń Dagmara prof. dr hab. Kvetoslava Burda biophysics

Page 55: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

43

Pierchała Anna prof. dr hab. inż. Kazimierz Różański physicsPitala Krzysztof dr hab. inż. Marcin Sikora physicsRybski Michał prof. dr hab. inż. Janusz Toboła physicsSuchecki Maciej prof. dr hab. Konrad Szaciłowski physics

5th year:

Jarosiński Łukasz prof. dr hab. inż. Marek Przybylski physicsJasiewicz Kinga prof. dr hab. inż. Janusz Toboła physicsPrzywara Karolina prof. dr hab. inż. Władysław Dąbrowski biophysicsKozik Tomasz prof. dr hab. inż. Wojciech Łużny physicsKremer Jakub dr hab. inż. Iwona Grabowska-Bołd physics

6th year:

Bugiel Szymon prof. dr hab. inż. Marek Idzik physicsBugiel Roma prof. dr hab. inż. Marek Idzik physicsDendek Adam dr hab. inż.. Tomasz Szumlak physicsDróżdż Piotr dr hab. Tomasz Ślęzak physicsFulek Łukasz prof. dr hab. inż. Mariusz Przybycień physicsGrzelak Maria prof. dr hab. inż. Marek Lankosz physicsSikora Rafał prof. dr hab. inż. Mariusz Przybycień physicsSzypulska Małgorzata prof. dr hab. inż. Władysław Dąbrowski physics

Page 56: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

44 CHAPTER 8. PHD STUDENTS

Page 57: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 9

Selected Results

9.1 Radioactivity in the Gas Pipeline Network in Poland

Paweł Jodłowski1, Jakub Nowak1, Jan Macuda2

1 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland2 Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, Kraków, Poland

Natural radionuclides commonly occur at varying concentrations in the Earth’s crust. At some places thecontents of natural radionuclides are enhanced due to human activities (TENORM—Technologically EnhancedNaturally Occurring Radioactive Material), for example in the mining industry. With regard to natural gas pipelinenetwork, the issue of TENORM is related to the presence of radon gas and its progeny.

Table 9.1: The radon activity concentration in natural gas samples collected at nine selected locations in the Polishnatural gas pipeline network (c.f. Fig. 9.1).

Locationa Activity concentration of 222RnMean [Bq/m3] Range [Bq/m3]

WG-J 368(16) 278− 425SP-C < 30b −

WG-L 56.0(50) 37− 71WG-O(a) < 30b −WG-O(b) 1366(120) −

WG-Lw 66.1(31) 55− 80WG-G 78.0(44) 63− 97WG-H 79.6(60) 53− 104

SP-B 56.6(23) 47− 65a WG-O(a) – imported gas, WG-O(b) – gas from local mine,WG – gas hub, SP – gas stationb Detection limit of the applied method

45

Page 58: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

46 CHAPTER 9. SELECTED RESULTS

Figure 9.1: Natural gas transportation network in Poland. Location of sampling and measurement sites are markedby stars.

Radon gas (222Rn) occuring in natural gas deposits originates from alpha decay of 226Ra present in the rockstructure of the gas deposit. The radon progeny ( 218Po, 214Pb, 214Bi, 214Po, 210Pb and 210Po) are ions of metals,which are easily adsorbed on aerosols and deposited on the inner surfaces of gas pipelines and other gas processingequipment such as scrubbers, compressors, reflux pumps, control valves and product lines, creating thin radioactivefilms. In contrast to radon progeny, 222Rn is transported together with the natural gas on long distances. In theaftermath of successive radioactive decay of short-lived radon progeny, the long-lived isotope of lead (210Po, half-life22.3 years) is accumulating on filters [1]. The radon activity concentration in natural gas transported by pipelinesvaries in a wide range, from dozens of Bq/m3 to several thousand Bq/m3, and depends mainly on the proximityof mines and geological structure of the deposit from which natural gas is exploited. In Poland, the natural gaspipeline network is around 11000 km long and consists of 881 gas pipeline stations, 14 compressor stations and 58hubs. Each year around 14 billion cubic meters of imported (mainly from Russia) and Polish gas is transported.

In the presented the study the measurements of activity concentration of radon (222Rn) in the natural gassamples as well as of 210Po in spent filter cartridges and dust samples (black powder) collected from the gas pipelinenetwork were performed. The measurements were conducted at 11 sites marked in Fig. 9.1 by stars.

Gas samples were collected at nine sites (cf. Table 9.1): gas stations, gas hubs and compressor stations. Thesamples were analysed for 222Rn content using Pylon AB-5 radon field-portable scintillation measurement systemequipped with Lucas cells (PYLON 300A). In order to measure 222Rn in methane, the measurement procedurerecommended by the producer of PYLON 300A was modified by the authors.

Black powder samples were collected at selected measurement sites from filters and placed in plastic bags. Inaddition, samples of spent filter cartridges were cut and also packed into plastic bags. After transport to the labo-ratory, the analysed samples (black powder and spent filter cartridges) were sealed in cylindrical aluminium beakers(volume 121 mL). Measurements of 210Po activity concentration were carried out by gamma spectrometer equippedwith HPGe detector (Canberra GX4020) with relative efficiency of 42%. Dedicated measurement procedure, devel-oped by the authors, was used to determine self-attenuation coefficient for low energy gamma radiation emitted by210Po [2].

Page 59: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

9.1. RADIOACTIVITY IN THE GAS PIPELINE NETWORK IN POLAND 47

The 222Rn activity concentration of natural gas transported in Poland depends on the origin of this gas. Theimported gas, due to long duration of transport from extraction sites in Siberia to Poland and relatively shorthalf-life of radon (3.82 days), is characterized by generally low 222Rn concentration (below 100 Bq/m3), while thenatural gas from Polish mines and blend of the Polish gas with imported one contains usually high concentrationof radon (up to 1400 Bq/m3). Temporal variability of 222Rn concentration in natural gas samples collected at ninelocations of the Polish natural gas pipeline network was measured on daily and weekly time scales. The results arereported in Table 1. No significant temporal variability of 222Rn on those time scales could be detected.

The activity concentration of 210Pb in black powder samples and spent filter cartridges is substantial and variesfrom 500 to near 17000 Bq/kg and from 200 to 2900 Bq/kg, respectively. Among the black powder samples, thehighest 210Pb concentration was measured for the sample collected from WG-J filter, where the blend of gas fromlocal mines with the imported one is transported.

REFERENCES

1. OGP 2008. Managing Naturally Occurring Radioactive Material (NORM) in the oil & gas industry, Report No. 412,International Association of Oil & Gas Producers

2. P. Jodłowski, P. Wachniew, J. Nowak, Determination of the self-attenuation based on the sample composition ingamma-ray spectrometry of 210Pb: requirements for the scope of chemical analyses. Journal of Radioanalytical andNuclear Chemistry 311:2, 1511 (2017)

Page 60: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

48 CHAPTER 9. SELECTED RESULTS

9.2 Signs of Reduced Biospheric Activity with Progressing GlobalWarming: Evidence from Long-term Records of Atmospheric CO2

Mixing Ratios in Central-Eastern Europe

Łukasz Chmura1,2, Michał Gałkowski1,3, Piotr Sekuła1,2, Mirosław Zimnoch1, Jarosław Nęcki1, Jakub Bartyzel1,Damian Zięba1, Kazimierz Różański1, Laszlo Haszpra4, Wojciech Wołkowicz5

1 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland2 Institute of Meteorology and Water Management—National Research Institute, Kraków, Poland3 Department of Biogeochemical Systems, Max Planck Institute for Biogeochemistry, Jena, Germany4 Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Sopron, Hungary5 Polish Geological Institute, National Research Institute, Warsaw, Poland

The recent rise of temperatures across the globe, mainly attributed to the rising anthropogenic emissions ofgreenhouse gases, is predicted to have an growing impact on ecosystems in the coming decades. Among consequencesof this ongoing global warming will be appearance of prolonged droughts in temperate climate zones.

Figure 9.2: Comparison of peak-to-peak amplitude of seasonal CO2 cycle recorded at Kasprowy Wierch (left panel)and Hegyhatsal (right panel) station during the period 1995–2018, with the maximum (a) and the minimum (b)values of CO2 mixing ratios recorded in the given year.

Drought events in Europe in 2003 and 2010 are known to cause significant reduction of carbon dioxide sink,due to simultaneous occurrence of water stress limiting photosynthetic activity of plants and increase of respirationunder higher temperatures. In this work we present the evidence of increasing impact of droughts on the seasonalcycle of carbon dioxide in the atmosphere over Central-Eastern Europe, based on long-term observations (1995-2018) of atmospheric CO2 mixing ratios conducted at two continental sites: Kasprowy Wierch mountain station(KAS, Poland, 49 deg 14 sec N, 19 deg 59 sec E, 1989 m a.s.l., 400 m above the tree line) and Hegyhatsal talltower (HUN, Hungary, 46 deg 57 sec N, 16 deg 39 sec E, 248 m a.s.l.). Regular observations of CO2 mixing ratios

Page 61: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

9.2. SIGNS OF REDUCED BIOSPHERIC ACTIVITY WITH PROGRESSING GLOBAL WARMING 49

at Hegyhatsal and Kasprowy Wierch station began in 1993 and 1994, respectively. Both stations are measuringCO2 concentration using state-of-the-art technologies. Information on specific instrument set-up and calibrationtechniques employed at these stations can be found in Haszpra et al. (2010) and Rozanski et al. (2016).

Reduction of peak-to-peak amplitude of seasonal CO2 mixing ratio cycle observed at Kasprowy Wierch andHegyhatsal may result from two effects: (i) higher mixing ratios of CO2 recorded during peaks of summer seasons,and/or (ii) lower CO2 mixing ratios recorded during winter periods. Fig. 9.2 shows peak-to-peak amplitudes ofseasonal CO2 cycle recorded at Kasprowy Wierch and Hegyhatsal, compared with the maximum and minimumvalues of CO2 recorded at those stations in the given year. The peak-to-peak amplitude and the minimum andmaximum CO2 values were calculated based on smoothed and detrended CO2 mixing ratio records obtained withthe aid of CCGvu 4.40 routine (Thoning et al., 1989). The data presented in this figure suggest that, over the past25 years, the biospheric pump removing CO2 from the European atmosphere during summer months shows signs ofweakening, and that anthropogenic winter CO2 emissions from the continent are on decline. A combination of boththese effects leads to the observed reduction of peak-to-peak amplitude of the CO2 mixing ratio records availablefor the stations located in Central-Eastern Europe (Chmura et al., 2019).

Figure 9.3: Upper panel: surface air temperature anomalies for 2003 summer season in Europe (months of June,July, and August), calculated with respect to the reference period 1980-2018. Lower panel: anomalies of watercontent in the uppermost soil layer (depth interval 0-7 cm) calculated for 2003 summer season in Europe, withrespect to the same reference period.

As can be seen in the left panel of Fig. 9.2, there were five years in the data record available for KasprowyWierch with peak-to-peak amplitudes of the seasonal CO2 cycle smaller than 14 ppm: 2003, 2010, 2012, 2014, 2015.The years 2003, 2012 and 2015 also stand out as years with lowest peak-to-peak amplitude in the CO2 record ofthe Hegyhatsal station (Fig. 9.2, right panel).

Drastic reduction of the biospheric downward CO2 flux over the European continent observed in 2003 wasdiscussed by Ciais et al. (2005), who found that it was mainly caused by heat wave that hit western Europe in

Page 62: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

50 CHAPTER 9. SELECTED RESULTS

the summer of 2003. Weak biospheric pump during summer 2003 caused substantial reduction of peak-to-peakamplitude of the seasonal CO2 cycle over Europe in this year. At Kasprowy Wierch, the CO2 amplitude droppedfrom 19.9 ppm in 2002 to 12.9 ppm in 2003, and subsequently recovered to 16.7 ppm in 2004. At Hegyhatsal, theobserved changes in peak-to-peak amplitudes were smaller: 28.3, 24.8, and 30.6 ppm, respectively. Those changesin peak-to-peak amplitudes of the seasonal CO2 signal can be compared with the spatial distribution of surface airtemperature and soil moisture anomalies, shown in Fig. 9.3. The 2003 heat wave is clearly seen as positive anomalyof surface air temperature for this particular year over western and southern Europe, accompanied by soil moisturedeficit in France, Germany, and the Balkans.

Biosphere responds to rising levels of atmospheric CO2 and associated global warming in various ways. On onehand, an increase of atmospheric mixing ratios of CO2 increases the rate of photosynthesis by plants (fertilizationeffect), thus leading to enhanced uptake of CO2 from the atmosphere. On the other hand, elevated temperaturesassociated with global warming (heat waves) and/or reduced availability of soil moisture (droughts) slow down thephotosynthetic activity of plants resulting in reduced biospheric uptake atmospheric CO2. Long-term, high-qualityobservations of atmospheric mixing ratios of CO2 provide a powerful tool to trace those subtle, climatically inducedchanges in the carbon balance over the continents in prolonged time periods.

REFERENCES

1. Haszpra L., Barcza Z., Climate variability as reflected in a regional atmospheric CO2 record. Tellus B: Chemical andPhysical Meteorology 62:5, 417-426 (2010)

2. Rozanski K., Chmura L., Galkowski M., Necki J., Zimnoch M., Bartyzel J., O’Doherty S, Monitoring of GreenhouseGases in the Atmosphere: a Polish Perspective. Papers on Global Change 23, 111–126 (2016)

3. Thoning K.W., Tans P.P., Komhyr W.D., Atmospheric carbon dioxide at Mauna Loa Observatory 2. Analysis of theNOAA GMCC data, 1974–1985, J. Geophys. Res. 94, 8549–8565 (1989)

4. Chmura Ł., Gałkowski M., Sekuła, P., Zimnoch, M., Nęcki J., Bartyzel J., Zięba D., Różański, K., Wołkowicz, W.,Haszpra L. Signs of reduced biospheric activity with progressing globar warmin: evidence from long-term records ofatmospheric CO2 mixing ratios in Central-Eastern Europe. Atmospheric Chemistry and Physics. Discussions (2019)

5. Ciais P., Reichstein M., Viovy N., Granier A., Ogee J., Allard V., Aubinet M., Buchmann N., Bernhofer Chr., CarraraA., Chevalier F., De Noblet N., Friend A.D., Friedlingstein P., Grunwald T., Heinesch B., Keronen P., Knohl A.,Krinner G., Loustau D., Manca G., Matteucci G., Miglietta F., Ourcival J.M., Papale D., Pilegaaed K., RambalS., Seufert G., Soussana J.F., Sanz M.J., Schulze E.D., Vesala T., Valentini R. Europe-wide reduction in primaryproductivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005)

Page 63: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

9.3. OBSERVATION OF LIGHT-BY-LIGHT SCATTERING IN ATLAS 51

9.3 Observation of Light-by-Light Scattering in ATLAS

L. Adamczyk1,2, T. Bołd1,2, W. Dąbrowski1,2, G. Gach1,2, I. Grabowska-Bołd1,2, K. Janas1,2, P. Janus1,2, J.Kramer1,2, S. Koperny1,2, K. Maj1,2, B. Mindur1,2, A. Ogrodnik1,2, P. Palni1,2, M. Przybycień1,2

1 ATLAS Collaboration2 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland

A phenomenon of light-by-light scattering (γγ → γγ) has been of great interest in particle physics over therecent years. The process in which two photons—particles of light—interact, producing another pair of photons isforbidden by Maxwell’s classical theory of electrodynamics. However, it was predicted by Heisenberg in the early1930s, that photons could scatter off each other, see Fig. 9.4. The interaction is mediated via a quantum loopof virtual charged particles: fermions (leptons or quarks) or bosons W± at the order of α4

em, where αem is thefine-structure constant.

Figure 9.4: Feynman diagrams for light-by-light scattering.

The rarity of the γγ → γγ process makes it very challenging to observe experimentally. Nonetheless, thephenomenon was thoroughly studied over the years, eg. indirectly in measurements of the anomalous magneticmoment of the electron and muon or in two similar processes: Delbruck scattering and photon splitting. It tookmore than 80 years until the first direct evidence of the light-by-light scattering was reported by the ATLAS [1] andCMS [2] collaborations in 2017, followed by the observation of this process published by ATLAS with 8.2 standarddeviations significance in 2019 [3]. A group from the AGH UST took a leading role in the two ATLAS analyses.The high energy experiments at the CERN Large Hadron Collider provide excellent research tools for studying rareelastic photon-photon interactions. Heavy-ion or proton beams accelerated to relativistic TeV energies create hugeelectromagnetic fields which can be equivalently described as a flux of quasi-real photons. Photon flux associatedwith the beam scales as Z4 with beam charge making it extremely enhanced in lead-lead (Pb+Pb) in comparisonto proton-proton collisions (Z=82 for Pb, and Z=1 for proton beams).

Two theory groups [4,5] proposed independently to study light-by-light scattering using ultra-peripheral Pb+Pbcollisions, in which the Pb nuclei do not collide but pass through each other nearly intact. In that case the stronginteraction is not involved in the reaction allowing for the process γγ → γγ to occur directly. The signature ofinterests is the exclusive production of two photons with no activity observed in the detector, in particular noreconstructed tracks originating from the nominal interaction point (see Fig. 9.5). Since the initial-state photonshave negligible transverse momentum, the final state photons are expected to be aligned back-to-back in theazimuthal angle, φ.

Page 64: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

52 CHAPTER 9. SELECTED RESULTS

Figure 9.5: Event display for an exclusive light-by-light event candidate from the 2018 Pb+Pb run.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08φA

0

5

10

15

20

25

30

35

40

45

50

Eve

nts

/ 0.0

05 ATLAS

= 5.02 TeVNNsPb+Pb

-1Data 2018, 1.7 nb)γγ → γγSignal (

γγ →CEP gg ee→ γγ

Sys. unc.

5 10 15 20 25 30 [GeV]γγm

0

2

4

6

8

10

12

14

16

18

Eve

nts

/ GeV ATLAS

= 5.02 TeVNNsPb+Pb

-1Data 2018, 1.7 nb)γγ → γγSignal (

γγ →CEP gg ee→ γγ

Sys. unc.

Figure 9.6: Acoplanarity (left) and invariant mass (right) distributions of the selected diphoton events [3].

ATLAS stated the first direct evidence of light-by-light scattering with a significance of 4.4σ in 2017. In total13 diphoton candidate events were found, which were selected out of several billions of events recorded duringthe 2015 Pb+Pb run. The sequent heavy-ion run, performed in 2018, at a center-of-mass energy of 5.02 TeV pernucleon pair, provided 1.7 nb−1 Pb+Pb collision data recorded by ATLAS. Such an enhancement in event statisticsallowed to analyse light-by-light scattering more precisely. In total, 59 diphoton candidates were observed, while12±3 background events were expected, establishing the light-by-light scattering signal with a significance of 8.2σ.

Page 65: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

9.3. OBSERVATION OF LIGHT-BY-LIGHT SCATTERING IN ATLAS 53

The left panel of Figure 3 shows the acoplanarity distribution of candidate events, where Aφ = 0 corresponds totwo photons ideally aligned in azimuth, and is dominated by the signal process. The invariant mass distribution isshown on the right panel of Figure 3.

The light-by-light process is potentially sensitive to contributions from Beyond Standard Model. Therefore, onemay use the diphoton invariant mass distribution to set limits on the production of axion-like particles, which is atopic of ongoing studies by ATLAS physicists.

ACKNOWLEDGEMENTS This paper was (partially) supported by the Faculty of Physics and Applied ComputerScience, AGH University of Science and Technology, Statutory Task No. 11.11.220.01/6 within a subsidy of the Ministry ofScience and Higher Education, Republic of Poland.

REFERENCES

1. ATLAS Collaboration, Nature Physics 13, 852 (2017)2. CMS Collaboration, Phys. Lett. B 797, 134826 (2019)3. ATLAS Collaboration, Phys. Rev. Lett. 123 052001 (2019)4. D. d’Enterria and G. G. Silveira, Phys. Rev. Lett. 111, 080405 (2013) with erratum in Phys. Rev. Lett. 116, 129901

(2016)5. M. Kłusek-Gawenda, P. Lebiedowicz and A. Szczurek, Phys. Rev. C 93, 044907 (2016)

Page 66: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

54 CHAPTER 9. SELECTED RESULTS

9.4 Anisotropic Bone Response Simulation Based on Finite ElementsMethod and Real Micro Computed Tomography Input Data

S. Wroński1, J. Kamiński1, A. Wit1, P. Lipiński2 and J. Tarasiuk1

1 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland2 LEMTA, University of Lorraine (ENSEM), DVandœuvre-les-Nancy cedex, France

Introduction. In this paper the stress distribution of a complete assembly of hip is investigated with realisticboundary conditions using finite element analysis. To determine influence of various model assumptions on obtainedresults, we compared distribution of stresses and principal directions in three cases: bone consists of corticaland cancellous parts with isotropic properties, cancellous bone has anisotropic properties, cancellous bone hasanisotropic properties and orientation of the fabric eigenvalues were taking into account.

Mechanical properties of bone. Homogenized isotropic and anisotropic materials properties for cancellous bonewere based on the models proposed by Zysset [1]:

Ei = E0ρk(m2

i )l, Gij = G0ρ

k(mimj)l,

Eiνij

=E0

ν0ρk(mimj)

l,

where: ρ – BV/TV – bone volume to total volume, mi – fabric eigenvalues (for isotropic mi = 1), E0, ν0, G0 – tissueproperties (from experiments), k, l – coefficients for density and fabric (from experiments).

The value of parameters E0, ν0, G0, k, l were determined based on the comparison of FE results and experimentaldata in accordance with the methodology presented in Ref. [2].

Skeleto-muscular model. In order to maintain realism of simulation, a skeleto-muscular model of hind limbbone were constructed, with the most important muscles connecting specific bones. Only such model of completelimb could provide real loads to the femur in the hip joint area [3]. Skeleto-muscular model gives a possibilityto provide stress changes for dynamic loads during notion. Beam elements model the action of muscle actons insuch way that forces created by them are applied to stiff elements according to the lines of action connecting thepoints of attachment for particular acton. To avoid unnatural load in connection of muscles additional layers ofelements were created to act as tendons and cartilages in the locations of muscle attachment. Following stages ofthe skeletomuscular model preparation, using experimental µCT data were presented in Fig. 9.7.

The bar elements representing the muscles were assigned with properties of changing their linear dimension(corresponding to muscle contraction and relaxation) under the influence of a certain parameter defined for eachmuscle. It is a numerical procedure that allows modeling of real muscle activity. The idea of mimic muscle behaviourby the bar elements with thermal properties was first time proposed by [4]. Muscle activity was determined basedon knowledge of hoof reaction force using inverse kinematics method. All µCT measurements were performedin Laboratory of Micro and Nano Tomography at AGH University of Science and Technology. Femur head weremeasured with 45µm resolution which ensures precise representation of cancellous bone’s trabecular structure.Tomographic measurements of the femur and its 3D reconstruction were used to create a finite element mesh thatwas used for further simulations. The FEM mesh was generated using the medtool software [5]. Density andparameter describing anisotropy based on fabric tensors were calculated using free ImageJ [6] software with BoneJ[7] plug-in and assigned to each element of the created mesh. To assign the initial density and define a constitutivemodel of materials, the UMAT and SDVINI procedure was used in the ABAQUS environment. The cortical partwas modeled as homogeneous isotropic material due to of ambiguity in determining the fabric tensor for large valuesof BV/TV.

Results and discussion. The calculations were made for the following assumptions:Case 1: an isotropic model with averaged properties of cortical and cancellous bone,

Page 67: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

9.4. ANISOTROPIC BONE RESPONSE SIMULATION 55

Figure 9.7: Model of the skeleto-muscular system of the hind limb in bovine

Page 68: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

56 CHAPTER 9. SELECTED RESULTS

Case 2: isotropic model with mapping the volume fraction for cancellous bone,Case 3: an orthotropic model for cancellous bone with mapping the volume fraction and taking into account theorientation of the fabric eigenvalues.

Figure 9.8 presents the predicted stress distribution for all cases on a single, examplary crossection through thefemur head, but the observations described below are truth for any part of the femur head. To compare numericalvalues of stresses in all cases, we focused on a single point. A strong differences in stress values between cases wereobserved. The value of von Mises stresses in the center of the femur bone head varies from 14.2 MPa to 27.5 MPadepending on the model assumptions. Case 1 gives the smallest value, case 2 the largest one and the value for case3 is in the middle. The principle stress directions are less influenced by model assumptions because they are mainlyreleated to applied external load.

Conclusions. We show that only properly defined anisotropic properties of cancellous bone will lead to a reliablevalues stress. In the context of the interpretation of the differences in the results it is worth noting that the seeminglysmall changes in the stress, they can lead to large bone changes during adaptation process.

Figure 9.8: Predicted distribution of von Misses stresses and principal directions

ACKNOWLEDGEMENTS This work was financed by the Polish National Centre for Science (NCN) under decisionnumber: 2017/26/E/ST5/00043

REFERENCES

1. Zysset P K, Curnier A. Mechanics of Materials 19, 240–254 (1995)2. Gross T, Pahr DH, Zysset PK. Biomech Model Mechanobiol. 12:4, 793–800 (2013)3. Zadpoor A A, Weinans H. Journal of Biomechanics 48:5, 750–760 (2015)4. Creuillot V, Dreistadt C, Kalinski K, Lipiński P. Advances in intelligent systems and computing 414, 15–32 (2016)5. http://www.dr-pahr.at/html/01.html6. Abramoff MD, Magalhaes, Paulo J Ram, Sunanda J. Biophotonics international 11:7, 36–42 (2004)7. Doube M, Kłosowski M M, Arganda-Carreras I, Cordelieres F P, Dougherty R P, Jackson J S, Schmid B, Hutchinson

J R, Shefelbine S J. Bone 47:6, 1076–1079 (2010)

Page 69: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

9.5. NONCOLLINEAR ORDERING OF THE ORBITAL MAGNETIC MOMENTS IN MAGNETITE 57

9.5 Noncollinear Ordering of the Orbital Magnetic Moments in Mag-netite

Z. Kąkol1, M. Sikora2, H. Elnaggar3, Ph. Sainctavit4, A. Juhin4, S. Lafuerza5, F. Wilhelm5, A. Rogalev5, M.-A.Arrio4, Ch. Brouder4, M. van der Linden3,5,7, M. W. Haverkort8, P. Glatzel5, and F. M. F. de Groot3

1 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland2 Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Kraków, Poland3 Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands4 Institut de Mineralogie, de Physique des Materiaux et de Cosmochimie, CNRS, Sorbonne Universite, Paris, France5 European Synchrotron Radiation Facility, Grenoble, France6 a7 b8 Institut fur Theoritiche Physik, Universitat Heidelberg, Heidelberg, Germany

(a) The results of Fe K-edge XMCD measurements inFe3O4. Both experimental (dotted) and theoretical(solid) Fe K pre-edge signals are presented that provenonzero orbital moment.

(b) The angular dependence of the orbital magnetic mo-ment (µL) of the four Fe2+ ions as a function of therotation of the magnetic field (BField) about the [110]orientation (a).

Figure 9.9

In some recent reports [1] Verwey transition in magnetite at TV ≈ 125 K was suggested to be closely linked withthe ferromagnetic order starting at TC ≈ 850 K. For this reason, all the aspects of magnetic order, in particular, themagnitude of the orbital magnetic moment and its role as a trigger of the Verwey transition should be elucidated.The problem was studied [2] by the international team led by Utrecht University, with AGH group participatingin the interpretation of the spectroscopy results and supplying magnetite single crystals. First, Fe K-edge x-raymagnetic circular dichroism was measured in order to quantify the Fe average orbital magnetic moment. The results(Fig. 9.9a), supported with configuration interaction calculations (program Quanty) proved that the XMCD signaland its angular dependence can be best interpreted to arise from a non-quenched orbital magnetic moment at the

Page 70: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

58 CHAPTER 9. SELECTED RESULTS

formal Fe2+ ions. XMCD features from Fig. 9.9a were further observed by 1s2p resonant inelastic x-ray scatteringangle distribution (RIXS-AD). The results, in particular a subtle angular shift of the RIXS-AD spectral intensity asa function of the magnetic field orientation (Fig. 9.9b), supported by theoretical simulations confirmed the existenceof noncollinear orbital magnetic ordering. All the results inferred the presence of dynamical distortion creating apolaronic precursor for the metal to insulator Verwey transition.

REFERENCES

1. G. Perversi et. al. Nat. Com. 10, 285 (2019)2. H. Elnaggar et. al., Phys. Rev. Lett. 123, 207201 (2019)

Page 71: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

9.6. HOLE POCKET–DRIVEN SUPERCONDUCTIVITY AND ITS UNIVERSAL FEATURES IN THE ELECTRON-DOPED CUPRATES59

9.6 Hole Pocket–driven Superconductivity and its Universal Featuresin the Electron-doped Cuprates

W. Tabiś1, Yangmu Li2, Y. Tang2, G. Yu2, J. Jaroszynski3, N. Barisić2,4,5, M. Greven2

1 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland2 School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA3 National High Magnetic Field National Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahas-see, FL 32310, USA4 Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria5 Department of Physics, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia

Figure 9.10: Two-band upper critical field and superfluid density. (A) Universal temperature dependence of theresistive upper critical field for NCCO with H//c. The solid curve is a fit to the two-band model. (B) Temperaturedependence of superfluid density (µSR measurements). Fit of the two-band model is shown as a black solid line.Electron and hole contributions are plotted as blue and red dashed lines, respectively.

Experimental results of the detailed magnetoresistance measurements for the archetypal electron-doped cuprateNd2−xCexCuO4+δ were combined with the already published data to provide crucial links between the properties ofthe normal and superconducting states and, furthermore, find a link between the electron- and hole-doped cuprates.The characteristics of the normal state (magnetoresistance, quantum oscillations, and Hall coefficient) and those ofthe superconducting state (superfluid density and upper critical field) consistently indicate the two-band (electronand hole) features. In particular, the upper critical field (Hc2) and the superfluid density (ρs), two characteristicsof the SC ground state, exhibit the two-band features. As demonstrated in Fig. 1A, universal temperature depen-dence of the upper critical field for NCCO is observed that is inconsistent with the behavior of a single-band BCSsuperconductor, and the data are well fitted with the two-band model. In Fig. 1B the experimentally obtainedsuperfluid density is also well described by distinct temperature dependencies of the electronic (ρs,e) and hole (ρs,h)

Page 72: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

60 CHAPTER 9. SELECTED RESULTS

superfluid densities.Finally, the results show that the approximate Uemura scaling between the superconducting transition tem-

perature and the superfluid density found for the hole-doped cuprates also holds for the small hole component ofthe superfluid density in the electron-doped cuprates. All these results point to the hole pocket-driven supercon-ductivity in these nominally electron-doped materials. Summarizing, the report helps to arrive at a satisfactoryunderstanding of the unusual metallic “normal state” from which the superconducting state emerges upon coolingand creates a scheme for a unified understanding of hole- and electron-doped compounds.

REFERENCES

1. Y. Li, W. Tabiś, et al., Science Advances 5, eaap7349 (2019)

Page 73: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

9.7. HOW A FERROMAGNET DRIVES AN ANTIFERROMAGNET 61

9.7 How a Ferromagnet Drives an Antiferromagnet in Exchange Bi-ased in CoO/Fe(110) Bilayers

M. Ślęzak1, T. Ślęzak1, P. Dróżdż1, B. Matlak1, K. Matlak1, A. Kozioł-Rachwał1, J. Korecki1, M. Zając2

1 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland2 AGH University of Science and Technology, Kraków, Poland

Antiferromagnet/ferromagnet (AFM/FM) bilayers that display the exchange bias (EB) effect have been sub-jected to intensive material research, being the key elements of novel spintronics systems. In a commonly acceptedpicture, the antiferromagnet, considered as a rigid material due to its high anisotropy and magnetic hardness,controls the magnetic properties of the ferromagnet, such as a shift of the hysteresis loop or coercivity. We showedthat this AFM-FM master-slave hierarchy is not generally valid and that the influence of the ferromagnet on themagnetic anisotropy (MA) of the neighbouring antiferromagnet must be considered. Our computer simulation andexperimental studies of EB in an epitaxial CoO/Fe(110) bilayer show that the ferromagnetic layer with strong uni-axial magnetic anisotropy determines the interfacial spin orientations of the neighbouring AFM layer and rotatesits easy axis. This effect has a strong feedback on the EB effect experienced by the FM layer. Our results shownew physics behind the EB effect, providing a route for grafting a desired anisotropy onto the AFM and for precisetailoring of EB in AFM/FM systems.

REFERENCES

1. M. Ślęzak, T. Ślęzak, P. Dróżdż, B. Matlak, K. Matlak, A. Kozioł-Rachwał, M. Zając, J. Korecki, Scientific Reports9, 889 (2019)

Page 74: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

62 CHAPTER 9. SELECTED RESULTS

9.8 Electrical Conductivity and Magnetic Susceptibility of Thallium1223-Based Superconductor in the Fluctuation Range

W. M. Woch1, R. Zalecki1, M. Giebułtowski1, M. Kowalik1, J. Niewolski1, J. Przewoźnik1

1 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland

(a) Dependence of log(∆σ) versus log(ε) for bulkTl0.8Bi0.3Sr1.8Ba0.2Ca2Cu3Ox with straight lines fittedto the linear regions giving λ1 and λ2 critical exponents.The zero critical temperature Tc0 = 117.9 K was used toderive ε.

(b) log(modulus(χ)) versus log(ε) for the bulkTl0.8Bi0.3Sr1.8Ba0.2Ca2Cu3Ox with straight lines fittedto the linear regions providing λ3 and λ4critical expo-nents. The zero critical temperature Tc0 = 117.2 K wasused to derive ε.

Figure 9.11

The temperature dependencies of the electrical resistivity and the a.c. magnetic susceptibility of the Tl0.8Bi0.3-Sr1.8Ba0.2Ca2Cu3Ox bulk superconductor have been measured in the area of the transition from the metallic to thesuperconducting state. From the resistivity data, the onset temperature Tc,onset = 121.6 K, the critical temperatureTc50% = 118.8 K, the zero resistance critical temperature obtained using E = 10−6 V/cm criterion Tc0 = 117.9 K,and the width of superconducting transition ∆T = 1.6 K were derived. The thermal fluctuations were examinedusing the formulae for the conductance: ∆σ = Kε−λ, and for the magnetic susceptibility: χ = Cε−λ, where∆σ = 1/R(T ) − 1/RR(T ), ε =| (T − Tc)/Tc |, λ is the critical exponent, and K and C are constants.The criticalexponents derived from the region close to the critical temperature for both the susceptibility (slightly below Tc) aswell as the electrical resistance (slightly above Tc) data are close to each other: λ3 = 0.30 and λ1 = 0.23 respectively.The large values of the critical exponents in the region farther from the critical temperature, like λ4 = 2.48 andλ2 = 2.12, obtained in the region farther from the critical temperatures are not explainable within current theories.However, their values depend on the choice of critical temperature and, for Tcp = 118.7 K, the critical exponentobtained, λ2 = 1.24, can be related to fluctuations between 2D and 1D cases. The three-dimensional fluctuationswere found to occur in the vicinity of the zero-resistance critical temperature.

Page 75: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

9.9. CRITICAL CURRENTS OF TL2BA2CA2CU3OZ BULK SUPERCONDUCTORS 63

9.9 Critical Currents of Tl2Ba2Ca2Cu3Oz Bulk Superconductors

M. Giebułtowski1, W.M. Woch1, R. Zalecki1, M. Kowalik1, J. Niewolski1 and Ł. Gondek1

1 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland

The critical temperatures and the critical currents of Tl2Ba2Ca2Cu3Oz (Tl-2223) bulk superconductor havebeen studied using ac susceptibility measurements before and after the oxygenation process. With oxygenation thecritical temperature increased from 114.2 K to 118.8 K and the critical current at 77 K raised from 56 A/cm2 to 230A/cm2. The Ginzburg–Landau strong coupling limit approach was applied to describe the temperature dependenceof the critical current densities.

(a) A comparison of the critical tem-peratures derived from the suscepti-bility measurements for the samplebefore and after oxygenation. Mea-surements were done at Hac = 0.218Oe. Inset: illustration of the wayof the critical temperature determi-nation.

(b) A comparison of the suscep-tibility absorption parts for theTl2Ba2Ca2Cu3Oz superconduc-tor before and after oxygenation.Measurements were carried out inHac = 0.218 Oe.

(c) Critical current densities de-rived with Bean’s model for theTl2Ba2Ca2Cu3Oz superconductorbefore (open squares) and after(open circles) oxygenation. Thesolid lines are the fit obtained fromGinzburg–Landau strong couplinglimit approach.

Figure 9.12

Page 76: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

64 CHAPTER 9. SELECTED RESULTS

9.10 Applications of Magnetic Nanoparticles in Absorbent Materialsfor Environment Protection

T. Strączek1, Cz. Kapusta1, W. Tokarz1, W. M. Woch1, J. Matusik2, P. Maziarz2, K. Górniak2, A. Radziszewska3,T. Leiviska4

1 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland2 Faculty of Geology, Geophysics and Environmental, Protection, Department of Mineralogy, Petrography and Geo-chemistry, AGH University of Science and Technology, Kraków, Poland3 AGH University of Science and Technology, Faculty Of Metals Engineering and Industrial Computer Science,30-059 Kraków, Poland4 Chemical Process Engineering, University of Oulu, Oulu, Finland

New adsorbent materials, derived from geological minerals, impregnated with magnetic Fe oxide particles weresynthesized and tested with respect to heavy ion removal form water [1,2]. The halloysite based composite wasprepared by co-precipitation method and tested for aqueous As(V) removal at different experimental conditions bythe uncalcined and calcined material [1]. The XRD, Mossbauer spectroscopy, FTIR and SEM results revealed that Feoxides formed during the synthesis were superparamagnetic maghemite (γ-Fe2O3) nanoparticles with approximatesize of 20 nm. Their magnetic properties and homogenous distribution induced a strong response of the compositesto the applied magnetic field, enabling magnetic separation of the adsorbents. The magnetization curves of thematerials are shown in Fig. 9.13.

Figure 9.13: Magnetization curves in function of the applied magnetic field for the halloysite samples containing 10and 25% wt. of the Fe oxide, uncalcined and calcined (K), as well as for pure FeOx.

The impregnation with Fe oxide particles resulted also in an increase of the active surface area and changes ofporosity. The aqueous As (V) adsorption studies revealed, that the material impregnated with Fe oxide exhibited

Page 77: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

9.10. APPLICATIONS OF MAGNETIC NANOPARTICLES FOR ENVIRONMENT PROTECTION 65

higher adsorption capacity, than the starting mineral sample. Moreover, the highest adsorption capacity of 180mmol/kg was noted for calcined composites. In order to better understand the As(V) adsorption mechanisms, theeffect of pH and ionic strength was investigated. Also the desorption and the XPS studies were carried out. Theresults revealed the formation of inner-sphere complexes between As(V) and composites surface as well as As(V)reduction coupled with Fe(II) oxidation as the main removal mechanisms. The chemisorption had a significantimpact on the mineral support structure by increasing its stiffness, as indicated by Mossbauer spectroscopy. Thecomposites studied show a high stability in a broad pH range from 2 to 10, measured as As, Si, Al and Fe release,which facilitates their application for wastewater treatment and safe disposal of contaminations.

The layered double hydroxide (LDH) with Mg:Al molar ratio of 2:1 synthesized using co-precipitation methodwas impregnated with iron oxide particles (10 and 25 wt. % loading) [2]. The application of calcined and uncalcinedcomposites for As(V) removal from aqueous solutions was studied. The XRD, Mossbauer spectroscopy (the spectrashown in Fig. 2), SEM and vibrating sample magnetometry studies confirmed the presence of superparamagneticmaghemite (γ-Fe2O3) particles of 30 nm in size at the LDH surface. The FTIR studies revealed cointercalation ofcarbonates and sulfates in the interlayer space of LDH.

Figure 9.14: Mossbauer spectra of: a) pure FeOx, microcrystalline γ-Fe2O3 and Fe3O4, b) LDH, LFe10, LFe25 andtheir calcined derivatives.

The LDH materials were found to exhibit outstanding efficiency of As(V) removal with highest adsorption ca-

Page 78: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

66 CHAPTER 9. SELECTED RESULTS

pacity of 1208 ± 19 mmol/kg. Slightly higher adsorption was observed for the LFeK composites, was connected withmemory effect and incorporation of As(V) anions into interlayer space during LDH structure reconstruction. Theexperiments revealed that impregnation with Fe oxide particles enhanced the As(V) adsorption at low concentration3.75–0.37 mg/L. The composites studied show a high stability in the pH range of 2–10, attested by low Mg, Al,Fe and As release. The application of LFe25 and LFe25K composites in wastewater treatment revealed selectivitytoward As(V). It is also worth to note the high efficiency of V and Fe removal from wastewaters by the LFe25 andLFe25K. On the other hand, in the case of AMD water the release of Mg and Al indicated dissolution of LDH, asa consequence of low pH at low adsorbent dosage. However, despite the dissolution of LDH the removal of As(V),SO2−

4 ,V and Fe from the AMD was observed. This indicates additional adsorption mechanism, due to the Fe oxideparticles.

REFERENCES

1. P. Maziarz, J. Matusik, T. Leiviska, T. Strączek, Cz. Kapusta, W. M. Woch, W. Tokarz, K. Górniak, Separation andPurification Technology 210, 390 (2019)

2. P. Maziarz, J. Matusik, T. Strączek, Cz. Kapusta, W. M. Woch, W. Tokarz, A. Radziszewska, T. Leiviska, ChemicalEngineering Journal 362, 207 (2019)

Page 79: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

9.11. DYNAMICS OF SUPERPARAMAGNETIC IRON OXIDE NANOPARTICLES 67

9.11 Dynamics of Superparamagnetic Iron Oxide Nanoparticles withVarious Polymeric Coatings

T. Strączek1, S. Fiejdasz1, E. Gumieniczek-Chłopek1, D. Rybicki1, K. Goc1, J. Przewoźnik1, W. Mazur1, Cz.Kapusta1, J. Odrobińska2, Sz. Zapotoczny2, M. Nowakowska2, M. Szuwarzyński3 and S. Rumian4

1 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland2 Faculty Of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology,Kraków, Poland3 Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Kraków, Poland4 The Interuniversity Center for The New Techniques and Medical Technologies, Cracow University of Technology,Kraków, Poland

The results of a study of the magnetic dynamics of superparamagnetic iron oxide nanoparticles (SPIONs)with chitosan and polyethylene glycol (PEG) coatings are reported [1]. The materials were prepared by the co-precipitation method and characterized by X-ray diffraction, dynamic light scattering and scanning transmissionelectron microscopy. It was shown that the cores contain maghemite, and their hydrodynamic diameters varyfrom 49 nm for PEG-coated to 200 nm for chitosan-coated particles. The magnetic dynamics of the nanoparticlesin terms of the function of temperature was studied with magnetic susceptometry and Mossbauer spectroscopy.Their superparamagnetic fluctuations frequencies, determined from the fits of Mossbauer spectra, range from tensto hundreds of megahertz at room temperature and mostly decrease in the applied magnetic field. For watersuspensions of nanoparticles, maxima are observed in the absorption part of magnetic susceptibility and they shiftto higher temperatures with increasing excitation frequency, Fig. 9.15.

Figure 9.15: Temperatures at which the susceptibility maximum occurs as a function of the excitation frequencyfor the absorption (open symbols) and dispersion (full symbols) parts and their linear extrapolation to higherfrequencies for an exciting field of 10 Oe.

A step-like decrease of the susceptibility occurs at freezing, and from that, the Brown’s and Neel’s contributionsare extracted and compared for nanoparticles differing in core sizes and types of coating, Fig. 9.16. The materials

Page 80: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

68 CHAPTER 9. SELECTED RESULTS

studied can thus be regarded as suitable media for magnetic hyperthermia. In particular, the chitosan-coatedSPIONs can be considered as good candidates for the hyperthermia of immobilized nanoparticles, whereas forSPION-PEG that effect is obtained mainly by a free rotation of nanoparticles. The SPIONs can also be effectiveas contrast agents for T1 weighted scans in MRI.

Figure 9.16: Temperature dependencies of the (A) dispersion part of magnetic susceptibility for a water suspensionof SPION-CCh-B nanoparticles at various frequencies;(B) absorption part of magnetic susceptibility for an aqueoussuspension of SPION-CCh-B nanoparticles at various frequencies.

Polymer core-shell nanocapsules with magnetic nanoparticles embedded in their oil cores were fabricated andapplied as nano(photo)reactors [2]. Superparamagnetic iron oxide nanoparticles (SPIONs) coated with oleic acidwere first synthesized and characterized structurally, and their magnetic properties were determined. The capsuleswith chitosan-based shells were then formed in a one-step process by sonication assisted mixing of (1) an aqueoussolution of the hydrophobically derived chitosan and (2) oleic acid containing the dispersed SPIONs. In this way,magnetic capsules with a diameter of approximately 500–600 nm, containing encapsulated SPIONs with an averagediameter of approximately 20–30 nm, were formed as revealed by dynamic light scattering and scanning transmissionelectron microscopy measurements, Fig. 9.17. The composition and magnetic properties of the formed capsules werealso followed using dynamic light scattering, electron microscopies, and magnetic force microscopy.

Figure 9.17: STEM image of the capsule with encapsulated SPIONs (dark spots) (A). Atomic force microscopytopography (B), mechanical phase (C), and magnetic phase (D) images of the capsules with encapsulated magneticnanoparticles (the arrows point to the same capsules in all three images).

Owing to their magnetic properties, the water-dispersible capsules were then navigated in a static magneticfield gradient and transferred between the water and oil phases, as evidenced by fluorescence microscopy. In

Page 81: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

9.11. DYNAMICS OF SUPERPARAMAGNETIC IRON OXIDE NANOPARTICLES 69

this way, the capsules could be loaded in a controlled way with a hydrophobic reactant, perylene, which waslater photooxidized upon transferring the capsules to the aqueous phase. The capsules were shown to serve asrobust reloadable nanoreactors/nanocontainers that via magnetic navigation can be transferred between immisciblephases without disruption. These features make them promising reusable systems not only for loading and carryinglipophilic actives, conducting useful reactions in the confined environment of the capsules, but also for magneticallyseparating and guiding the encapsulated active molecules to the site of action.REFERENCES

1. T. Strączek et al., Materials 12, 1793 (2019)2. J. Odrobinska et al., ACS Appl. Mater. Interfaces 11, 10905 (2019)

Page 82: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

70 CHAPTER 9. SELECTED RESULTS

9.12 The Potential of FTIR Imaging as a Tool Supporting Neuropathol-ogist in Diagnostics of Glioblastoma Multiforme

J. Chwiej1, K. Płaneta1, N. Janik-Olchawa1, Z. Setkowicz2, D. Ryszawy3

1 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland2 Institute of Zoology, Jagiellonian University, Kraków, Poland3 Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland

Background. Glioblastoma multiforme (GBM) belongs to primary brain tumors with a very high degree ofmalignancy and is classified by WHO as a glioma IV [1]. Every year in the US, four people in 100000 adults developthe disease [2,3]. The morbidity rate increases with age, peaks around the fifth and sixth decades of life [4] andthe median of survival from diagnosis is around 12–15 months [5]. At present, the treatment of patients sufferingfrom GBM bases on surgical resection with maximal saving of tumor-surrounding tissue followed by radio- andpharmacological therapy using temozolomide as the most frequently recommended drug [6]. This strategy, however,does not guarantee a success and often has devastating consequences. Testing of the new substances or therapieshaving the potential in the treatment of GBM as well as detection of their side effects cannot be done on humansbut animal models of the disease are used for this purpose. One of the possibility is implantation of human tumorcell lines into rodent brains [7].Such a solution was just used in our study, in frame of which biomolecular anomaliesappearing in the rat brain due to the implantation of various cell lines of human GBM were compared. Thecorrelation of the obtained data with the results of histological examinations will help us to find the biomoleculeslinked to the invasiveness of tumor and determine the possible biomarkers and/or prognostic factors for GBM.

Figure 9.18: The microscopic views of the brain slices taken from the area of implantation and used for the FTIRstudy.

To analyze anomalies in the accumulation and biodistribution of main biomolecules (proteins, lipids, compoundscontaining phosphate and carbonyl groups) and their structure, Fourier transform infrared microscopy was appliedand the measurements of the samples were done at the Department of Medical Physics and Biophysics using

Page 83: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

9.12. THE POTENTIAL OF FTIR IMAGING AS A TOOL SUPPORTING NEUROPATHOLOGIST 71

NicoletTM iN10 MX infrared imaging microscope. The samples were probed with the IR beam of 25 µm in diameterand the IR spectra were collected in transreflection mode using linear array of LN2 cooled MCT-A detectors. Thespectra were collected for the wavenumber range from 900 to 4000 cm−1 with a spectral resolution of 8 cm−1 and32 scans co-added per each spectrum.

Figure 9.19: The chemical maps of the absorption band occurring at 1740 cm−1 obtained for the tissues presentedin the Fig. 9.18.

Results and discussion. The obtained data were used for preparation of chemical maps showing the distributionof main absorption bands present in the tissue spectra. As an example, the distributions of the absorption bandoccurring at around 1740 cm−1 and originating from the compounds containing carbonyl groups are presentedin the Fig. 9.19. As one can notice, the accumulation of compounds containing C=O bond is significantly lowerwithin the area of tumor and this effect is found in rats implanted both with very invasive U87mg cells and patientcells. None topographic anomalies in the distribution of biomolecules were found for animals implanted with T98gcells for which the development of solid tumor was not observed. The comparison of mean spectra recorded fortumor mass in case of P1 and U groups showed similar anomalies in comparison with the surrounding tissue. Forboth experimental groups the IR spectra of tumor presented lower absorbance at the wavenumbers of 3020 cm−1

(unsaturated lipids) and 1740 cm−1 and within the lipid massif (saturated lipids) as well as the changes in theshape of the massif which occurs at the wavenumber of around 1084 cm−1. Significant spectral anomalies recordedfor tumor comparing to the surrounding tissue, open the possibilities of the further study on the use of the FTIRimaging as an objective tool supporting neuropathological diagnosis in case of human GBM.

Materials and methods. The subject of the study were male Wistar rats which in the ninth week of life weredivided into four groups (U, T, P1 and N), typically consisting of 6 individuals. The rats from groups U, T andP1 were intracranially implanted with U87mg, T98g GBM cell lines and patient tumor cells, respectively, whilstthe N group consisted of naive controls. 21 days from the implantation, the animals were perfused with 0.9%

Page 84: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

72 CHAPTER 9. SELECTED RESULTS

saline of high analytical purity, their brains were removed from the skulls, deeply frozen in liquid nitrogen and cutin cryomicrotome into 10-micrometer thick slices which were placed on the MirrIR slides and freeze-dried. Themicroscopic views of such prepared samples one can see in the Fig. 9.18 showing differences in tumor invasivenessdepending on the implanted GBM cell line.

Figure 9.20: The comparison of mean IR absorption spectra recorded within tumor mass in case of U and P1 group.

REFERENCES

1. X. Guan, et al. Reactive atrocytes in glioblastoma multiforme. Mol. Neurobiol. 55, 6927-6938 (2018)2. R. Stupp, et al. High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann.

Oncol. 25, iii93-101 (2014)3. Q. T. Ostrom, et al. CBTRUS statistical report: primary brain and central cervous system tumors diagnosed in the

United States in 2008-2012. Neuro. Oncol. 17, iv1-iv62 (2015)4. F. Lieberman, Glioblastoma update: molecular biology, diagnosis, treatment, response assessment, and translational

clinical trials. F1000Res 6, 1892 (2017)5. B. Czapski, et al. Clinical and immunological correlates of long term survival in glioblastoma. Contemp. Oncol.

(Pozn.) 22, 81-85 (2018)6. Davis ME Glioblastoma: overview of disease and treatment. Clin. J. Oncol. Nurs. 20, S2-8 (2016)7. K. Lenting, et al. Glioma: experimental models and reality. Acta Neuropathol. 133, 263-282 (2017)

Page 85: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

9.13. DETERMINATION OF MAGNETIC PHASE DIAGRAMS 73

9.13 Determination of Magnetic Phase Diagrams in the H–T Coordi-nates for a σ-phase Fe-Re and Fe-Mo Compounds

Stanisław M. Dubiel1, Maria Bałanda2, Israel Felner3, Menahem I. Tsindlekht3

1 Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland2 Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland3 Racah Institute of Physics, The Hebrew University, Jerusalem, Israel

(a) Magnetic phase diagram of σ-Fe55Re45 as deducedfrom the DC in-field magnetization measurements. Solidlines are the best-fits of the data to the mean-field equa-tion T (H) = T (0) − aHϕ. Broken lines are drawn toguide the eye. PM stays for the paramagnetic phase,FM for ferromagnetic phase and SG for spin-glass [8].

(b) Magnetic phase diagram of σ-Fe55Re45 as deducedfrom the AC in-field magnetization measurements. Themeaning of the symbols, abbreviations and lines is thesame as in Fig. 9.21a—see also [8].

Figure 9.21: σ-phase Fe55Re45

Introduction. The sigma phase (σ) belongs to a family of the so-called Frank-Kasper phases also known astopologically closed-packed (TCP) structures. It has a complex tetragonal crystallographic structure. Its unit cellhosts 30 atoms distributed over 5 inequivalent lattice sites having high (12-15) coordination numbers. The σ phaseoccurs in alloys in which at least element is a transition metal. In the simplest alloys i.e. binary ones there areknown 43 cases in which σ was revealed [1]. Concerning magnetic properties of σ they were for the first timedetected for σ-FeV [2] and few years later for σ-FeCr [3]. For about five decades the magnetic ordering in thesetwo cases was regarded as ferromagnetic (FM). However, it has turned out that the magnetism of σ in these twoalloy systems is more complex. Namely, a re-entrant character was revealed i.e. the FM state turned out be anintermediate one while a spin-glass (SG) state was found to be the ground state [4]. Recently magnetism of σ wasdiscovered in other two binary alloys of Fe viz. Fe-Re [5] and Fe-Mo [6,7]. Alike in the Fe-V and Fe-Cr systemsit can be termed as low-temperature, weak and highly itinerant. The magnetic properties of σ-FeRe and σ-FeMocompounds also exhibit re-entrant properties. To shed more light on the issue and get a deeper insight into the

Page 86: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

74 CHAPTER 9. SELECTED RESULTS

magnetism of σ in Fe-Re and Fe-Mo systems, systematic DC and AC magnetization studies versus temperature,T , and applied magnetic field, H, were performed. Based on the obtained results magnetic phase diagrams in theH −−T plane have been constructed.

(a) Magnetic phase diagram of the σ-phaseFe53Re47 compound as deduced from the DC in-field magnetization measurements. The meaningof the symbols, abbreviations and lines is the sameas in Fig. 9.21a—see also [9].

(b) Magnetic phase diagram of σ-Fe53Re47 as de-duced from the AC in-field magnetization mea-surements. The meaning of the symbols, abbrevi-ations and lines is the same as in Fig. 9.21a—seealso [9].

Figure 9.22: σ-phase Fe53Re47

Figure 9.23: Magnetic phase diagram of the σ-phase Fe47Mo53 compound as deduced from the DC in-field magne-tization measurements. The meaning of the symbols, abbreviations and lines is the same as in Fig. 9.21a—see also[10].

Measurements. DC Magnetization (M) measurements at various applied magnetic fields (H) in the temperatureinterval 5 K < T < 80 K, were performed by a commercial (Quantum Design) superconducting quantum interference

Page 87: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

9.13. DETERMINATION OF MAGNETIC PHASE DIAGRAMS 75

device (SQUID) magnetometer with sample mounted in gel-cap. Prior to recording the zero-field-cooled (ZFC)curves, the SQUID magnetometer was always adjusted to be in a “real” H = 0 state. The temperature dependenceof the field-cooled (FC) and ZFC branches was taken via warming the samples. The real (χ′) and imaginary (χ′′)AC magnetic susceptibilities, at H ranging up to 500 Oe, were recorded with a home-made pickup coil methodinserted into this SQUID at an amplitude of h0=0.05 Oe at the frequency of 1465 Hz.

Details on experimental results and their interpretation can be found in Refs. [8-10].

REFERENCES

1. J.-M. Joubert, Progr. Mater. Sci. 53, 528 (2008)2. D. Parsons, Nature, 185, 839 (1960)3. D. A. Read, E. H. Thomas, J. B. Forsythe, J. Phys. Chem. Solids 29, 1569 (1968)4. R. Barco, P. Pureur , G. L. F. Fraga et al., J. Phys.: Condens. Matter 24, 046002 (2012)5. J. Cieślak, S. M. Dubiel, M. Reissner et al., J. Appl. Phys. 116, 183902 (2014)6. J. Przewoźnik, S.M. Dubiel, J. Alloy. Comp. 630, 222 (2015)7. J. Cieślak, S.M. Dubiel, M. Reissner, J. Magn. Magn. Mater. 401, 751 (2016)8. S. M. Dubiel, I. Felner, M. I. Tsindlekht, J. Appl. Phys. 126, 153903 (2019)9. S. M. Dubiel, M. I. Tsindlekht, I. Felner, J. Magn. Magn. Mater. 491, 165603 (2019)

10. S. M. Dubiel, M. Bałanda, I. Felner, J. Magn. Magn. Mater. 483, 65 (2019)

Page 88: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

76 CHAPTER 9. SELECTED RESULTS

Page 89: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Part II

Dissemination of Scientific Results

77

Page 90: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława
Page 91: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 10

Publications

10.1 Papers in journals registred in Web of Science or Scopus databases

1. Joanna Raczkowska, [et al.], Andrzej BERNASIK, [et al.] “Command” surfaces with thermo-switchable an-tibacterial activity Materials Science and Engineering. C, Materials for Biological Applications, vol. 103 art.no. 109806 s. 1-10 (2019)

2. Karolina Górnicka, Elizabeth M. Carnicom, Sylwia GOŁĄB, Marcin Łapiński, Bartłomiej WIENDLOCHA,Weiwei Xie, Dariusz Kaczorowski, Robert J. Cava, Tomasz Klimczuk CeIr3: superconductivity in a phasebased on tetragonally close packed clusters Superconductor Science & Technology, vol. 32 iss. 2 art. no. 025008s. 1–13 (2019)

3. Ambeshwar Kumar, Manikandan Ramachandran, Amir H. Gandomi, Rizwan Patan, Szymon ŁUKASIK,Ravichandran Kattur Soundarapandian A deep neural network based classifier for brain tumor diagnosisApplied Soft Computing, vol. 82 art. no. 105528 s. 1–10 (2019)

4. Agata Wiktorowicz, Adrian WIT, Artur Dziewierz, Łukasz Rzeszutko, Dariusz Dudek, Paweł Kleczyński Anovel approach to quantification of aortic valve calcifications in patients undergoing transcatheter aortic valveimplantation Minerva Cardioangiologica, vol. 67 no. 1 s. 3–10 (2019)

5. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] A strategy for a general search for new phenomena using data-derived signalregions and its application within the ATLAS experiment European Physical Journal. C, vol. 79 iss. 2 art.no. 120 s. 1–45 (2019)

6. Antony van der Ent, Francois Malaisse, Peter D. Erskine, Jolanta Mesjasz-Przybyłowicz, Wojciech J. PRZY-BYŁOWICZ, Alban D. Barnabas, Marta Sośnicka, Hugh H. Harris Abnormal concentrations of Cu − Co inHaumaniastrum katangense, Haumanaistrum robertii and Aeolanthus biformifolius: contamination or hyper-accumulation? Metallomics, vol. 11 iss. 3 s. 586–596 (2019)

7. I. Kodeli, V. Radulović, G. Veniger, D. Kavsek, T. KUC, M. CIECHANOWSKI, W. POHORECKI Activationof Mn,Li2O and LiF in the JSI TRIGA reactor to study potential tritium production monitors for fusionapplications Nuclear Fusion, vol. 59 iss. 8, art. no. 086051 s. 1–8 (2019)

79

Page 92: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

80 CHAPTER 10. PUBLICATIONS

8. Małgorzata J. KRAWCZYK, Krzysztof KUŁAKOWSKI Adaptive rewiring of links in a network: jammedstates Physica. A : Statistical Mechanics and Its Applications, vol. 531 art. no. 121716 s. 1–12 (2019)

9. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.], M. TOBIN,[et al.] Amplitude analysis of B0

s → K0SK±π∓ decays Journal of High Energy Physics, iss. 6 art. no. 114

s. 1–27 (2019)

10. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄ-KOWSKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.] Amplitudeanalysis of the B0

(s) → K∗0K∗0

decays and measurement of the branching fraction of the B0 → K∗0K∗0

decayJournal of High Energy Physics, iss. 7 art. no. 032 s. [1], 1–31 (2019)

11. Katarzyna STYSZKO, Marek JASZCZUR, Janusz TENETA, Qusay HASSAN, Paulina Burzyńska, EwelinaMarcinek, Natalia Łopian, Lucyna SAMEK An analysis of the dust deposition on solar photovoltaic modulesEnvironmental Science and Pollution Research, vol. 26 iss. 9: Environmental Aspects in the SustainableEnergy Development s. 8393–8401 (2019)

12. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [et al.],I. GRABOWSKA-BOŁD, [et al.], K. W. JANUS, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.], J.A. KREMER, [et al.], K. MAJ, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ,[et al.] ATLAS b-jet identification performance and efficiency measurement with tt events in pp collisions at√s = 13 TeV European Physical Journal. C, vol. 79 iss. 11 art. no. 970 s. 1–36 (2019)

13. Radosław STRZAŁKA, Ireneusz BUGAŃSKI, Paweł KUCZERA, Łucjan PYTLIK, Janusz WOLNY Atomicstructure of decagonal Al−Cu−Rh quasicrystal-revisited: new correction for phonons Crystals, vol. 9 iss. 2art. no. 78 s. 1–10 (2019)

14. J. Adam, L. ADAMCZYK, [et al.], Ł. FULEK, [et al.], M. PRZYBYCIEŃ, [et al.], R. SIKORA, [et al.]Azimuthal harmonics in small and large collision systems at RHIC top energies Physical Review Letters,vol. 122 iss. 17 art. no. 172301 s. 172301-1–172301-8 (2019)

15. J. Adam, L. ADAMCZYK, [et al.], Ł. FULEK, [et al.], M. PRZYBYCIEŃ, [et al.], R. SIKORA, [et al.] Beamenergy dependence of (anti-)deuteron production in Au + Au collisions at the BNL Relativistic Heavy IonCollider Physical Review. C, vol. 99 iss. 6 art. no. 064905 s. 064905-1–064905-12 (2019)

16. Joanna G. CHWIEJ, Stanisław W. Ciesielka, Agnieszka K. SKOCZEŃ, Krzysztof J. Janeczko, ChristopheSandt, Karolina L. PŁANETA, Zuzanna K. Setkowicz Biochemical changes indicate developmental stage inthe hippocampal formation ACS Chemical Neuroscience, vol. 10 iss. 1 s. 628–635 (2019)

17. Agata Wiktorowicz, Adrian WIT, Artur Dziewierz, Lukasz Rzeszutko, Dariusz Dudek, Pawel KleczynskiCalcium pattern assessment in patients with severe aortic stenosis via the Chou’s 5-steps rule Current Phar-maceutical Design, vol. 25 iss. 35 s. 3769–3775 (2019)

18. Małgorzata ŚWIĘTEK, Antonın Broz, Jacek TARASIUK, Sebastian WROŃSKI, Waldemar TOKARZ, AgataKozieł, Marta BŁAŻEWICZ, Lucie Bacakova Carbon nanotube/iron oxide hybrid particles and their PCL-based 3D composites for potential bone regeneration Materials Science and Engineering. C, Materials forBiological Applications, vol. 104 art. no. 109913 s. 1–16 (2019)

Page 93: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10.1. PAPERS IN JOURNALS REGISTRED IN WEB OF SCIENCE OR SCOPUS DATABASES 81

19. J. Adam, L. ADAMCZYK [et al.], Ł. FULEK [et al.], M. PRZYBYCIEŃ [et al.], R. SIKORA [et al.] Centralityand transverse momentum dependence of D0-meson production at mid-rapidity in Au + Au collisions at

√sNN

= 200 GeV Physical Review. C, vol. 99 iss. 3 art. no. 034908 s. 034908-1–034908-25 (2019)

20. Grzegorz SZWACHTA, Marta GAJEWSKA, Piotr Dłużewski, Sławomir KĄC, Marek PRZYBYLSKI Char-acterization of MgO/TiN bilayer deposited on cube-textured copper using pulsed-laser deposition techniqueThin Solid Films, vol. 692, art. no. 137621 s. 1–7 (2019)

21. Paweł Pęczkowski, Piotr Zachariasz, Marcin KOWALIK, Ryszard ZALECKI, Cezariusz Jastrzębski Char-acterization of the superconductor-multiferroic type materials based on Y Ba2Cu3O7−δ–YMnO3 compositesCeramics International, vol. 45 iss. 15 s. 18189–18204 (2019)

22. J. Adam, L. ADAMCZYK, [et al.], Ł. FULEK, [et al.], M. PRZYBYCIEŃ, [et al.], R. SIKORA, [et al.]Charge-dependent pair correlations relative to a third particle in p + Au and d + Au collisions at RHICPhysics Letters. B, vol. 798 art. no. 134975 s. 1–6 (2019)

23. I. Abt, [et al.], L. ADAMCZYK, [et al.], M. PRZYBYCIEŃ, [et al.] Charm production in charged currentdeep inelastic scattering at HERA Journal of High Energy Physics, iss. 5 art. no. 201 s. 1–26 (2019)

24. J. Adam, [et al.], L. ADAMCZYK, [et al.], Ł. FULEK, [et al.], M. PRZYBYCIEŃ, [et al.], R. SIKORA, [etal.] Collision-energy dependence of pt correlations in Au + Au collisions at energies available at the BNLRelativistic Heavy Ion Collider Physical Review. C, vol. 99 iss. 4 art. no. 044918 s. 044918-1–044918-7 (2019)

25. J. Adam, [et al.], L. ADAMCZYK, [et al.], Ł. FULEK, [et al.], M. PRZYBYCIEŃ, [et al.], R. SIKORA,[et al.] Collision-energy dependence of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon multiplicity distributions in Au+Au collisions Physical Review. C, vol. 100 iss. 1 art.no. 014902 s. 014902-1–014902-12 (2019)

26. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.], J.A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Combinationof searches for invisible Higgs boson decays with the ATLAS experiment Physical Review Letters, vol. 122iss. 23 art. no. 231801 s. 231801-1–231801-20 (2019)

27. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [etal.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.], J.A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Combinationsof single-top-quark production cross-section measurements and |fLV Vtb| determinations at

√s = 7 and 8 TeV

with the ATLAS and CMS experiments Journal of High Energy Physics, iss. 5 art. no. 088 s. [1], 1–80 (2019)

28. M. Aaboud [et al.], L. ADAMCZYK [et al.], T. BOŁD [et al.], W. DĄBROWSKI [et al.], G. P. GACH[et al.], I. GRABOWSKA-BOŁD [et al.], M. P. GUZIK [et al.], P. A. JANUS [et al.], D. KISIELEWSKA[et al.], S. KOPERNY [et al.], T. Z. KOWALSKI [et al.], J. A. KREMER [et al.], B. MINDUR [et al.],M. PRZYBYCIEŃ [et al.] Comparison of fragmentation functions for jets dominated by light quarks andgluons from pp and Pb + Pb collisions in ATLAS Physical Review Letters, vol. 123 iss. 4 art. no. 042001s. 042001-1–042001-21 (2019)

29. L. ADAMCZYK, [et al.], Ł. FULEK, [et al.], M. PRZYBYCIEŃ, [et al.], R. SIKORA, [et al.] Constrainingthe initial conditions and temperature dependent viscosity with three-particle correlations in Au+Au collisionsPhysics Letters. B, vol. 790 s. 81–88 (2019)

Page 94: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

82 CHAPTER 10. PUBLICATIONS

30. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [etal.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.], J.A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Constraintson mediator-based dark matter and scalar dark energy models using

√s = 13 TeV pp collision data collected

by the ATLAS detector Journal of High Energy Physics, iss. 5 art. no. 142 s. [1], 1–85 (2019)

31. K. E. HNIDA, S. Baßler, J. MECH, K. SZACIŁOWSKI, R. P. Socha, M. GAJEWSKA, K. Nielsch, M. PRZY-BYLSKI, G. D Sulka Correction: Electrochemically deposited nanocrystalline InSb thin films and their electri-cal properties [Journal of Materials Chemistry C 2016, 4 (1345-1350) DOI: 10.1039/C5TC03656A] Journalof Materials Chemistry. C, vol. 7 iss. 21 s. 6475 (2019)

32. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P.A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Correlated long-range mixed-harmonic fluctuations measured in pp, p+Pb andlow-multiplicity Pb+Pb collisions with the ATLAS detector Physics Letters. B, vol. 789 s. 444–471 (2019)

33. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Cross-section measurements of the Higgs boson decaying into a pair of τ -leptonsin proton-proton collisions at

√s = 13 TeV with the ATLAS detector Physical Review. D, vol. 99 iss. 7 art.

no. 072001 s. 072001-1–072001-39 (2019)

34. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.], M. TOBIN,[et al.] Dalitz plot analysis of the D+ → K−K+K+ decay Journal of High Energy Physics, iss. 4 art. no. 063s. 1–35 (2019)

35. Stanisław M. DUBIEL, Jan ŻUKROWSKI Debye temperature of single-crystal Cr with incommensurate andcommensurate magnetic structure EPL, vol. 127 iss. 2 art. no. 26002 s. 26002-p1–26002-p3 (2019)

36. Witold SKOWROŃSKI, Łukasz KARWACKI, Sławomir ZIĘTEK, Jarosław KANAK, Stanisław ŁAZARSKI,Krzysztof GROCHOT, Tomasz STOBIECKI, Piotr Kuświk, Feliks Stobiecki, Józef Barnaś Determinationof spin hall angle in heavy-metal/Co-Fe-B-based heterostructures with interfacial spin-orbit fields PhysicalReview Applied, vol. 11 iss. 2 art. no. 024039 s. 024039-1–024039-9 (2019)

37. Stanisław M. DUBIEL, Maria Bałanda, Isræl Felner Determination of the magnetic phase diagram in the H-Tplane for a sigma-phase Fe47Mo53 alloy: double re-entrant transition Journal of Magnetism and MagneticMaterials, vol. 483 s. 65–69 (2019)

38. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [etal.], J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al]. Dijetazimuthal correlations and conditional yields in pp and p+Pb collisions at

√sNN = 5.02 TeV with the ATLAS

detector Physical Review. C, vol. 100 iss. 3 art. no. 034903 s. 034903-1–034903-24 (2019)

Page 95: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10.1. PAPERS IN JOURNALS REGISTRED IN WEB OF SCIENCE OR SCOPUS DATABASES 83

39. M. Pasquali, [et al.], M. D. JEDRYCHOWSKY, [et al.] Dynamic response of advanced materials impacted byparticle beams: the MultiMat experiment Journal of Dynamic Behavior of Materials, vol. 5 iss. 3 s. 266–295(2019)

40. Tomasz STRĄCZEK, Sylwia FIEJDASZ, Damian RYBICKI, Kamil GOC, Janusz PRZEWOŹNIK, WeronikaMAZUR, Maria Nowakowska, Szczepan Zapotoczny, Stanisław Rumian, Czesław KAPUSTA Dynamics ofsuperparamagnetic iron oxide nanoparticles with various polymeric coatings Materials, vol. 12 iss. 11 art.no. 1793 s. 1–15 (2019)

41. Zdzisław BURDA, Paweł Wojcieszak, Konrad ZUCHNIAK Dynamics of wealth inequality Comptes RendusPhysique, vol. 20 iss. 4 s. 349–363 (2019)

42. Karolina Siedliska, Janusz PRZEWOŹNIK, Marta Arczewska, Marek Kosmulski, Elżbieta Jartych Effect ofannealing temperature on structural properties of the co-precipitated delafossite AgFeO2 Materials ResearchExpress, vol. 6 no. 8 art. no. 086113 s. 1–9 (2019)

43. Grażyna Ryzińska, Matthew David, Gangadhara Prusty, Jacek TARASIUK, Sebastian WROŃSKI Effect offibre architecture on the specific energy absorption in carbon epoxy composite tubes under progressive crushingComposite Structures, vol. 227 art. no. 111292 s. 1–8 (2019)

44. Ameneh Javidjam, Mohammad Hossein Hekmatshoar, Leila HEDAYATIFAR, Sajjad Nasiri Khalil AbadEffect of surface roughness on electrical conductivity and hardness of silver plated copper Materials ResearchExpress, vol. 6 iss. 3 art. no. 036407 s. [1], 1–8 (2019)

45. Laszló Bencs, Zoya Spolnik, Anna Worobiec, Lucyna SAMEK, Bernhard A. H. G. Jutte, Rene Van GriekenEffects of IR heating on distribution and transport of gaseous air pollutants in urban and mountain churchesin Poland Journal of Cultural Heritage, vol. 36 s. 200–209 (2019)

46. Szymon ŁUKASIK, Konrad Lalik, Piotr Sarna, Piotr A. KOWALSKI, Małgorzata Charytanowicz, PiotrKULCZYCKI Efficient astronomical data condensation using approximate nearest neighbors InternationalJournal of Applied Mathematics and Computer Science, vol. 29 no. 3 s. 467–476 (2019)

47. M. Kotwica, P. GRONEK, K. MALARZ Efficient space virtualization for the Hoshen-Kopelman algorithmInternational Journal of Modern Physics. C, vol. 30 no. 8, art. no. 1950055 s. 1950055-1–1950055-20 (2019)

48. Gregory M. Stephen, Christopher Lane, Gianina Buda, David Graf, Stanisław KAPRZYK, Bernardo Bar-biellini, Arun Bansil, Don Heiman Electrical and magnetic properties of thin films of the spin-filter materialCrVTiAl Physical Review. B, vol. 99 iss. 22 art. no. 224207 s. 224207-1–224207-8 (2019)

49. W. M. WOCH, R. ZALECKI, M. GIEBUŁTOWSKI, M. KOWALIK, J. NIEWOLSKI, J. PRZEWOŹNIKElectrical conductivity and magnetic susceptibility of thallium 1223-based superconductor in the fluctuationrange Journal of Superconductivity and Novel Magnetism, vol. 32 iss. 2 s. 159-165 (2019)

50. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Electron and photon energy calibration with the ATLAS detector using 2015-2016LHC proton-proton collision data Journal of Instrumentation, vol. 14 art. no. P03017 s. [2], 1–58 (2019)

51. Bartłomiej RZESZOTARSKI, Alina MREŃCA-KOLASIŃSKA, Bartłomiej SZAFRAN Electron interferome-try and quantum spin Hall phase in silicene Physical Review. B, vol. 99 iss. 16 s. 165426-1–165426-5 (2019)

Page 96: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

84 CHAPTER 10. PUBLICATIONS

52. M. Aaboud [et al.], L. ADAMCZYK [et al.], T. BOŁD [et al.], W. DĄBROWSKI [et al.], G. P. GACH[et al.], I. GRABOWSKA-BOŁD [et al.], M. P. GUZIK [et al.], P. A. JANUS [et al.], D. KISIELEWSKA[et al.], S. KOPERNY [et al.], T. Z. KOWALSKI [et al.], J. A. KREMER [et al.], B. MINDUR [et al.],M. PRZYBYCIEŃ [et al.] Electron reconstruction and identification in the ATLAS experiment using the 2015and 2016 LHC proton-proton collision data at

√s = 13 TeV European Physical Journal. C, vol. 79 iss. 8

art. no. 639 s. 1–40 (2019)

53. Sylwia GOŁĄB, Bartłomiej WIENDLOCHA Electron-phonon superconductivity in CaBi2 and role of spin-orbit interaction Physical Review. B, vol. 99 iss. 10 art. no. 104520 s. 104520-1–104520-11 (2019)

54. O. K. Koksal, P. WRÓBEL, G. Apaydin, E. Cengiz, M. LANKOSZ, A. Tozar, I. H. Karahan, F. OzkalayciElemental analysis for iron, cobalt, copper and zinc decorated hydroxyapatite synthetic bone dusts by EDXRFand SEM Microchemical Journal, vol. 144 s. 83–87 (2019)

55. Dorota LACHOWICZ, Weronika Górka, Angelika KMITA, Andrzej BERNASIK, Jan ŻUKROWSKI, Woj-ciech SZCZERBA, Marcin SIKORA, Czesław KAPUSTA, Szczepan Zapotoczny Enhanced hyperthermic prop-erties of biocompatible zinc ferrite nanoparticles with a charged polysaccharide coating Journal of MaterialsChemistry. B, vol. 7 iss. 18 s. 2962–2973 (2019)

56. Paweł WÓJCIK, Andrea Bertoni, Guido Goldoni Enhanced Rashba spin-orbit coupling in core-shell nanowiresby the interfacial effect Applied Physics Letters, vol. 114 iss. 7 art. no. 073102 s. 073102-1–073102-5 (2019)

57. Victoria H. Fan, Lauren E. Grosberg, Sasidhar S. Madugula, Paweł HOTTOWY, Władysław DĄBROWSKI,Alexander Sher, Alan M. Litke, E. J. Chichilnisky Epiretinal stimulation with local returns enhances selectivityat cellular resolution Journal of Neural Engineering, vol. 16 no. 2 art. no. 025001 s. 1–10 (2019)

58. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [etal.], I. GRABOWSKA-BOŁD, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA, [et al.], S. KOPERNY, [etal.], T. Z. KOWALSKI, [et al.], B. MINDUR, [et al.], W. PRZYBYCIEŃ, [et al.] Erratum to: Measurementof the W boson polarisation in tt events from pp collisions at

√s = 8 TeV in the lepton + jets channel with

ATLAS European Physical Journal. C, vol. 79 iss. 1, art. no. 19 s. 1–14 (2019)

59. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Erratum to: Measurements of W and Z boson production in pp collisions at

√s =

5.02 TeV with the ATLAS detector European Physical Journal. C, vol. 79 iss. 5 art. no. 374 s. 1–15 (2019)

60. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄ-KOWSKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.] Erratum:Measurement of Υ production in pp collisions at

√s = 13 TeV Journal of High Energy Physics, iss. 5 art.

no. 076 s. 1–7 (2019)

61. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.], A. ZEMŁA, [et al.] Erratum: Search for supersymmetry in final states with twosame-sign or three leptons and jets using 36 fb−1 of

√s = 13 TeV pp collision data with the ATLAS detector

Journal of High Energy Physics, iss. 8 art. no. 121 s. 1–19 (2019)

Page 97: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10.1. PAPERS IN JOURNALS REGISTRED IN WEB OF SCIENCE OR SCOPUS DATABASES 85

62. N. Barisić [et al.], W. TABIŚ [et al.] Evidence for a universal Fermi-liquid scattering rate throughout the phasediagram of the copper-oxide superconductors New Journal of Physics, vol. 21 iss. 11 art. no. 113007 s. 1–15(2019)

63. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], K. W. JANAS, [et al.], P. A. JANUS,[et al.], S. KOPERNY, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.],M. PRZYBYCIEŃ, [et al.] Evidence for the production of three massive vector bosons with the ATLASdetector Physics Letters. B, vol. 798 art. no. 134913 s. 1–22 (2019)

64. Subhasis Samanta, Sandeep CHATTERJEE, Bedangadas Mohanty Exploring the hadron resonance gas phaseon the QCD phase diagram Journal of Physics. G, Nuclear and Particle Physics, vol. 46 iss. 6 art. no. 065106s. 1–14 (2019)

65. Małgorzata ŚWIĘTEK, Waldemar TOKARZ, Aleksandra BENKO, Marek NOCUŃ, Eliska Mazl-Chanova,Marta BŁAŻEWICZ Fabrication of CNT/ION hybrids and their impact on the biomedical applicability ofPCL-based composite films Polymer Composites, vol. 40 iss. S2 spec. iss.: Graphene and Carbon Fiberss. E1818–E1830 (2019)

66. Andrzej Białas, Adam BZDAK, Volker Koch Femtoscopy of stopped protons Physical Review. C, vol. 99iss. 3 art. no. 034906 s. 034906-1–034906-5 (2019)

67. Piotr OGRODNIK, Francesco Antonio Vetro, Marek FRANKOWSKI, Jakub CHĘCIŃSKI, Tomasz STO-BIECKI, Józef Barnaś, Jean-Philippe Ansermet Field- and temperature-modulated spin diode effect in a GMRnanowire with dipolar coupling Journal of Physics. D, Applied Physics, vol. 52 no. 6 art. no. 065002 s. 1–13(2019)

68. Stanisław ŁAZARSKI, Witold SKOWROŃSKI, Jarosław KANAK, Łukasz KARWACKI, Sławomir ZIĘTEK,Krzysztof GROCHOT, Tomasz STOBIECKI, Feliks Stobiecki Field-free spin-orbit-torque switching in Co/Pt/-Co multilayer with mixed magnetic anisotropies Physical Review Applied, vol. 12 iss. 1 s. 014006-1–014006-7(2019)

69. M. Dąbrowski, M. Cinal, A. K. Schmid, J. Kirschner, M. PRZYBYLSKI Fine-tuning of canted magnetizationin stepped Fe films through thickness variation, Au capping, and quantum confinement Physical Review. B,vol. 99 iss. 18 s. 184420-1–184420-17 (2019)

70. Bartłomiej SZAFRAN, Alina MREŃCA-KOLASIŃSKA, Dariusz ŻEBROWSKI Finite-difference method forDirac electrons in circular quantum dots Physical Review. B, vol. 99 iss. 19 s. 195406-1–195406-8 (2019)

71. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], W. M. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄ-KOWSKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.] Firstmeasurement of charm production in its fixed-target configuration at the LHC Physical Review Letters, vol. 122iss. 13 art. no. 132002 s. 132002-1–132002-12 (2019)

72. J. Adam, L. ADAMCZYK, [et al.], Ł. FULEK, [et al.], B. Pawlik, [et al.], M. PRZYBYCIEŃ, [et al.],R. SIKORA, [et al.] First observation of the directed flow of D0 and D0 in Au + Au collisions at

√sNN =

200 GeV Physical Review Letters, vol. 123 iss. 16 art. no. 162301 s. 162301-1–162301-8 (2019)

Page 98: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

86 CHAPTER 10. PUBLICATIONS

73. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄ-KOWSKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.] Firstobservation of the radiative decay Λ0

b → Λγ Physical Review Letters, vol. 123 iss. 3 s. 031801-1–031801-11(2019)

74. Jakub JURCZYK, Christopher R. Brewer, Olivia M. Hawkins, Mikhail N. Polyakov, Czesław KAPUSTA,Lisa McElwee-White, Ivo Utke Focused electron beam-induced deposition and post-growth purification usingthe heteroleptic Ru complex (η3 − C3H5)Ru(CO)3Br ACS Applied Materials & Interfaces, vol. 11 iss. 31s. 28164–28171 (2019)

75. Gernot Akemann, Zdzisław BURDA, Mario Kieburg From integrable to chaotic systems: universal local statis-tics of Lyapunov exponents EPL, vol. 126 iss. 4 art. no. 40001 s. 40001-p1–40001-p7 (2019)

76. Joanna Lewandowska-Łańcucka, Adriana GILARSKA, Aleksandra Buła, Wojciech HORAK, Anna Łatkiewicz,Maria Nowakowska Genipin crosslinked bioactive collagen/chitosan/hyaluronic acid injectable hydrogels struc-turally amended via covalent attachment of surface-modified silica particles International Journal of BiologicalMacromolecules, vol. 136 s. 1196–1208 (2019)

77. Piotr BOŻEK, Wojciech Broniowski, Maciej Rybczyński, Grzegorz Stefanek GLISSANDO 3: GLauber initial-state simulation and mOre, ver. 3 Computer Physics Communications, vol. 245 art. no. 106850 s. 1–13 (2019)

78. Dorota LACHOWICZ, Roma WIRECKA, Weronika Górka-Kumik, Mateusz Marek MARZEC, Marta GAJEW-SKA, Angelika KMITA, Jan ŻUKROWSKI, Marcin SIKORA, Szczepan Zapotoczny, Andrzej BERNASIKGradient of zinc content in core-shell zinc ferrite nanoparticles – precise study on composition and magneticproperties Physical Chemistry Chemical Physics, vol. 21 iss. 42 s. 23473–23484 (2019)

79. Aneta Pietraszek, Anna Karewicz, Marta Widnic, Dorota LACHOWICZ, Marta GAJEWSKA, AndrzejBERNASIK, Maria Nowakowska Halloysite-alkaline phosphatase system – a potential bioactive componentof scaffold for bone tissue engineering Colloids and Surfaces. B, Biointerfaces, vol. 173 s. 1–8 (2019)

80. Dawid PRZYCZYNA, Maria LIS, Kacper PILARCZYK, Konrad SZACIŁOWSKI Hardware realization of thepattern recognition with an artificial neuromorphic device exhibiting a short-term memory Molecules, vol. 24iss. 15 art. no. 2738 s. 1–16 (2019)

81. Duong Van Hao, Chau NGUYEN DINH, Paweł JODŁOWSKI, Tibor Kovacs High-level natural radionuclidesfrom the Mandena deposit, South Madagascar Journal of Radioanalytical and Nuclear Chemistry, vol. 319iss. 3 s. 1331–1338 (2019)

82. Anna PIERCHAŁA, Kazimierz RÓŻAŃSKI, Marek DULIŃSKI, Zbigniew GORCZYCA, Michał MARZEC,Robert CZUB High-precision measurements of δ2H, δ18O and δ17O in water with the aid of cavity ring-downlaser spectroscopy Isotopes in Environmental and Health Studies, vol. 55 iss. 3 s. 290-307 (2019)

83. Anna PIERCHAŁA, Kazimierz RÓŻAŃSKI, Marek DULIŃSKI, Zbigniew GORCZYCA, Michał MARZEC,Robert CZUB High-precision measurements of δ2H, δ18O and δ17O in water with the aid of cavity ring-downlaser spectroscopy Isotopes in Environmental and Health Studies, vol. 55 iss. 3 s. 290-307 (2019)

84. Paulina MAZIARZ, Jakub MATUSIK, Tomasz STRĄCZEK, Czesław KAPUSTA, Wiesław Marek WOCH,Waldemar TOKARZ, Agnieszka RADZISZEWSKA, Tiina Leiviska Highly effective magnet-responsive LDH−Fe oxide composite adsorbents for As(V) removal Chemical Engineering Journal, vol. 362 s. 207–216 (2019)

Page 99: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10.1. PAPERS IN JOURNALS REGISTRED IN WEB OF SCIENCE OR SCOPUS DATABASES 87

85. Yangmu Li, W. TABIŚ, Y. Tang, G. Yu, J. Jaroszynski, N. Barisić, M. Greven Hole pocket-driven superconduc-tivity and its universal features in the electron-doped cuprates Science Advances, vol. 5 iss. 2 art. no. eaap7349s. 1–7 (2019)

86. M. ŚLĘZAK, T. ŚLĘZAK, P. DRÓŻDŻ, B. MATLAK, K. MATLAK, A. KOZIOŁ-RACHWAŁ, M. Zając,J. KORECKI How a ferromagnet drives an antiferromagnet in exchange biased CoO/Fe(110) bilayers Scien-tific Reports, vol. 9 art. no. 889 s. 1–8 (2019)

87. Johannes Hepp, Lorenz Wuthrich, Tobias Bromm, Marcel Bliedtner, Imke Kathrin Schafer, Bruno Glaser,Kazimierz RÓŻAŃSKI, Frank Sirocko, Roland Zech, Michæl Zech How dry was the Younger Dryas? Climateof the Past, vol. 15 iss. 2 s. 713–733 (2019)

88. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD [et al.], M. P. GUZIK, [et al.], K. W. JANAS, [et al.], P. A. JANUS,[et al.], S. KOPERNY, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.],M. PRZYBYCIEŃ, [et al.] Identification of boosted Higgs bosons decaying into b-quark pairs with the ATLASdetector at 13 TeV European Physical Journal. C, vol. 79 iss. 10 art. no. 836 s. 1–38 (2019)

89. Hasnain Hafiz [et al.], Stanisław KAPRZYK [et al.] Identification of ferrimagnetic orbitals preventing spineldegradation by charge ordering in LixMn2O4 Physical Review. B, vol. 100 iss. 20 art. no. 205104 s. 205104-1–205104-7 (2019)

90. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] In situ calibration of large-radius jet energy and mass in 13 TeV proton-protoncollisions with the ATLAS detector European Physical Journal. C, vol. 79 iss. 2 art. no. 135 s. 1–42 (2019)

91. Katarzyna E. HNIDA, Mateusz MARZEC, Ewelina WLAŹLAK, Damian Chlebda, Konrad SZACIŁOWSKI,Dominika Gilek, Grzegorz D. Sulka, Marek PRZYBYLSKI Influence of pulse frequency on physicochemicalproperties of InSb films obtained via electrodeposition Electrochimica Acta, vol. 304 s. 396–404 (2019)

92. Jarosław MAJKA, Stanisław Mazur, Maria MŁYNARSKA, Iwona Klonowska, Lorraine Tual, Karolina KOŚ-MIŃSKA, Jacek TARASIUK, Sebastian WROŃSKI Integrating X-ray mapping and microtomography of gar-net with thermobarometry to define the P–T evolution of the (near) UHP Międzygórze eclogite, Sudetes, SWPoland Journal of Metamorphic Geology, vol. 37 iss. 1 s. 97–112 (2019)

93. A. KOZIOŁ-RACHWAŁ, W. JANUS, M. SZPYTMA, P. DRÓŻDŻ, M. ŚLĘZAK, K. MATLAK, M. GAJEW-SKA, T. ŚLĘZAK, J. KORECKI Interface engineering towards enhanced exchange interaction between Feand FeO in Fe/MgO/FeO epitaxial heterostructures Applied Physics Letters, vol. 115 iss. 14, art. no. 141603s. 141603-1–141603-5 (2019)

94. Sandeep CHATTERJEE, Piotr BOŻEK Interplay of drag by hot matter and electromagnetic force on thedirected flow of heavy quarks Physics Letters. B, vol. 798 art. no. 134955 s. 1–5 (2019)

95. P. WÓJCIK, M. P. NOWAK, M. ZEGRODNIK Intersubband pairing induced Fulde-Ferrell phase in metallicnanofilms Physical Review. B, vol. 100 iss. 4 art. no. 045409 s. 045409-1–045409-8 (2019)

96. Ł. JAROSIŃSKI, J. PAWLAK, S. K. J. Al-Ani Inverse logarithmic derivative method for determining theenergy gap and the type of electron transitions as an alternative to the Tauc method Optical Materials,vol. 88 s. 667–673 (2019)

Page 100: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

88 CHAPTER 10. PUBLICATIONS

97. Karolina Górnicka, Debarchan Das, Sylwia GUTOWSKA, Bartłomiej WIENDLOCHA, Michał J. Winiarski,Tomasz Klimczuk, Dariusz Kaczorowski Iridium 5d-electron driven superconductivity in ThIr3 Physical Re-view. B, vol. 100 iss. 21 art. no. 214514 s. 214514-1–214514-9 (2019)

98. Marek DULIŃSKI, Kazimierz RÓŻAŃSKI, Anna PIERCHAŁA, Zbigniew GORCZYCA, Michał MARZECIsotopic composition of precipitation in Poland: a 44-year record Acta Geophysica, vol. 67 iss. 6 s. 1637–1648(2019)

99. S. M. DUBIEL, J. ŻUKROWSKI Kinetics of phase separation, border of miscibility gap in Fe−Cr and limitof Cr solubility in iron at 832 K Materials Characterization, vol. 158 art. no. 109937 s. 1–8 (2019)

100. E. MŁYŃCZAK [et al.] Kink far below the Fermi level reveals new electron-magnon scattering channel in FeNature Communications, vol. 10 art. no. 505 s. 1–5 (2019)

101. Agnieszka TRELA, Renata SZYMAŃSKA Less widespread plant oils as a good source of vitamin E FoodChemistry, vol. 296 s. 160–166 (2019)

102. H. Abramowicz, [et al.], L. ADAMCZYK, [et al.], D. KISIELEWSKA, [et al.], M. PRZYBYCIEŃ, [et al.]Limits on contact interactions and leptoquarks at HERA Physical Review. D, vol. 99 iss. 9 art. no. 092006s. 092006-1–092006-12 (2019)

103. Jacek NIZIOŁ, Katarzyna Makyła-Juzak, Aleksandra Radko, Robert Ekiert, Joanna Zemła, Natalia Górska,Anna Chachaj-Brekiesz, Monika Marzec, Hubert Harańczyk, Patrycja Dynarowicz-Łątka Linear, self-assembledpatterns appearing spontaneously as a result of DNA-CTMA lipoplex Langmuir-Blodgett deposition on a solidsurface Polymer, vol. 178 art. no. 121643 s. 1–9 (2019)

104. Anja Kavcic, [et al.], Mateusz CZYŻYCKI, [et al.] Localization, ligand environment, bioavailability andtoxicity of mercury in Boletus spp. and Scutiger pes-capræ mushrooms Ecotoxicology and EnvironmentalSafety, vol. 184 art. no. 109623 s. 1–11 (2019)

105. Gabriela Starowicz, Magdalena Jarosz, Ewelina Frąckiewicz, Natalia Grzechnik, Beata OSTACHOWICZ,Gabriel Nowak, Katarzyna Mlyniec Long-lasting antidepressant-like activity of the GPR39 zinc receptor ago-nist TC-G 1008 Journal of Affective Disorders, vol. 245 s. 325–334 (2019)

106. J. Adam, L. ADAMCZYK, [et al.], L. FULEK, [et al.], B. Pawlik, [et al.], M. PRZYBYCIEŃ, [et al.],R. SIKORA, [et l.] Longitudinal double-spin asymmetry for inclusive jet and dijet production in pp collisionsat√s = 510 GeV Physical Review. D, vol. 100 iss. 5 s. 052005-1–052005-27 (2019)

107. Stanisław M. DUBIEL, Isræl Felner, Menahem I. Tsindlekht Magnetic phase diagram of sigma-phase Fe55Re45compound in the H-T coordinates Journal of Applied Physics, vol. 126 iss. 15 art. no. 153903 s. 153903-1–153903-7 (2019)

108. Joanna Odrobińska, Elżbieta GUMIENICZEK-CHŁOPEK, Michał SZUWARZYŃSKI, Agnieszka RADZI-SZEWSKA, Sylwia FIEJDASZ, Tomasz STRĄCZEK, Czesław KAPUSTA, Szczepan Zapotoczny Magneti-cally navigated core-shell polymer capsules as nanoreactors loadable at the oil/water interface ACS AppliedMaterials & Interfaces, vol. 11 iss. 11 s. 10905–10913 (2019)

109. D. Szymański, R. Zach, W. Chajec, R. Duraj, J. TOBOŁA, M. Guillot, S. Haj-Khlifa, D. Fruchart Mag-netization, high pressure, and magnetocaloric studies of MnRuxRh1−xAs (x = 0.05, 0.1): experimental andtheoretical approaches Journal of Alloys and Compounds, vol. 776 s. 59-70 (2019)

Page 101: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10.1. PAPERS IN JOURNALS REGISTRED IN WEB OF SCIENCE OR SCOPUS DATABASES 89

110. Adam BZDAK, Volker Koch Mapping the QCD phase diagram with statistics-friendly distributions PhysicalReview. C, vol. 100 iss. 5 art. no. 051902 s. 051902-1–051902-5 (2019)

111. Tatiana Karataieva, Volodymyr Koshmanenko, Małgorzata J. KRAWCZYK, Krzysztof KUŁAKOWSKI Meanfield model of a game for power Physica. A : Statistical Mechanics and Its Applications, vol. 525 s. 535-547(2019)

112. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], K. BURKA, [et al.], W. DĄBROWSKI, [etal.], G. P. GACH, [et al.], I. GRABOWSKA-BOŁD, [et al.], K. W. JANAS. [et al.], P. A. JANUS, [et al.],S. KOPERNY, [et al.], J. A. KREMER, [et al.],B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBY-CIEŃ, [et al.], Measurement of W± boson production in Pb+Pb collisions at

√SNN = 5.02 TeV with the

ATLAS detector European Physical Journal. C, vol. 79 iss. 11 art. no. 935 s. 1–32 (2019)

113. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.], M. TOBIN,[et al.] Measurement of B+, B0 and Λ0

b production in pPb collisions at√sNN = 8.16 TeV Physical Review.

D, vol. 99 iss. 5 art. no. 052011 s. 052011-1–052011-21 (2019)

114. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.], M. TOBIN,[et al.] Measurement of b hadron fractions in 13 TeV pp collisions Physical Review. D, vol. 100 iss. 3,art. no. 031102 s. 031102-1–031102-11 (2019)

115. R. Aiij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],P. KOPCIEWICZ, [et al.], W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.],J. MOROŃ, [et al.], A. OBŁĄKOWSKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.],T. SZUMLAK, [et al.] Measurement of CP observables in the process B0 → DK∗0 with two- and four-bodyD decays Journal of High Energy Physics, iss. 8, art. no. 41 s. [1], 1–29 (2019)

116. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.] Measurementof CP -violating and mixing-induced observables in B0

s → φγ decays Physical Review Letters, vol. 123 iss. 8,art. no. 081802 s. 081802-1–081802-10 (2019)

117. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], K. W. JANAS, [et al.], P. A. JANUS,[et al.], S. KOPERNY, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.],M. PRZYBYCIEŃ, [et al.] Measurement of K0

S and Λ0 production in tt dileptonic events in pp collisions at√s = 7 TeV with the ATLAS detector European Physical Journal. C, vol. 79 iss. 12 art. no. 1017 s. 1–41

(2019)

118. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [etal.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.], J.A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Measurementof V H,H → bb production as a function of the vector-boson transverse momentum in 13 TeV pp collisionswith the ATLAS detector Journal of High Energy Physics, iss. 5, art. no. 141 s. [1], 1–35 (2019)

Page 102: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

90 CHAPTER 10. PUBLICATIONS

119. G. Aad [et al.], L. ADAMCZYK [et al.], T. BOŁD [et al.], W. DĄBROWSKI [et al.], G. P. GACH [etal.], I. GRABOWSKA-BOŁD [et al.], M. P. GUZIK [et al.], K. W. JANAS [et al.], P. A. JANUS [et al.],S. KOPERNY [et al.], J. A. KREMER [et al.], B. MINDUR [et al.], A. OGRODNIK [et al.], M. PRZYBYCIEŃ[et al.] Measurement of W±-boson and Z-boson production cross-sections in pp collisions at

√s = 2.76 TeV

with the ATLAS detector European Physical Journal. C, vol. 79 iss. 11 art. no. 901 s. 1–29 (2019)

120. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Measurement of W±Z production cross sections and gauge boson polarisationin pp collisions at

√s = 13 TeV with the ATLAS detector European Physical Journal. C, vol. 79 iss. 6

art. no. 535 s. 1–34 (2019)

121. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [etal.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.], J.A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Measurementof ZZ production in the ``νν final state with the ATLAS detector in pp collisions at

√s = 13 TeV Journal

of High Energy Physics, iss. 10 art. no. 127 s. [1], 1–47 (2019)

122. G. Aad [et al.], L. ADAMCZYK [et al.], T. BOŁD [et al.], W. DĄBROWSKI [et al.], G. P. GACH [et al.],I. GRABOWSKA-BOŁD [et al.], K. W. JANAS [et al.], P. A. JANUS [et al.], S. KOPERNY [et al.], J.A. KREMER, [et al.], K. MAJ [et al.], B. MINDUR [et al.], A. OGRODNIK [et al.], M. PRZYBYCIEŃ [etal.] Measurement of angular and momentum distributions of charged particles within and around jets in Pb+ Pb and pp collisions at

√sNN = 5.02 TeV with the ATLAS detector Physical Review. C, vol. 100 iss. 6

art. no. 064901 s. 064901-1–064901-29 (2019)

123. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], K. W. JANAS, [et al.], P. A. JANUS,[et al.], S. KOPERNY, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.],M. PRZYBYCIEŃ, [et al.] Measurement of distributions sensitive to the underlying event in inclusive Zboson production in pp collisions at

√s = 13 TeV with the ATLAS detector European Physical Journal. C,

vol. 79 iss. 8, art. no. 666 s. 1–31 (2019)

124. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [etal.], J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.]Measurement of fiducial and differential W+W− production cross-sections at

√s = 13 TeV with the ATLAS

detector European Physical Journal. C, vol. 79 iss. 10 art. no. 884 s. 1–34 (2019)

125. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], K. BURKA, [et al.], W. DĄBROWSKI, [et al.],G. P. GACH, [et al.], I. GRABOWSKA-BOŁD, [et al.], K. W. JANAS, [et al.], P. A. JANUS, [et al.],S. KOPERNY, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZY-BYCIEŃ, [et al.] Measurement of flow harmonics correlations with mean transverse momentum in lead-leadand proton-lead collisions at

√SNN = 5.02 TeV with the ATLAS detector European Physical Journal. C,

vol. 79 iss. 12 art. no. 985 s. 1–29 (2019)

126. J. Adam, L. ADAMCZYK, [et al.], Ł. FULEK, [et al.], M. PRZYBYCIEŃ, [et al.], R. SIKORA, [et al.]Measurement of inclusive J/ψ suppression in Au+Au collisions at

√sNN = 200 GeV through the dimuon

channel at STAR Physics Letters. B, vol. 797 art. no. 134917 s. 1–10 (2019)

Page 103: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10.1. PAPERS IN JOURNALS REGISTRED IN WEB OF SCIENCE OR SCOPUS DATABASES 91

127. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [etal.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.], J.A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Measurementof jet-substructure observables in top quark, W boson and light jet production in proton-proton collisions at√s = 13 TeV with the ATLAS detector Journal of High Energy Physics, iss. 8, art. no. 33 s. [1], 1–46 (2019)

128. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Measurement of photon-jet transverse momentum correlations on 5.02 TeV Pb +Pb and pp collisions with ATLAS Physics Letters. B, vol. 789 s. 167–190 (2019)

129. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [etal.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.],J. A. KREMER, [et al.], B. MINDUR, [et al.], M. PRZYBYCIEŃ, [et al.] Measurement of prompt photonproduction in

√sNN = 8.16 TeV p+Pb collisions with ATLAS Physics Letters. B, vol. 796 s. 230–252 (2019)

130. R. Aaij [et al.], A. DENDEK [et al.], M. FIRLEJ [et al.], T. FIUTOWSKI [et al.], M. IDZIK [et al.], P. KOP-CIEWICZ [et al.], W. KRUPA [et al.], W. KUCEWICZ [et al.], M. W. MAJEWSKI [et al.], J. MOROŃ [etal.], A. OBŁĄKOWSKA-MUCHA [et al.], B. RACHWAŁ [et al.], J. RYŻKA [et al.], K. ŚWINTEK [et al.],T. SZUMLAK [et al.] Measurement of the B−c meson production fraction and asymmetry in 7 and 13 TeVpp collisions Physical Review. D, vol. 100 iss. 11 art. no. 112006 s. 112006-1–112006-17 (2019)

131. R. Aaij [et al.], A. DENDEK [et al.], M. FIRLEJ [et al.], T. FIUTOWSKI [et al.], M. IDZIK [et al.], W. KRUPA[et al.], W. KUCEWICZ [et al.], M. W. MAJEWSKI [et al.], J. MOROŃ [et al.], A. OBŁĄKOWSKA-MUCHA[et al.], B. RACHWAŁ [et al.], K. ŚWIENTEK [et al.], T. SZUMLAK [et al.] Measurement of the CP -violatingphase φs from B0

s → J/ψπ+π− decays in 13 TeV pp collisions Physics Letters. B, vol. 797 art. no. 134789s. 1–12 (2019)

132. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Measurement of the ttZ and ttW cross sections in proton-proton collisions at

√s

= 13 TeV with the ATLAS detector Physical Review. D, vol. 99 iss. 7 art. no. 072009 s. 072009-1–072009-38(2019)

133. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, et al.], T. SZUMLAK, [et al.], M. TOBIN, [etal.] Measurement of the branching fraction and CP asymmetry in B+ → J/ψρ+ decays European PhysicalJournal. C, vol. 79 iss. 6 art. no. 537 s. 1–13 (2019)

134. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.], M. TOBIN,[et al.] Measurement of the branching fractions of the decays D+ → K−K+K+, D+ → π−π+K+ andD+s → π−K+K+ Journal of High Energy Physics, vol. 2019 iss. 3 art. no. 176 s. 1–23 (2019)

Page 104: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

92 CHAPTER 10. PUBLICATIONS

135. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.], M. TOBIN, [etal.] Measurement of the charm-mixing parameter yCP Physical Review Letters, vol. 122 iss. 1 art. no. 011802s. 011802-1–011802-10 (2019)

136. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], K. W. JANAS, [et al.], P. A. JANUS,[et al.], S. KOPERNY, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.],M. PRZYBYCIEŃ, [et al.] Measurement of the cross-section and charge asymmetry of W bosons producedin proton-proton collisions at

√s = 8 TeV with the ATLAS detector European Physical Journal. C, vol. 79

iss. 9 art. no. 760 s. 1–25 (2019)

137. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-protoncollisions with the ATLAS detector Journal of High Energy Physics, iss. 4 art. no. 048 s. [1], 1–49 (2019)

138. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [et al.],I. GRABOWSKA-BOŁD, [et al.], K. W. JANAS, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.], J.A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Measurementof the inclusive cross-section for the production of jets in association with a Z boson in proton-proton collisionsat 8 TeV using the ATLAS detector European Physical Journal. C, vol. 79 iss. 10 art. no. 847 s. 1–47 (2019)

139. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], K. W. JANAS, [et al.], P. A. JANUS,[et al.], S. KOPERNY, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.],M. PRZYBYCIEŃ, [et al.] Measurement of the inclusive isolated-photon cross section in pp collisions at

√s

= 13 TeV using 36 fb−1 of ATLAS data Journal of High Energy Physics, iss. 10 art. no. 203 s. [1], 1–50(2019)

140. J. Adam, L. ADAMCZYK, [et al.], Ł. FULEK, [et al.], M. PRZYBYCIEŃ, [et al.], R. SIKORA, [et al.]Measurement of the longitudinal spin asymmetries for weak boson production in proton-proton collisions at√s = 510GeV Physical Review. D, vol. 99 iss. 5 art. no. 051102 s. 051102-1–051102-9 (2019)

141. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.], M. TOBIN,[et al.] Measurement of the mass and production rate of Ξ−b baryons Physical Review. D, vol. 99 iss. 5 art.no. 052006 s. 052006-1–052006-13 (2019)

142. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [etal.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA, [et al.],S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.], M. PRZY-BYCIEŃ, [et al.] Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at√sNN = 5.02 TeV with the ATLAS detector Physics Letters. B, vol. 790 s. 108–128 (2019)

Page 105: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10.1. PAPERS IN JOURNALS REGISTRED IN WEB OF SCIENCE OR SCOPUS DATABASES 93

143. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Measurement of the photon identification efficiencies with the ATLAS detectorusing LHC Run 2 data collected in 2015 and 2016 European Physical Journal. C, vol. 79 iss. 3 art. no. 205s. 1–41 (2019)

144. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], K. W. JANAS, [et al.], P. A. JANUS,[et al.], S. KOPERNY, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.],M. PRZYBYCIEŃ, [et al.] Measurement of the production cross section for a Higgs boson in association witha vector boson in the H →WW ∗ → `ν`ν channel in pp collisions at

√s = 13 TeV with the ATLAS detector

Physics Letters. B, vol. 798 art. no. 134949 s. 1–24 (2019)

145. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOWSKA-MUCHA,[et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.] Measurement of the ratioof branching fractions of the decays Λ0

b → ψ(2S)Λ and Λ0b → J/ψΛ Journal of High Energy Physics, iss. 3

art. no. 126 s. [1], 1–15 (2019)

146. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [etal.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.], J.A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Measurementof the ratio of cross sections for inclusive isolated-photon production in pp collisions at

√s = 13 and 8 TeV

with the ATLAS detector Journal of High Energy Physics, iss. 4 art. no. 093 s. 1–46 (2019)

147. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Measurement of the top quark mass in the tt → lepton+jets channel from

√s =

8 TeV ATLAS data and combination with previous results European Physical Journal. C, vol. 79 iss. 4 art.no. 290 s. 1–51 (2019)

148. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], K. W. JANAS, [et al.], P. A. JANUS,[et al.], S. KOPERNY, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.],M. PRZYBYCIEŃ, [et al.] Measurement of the top-quark mass in tt + 1-jet events collected with the ATLASdetector in pp collisions at

√s = 8 TeV Journal of High Energy Physics, iss. 11 art. no. 150 s. [1], 1–39 (2019)

149. N. Abgrall, [et al.], M. BASZCZYK, [et al.], A. BZDAK, [et al.], P. DOROSZ, [et al.], W. KUCEWICZ, [etal.], Ł. MIK, [et al.] Measurements of π±, K± and proton double differential yields from the surface of theT2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPSEuropean Physical Journal. C, vol. 79 iss. 2 art. no. 100 s. 1–45 (2019)

150. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOWSKA-MUCHA, [etal.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.], M. TOBIN, [et al.] Measurementsof CP asymmetries in charmless four-body Λ0

b and Ξ0b decays European Physical Journal. C, vol. 79 iss. 9,

art. no. 745 s. 1–19 (2019)

Page 106: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

94 CHAPTER 10. PUBLICATIONS

151. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Measurements of gluon-gluon fusion and vector-boson fusion Higgs boson produc-tion cross-sections in the H →WW ∗ → eνµν decay channel in pp collisions at

√s = 13 TeV with the ATLAS

detector Physics Letters. B, vol. 789 s. 508–529 (2019)

152. A. Aduszkiewicz [et al.], M. BASZCZYK [et al.], A. BZDAK [et al.], P. DOROSZ [et al.], W. KUCEWICZ[et al.], Ł. MIK [et al.] Measurements of hadron production in π+ +C and π+ +Be interactions at 60 GeV/cPhysical Review. D, vol. 100 iss. 11 art. no. 112004 s. 112004-1–112004-28 (2019)

153. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Measurements of inclusive and differential fiducial cross-sections of tt productionwith additional heavy-flavour jets in proton-proton collisions at

√s = 13 TeV with the ATLAS detector Journal

of High Energy Physics, iss. 4 art. no. 046 s. [1], 1–65 (2019)

154. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Measurements of inclusive and differential fiducial cross-sections of ttγ productionin leptonic final states at

√s = 13 TeV in ATLAS European Physical Journal. C, vol. 79 iss. 5 art. no. 382

s. 1–41 (2019)

155. A. Aduszkiewicz [et al.], M. BASZCZYK [et al.], A. BZDAK [et al.], P. DOROSZ [et al.], W. KUCEWICZ[et al.], Ł. MIK [et al.] Measurements of production and inelastic cross sections for p + C, p + Be, and p +Al at 60 GeV/c and p + C and p + Be at 120 GeV/c Physical Review. D, vol. 100 iss. 11 art. no. 112001s. 112001-1–112001-8 (2019)

156. J. Adam, L. ADAMCZYK, [et al.], Ł. FULEK, [et a.], M. PRZYBYCIEŃ, [et al.], R. SIKORA, [et al.]Measurements of the transverse-momentum-dependent cross sections of J/ψ production at mid-rapidity inproton + proton collisions at

√s=510 and 500 GeV with the STAR detector Physical Review. D, vol. 100

iss. 5 art. no. 052009 s. 052009-1–052009-15 (2019)

157. G. Aad [et al.], L. ADAMCZYK [et al.], T. BOŁD [et al.], W. DĄBROWSKI [et al.], G. P. GACH [et al.],I. GRABOWSKA-BOŁD [et al.], K. W. JANAS [et al.], P. A. JANUS [et al.], S. KOPERNY [et al.], J.A. KREMER [et al.], K. MAJ [et al.], B. MINDUR [et al.], A. OGRODNIK [et al.], M. PRZYBYCIEŃ [et al.]Measurements of top-quark pair differential and double-differential cross-sections in the `+jets channel withpp collisions at

√s = 13 TeV using the ATLAS detector European Physical Journal. C, vol. 79 iss. 12 art.

no. 1028 s. 1–84 (2019)

158. A. UNIWERSAŁ, M. WRÓBEL, K. WIERZBANOWSKI, S. WROŃSKI, A. BACZMAŃSKI Mechanicaland microstructural characteristics of polycrystalline copper rolled asymmetrically to a high deformation levelMaterials Characterization, vol. 148 s. 214–223 (2019)

159. E. WLAŹLAK, M. MARZEC, P. ZAWAL, K. SZACIŁOWSKI Memristor in a reservoir system – experimentalevidence for high-level computing and neuromorphic behavior of Pbl2 ACS Applied Materials & Interfaces,vol. 11 iss. 18 s. 17009–17018 (2019)

Page 107: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10.1. PAPERS IN JOURNALS REGISTRED IN WEB OF SCIENCE OR SCOPUS DATABASES 95

160. Anna Gancarczyk, Katarzyna Sindera, Marzena Iwaniszyn, Marcin Piątek, Wojciech Macek, PrzemysławJ. Jodłowski, Sebastian WROŃSKI, Maciej SITARZ, Joanna Łojewska, Andrzej Kołodziej Metal foams asNovel catalyst support in environmental processes Catalysts, vol. 9 iss. 7 art. no. 587 s. 1–13 (2019)

161. P. Czaja, J. PRZEWOŹNIK, M. Kowalczyk, A. Wierzbicka-Miernik, J. Morgiel, W. Maziarz Microstructuralorigins of martensite stabilization in Ni49Co1Mn37.5Sn6.5In6 metamagnetic shape memory alloy Journal ofMaterials Science, vol. 54 iss. 5 s. 4340–4353 (2019)

162. Marta Sośnicka, Gruffudd M. Gigler, Judith A. Kinnaird, Wojciech J. PRZYBYŁOWICZ, Joseph Chimvinga,Sharad Master, Birgit Plessen Mineralizing fluids of the supergene-enriched Mashitu South Cu− Co deposit,Katanga Copperbelt, DRC Ore Geology Reviews, vol. 109 s. 201–228 (2019)

163. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.], M. TOBIN,[et al.] Model-independent observation of exotic contributions to B0 → J/ψK+π− decays Physical ReviewLetters, vol. 122 iss. 15 art. no. 152002 s. 152002-1–152002-10 (2019)

164. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.],J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Modellingradiation damage to pixel sensors in the ATLAS detector Journal of Instrumentation, vol. 14 art. no. P06012s. 1–51 (2019)

165. J. WOLNY, R. STRZAŁKA Momentum in the dynamics of variable-mass systems: classical and relativisticcase Acta Physica Polonica. A, vol. 135 no. 3 s. 475–479 (2019)

166. Piotr RZESZUT, Witold SKOWROŃSKI, Sławomir ZIĘTEK, Jerzy Wrona, Tomasz STOBIECKI Multi-bitMRAM storage cells utilizing serially connected perpendicular magnetic tunnel junctions Journal of AppliedPhysics, vol. 125 iss. 22 art. no. 223907 s. 1–5 (2019)

167. Przemysław Bańcerowski, Krzysztof MALARZ Multi-choice opinion dynamics model based on Latane theoryEuropean Physical Journal. B, vol. 92 iss. 10 art. no. 219 s. 1–11 (2019)

168. J. CIEŚLAK, J. TOBOŁA, J. PRZEWOŹNIK, K. BERENT, U. Dahlborg, J. Cornide, S. Mehraban, N. Lav-ery, M. Calvo-Dahlborg Multi-phase nature of sintered vs. arc-melted CrxAlFeCoNi high entropy alloys –experimental and theoretical study Journal of Alloys and Compounds, vol. 801 s. 511–519 (2019)

169. M. MARCISZKO-WIĄCKOWSKA, A. OPONOWICZ, A. BACZMAŃSKI, M. WRÓBEL, Ch. Braham,R. WAWSZCZAK Multireflection grazing-incidence X-ray diffraction: a new approach to experimental dataanalysis Journal of Applied Crystallography, vol. 52 iss. 6 s. 1409–1421 (2019)

170. Dorota LACHOWICZ, Przemysław MIELCZAREK, Roma WIRECKA, Katarzyna BERENT, Anna Karewicz,Michał SZUWARZYŃSKI, Szczepan Zapotoczny Nanohydrogels based on self-assembly of cationic pullulanand anionic dextran derivatives for efficient delivery of piroxicam Pharmaceutics, vol. 11 iss. 12 art. no. 622s. 1–16 (2019)

171. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄ-KOWSKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.] Near-threshold DD spectroscopy and observation of a new charmonium state Journal of High Energy Physics, iss. 7art. no. 035 s. 1–22 (2019)

Page 108: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

96 CHAPTER 10. PUBLICATIONS

172. Adam BZDAK, Volker Koch Net-baryon multiplicity distribution consistent with lattice QCD Physical Review.C, vol. 99 no. 2 art. no. 024913 s. 024913-1–024913-8 (2019)

173. Elżbieta Gadalińska, Andrzej BACZMAŃSKI, Sebastian WROŃSKI, Przemysław KOT, Marcin WROŃSKI,Mirosław WRÓBEL, Christian Scheffzuk, Gizo Bokuchava, Krzysztof WIERZBANOWSKI Neutron diffrac-tion study of phase stresses in Al/SiCp composite during tensile test Metals and Materials International,vol. 25 iss. 3 s. 657–668 (2019)

174. Jørgen E. Olesen, [et al.], Dominika BAR-MICHALCZYK, Przemysław WACHNIEW, Anna J. ŻUREK, [etal.] Nitrate leaching losses from two Baltic Sea catchments under scenarios of changes in land use, landmanagement and climate Ambio, vol. 48 iss. 11 spec. iss. s. 1252–1263 (2019)

175. Jakub STEC, Jacek TARASIUK, Stanisław NAGY, Rafał SMULSKI, Jurgen Gluch, Robert FILIPEK Non-destructive investigations of pore morphology of micropore carbon materials Ceramics International, vol. 45iss. 3 s. 3483–3491 (2019)

176. H. Elnaggar, [et al.], Z. KĄKOL, [et al.] Noncollinear ordering of the orbital magnetic moments in magnetitePhysical Review Letters, vol. 123 iss. 20 art. no. 207201 s. 207201-1–207201-6 (2019)

177. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.] Observation ofCP violation in charm decays Physical Review Letters, vol. 122 iss. 21 art. no. 211803 s. 211803-1–211803-12(2019)

178. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.], M. TOBIN,[et al.] Observation of B0

(s) → J/ψpp decays and precision measurements of the B0(s) masses Physical Review

Letters, vol. 122 iss. 19 art. no. 191804 s. 191804-1–191804-10 (2019)

179. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.] Observationof a Narrow Pentaquark State, Pc(4312)+, and of the Two-Peak Structure of the Pc(4450)+ Physical ReviewLetters, vol. 122 iss. 22 art. no. 222001 s. 222001-1–222001-11 (2019)

180. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.] Observationof an excited B+

c state Physical Review Letters, vol. 122 iss. 23 art. no. 232001 s. 232001-1–232001-10 (2019)

181. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Observation of electroweak W±Z boson pair production in association with twojets in pp collisions at

√s = 13 TeV with the ATLAS detector Physics Letters. B, vol. 793 s. 469–492 (2019)

182. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,

Page 109: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10.1. PAPERS IN JOURNALS REGISTRED IN WEB OF SCIENCE OR SCOPUS DATABASES 97

[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Observation of electroweak production of a same-sign W boson pair in associationwith two jets in pp collisions at

√s = 13 TeV with the ATLAS detector Physical Review Letters, vol. 123

iss. 16 art. no. 161801 s. 161801-1–161801-21 (2019)

183. J. Adam, L. ADAMCZYK, [et al.], Ł. FULEK, [et al.], M. PRZYBYCIEŃ, [et al.], R. SIKORA, [et al.]Observation of excess J/ψ yield at very low transverse momenta in Au+Au collisions at

√sNN = 200 GeV

and U +U collisions at√sNN = 193 GeV Physical Review Letters, vol. 123 iss. 13 art. no. 132302 s. 132302-

1–132302-8 (2019)

184. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [et al.],I. GRABOWSKA-BOŁD, [et al.], K. W. JANAS, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.], J.A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], P. PALNI, [et al.], M. PRZYBYCIEŃ,[et al.] Observation of light-by-light scattering in ultraperipheral Pb + Pb collisions with the ATLAS detectorPhysical Review Letters, vol. 123 iss. 5 art. no. 052001 s. 052001-1–052001-21 (2019)

185. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.]P. KOPCIEWICZ, [et al.], W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.],J. MOROŃ, [et al.], A. OBŁĄKOWSKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], J. RYŻKA, [et al.],K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.] Observation of the Λ0

b → χc1(3872)pK− decay Journal ofHigh Energy Physics, iss. 9, art. no. 28 s. [1], 1–19 (2019)

186. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.], M. TOBIN,[et al.] Observation of the doubly Cabibbo-suppressed decay Ξ+

c → pφ Journal of High Energy Physics, iss. 4art. no. 084 s. 1–17 (2019)

187. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄ-KOWSKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, T. SZUMLAK, [et al.] Observation oftwo resonances in the Λ0

bπ± systems and precise measurement of Σ±b and Σ∗±b properties Physical Review

Letters, vol. 122 iss. 1 art. no. 012001 s. 012001-1–012001-9 (2019)

188. Stanisław M. DUBIEL, M. I. Tsindlekht, I. Felner On the magnetic phase diagram of a sigma-phase Fe47Re53compound in the H-T plane Journal of Magnetism and Magnetic Materials, vol. 491 art. no. 165603 s. 1–5(2019)

189. S. M. DUBIEL, J. ŻUKROWSKI On the miscibility gap at 800 K in the Fe-Cr alloy system MaterialsResearch Express, vol. 6 no. 2, art. no. 026568 s. 1–6 (2019)

190. Angelika KMITA, Dorota LACHOWICZ, Jan ŻUKROWSKI, Marta GAJEWSKA, Wojciech SZCZERBA,Juliusz KUCIAKOWSKI, Szczepan Zapotoczny, Marcin SIKORA One-step synthesis of long term stable su-perparamagnetic colloid of zinc ferrite nanorods in water Materials, vol. 12 iss. 7 art. no. 1048 s. 1–17 (2019)

191. Małgorzata J. KRAWCZYK, Paweł Oświęcimka, Krzysztof KUŁAKOWSKI, Stanisław Drożdż Ordered ava-lanches on the Bethe lattice Entropy, vol. 21 iss. 10 art. no. 968 s. 1–13 (2019)

192. Magdalena STAN, Kamil WOJCIECHOWSKI, Radosław LACH, Jakub HABERKO, Mirosław M. BUĆKOOtrzymywanie granatu itrowo-glinowego metodą spiekania reakcyjnego z wykorzystaniem zarodkowania hetero-genicznego Materiały Ceramiczne, t. 71 nr 1 s. 25–35 (2019)

Page 110: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

98 CHAPTER 10. PUBLICATIONS

193. K. MALARZ, K. KUŁAKOWSKI Paradox of integration — dynamics of two-dimensional status InternationalJournal of Modern Physics. C, vol. 30 no. 6 s. 1950040-1–1950040-16 (2019)

194. A. C. Booth, N. Charitonidis, P. Chatzidaki, Y. Karyotakis, E. NOWAK, I. Ortega-Ruiz, M. Rosenthal, P. SalaParticle production, transport, and identification in the regime of 1− 7GeV/c Physical Review Acceleratorsand Beams, vol. 22 iss. 6 art. no. 061003 s. 061003-1–061003-12 (2019)

195. H. Abramowicz, [et al.], M. FIRLEJ, E. Firu, T. FIUTOWSKI, [et al.], M. IDZIK, [et al.], J. MOROŃ, [et al.],K. ŚWIENTEK, [et al.] Performance and Moliere radius measurements using a compact prototype of LumiCalin an electron test beam European Physical Journal. C, vol. 79 iss. 7 art. no. 579 s. 1–15 (2019)

196. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHCEuropean Physical Journal. C, vol. 79 iss. 5 art. no. 375 s. 1–54 (2019)

197. Jakub STEC, Jacek TARASIUK, Sebastian WROŃSKI, Robert FILIPEK Permeability of micropore carbonmaterials based on steady-state pore-scale flow calculations in real 2D and 3D microstructures CeramicsInternational, vol. 45 iss. 14 s. 17638–17645 (2019)

198. Ireneusz BUGAŃSKI, Radosław STRZAŁKA, Janusz WOLNY Phason-flips refinement of and multiple-scattering correction for the d-AlCuRh quasicrystal Acta Crystallographica. Section A-Foundation and Ad-vances, vol. 75 iss. 2 s. 352-361 (2019)

199. J. Adam, L. ADAMCZYK, [et al.], Ł. FULEK, [et al.], M. PRZYBYCIEŃ, [et al.], R. SIKORA, [et al.]Polarization of Λ(Λ) hyperons along the beam direction in Au + Au collisions at

√sNN = 200 GeV Physical

Review Letters, vol. 123 iss. 13 art. no. 132301 s. 132301-1–132301-8 (2019)

200. Agata Pomorska, Karol Wolski, Magdalena WYTRWAŁ-SARNA, Andrzej BERNASIK, Szczepan ZapotocznyPolymer brushes grafted from nanostructured zinc oxide layers – spatially controlled decoration of nanorodsEuropean Polymer Journal, vol. 112 s. 186-194 (2019)

201. Katarzyna MATUSIAK Precise image fusion standardization for separated modalities using dedicated multi-modal heart phantom The Imaging Science Journal, vol. 67 no. 1 s. 8–14 (2019)

202. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄ-KOWSKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.] Precisionmeasurement of the Λ+

c ,Ξ+c , and Ξ0

c baryon lifetimes Physical Review. D, vol. 100 iss. 3 art. no. 032001s. 032001-1–032001-12 (2019)

203. G. Barucca, [et al.], T. FIUTOWSKI, M. IDZIK, K. ŚWIENTEK, P. TERLECKI, [et. al.] Precision resonanceenergy scans with the PANDA experiment at FAIR European Physical Journal. A, vol. 55 iss. 3 art. no. 42s. 1–18 (2019)

204. Piotr SEKUŁA, Anita Bokwa, Bogdan Bochenek, Mirosław ZIMNOCH Prediction of air temperature inthe Polish Western Carpathian Mountains with the ALADIN-HIRLAM numerical weather prediction systemAtmosphere, vol. 10 iss. 4 art. no. 186 s. 1–27 (2019)

Page 111: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10.1. PAPERS IN JOURNALS REGISTRED IN WEB OF SCIENCE OR SCOPUS DATABASES 99

205. K. JASIEWICZ, B. WIENDLOCHA, K. Górnicka, K. Gofryk, M. Gazda, T. Klimczuk, J. TOBOŁA Pres-sure effects on the electronic structure and superconductivity of (TaNb)0.67(HfZrT i)0.33 high entropy alloyPhysical Review. B, vol. 100 iss. 18 art. no. 184503 s. 184503-1–184503-13 (2019)

206. M. P. NOWAK, P. WÓJCIK Probing Andreev reflection reach in semiconductor-superconductor hybrids byAharonov-Bohm effect Applied Physics Letters, vol. 114 iss. 4 art. no. 043104 s. 043104-1–043104-5 (2019)

207. R. Aaij [et al.], A. DENDEK [et al.], M. FIRLEJ [et al.], T. FIUTOWSKI [et al.], M. IDZIK [et al.], W. KRUPA[et al.], W. KUCEWICZ [et al.], M. W. MAJEWSKI [et al.], J. MOROŃ [et al.], A. OBŁĄKOWSKA-MUCHA[et al.], B. RACHWAŁ [et al.], K. ŚWIENTEK [et al.], T. SZUMLAK [et al.], M. TOBIN [et al.] Prompt Λ+

c

production in pPb collisions at√sNN = 5.02 TeV Journal of High Energy Physics, iss. 2 art. no. 102 s. [1],

1–25 (2019)

208. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], J. A. KREMER,[et al.], B. MINDUR, [et al.], M. PRZYBYCIEŃ, [et al.] Properties of g → bb at small opening angles inpp collisions with the ATLAS detector at

√s = 13 TeV Physical Review. D, vol. 99 iss. 5 art. no. 052004

s. 052004-1–052004-26 (2019)

209. Witold PRENDOTA, Kamil GOC, Tomasz STRĄCZEK, Eisuke Yamada, Akito Takasaki, Janusz PRZE-WOŹNIK, Agnieszka RADZISZEWSKA, Susumu Uematsu, Czesław KAPUSTA Properties of NiT i shapememory alloy micro-foils obtained by pulsed-current sintering of Ni/T i foils Metals, vol. 9 iss. 3 art. no. 323s. 1–13 (2019)

210. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [et al.],I. GRABOWSKA-BOŁD, [et al.], K. W. JANAS, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.], J.A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Propertiesof jet fragmentation using charged particles measured with the ATLAS detector in pp collisions at

√s = 13

TeV Physical Review. D, vol. 100 iss. 5 art. no. 052011 s. 052011-1–052011-38 (2019)

211. Mirosław ZIMNOCH, Jarosław NĘCKI, Łukasz CHMURA, Alina JASEK, Dorota JELEŃ, Michał GAŁKO-WSKI, Tadeusz KUC, Zbigniew GORCZYCA, Jakub BARTYZEL, Kazimierz RÓŻAŃSKI Quantification ofcarbon dioxide and methane emissions in urban areas: source apportionment based on atmospheric observa-tions Mitigation and Adaptation Strategies for Global Change, vol. 24 iss. 6 s. 1051–1071 (2019)

212. Andreas Luther, [et al.], Mila STANISAVLJEVIC, Jarosław NĘCKI, Justyna SWOLKIEŃ, [et al.] QuantifyingCH4 emissions from hard coal mines using mobile sun-viewing Fourier transform spectrometry AtmosphericMeasurement Techniques, vol. 12 iss. 10 s. 5217–5230 (2019)

213. Dominik PROROK, Anatolij Prykarpatski Quantum current algebra symmetries and integrable many-particleSchrodinger type quantum Hamiltonian operators Symmetry, vol. 11 iss. 8 art. no. 975 s. 1–17 (2019)

214. Dawid PRZYCZYNA, Sebastien Pecqueur, Dominique Vuillaume, Konrad SZACIŁOWSKI Reservoir com-puting for sensing - an experimental approach International Journal of Unconventional Computing, vol. 14no. 3–4 s. 267–284 (2019)

215. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [et al.],I. GRABOWSKA-BOŁD, [et al.], K. W. JANAS, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.], J.A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Resolutionof the ATLAS muon spectrometer monitored drift tubes in LHC Run 2 Journal of Instrumentation, vol. 14art. no. P09011 s. [1], 1–34 (2019)

Page 112: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

100 CHAPTER 10. PUBLICATIONS

216. A. UNIWERSAŁ, M. WRÓBEL, K. WIERZBANOWSKI, S. WROŃSKI, A. BACZMAŃSKI Rolling asym-metry effects on recrystallization process and on properties and microstructure of annealed copper MaterialsCharacterization, vol. 153 s. 136–147 (2019)

217. Katarzyna E. HNIDA, Antoni ŻYWCZAK, Marcin SIKORA, Marianna MARCISZKO, Marek PRZYBYLSKIRoom-temperature ferromagnetism in InSb−Mn nanowires Nano Letters, vol. 19 iss. 10 s. 7144–7148 (2019)

218. Piotr K. SZEWCZYK, Daniel P. URA, Sara METWALLY, Joanna KNAPCZYK-KORCZAK, Marcin GAJEK,Mateusz M. MARZEC, Andrzej BERNASIK, Urszula STACHEWICZ Roughness and fiber fraction dominatedwetting of electrospun fiber-based porous meshes Polymers, vol. 11 iss. 1 art. no. 34 s. 1–17 (2019)

219. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [etal.], I. GRABOWSKA-BOŁD, [et al.], K. W. JANAS, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [etal.], J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.]Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from ppcollisions at

√s = 13 TeV with the ATLAS detector Physical Review. D, vol. 100 iss. 5 art. no. 052013

s. 052013-1–052013-29 (2019)

220. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [etal.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.], J.A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Search for aright-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in pp collisionswith the ATLAS detector at

√s = 13 TeV Physics Letters. B, vol. 798 art. no. 134942 s. 1–23 (2019)

221. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [et al.],I. GRABOWSKA-BOŁD, [et al.], K. W. JANAS, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.], J.A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Search forbottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, b-jets andmissing transverse momentum Journal of High Energy Physics, iss. 12 art. no. 60 s. [1], 1–49 (2019)

222. M. Aaboud [et al.], L. ADAMCZYK [et al.], T. BOŁD [et al.], W. DĄBROWSKI [et al.], G. P. GACH[et al.], I. GRABOWSKA-BOŁD [et al.], M. P. GUZIK [et al.], P. A. JANUS [et al.], D. KISIELEWSKA[et al.], S. KOPERNY [et al.], T. Z. KOWALSKI [et al.], J. A. KREMER [et al.], B. MINDUR [et al.],M. PRZYBYCIEŃ [et al.] Search for chargino and neutralino production in final states with a Higgs bosonand missing transverse momentum at

√s = 13 TeV with the ATLAS detector Physical Review. D, vol. 100

iss. art. no. 012006 s. 012006-1–012006-37 (2019)

223. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄ-KOWSKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.] Searchfor CP violation in D+

s → K0Sπ

+, D+ → K0SK

+, and D+ → φπ+ decays Physical Review Letters, vol. 122iss. 19 art. no. 191803 s. 191803-1–191803-11 (2019)

224. R. Aaij [et al.], A. DENDEK [et al.], M. FIRLEJ [et al.], T. FIUTOWSKI [et al.], M. IDZIK [et al.], W. KRUPA[et al.], W. KUCEWICZ [et al.], M. W. MAJEWSKI [et al.], J. MOROŃ [et al.], A. OBŁĄKOWSKA-MUCHA[et al.], B. RACHWAŁ [et al.], K. ŚWIENTEK [et al.], T. SZUMLAK [et al.], M. TOBIN [et al.] Search forCP violation through an amplitude analysis of D0 → K+K−π+π− decays Journal of High Energy Physics,iss. 2 art. no. 126 s. [1], 1–34 (2019)

Page 113: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10.1. PAPERS IN JOURNALS REGISTRED IN WEB OF SCIENCE OR SCOPUS DATABASES 101

225. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], K. W. JANAS, [et al.], P. A. JANUS,[et al.], S. KOPERNY, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.],M. PRZYBYCIEŃ, [et al.] Search for diboson resonances in hadronic final states in 139 fb−1 of pp collisionsat√s = 13 TeV with the ATLAS detector Journal of High Energy Physics, iss. 9 art. no. 91 s. [1], 1–42

(2019)

226. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for doubly charged scalar bosons decaying into same-sign W boson pairswith the ATLAS detector European Physical Journal. C, vol. 79 iss. 1 art. no. 58 s. 1–30 (2019)

227. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [etal.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et a.], K.W. JANAS, [et al.], P. A. JANUS, [et al.],S. KOPERNY, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZY-BYCIEŃ, [et al.] Search for electroweak diboson production in association with a high-mass dijet system insemileptonic final states in pp collisions at

√s = 13 TeV with the ATLAS detector Physical Review. D,

vol. 100 iss. 3, art. no. 032007 s. 032007-1–032007-36 (2019)

228. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [etal.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.], J.A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Search forexcited electrons singly produced in proton-proton collisions at

√s = 13 TeV with the ATLAS experiment at

the LHC European Physical Journal. C, vol. 79 iss. 9 art. no. 803 s. 1–30 (2019)

229. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for four-top-quark production in the single-lepton and opposite-sign dileptonfinal states in pp collisions at

√s = 13 TeV with the ATLAS detector Physical Review. D, vol. 99 iss. 5 art.

no. 052009 s. 052009-1–052009-36 (2019)

230. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for heavy charged long-lived particles in proton-proton collisions at

√s = 13

TeV using an ionisation measurement with the ATLAS detector Physics Letters. B, vol. 788 s. 96–116 (2019)

231. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for heavy charged long-lived particles in the ATLAS detector in 36.1fb−1

of proton-proton collision data at√s = 13 TeV Physical Review. D, vol. 99 iss. 9 art. no. 092007 s. 092007-

1–092007-34 (2019)

232. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],

Page 114: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

102 CHAPTER 10. PUBLICATIONS

M. PRZYBYCIEŃ, [et al.] Search for heavy long-lived multicharged particles in proton-proton collisions at√s = 13 TeV using the ATLAS detector Physical Review. D, vol. 99 iss. 5 art. no. 052003 s. 052003-

1–052003-26 (2019)

233. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosonsin final states with two charged leptons and two jets at

√s = 13 TeV with the ATLAS detector Journal of

High Energy Physics, iss. 1 art. no. 016 s. [1], 1–44 (2019)

234. G. Aad [et al.], L. ADAMCZYK [et al.], T. BOŁD [et al.], W. DĄBROWSKI [et al.], G. P. GACH [etal.], I. GRABOWSKA-BOŁD [et al.], M. P. GUZIK [et al.], K. W. JANAS [et al.], P. A. JANUS [et al.],S. KOPERNY [et al.], J. A. KREMER [et al.], B. MINDUR [et al.], A. OGRODNIK [et al.], M. PRZYBYCIEŃ[et al.] Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp collisions using promptand displaced signatures with the ATLAS detector Journal of High Energy Physics, iss. 10 art. no. 265 s. [1],1–46 (2019)

235. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for Higgs boson decays into a pair of light bosons in the bbµµ final state inpp collision at

√s = 13 TeV with the ATLAS detector Physics Letters. B, vol. 790 s. 1–21 (2019)

236. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for Higgs boson pair production in the bbWW ∗ decay mode at

√s = 13

TeV with the ATLAS detector Journal of High Energy Physics, iss. 4 art. no. 092 s. 1–49 (2019)

237. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for Higgs boson pair production in the WW (∗)WW (∗) decay channel usingATLAS data recorded at

√s = 13 TeV Journal of High Energy Physics, iss. 5 art. no. 124 s. [1], 1–37 (2019)

238. G. Aad, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.],K. W. JANAS, [et al.], P. A. JANUS,[et al.], S. KOPERNY, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.],M. PRZYBYCIEŃ, [et al.] Search for high-mass dilepton resonances using 139fb−1 of pp collision datacollected at

√s = 13 TeV with the ATLAS detector Physics Letters. B, vol. 796 s. 68-87 (2019)

239. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for invisible Higgs boson decays in vector boson fusion at

√s = 13 TeV

with the ATLAS detector Physics Letters. B, vol. 793 s. 499–519 (2019)

Page 115: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10.1. PAPERS IN JOURNALS REGISTRED IN WEB OF SCIENCE OR SCOPUS DATABASES 103

240. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for large missing transverse momentum in association with one top-quarkin proton-proton collisions at

√s = 13 TeV with the ATLAS detector Journal of High Energy Physics, iss. 5

art. no. 041 s. [1], 1–49 (2019)

241. R. Aaij [et al.], A. DENDEK [et al.], M. FIRLEJ [et al.], T. FIUTOWSKI [et al.], M. IDZIK [et al.], P. KOP-CIEWICZ [et al.], W. KRUPA [et al.], W. KUCEWICZ [et al.], M. W. MAJEWSKI [et al.], J. MOROŃ [etal.], A. OBŁĄKOWSKA-MUCHA [et al.], B. RACHWAŁ [et al.], J. RYŻKA [et al.], K. ŚWIENTEK [et al.],T. SZUMLAK [et al.] Search for lepton-flavor violating decays B+ → K+µ±e∓ Physical Review Letters,vol. 123 iss. 24 art. no. 241802 s. 241802-1–241802-11 (2019)

242. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄ-KOWSKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.] Searchfor lepton-universality violation in B+ → K+`+`− decays Physical Review Letters, vol. 122 iss. 19 art.no. 191801 s. 191801-1–191801-13 (2019)

243. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.], A. ZEMŁA, [et al.] Search for light resonances decaying to boosted quark pairs andproduced in association with a photon or a jet in proton-proton collisions at

√s = 13 TeV with the ATLAS

detector Physics Letters. B, vol. 788 s. 316–335 (2019)

244. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.],J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Searchfor long-lived neutral particles in pp collisions at

√s = 13 TeV that decay into displaced hadronic jets in the

ATLAS calorimeter European Physical Journal. C, vol. 79 iss. 6 art. no. 481 s. 1–31 (2019)

245. M. Aaboud, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH, [et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA, [et al.], S. KOPERNY, [etal.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.], M. PRZYBYCIEŃ, [et al.]Search for long-lived particles in final states with displaced dimuon vertices in pp collisions at

√s = 13 TeV

with the ATLAS detector Physical Review. D, vol. 99 iss. 1 art. no. 012001 s. 012001-1–012001-32 (2019)

246. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR ,[et al.],M. PRZYBYCIEŃ, [et al.] Search for long-lived particles produced in pp collisions at

√s = 13 TeV that

decay into displaced hadronic jets in the ATLAS muon spectrometer Physical Review. D, vol. 99 iss. 5 art.no. 052005 s. 052005-1–052005-36 (2019)

247. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], S. KOPERNY, [et al.],J. A. KREMER, [et al.], B. MINDUR, [et al.], A. OGRODNIK, [et al.], M. PRZYBYCIEŃ, [et al.] Search

Page 116: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

104 CHAPTER 10. PUBLICATIONS

for low-mass resonances decaying into two jets and produced in association with a photon using pp collisionsat√s = 13 TeV with the ATLAS detector Physics Letters. B, vol. 795 s. 56–75 (2019)

248. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.] P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for pair production of Higgs bosons in the bbbb final state using proton-proton collisions at

√s = 13 TeV with the ATLAS detector Journal of High Energy Physics, iss. 1 art. no. 030

s. [1], 1–48 (2019)

249. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for pairs of highly collimated photon-jets in pp collisions at

√s = 13 TeV

with the ATLAS detector Physical Review. D, vol. 99 iss. 1, art. no. 012008 s. 012008-1–012008-29 (2019)

250. M. Aaboud [et al.], L. ADAMCZYK [et al.], T. BOŁD [et al.], W. DĄBROWSKI [et al.], G. P. GACH[et al.], I. GRABOWSKA-BOŁD [et al.], M. P. GUZIK [et al.], P. A. JANUS [et al.], D. KISIELEWSKA[et al.], S. KOPERNY [et al.], T. Z. KOWALSKI [et al.], J. A. KREMER [et al.], B. MINDUR [et al.],M. PRZYBYCIEŃ [et al.] Search for scalar resonances decaying into µ+µ− in events with and without b-tagged jets produced in proton-proton collisions at

√s = 13 TeV with the ATLAS detector Journal of High

Energy Physics, iss. 7 art. no. 117 s. [1], 1–40 (2019)

251. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for single production of vector-like quarks decaying Wb in pp collisions at√s = 13 TeV with the ATLAS detector Journal of High Energy Physics, iss. 5 art. no. 164 s. [1], 1–55 (2019)

252. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for squarks and gluinos in final states with hadronically decaying τ -leptons,jets, and missing transverse momentum using pp collisions at

√s = 13 TeV with the ATLAS detector Physical

Review. D, vol. 99 iss. 1, art. no. 012009 s. 012009-1–012009-34 (2019)

253. R. Aaij [et al.], A. DENDEK [et al.], M. FIRLEJ [et al.], T. FIUTOWSKI [et al.], M. IDZIK [et al.], P. KOP-CIEWICZ [et al.], W. KRUPA [et al.], W. KUCEWICZ [et al.], M. W. MAJEWSKI [et al.], J. MOROŃ [etal.], A. OBŁĄKOWSKA-MUCHA [et al.], B. RACHWAŁ [et al.], K. ŚWIENTEK [et al.], T. SZUMLAK [etal.] Search for the lepton-flavor-violating decays B0

s → τ±µ∓ and B0 → τ±µ∓ Physical Review Letters,vol. 123 iss. 21 art. no. 211801 s. 211801-1–211801-11 (2019)

254. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS,[et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for the production of a long-lived neutral particle decaying within theATLAS hadronic calorimeter in association with a Z boson from pp collisions at

√s = 13 TeV Physical

Review Letters, vol. 122 iss. 15 art. no. 151801 s. 151801-1–151801-19 (2019)

Page 117: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10.1. PAPERS IN JOURNALS REGISTRED IN WEB OF SCIENCE OR SCOPUS DATABASES 105

255. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.], M. TOBIN,[et al.] Search for the rare decay B+ → µ+µ−µ+νµ European Physical Journal. C, vol. 79 iss. 8 art. no. 675s. 1–12 (2019)

256. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for top-quark decays t→ Hq with 36 fb−1 of pp collision data at

√s = 13

TeV with the ATLAS detector Journal of High Energy Physics, iss. 5 art. no. 123 s. [1], 1–66 (2019)

257. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Search for vector-boson resonances decaying to a top quark and bottom quark inthe lepton plus jets final state in pp collisions at

√s = 13 TeV with the ATLAS detector Physics Letters. B,

vol. 788 s. 347–370 (2019)

258. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Searches for scalar leptoquarks and differential cross-section measurements indilepton-dijet events in proton-proton collisions at a centre-of-mass energy of

√s = 13 TeV with the ATLAS

experiment European Physical Journal. C, vol. 79 iss. 9, art. no. 733 s. 1–45 (2019)

259. M. Aaboud [et al.], L. ADAMCZYK [et al.], T. BOŁD [et al.], W. DĄBROWSKI [et al.], G. P. GACH [etal.], I. GRABOWSKA-BOŁD [et al.], M. P. GUZIK [et al.], P. A. JANUS [et al.], S. KOPERNY [et al.], J.A. KREMER [et al.], B. MINDUR [et al.], A. OGRODNIK [et al.], M. PRZYBYCIEŃ [et al.] Searches forthird-generation scalar leptoquarks in

√s = 13 TeV pp collisions with the ATLAS detector Journal of High

Energy Physics, iss. 6 art. no. 144 s. [1], 1–47 (2019)

260. Sara METWALLY, Joanna E. KARBOWNICZEK, Piotr K. SZEWCZYK, Mateusz M. MARZEC, AdamGRUSZCZYŃSKI, Andrzej BERNASIK, Urszula STACHEWICZ Single-step approach to tailor surface chem-istry and potential on electrospun PCL fibers for tissue engineering application Advanced Materials Interfaces,vol. 6 iss. 2 art. no. 1801211 s. 1–12 (2019)

261. Jens Christian Refsgaard, Anne L. Hansen, Anker L. Højberg, Jørgen E. Olesen, Fatemeh Hashemi, Prze-mysław WACHNIEW, Anders Worman, Alena Bartosova, Nico Stelljes, Boris Chubarenko Spatially differ-entiated regulation: can it save the Baltic Sea from excessive N-loads? Ambio, vol. 48 iss. 11 spec. iss.s. 1278–1289 (2019)

262. J. WOLNY, I. BUGAŃSKI, Ł. PYTLIK, R. STRZAŁKA Statistical description of diffraction pattern ofaperiodic crystals Archives of Metallurgy and Materials, vol. 64 iss. 2 s. 721–725 (2019)

263. Gregory M. Stephen, Gianina Buda, Michelle E. Jamer, Christopher Lane, Stanisław KAPRZYK, BernardoBarbiellini, David Graf, Laura H. Lewis, Arun Bansil, Don Heiman Structural and electronic properties ofthe spin-filter material CrVTiAl with disorder Journal of Applied Physics, vol. 125 iss. 12 art. no. 123903s. 123903-1–123903-6 (2019)

Page 118: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

106 CHAPTER 10. PUBLICATIONS

264. J. CZUB, W. Jamka, J. PRZEWOŹNIK, A. ZARZECKA, A. Hoser, D. Wallacher, N. Grimm, Ł. GONDEKStructural peculiarities in the ß phase of the La0.75Ce0.25Ni4.8Al0.2 deuterides Journal of Alloys and Com-pounds, vol. 788 s. 533-540 (2019)

265. R. CHETTY, J. TOBOŁA, P. Klimczyk, L. Jaworska, K. T. WOJCIECHOWSKI Structural, electronic andthermal properties of TexCo4Sb11.75Te0.25 Journal of Alloys and Compounds, vol. 809 art. no. 151477 s. 1–8(2019)

266. Piotr OGRODNIK, Jarosław KANAK, Maciej CZAPKIEWICZ, Sławomir ZIĘTEK, Aleksiej Pietruczik,Krzysztof Morawiec, Piotr Dłużewski, Krzysztof Dybko, Andrzej Wawro, Tomasz STOBIECKI Structural,magnetostatic, and magnetodynamic studies of Co/Mo-based uncompensated synthetic antiferromagnets Phys-ical Review Materials, vol. 3 iss. 12 s. 124401-1–124401-15 (2019)

267. Daniel Fruchart, Sonia Haj-Khlifa, Patricia de Rango, Mohamed Balli, Ryszard Zach, Wiesław Chajec, Pi-otr Fornal, Jan Stanek, Stanisław KAPRZYK, Janusz TOBOŁA Structure and magnetic properties of bulksynthesized Mn2−xFexP1−ySiy compounds from magnetization, 57Fe Mossbauer spectroscopy, and electronicstructure calculations Crystals, vol. 9 iss. 1 art. no. 37 s. 1–27 (2019)

268. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.],W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [et al.], A. OBŁĄKOW-SKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], K. ŚWIENTEK, [et al.], T. SZUMLAK, [et al.], M. TOBIN,[et al.] Study of the B0 → ρ(770)0K∗(892)0 decay with an amplitude analysis of B0 → (π+π−)(K+π−) decaysJournal of High Energy Physics, iss. 5 art. no. 026 s. [1], 1–30 (2019)

269. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Study of the hard double-parton scattering contribution to inclusive four-leptonproduction in pp collisions at

√s = 8 TeV with the ATLAS detector Physics Letters. B, vol. 790 s. 595–614

(2019)

270. M. Aaboud, [et al.], L. ADAMCZYK, [et al.], T. BOŁD, [et al.], W. DĄBROWSKI, [et al.], G. P. GACH,[et al.], I. GRABOWSKA-BOŁD, [et al.], M. P. GUZIK, [et al.], P. A. JANUS, [et al.], D. KISIELEWSKA,[et al.], S. KOPERNY, [et al.], T. Z. KOWALSKI, [et al.], J. A. KREMER, [et al.], B. MINDUR, [et al.],M. PRZYBYCIEŃ, [et al.] Study of the rare decays of B0

s and B0 mesons into muon pairs using data collectedduring 2015 and 2016 with the ATLAS detector Journal of High Energy Physics, iss. 4 art. no. 098 s. 1–47(2019)

271. Monika ŚLEZIAK, Marek DULIŃSKI Suitability of rocks and sediments from Brzeszcze and Silesia coal minesas building materials in terms of radiological hazard Nukleonika, vol. 64 no. 2 s. 65–70 (2019)

272. Nika Spiridis, Kinga Freindl, Joanna Wojas, Natalia Kwiatek, Ewa Madej, Dorota Wilgocka-Ślęzak, PiotrDRÓŻDŻ, Tomasz ŚLĘZAK, Józef KORECKI Superstructures on epitaxial Fe3O4(111) films: biphase for-mation versus the degree of reduction Journal of Physical Chemistry. C, vol. 123 iss. 7 s. 4204-4216 (2019)

273. Kornelia Lewandowska, Natalia Rosiak, Andrzej Bogucki, Judyta Cielecka-Piontek, Mikołaj Mizera, WaldemarBednarski, Maciej SUCHECKI, Konrad SZACIŁOWSKI Supramolecular complexes of graphene oxide withporphyrins: an interplay between electronic and magnetic properties Molecules, vol. 24 iss. 4, art. no. 688s. 1–20 (2019)

Page 119: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10.1. PAPERS IN JOURNALS REGISTRED IN WEB OF SCIENCE OR SCOPUS DATABASES 107

274. Piotr K. SZEWCZYK, Sara METWALLY, Joanna E. KARBOWNICZEK, Mateusz M. MARZEC, EwaSTODOLAK-ZYCH, Adam GRUSZCZYŃSKI, Andrzej BERNASIK, Urszula STACHEWICZ Surface-potential-controlled cell proliferation and collagen mineralization on electrospun polyvinylidene fluoride (PVDF) fiberscaffolds for bone regeneration ACS Biomaterials Science & Engineering, vol. 5 iss. 2 s. 582–593 (2019)

275. Tomasz MAZUR, Piotr ZAWAL, Konrad SZACIŁOWSKI Synaptic plasticity, metaplasticity and memoryeffects in hybrid organic-inorganic bismuth-based materials Nanoscale, vol. 11 iss. 3 s. 1080–1090 (2019)

276. Ewa Gondek, Jacek NIZIOŁ, Andrzej Danel, Mateusz Kucharek, Jarosław Jędryka, Paweł Karasiński, NataliaNosidlak, Andrij A. Fedorchuk Synthesis, ellipsometry and non-linear optical features of substituted 1,3,5-triphenylpyrazolines Dyes and Pigments, vol. 162 s. 741–745 (2019)

277. B. Singh, [et al.], T. FIUTOWSKI, M. IDZIK, B. MINDUR, K. ŚWIENTEK, [et al.] Technical design reportfor the PANDA Barrel DIRC detector Journal of Physics. G, Nuclear and Particle Physics, vol. 46 no. 4art. no. 045001 s. 1–155 (2019)

278. D. PROROK, A. K. Prykarpatski The current algebra representations of quantum many-particle Schrodingertype Hamiltonian models, their factorized structure and integrability Condensed Matter Physics, vol. 22 no. 3art. no. 33101 s. 33101-1–33101-30 (2019)

279. Piotr Wojtal, Gary Haynes, Janis Klimowicz, Krzysztof Sobczyk, Jacek TARASIUK, Sebastian WROŃSKI,Jarosław Wilczyński The earliest direct evidence of mammoth hunting in Central Europe - the Krakow Spadzistasite (Poland) Quaternary Science Reviews, vol. 213 s. 162–166 (2019)

280. K. MATUSIAK, K. BERENT, M. MARCISZKO, J. CIEŚLAK The experimental and theoretical study oninfluence of Al and Cu contents on phase abundance changes in AlxCuyFeCrNiCo HEA system Journal ofAlloys and Compounds, vol. 790 s. 837–846 (2019)

281. Małgorzata J. KRAWCZYK, Maciej WOŁOSZYN, Piotr GRONEK, Krzysztof KUŁAKOWSKI, Janusz MUCHAThe Heider balance and the looking-glass self: modelling dynamics of social relations Scientific Reports, vol. 9art. no. 11202 s. [1–8] (2019)

282. S. Boczkal, M. Karaś, P. Korczak, D. Kapinos, P. Koprowski, W. Szymański, S. WROŃSKI The influenceof plastic forming processes on the dissolution rate of biocompatible Mg alloys Archives of Metallurgy andMaterials, vol. 64 iss. 3 s. 997–1004 (2019)

283. Izabela BIAŁO, Andrzej KOZŁOWSKI, Michæl Wack, Adam WŁODEK, Łukasz GONDEK, Zbigniew KĄKOL,Rupert Hochleitner, Antoni ŻYWCZAK, Vojtech Chlan, Stuart A. Gilder The influence of strain on the Ver-wey transition as a function of dopant concentration: towards a geobarometer for magnetite-bearing rocksGeophysical Journal International, vol. 219 iss. 1 s. 148–158 (2019)

284. J. Adam, L. ADAMCZYK, [et al.], Ł. FULEK, [et al.], M. PRZYBYCIEŃ, [et al.], R. SIKORA, [et al.] Theproton-Ømega correlation function in Au + Au collisions at

√sNN = 200GeV Physics Letters. B, vol. 790

s. 490–497 (2019)

285. Jacek NIZIOŁ, Robert Ekiert, Justyna Kuczkowska, Patryk Fryń, Monika Marzec Thermal degradation ofbiological DNA studied by dielectric spectroscopy Polymer Testing, vol. 80 art. no. 106158 s. 1–9 (2019)

286. Petr Levinsky, Christophe Candolfi, Anne Dauscher, Janusz TOBOŁA, Jirı Hejtmanek, Bertrand Lenoir Ther-moelectric properties of the tetrahedrite-tennantite solid solutions Cu12Sb4−xAsxS13 and Cu10Co2Sb4−yAsyS13

(0 ≤ x, y ≤ 4) Physical Chemistry Chemical Physics, vol. 21 iss. 8 s. 4547–4555 (2019)

Page 120: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

108 CHAPTER 10. PUBLICATIONS

287. M. RADECKA, A. BRUDNIK, K. KULINOWSKI, A. KOT, J. LESZCZYŃSKI, J. KANAK, K. ZAKRZEW-SKA Titanium dioxide thin films with controlled stoichiometry for photoelectrochemical systems Journal ofElectronic Materials, vol. 48 no. 9 s. 5481–5490 (2019)

288. Agnieszka TRELA, Grażyna Silska, Marek Chyc, Dariusz Latowski, Jerzy Kruk, Renata SZYMAŃSKA To-cochromanols and fatty acid composition in flax ( Linum usitatissimum L.) accessions Acta Societatis Botan-icorum Poloniæ, vol. 88 no. 4 art. no. 3636 s. 1–12 (2019)

289. Marianna MARCISZKO-WIĄCKOWSKA, Katarzyna E. HNIDA-GUT, Andrzej BACZMAŃSKI, MirosławWRÓBEL Topography and residual stress analysis for Cu/Au/Co multilayered system Surface & CoatingsTechnology, vol. 380, art. no. 125060 s. 1–7 (2019)

290. Bartłomiej SZAFRAN, Bartłomiej RZESZOTARSKI, Alina MREŃCA-KOLASIŃSKA Topologically protectedwave packets and quantum rings in silicene Physical Review. B, vol. 100 iss. 8 art. no. 085306 s. 085306-1–085306-11 (2019)

291. Alexander Chizhik, Arkady Zhukov, Paula Corte-León, Juan Mari Blanco, Julian Gonzalez, PrzemysławGAWROŃSKI Torsion induced acceleration of domain wall motion in magnetic microwires Journal of Mag-netism and Magnetic Materials, vol. 489 art. no. 165420 s. 1–4, Abstr. (2019)

292. Paulina MAZIARZ, Jakub MATUSIK, Tiina Leiviska, Tomasz STRĄCZEK, Czesław KAPUSTA, WiesławMarek WOCH, Waldemar TOKARZ, Katarzyna GÓRNIAK Toward highly effective and easily separablehalloysite-containing adsorbents: the effect of iron oxide particles impregnation and new insight into As(V)removal mechanisms Separation and Purification Technology, vol. 210 s. 390–401 (2019)

293. Paweł M. WRÓBEL, Łukasz Chmura, Maria M. GRZELAK, Zdzisław STĘGOWSKI, Marek LANKOSZ,Dariusz Adamek, Robert Jach, Alessandro Migliori, Andreas G. Karydas Towards histopathological analysisbased on X-ray fluorescence elemental imaging supported by multivariate analysis - case study of ovariancancers Spectrochimica Acta. Part B, Atomic Spectroscopy, vol. 155 s. 4–11 (2019)

294. Gunter Bloschl, [et al.], Przemysław WACHNIEW, [et al.] Twenty-three unsolved problems in hydrology (UPH)– a community perspective Hydrological Sciences Journal-Journal des Sciences Hydrologiques, vol. 64 no. 10s. 1141–1158 (2019)

295. T. CHWIEJ, J. Płonka Ultrafast mixing of radial and spin states driven by transient magnetic field in con-centric double quantum ring in presence of Dresselhaus spin-orbit interaction Physica. E : Low DimensionalSystems & Nanostructures, vol. 107 s. 142-149 (2019)

296. S. BEDNAREK, J. Pawłowski, M. GÓRSKI, G. SKOWRON Ultrafast spin initialization in a gated InSbnanowire quantum dot Physical Review Applied, vol. 11 iss. 3 art. no. 034012 s. 034012-1–034012-8 (2019)

297. A. Legros [et al.], W. TABIŚ [et al.] Universal T -linear resistivity and Planckian dissipation in overdopedcuprates Nature Physics, vol. 15 iss. 2 s. 142–147 (2019)

298. R. Aaij, [et al.], A. DENDEK, [et al.], M. FIRLEJ, [et al.], T. FIUTOWSKI, [et al.], M. IDZIK, [et al.], P. KOP-CIEWICZ, [et al.], W. KRUPA, [et al.], W. KUCEWICZ, [et al.], M. W. MAJEWSKI, [et al.], J. MOROŃ, [etal.], A. OBŁĄKOWSKA-MUCHA, [et al.], B. RACHWAŁ, [et al.], J. RYŻKA, [et al.], K. ŚWIETNEK, [et al.],T. SZUMALK, [et al.] Updated measurement of time-dependent CP -violating observables in B0

s → J/ψK+K−

decays European Physical Journal. C, vol. 79 iss. 8, art. no. 706 s. 1–26 (2019)

Page 121: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

10.2. BOOKS 109

299. Hao Van Duong, Chau DINH NGUYEN, Jakub NOWAK, Tibor Kovacs, Quy Anh Hoang Uranium andradium isotopes in some selected thermal, surface and bottled waters in Vietnam Journal of Radioanalyticaland Nuclear Chemistry, vol. 319 iss. 3 s. 1345–1349 (2019)

300. Maciej WIELGOSZ, Andrzej SKOCZEŃ Using neural networks with data quantization for time series analysisin LHC superconducting magnets International Journal of Applied Mathematics and Computer Science, vol. 29no. 3 s. 503–515 (2019)

301. Michał BAREJ, Adam BZDAK, Paweł GUTOWSKI Wounded nucleon, quark, and quark-diquark emissionfunctions versus experimental results from the BNL relativistic heavy ion collider at

√SNN = 200 GeV

Physical Review. C, vol. 100 iss. 6, art. no. 064902 s. 064902-1–064902-11 (2019)

302. Wojciech Szczolko, [et al.], Józef KORECKI, Kvetoslava BURDA, [et al.] X-ray and NMR structural studiesof the series of porphyrazines with peripheral pyrrolyl groups Inorganica Chimica Acta, vol. 484 s. 368–374(2019)

10.2 Books

1. Z. Kąkol, “Physics (electronic documents)-Version for Windows”, Kraków, AGH-UST, Faculty of Physicsand Applied Computer Science, 2019, 527 p. Textbook under constant updating by the author, http://winntbg.bg.agh.edu.pl/skrypty3/0370/Fizyka2019.pdf

2. R.P. Barneva, V.E. Brimkov, P. Kulczycki, J.M.R.S. Tavares (eds.), „Computational Modeling of ObjectsPresented in Images. Fundamentals, Methods, and Applications”, Springer, Cham, 2019.

3. D. Dannheim, [et al.]; Authors: A.C. Hoffman, [et al.], R. BUGIEL [et al.], S. BUGIEL [et al.], M. FIRLEJ,T.A. FIUTOWSKI, M. IDZIK, J. MOROŃ, K.P. Świentek, P. TERLECKI [et al.] (eds.), Detector technologiesfor CLIC, CERN, Geveva, CERN Yellow Reports. Monographs.

4. Kompleksowa ocena udziału głównych ognisk w zanieczyszczeniu azotanami wód podziemnych w obszarzezlewni Kocinki jako potencjalna wytyczna dla efektywnej gospodarki zasobami wodnymi — [Integrated as-sessment of major sources contributing to gorundwater nitrate contamination in the Kocinka catchment]/ Anna J. ŻUREK, Przemysław WACHNIEW, Dominika BAR-MICHALCZYK, Tomasz MICHALCZYK,Damian ZIĘBA, Joanna Najman, Jarosław KANIA, Kazimierz RÓŻAŃSKI, Stanisław WITCZAK // W:Bezpieczeństwo zbiorowego zaopatrzenia w wodę na terenach objętych antropopresją : monografia / red.nauk. Grzegorz MALINA ; Polskie Zrzeszenie Inżynierów i Techników Sanitarnych w Częstochowie, KołoZakładowe PZiTS przy Przedsiębiorstwie Wodociągów i Kanalizacji Okręgu Częstochowskiego SA w Często-chowie. — Częstochowa, 2018. — ISBN: 978-83-904408-1-1. — S. 75–83. — Bibliogr. s. 82–83

10.3 Chapters in Books

1. I. Grabowska-Bołd, [et al.] by the ATLAS Collaboration, ATLAS: a 25-year insider story of the LHC ex-periment, chapter in Advanced Series on Directions in High Energy Physics, Singapore: World ScientificPublishing Co. 2019.

2. P. Kulczycki, D. Kruszewski, “Detection of Rare Elements in Investigation of Medical Problems”, “IntelligentInformation and Database Systems”, N.T. Nguyen, G.L. Gaol, T.-P. Hong, B. Trawiński (eds.), Springer,Cham, 2019, ss. 257-268.

Page 122: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

110 CHAPTER 10. PUBLICATIONS

3. P. A. Kowalski, S. Łukasik, M. Charytanowicz, P. Kulczycki, “Nature Inspired Clustering – Use Cases of KrillHerd Algorithm and Flower Pollination Algorithm”, in “Comparision Between Computational Intelligenceand Mathematics”, L. T. Kóczy, J. Medina-Moreno, E. Ramirez-Poussa (eds.), Springer, Cham, 2019, ss.83-98.

4. P. A. Kowalski, J. Kamiński, S. Łukasik, J. Świebocka-Więk, D. Gołuńska, J. Tarasiuk, P. Kulczycki, “Appli-cation of the flower pollination algorithm in the analysis of micro-CT scans” in: “Trends in Mathematics andComputational Intelligence”, M. E. Pineiro, L. T. Kóczy, J. Medina, A. E. de Barros Ruano (eds.), Springer,Cham, 2019, ss. 1-9.

Page 123: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 11

Conferences

11.1 Invited conference presentations

1. P. Szumniak Spin and charge signatures of topological superconductivity in Rashba nanowires, Majoranamodes and beyond, Warsaw, Feb 26-27 2019

2. T. Szumlak, Silicon detectors for the LHC Phase-II upgrade and beyond RD50 Status report, VCI2019 - The15th Vienna Conference on Instrumentation, 18-22 February 2019, Vienna, Austria.

3. D. Wojtas, K. Wierzbanowski, M. Wroński, K. Sztwiertnia, M. Bieda, R. Chulist, W. Pachla, MechanicalProperties, Microstructure and Texture of Titanium grade 2 Processed by Hydrostatic Extrusion, Proc. of27-th Inter. Conf.: ‘Processing and Fabrication of Advanced Materials – XXVII’, pp. 267–273, 27–29 May2019, Jonkoping, Sweden – oral invited

4. A. Baczmański, P. Kot, E. Gadalińska, S. Wroński, M. Wroński, M. Wróbel, Ch. Scheffzuek, G. Bokuchava,K. Wierzbanowski, Neutron Measurements of Stresses in Al/SiCp Composite During Mechanical Loading,Proc. of 27-th Inter. Conf.: ‘Processing and Fabrication of Advanced Materials – XXVII’, pp. 295–305,27–29 May 2019, Jonkoping, Sweden – oral invited

5. D. Wojtas, K. Wierzbanowski, M. Wroński, A. Baczmański, R. Chulist, K. Sztwiertnia, M. Marciszko, W.Pachla, Properties of hydrostatically extruded titanium grade 2 studied by diffraction techniques and mechan-ical testing, Book of Abstracts of the International Conference on Electron, Positron, Neutron and X-RayScattering under External Influences, p. 47, 21–26 October 2019, Yerevan-Meghri, Armenia – oral invited

6. A. Baczmański, E. Gadalińska, C. Braham, G. Gonzalez, H. Sidhom, S. Wroński, T. Buslaps, K. Wierzbanowski,Stress localisation in two phases of pearlitic steel during tensile test studied using synchrotron radiation andmodelling, Book of Abstracts of the International Conference on Electron, Positron, Neutron and X-RayScattering under External Influences, p. 54, 21–26 October 2019, Yerevan-Meghri, Armenia – oral invited

7. J. Toboła, Electronic structure calculations of materials converting energy: thermoelectrics & ion batteries,International Thermoelectric Workshop “New materials for direct conversion of heat into electricity”, 8–9.05.2019, Kraków, Poland – oral invited

111

Page 124: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

112 CHAPTER 11. CONFERENCES

8. B. Wiendlocha, ”Thermopower of thermoelectric materials with resonant levels from ab initio calculations”,International Thermoelectric Workshop on New materials for direct conversion of heat into electricity 9–10.05.2019, Kraków, Poland – oral invited

9. J. Wolny, R. Strzałka, I. Bugański: Od pojedynczej szczeliny do periodycznych, modulowanych i kwaziperiody-cznych kryształów – nowe podejście do analizy dyfrakcyjnej układów aperiodycznych — 62. Zjazd naukowyPolskiego Towarzystwa Chemicznego, Warszawa, 2–6 września 2019. Książka abstraktów – oral invited

10. R. Strzałka, I. Bugański, J. Wolny, New approach to structural disorder in aperiodic systems – example ofdecagonal AlCuRh quasicrystal, The Fifth Poznań Symposium on Quantum Technologies, Nonlinear Optics,Magnonics, and Metamaterials QuTecNOMM 2019, 14–18 November 2019 – oral invited

11. J. CHWIEJ, K. PŁANETA, K. MATUSIAK, B. OSTACHOWICZ, D. RYSZAWY, N. JANIK-OLCHAWA, Z.SETKOWICZ, Zastosowanie wybranych metod spektroskopowych do identyfikacji potencjalnych biomarkerówinwazyjności ludzkiego glejaka wielopostaciowego w mózgu szczura, XLV zjazd fizyków polskich : Kraków13–18 września 2019

12. J. CHWIEJ, K. MATUSIAK, A. DRÓŻDŻ, A. KUBALA-KUKUŚ, I. STABRAWA, D. RYSZAWY, N. JANIK-OLCHAWA, B. OSTACHOWICZ, Z. SETKOWICZ, Badania toksyczności magnetycznych nanocząstek tlenkużelaza in vivo i in vitro, XVI kongres Polskiego Towarzystwa Fizyki Medycznej : Gliwice 9–12 czerwiec 2019

13. J. CHWIEJ, Advanced imaging methods for ex vivo investigation of physiological and pathological processes ofdifferent etiology, Laboratory for Applications of Synchrotron Radiation at Karlsruhe Institute of Technology,19 November 2019, Karlsruhe, Germany

14. J. CIESLAK, J. TOBOLA, M. CALVO-DAHLBORG, U. DAHLBORG, M. REISSNER, J. DĄBROWA, M.STYGAR, M. MOZDZIERZ, Magnetic properties of selected high entropy materials, Frontiers in MaterialsProcessing Applications, Research and Technology, FiMPART, Ahmedabad, India, Dec 15-18, 2019

15. J. CIESLAK, J. TOBOLA, M. CALVO-DAHLBORG, U. DAHLBORG, M. REISSNER, Magnetic propertiesof selected FeCrNiCo based high entropy alloys, City University of Hong Kong, Department of Physics, 11December 2019, Hong Kong, China

16. S.M. DUBIEL, Microscopic phenomena in Fe-Cr alloys, MECAME-GFSM 2019, 5th Mediterranean Confer-ence on the Applications of the Mossbauer Effect & 41th Workshop of the French speaking Group of MossbauerSpectroscopy : Montpellier, 19–23 May 2019

17. A. JUNG, P. KOROHODA, P. KRISPER, V. STADLBAUER, R.E. STAUBER, D. SCHNEDITZ, The useof kinetic modeling for ELS treatment planning, 20th ISAD: liver failure & inflammation: the internationalliver support meeting, September 6th–8th 2019, Rostock, Germany

18. K. KŁODOWSKI, Diffusion Imaging, XVI Kongres Polskiego Towarzystwa Fizyki Medycznej, 12-15 Czerwca2019, Gliwice

19. Z. MATUSZAK, From spectroscopy to melanoma diagnosis and cure. An unified approach, COST Action17124, European Cooperation in Science and Technology, COST Action 17124, Regional Info Day - Kraków2019, March 29-30, Digital Forensics Evidence Analysis via Intelligent Systems and Practices

20. M. SZCZERBOWSKA-BORUCHOWSKA, Promieniowanie X i podczerwone w diagnostyce pierwiastkowychi molekularnych zmian w mózgu otyłych szczurów poddanych elektrostymulacji przezczaszkowej, XIII Semi-narium Naukowe „Aktualne problemy chemii analitycznej”, Katowice, 17 maj 2019

Page 125: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

11.1. INVITED CONFERENCE PRESENTATIONS 113

21. P. WRÓBEL, Challenges of trace element analysis of human samples, 18th International Conference on TotalReflection X-ray Fluorescence Analysis and Related Methods, 25-28 June 2019, Girona, Spain

22. D. Rybicki Electronic and structural properties of HgBa2CuO4+d single crystals concluded from NMR, Bro-nisławów, Polska, October 06-11 2019

23. W. Tabiś, Charge correlations and the Fermi surface reconstruction in cuprate superconductors; The 14thInternational School and Symposium on Synchrotron Radiation in Natural Science, 9-14 June 2019, Zakopane,Poland

24. W. Tabiś, Charge order and the Fermi surface in cuprates; XIX National Conference on Superconductivity:unconventional superconductivity and strongly correlated electron systems, 6 - 11 October 2019, Bronisławów,Poland

25. Z. Kąkol, DFT computation of materials properties with WIEN2k; (coauthor: Waldemar TOKARZ), Kom-PlasTech 2019 : XXVI International Conference on Computer Methods in Materials Technology, January13-16, 2019, Zakopane

26. Z. Kąkol, Technology transfer from universities to industry – thinking in a positive way: can science be thedriving force of the economy?, 45th General meeting of Polish physicists, Kraków, September 13–18, 2019

27. Z. BURDA Universality of random matrix dynamics Random matrix theory -Application in the informationera, Apr 29 - May 3, 2019, Kraków

28. Z. BURDA, Universality of local statistics of Lyapunov exponents, Critical and Collective Effects in Graphsand Networks, May 6 - 10, 2019, Les Houches, France

29. M.J.Krawczyk, M.Woloszyn, P.Gronek, K.KUŁAKOWSKI, and J.Mucha, The Heider balance and the looking-glass self, FENS conference, 3-5 July 2019, NCBJ Swierk, Poland

M.J.Krawczyk, M.Woloszyn, P.Gronek, K.KUŁAKOWSKI, and J.Mucha, Towards the Heider balance - asym-metric social relations, 5-th Conference on Statistical Physics: Modern Trends and Applications, 3-6 July,Lviv, Ukraine

30. K. MALARZ, K. Kułakowski, Computer simulation of the paradox of integration of the social group, 45thCongress of Polish Physicists, Sep. 13-18, 2019, Kraków (PL)

31. P. KULCZYCKI, Procedures for Outliers Detection, Clustering, and Classification Based on NonparametricMethodology, The 2019 International Conference on Computational Intelligence, Information Technology andSystems Research, Lublin, 13-15 czerwca 2019;

32. P.A. KOWALSKI, K. Sapała, A. Konior, D. Morokov, Neuronowe modele prognozy zanieczyszczen pyłamizawieszonymi PM10 , 45 Zjazd Fizyków Polskich, 13-18 września 2019;

33. P. BOŻEK, Collective Dynamics in small systems, Annual Meeting of COST Action THOR, September 1-7,Istanbul, Turkey

34. A. BZDAK Searching for the QCD phase transition with statistics friendly distributions, XXV CracowEpiphany Conference on Advances in Heavy Ion Physic, January 8-11, Henryk Niewodniczański Instituteof Nuclear Physics, Kraków, Poland

Page 126: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

114 CHAPTER 11. CONFERENCES

35. A. BZDAK Linking fluctuation observables to probability distributions, EMMI Workshop. Probing the PhaseStructure of Strongly Interacting Matter: Theory and Experiment, March 25-29, GSI Helmholtz Centre forHeavy Ion Research, Darmstadt, Germany

36. A. BZDAK Correlations and probability distributions in high-energy nuclear collisions, The 17th Interna-tional Conference on QCD in Extreme Conditions (XQCD 2019), June 24-26, University of Tsukuba (TokyoCampus), Tokyo, Japan

37. A. BZDAK Cumulants, correlations, and the QCD phase diagram, STAR Collaboration Meeting, August19-23, AGH University of Science and Technology, Kraków, Poland

38. A. BZDAK Phase transitions and statistics friendly distributions, XXXVII HADES Collaboration Meeting,23-27 September, Jagiellonian University, Kraków, Poland

39. K.BURDA , Regulation of Fe-QA•- Interaction by Iron Spin States in Photosystems of Type II. The XIthInternational Workshop on EPR in Biology and Medicine, October 6-10, 2019, Kraków, Poland

40. K.BURDA, Involvement of non-heme iron in long range regulatory mechanisms of electron and proton transferwithin photosystems of type II. Sunrise Poland Stakeholder Workshop CeNT UW, June 5-6 2019, Warsaw,Poland

41. K.BURDA, Stability and functionality of erythrocytes treated with carboxylated multiwall carbon nanotubes.3rd International Caparica Conference on Pollutant Toxic Ions and Molecules, November 4-7 2019, Caparica,Portugal

42. K. RÓŻAŃSKI. Perspektywy zahamowania globalnego ocieplenia. 45 Zjazd Fizyków Polskich, Kraków, 13-18września 2019.

43. M. ZIMNOCH. Współpraca Wydziału Fizyki i Informatyki Stosowanej AGH z Urzędem Miasta w zagad-nieniach związanych z jakością powietrza w Krakowie. 45 Zjazd Fizyków Polskich, Kraków, 13-18 września2019.

44. M. ZIMNOCH. Zastosowanie analizatora Picarro do badania profili pionowych stężenia metanu za pomocądrona. XXIV Konferencja ”Nowoczesne Metody Instrumentalne w Analizie Śladowej”, Łódź, 2-3 grudnia2019.

11.2 Contributed conference presentations

1. B. J. Spisak, D. Kołaczek, M. Wołoszyn Dynamics of two-part quasi-distribution function in phase spaceFrontiers of Quantum and Mesoscopic Thermodynamics, 14 - 20 July 2019, Prague, Czech Republic POSTER

2. B. J. Spisak, M. Wołoszyn Dynamics of the Wigner Distribution Function on the Bunimovich Stadium 3rdInternational Wigner Workshop IW2 2019, 19-20 May 2019, Orrington Evanston, USA ORAL

3. P. BOŻEK, Factorization breaking - flow angle and magnitude decorrelation, 5th International Conference onthe Initial Stages in High-Energy Nuclear Collisions, June 24-28, New York, USA

4. A. TRELA, W. Kieres, R. SZYMAŃSKA, A study on the antioxidant and antibacterial effect of plastochroma-nol-8, The 44 FEBS congress: from molecules to living systems, July 6–11 July 2019, Kraków, Poland; poster

Page 127: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

11.2. CONTRIBUTED CONFERENCE PRESENTATIONS 115

5. A. TRELA, R. SZYMAŃSKA, Antioxidant activity of vitamin E homologues in model systems, 21 ISANHinternational conference on Oxidative stress reduction, redox homeostasis and antioxidants, June 20–21, 2019,Paris, France; poster

6. S. Krysiak, A. Hałas, A. Orzechowska, A. Chumakov, D. Bessas, V. Derrien, P. Sebban, J. Korecki, T. Ślęzak,K. Burda, Influence of Cd2+ ions on properties of non-heme iron in bacterial reaction centers of type II,Sunrise Poland Stakeholder Workshop CeNT UW, June 5-6 2019, Warsaw, Poland; poster

7. K. Burda, A. Hałas, A. Orzechowska, V. Derrien, A. Chumakov, P. Sebban, J. Fiedor, M. Zając, T. Ślęzak, J.Korecki, Involvement of non-heme iron in long range regulatory mechanisms of electron and proton transferwithin photosystems of type II, Sunrise Poland Stakeholder Workshop CeNT UW, June 5-6 2019, Warsaw,Poland; poster

8. M.Przetocki, G. Gajos, L. Stobiński, K. Matlak, J. Korecki, K. Burda, Mechanical properties of erythrocytestreated with multiwalled carbon nanotubes functionalised with carboxyl groups, Intercollegiate BiotechnologySymposium ‘Symbioza’, Warsaw, May 17-19 2019, Poland; poster

9. S. Krysiak, A. Hałas, A. Orzechowska, A. Chumakov, D. Bessas, V. Derrien, P. Sebban, J. Korecki, T. Ślęzak,K. Burda, Influence of Cd2+ ions on properties of non-heme iron in bacterial reaction centers of type II, EBSWorkshop on Nuclear Resonance Scattering, March 11-12 2019, Grenoble, France; poster

10. S. Krysiak, A. Hałas, A. Orzechowska, A. Chumakov, D. Bessas, V. Derrien, P. Sebban, J. Korecki, T. Ślęzak,K. Burda, Influence of Cd2+ ions on properties of non-heme iron in bacterial reaction centers of type II,Synchrotron School, High Pressure Techniques at the ESRF-EBS, June 17-21 2019, Grenoble, France; poster

11. K. Burda, A. Halas, A. Orzechowska, S. Krysiak, A. Chumakov, D. Bessas, V. Derrien, P. Sebban, J. Korecki,T. Slezak, M. Lipinska, J. Fiedor, Influence of heavy metals on the spin state of non-heme iron and on proteinlocal motions in reactions centers from purple photosynthetic bacteria of type II, EBS Workshop on NuclearResonance Scattering, March 11-12 2019, Grenoble, France; poster

12. K. Burda, W. Szczotko, T. Kaczorowski, S. Krysiak, A. Orzechowska, J. Korecki, T. Slezak, A. Chumakov,D. Bessas, T. Goslinski, Influence of the differentiated pyrrolyl periphery on the valence, spin and dynamicproperties of iron in the centre of porphyrazines – Mossbauer spectroscopy, NFS and NIS studies; EBSWorkshop on Nuclear Resonance Scattering, March 11-12 2019, Grenoble, France; poster

13. M. Przetocki, G. Gajos, L. Stobiński, J. Korecki, K. Burda, Synchrotron School, High Pressure Techniquesat the ESRF-EBS, June 17-21 2019, Grenoble, France; poster

14. J. NECKI. AGH group activities during CoMet campaigns. Topical Workshop on Coal Mine Methane (CMM)measurements during CoMet, January 9–11 2019, Zakopane, Poland.

15. A. SKIBA, M. ZIMNOCH, Z. GORCZYCA, L. SAMEK, K. STYSZKO, K. RÓŻAŃSKI. Zastosowanie nat-uralnych izotopów węgla do identyfikacji pochodzenia zanieczyszczeń pyłowych w Krakowie. Seminarium”Modelowanie jakości powietrza w Polsce”, Instytut Ochrony Środowiska Polskiej Akademii Nauk, 15.02.2019,Warszawa, Poland.

16. A. SKIBA, K. STYSZKO, A. KASPER-GIEBL, J. NĘCKI, A. TOBLER, R. CASSOTO, A.S.H. PREVOT,K. ROZANSKI. Source apportionment of atmospheric carbonaceous aerosols collected in Kraków, based onconcentrations of organic/elemental carbon (OC/EC) and carbohydrates, Vienna, Austria, March 3-6 2019,12th International Conference on Carbonaceous Particles in the Atmosphere (ICCPA) ; POSTER.

Page 128: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

116 CHAPTER 11. CONFERENCES

17. M. ZIMNOCH, L. SAMEK, K. STYSZKO, A. SKIBA, P. FURMAN, Z. GORCZYCA, K. ROZANSKI,E. KONDURACKA. Short-term variability of elemental, molecular and isotopic composition of PM2.5 at-mospheric pollutants during warm and cold season in the urban atmosphere of Kraków, southern Poland,European Geophysical Union General Assembly, April 7-12 2019, Vienna, Austria; POSTER.

18. P. SEKULA, M. ZIMNOCH, J. BARTYZEL, M. KUD. Application of airborne measurement system formonitoring vertical profiles of meteorological parameters, black carbon and particulate matter concentrationfor urban area of Kraków, European Geophysical Union General Assembly, April 7-12 2019, Vienna, Austria;POSTER.

19. P. WACHNIEW, D. ZIĘBA, D. BAR-MICHALCZYK, J. KANIA, K. ROZANSKI, S. WITCZAK, A. ZUREK.Factors controlling nitrate export from a groundwater-dominated agricultural catchment: Insights from amultitracer study, European Geophysical Union General Assembly, April 7-12 2019, Vienna, Austria.

20. A. PIERCHALA, K. ROZANSKI, M. DULINSKI, L. CHMURA, P. WACHNIEW, P. KUKIELKA, Z. GOR-CZYCA, R. CZUB. Two-year record of triple isotope composition of daily precipitation at two contrastingsites in central Europe. European Geophysical Union General Assembly, 7-12 April 2019, Vienna, Austria.POSTER.

21. C. CLASON, E. LOKAS, G. BACCOLO, W. BLAKE, P. OWENS, J. COOK, G. MILLWARD, N. SELMES,R. FYFE, A. TAYLOR, P. WACHNIEW. The widespread presence of fallout radionuclides in cryoconite: ananthropogenic legacy and emerging issue, European Geophysical Union General Assembly, April 7-12 2019,Vienna, Austria; POSTER

22. J. NECKI, J. BARTYZEL, M. KUD, P. JAGODA, G. FLORCZYK, J. SWOLKIEN, W. WOLKOWICZ.Why Silesian cities are breathing with methane - results of JSUN-CH4 project, European Geophysical UnionGeneral Assembly, April 7-12 2019, Vienna, Austria; POSTER

23. M. GALKOWSKI, CH. GEBRIG, J. MARSHALL, F-T. KOCH, J. CHEM, S. BAUM, A. JORDAN, A.FIEHN, A. RIOGER, P. JOCKEL, A-L NICKL, M. MARTENS H. BOVENSMANN, J. NECKI, J. SWOLKIEN,G. EHRET, CH. KIEMLE, A. AMEDIEK, M. QUATREVALET, A. FIX. Airborne in-situ measurements ofCO2 and CH4 and their interpretation using WRF-GHG: results from the HALO CoMet 1.0 campaign,European Geophysical Union General Assembly, April 7-12 2019, Vienna, Austria.

24. K. ROZANSKI, A.PIERCHALA, M. DULINSKI, Z.GORCZYCA, R. CZUB. Assessing the potential of tripleisotope analyses of water in groundwater hydrology: examples from Poland, International Symposium onIsotope Hydrology: Advancing the Understanding of Water Cycle Processes, 20-24 May, 2019, Vienna, Austria;POSTER

25. A. PIERCHALA, K. ROZANSKI, M. DULINSKI, Z. GORCZYCA, M. MARZEC, R. CZUB. Triple isotopeanalyses of water with the aid of laser spectroscopy: analytical performance of Picarro L2140-i spectrometer,International Symposium on Isotope Hydrology: Advancing the Understanding of Water Cycle Processes,20-24 May, 2019, Vienna, Austria; POSTER.

26. M.DULINSKI, K. ROZANSKI, Z. GORCZYCA, M.,MARZEC, R. CZUB, K. BRUDNIK. Isotope monitoringof dangerous water inflows to the Wieliczka Salt Mine , southern Poland, International Symposium on IsotopeHydrology: Advancing the Understanding of Water Cycle Processes, 20-24 May, 2019, Vienna, Austria;POSTER

Page 129: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

11.2. CONTRIBUTED CONFERENCE PRESENTATIONS 117

27. P. JODŁOWSKI. Monte Carlo validation of self- attenuation correction calculations in Pb-210 measurementswith well detector. 22th International Conference on Radionuclide Metrology and its Applications, ICRM-2019, Salamanca, Spain, 27-31 May 2019; POSTER

28. J. NECKI, J. BARTYZEL, J. SWOLKIEN, M. KUD, P.JAGODA, G. FLORCZYK, S. KROL, F.R. VOGEL.How uncertain are the estimates of methane release from Polish coal and gas excavations? First results ofJSUN-CH4 project, 8th International Symposium on Non-CO2 Greenhouse Gases (NCGG8), 12-14 June 2019,Amsterdam, The Netherlands.

29. K. ROZANSKI, A. PIERCHALA, M. DULINSKI, Z. GORCZYCA, R. CZUB, M. MARZEC. Triple isotopeanalyses of water: emerging applications in hydrology, Isotope Workshop XV (ESIR 2019), 23-27 June 2019,Lublin, Poland.

30. A. PIERCHALA, M. DUDEK, K. ROZANSKI, M. DULINSKI. Triple isotope effects accompanying evapora-tion of water: new insights from dedicated laboratory experiments, Isotope Workshop XV (ESIR 2019), 23-27June 2019, Lublin, Poland; POSTER

31. A. SKIBA, K. STYSZKO, A. KASPER-GIEBL, M.ZIMNOCH, A. TOBLER, A.S.H. PREVOT, K. ROZAN-SKI. Seasonal variability of air pollution sources in Kraków during the period of 2018-2019, based on analysesof chemical and isotopic composition.,Sao Paulo School of Advanced Science on Atmospheric Aerosols: Prop-erties, Measurements, Modeling, and Effects on Climate and Healthl, 22 July - 2 August 2019, Sao Paulo,Brazi; POSTER

32. M. ZIMNOCH, M. KOTARBA, K. ROZANSKI, J. NECKI, L. CHMURA, M. GALKOWSKI, A. KAMINSKA-JASEK, M. STANISAVLJEVIC. Stable Carbon Isotope Composition of Methane Released to the atmospherein the Upper Silesian Coal Basin. The International Scientific Conference ”Challenges in Applied Geology andGeophysics: 100th Anniversary of Applied Geology at AGH University of Science and Technology”, Kraków,10-13 September 2019. ORAL

33. D. ZIĘBA, P. WACHNIEW, D. BAR-MICHALCZYK, A.ŻUREK. Deciphering spatial and temporal pat-terns of nitrate in a groundwater-dominated agricultural catchment. The International Scientific Conference”Challenges in Applied Geology and Geophysics: 100th Anniversary of Applied Geology at AGH Universityof Science and Technology”, 10-13 September 2019, Kraków, Poland.

34. M. DULINSKI, Z. GORCZYCA, M. MARZEC, R. CZUB, K. BRUDNIK. Wiek radiowęglowy wody z piezo-metru PZ-2 na przedpolu Kopalni Soli Wieliczka. XIX Sympozjum ”Współczesne problemy hydrogeologii”,September 9-12 2019, Toruń, Poland.

35. M. GAŁKOWSKI. Emisja i transport CO2 i CH4 w atmosferze Europe i Śląska: wybrane obserwacje w trakciekampanii CoMet 1.0 i ich porównanie z wynikami obliczeń modelu WRF-GHG. 45 Zjazd Fizyków Polskich,September 13-18 2019, Kraków, Poland.

36. M. ZIMNOCH, Z. GORCZYCA, M. GAŁKOWSKI, A. SKIBA, P. FURMAN, L. SAMEK, K. STYSZKO,K. ROZANSKI. Identyfikacja źródeł pochodzenia pyłów PM2.5 w Krakowie na podstawie analizy składuizotopowego węgla, XI Konferencja Naukowa ”Ochrona powietrza w teorii i praktyce”, October 22-25 2019,Zakopane, Poland.

37. J. BARTYZEL, M. ZIMNOCH, J. NECKI, Ł. CHMURA. Pomiary mobilne pyłu zawieszonego z wykorzys-taniem wielokanałowego licznika cząstek, XI Konferencja Naukowa ”Ochrona powietrza w teorii i praktyce”,October 22-25 2019, Zakopane, Poland.

Page 130: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

118 CHAPTER 11. CONFERENCES

38. T. Bołd (on behalf of the ATLAS Collaboration), Azimuthal anisotropy in Pb+Pb, Xe+Xe and p+Pb collisionsand vn-pT correlations in Pb+Pb and p+Pb collisions with the ATLAS experiment, European Physical SocietyConference on High Energy Physics (EPS HEP 2019), 10-17 July 2019, Ghent, Belgium.

39. T. Bołd (for the ATLAS Collaboration), Correlation of flow harmonics and mean transverse momentum in5.02 TeV p+Pb and Pb+Pb collisions and event-plane dependence of HBT radii in high-multiplicity p+Pbcollisions with the ATLAS detector, Quark Matter 2019, Nov 4-9, Wuhan, China.

40. K. Maj, Pomiary azymutalnej anizotropii w zderzeniach ciężkich jonów w eksperymencie ATLAS, 45 ZjazdFizyków Polskich, 13-18.09.2019, Kraków, Poland.

41. Iwona Grabowska-Bołd (for the ATLAS Collaboration), Observation of light-by-light scattering and measure-ments of photon-photon collisions at ATLAS, Photon2019, June 3-7, Frascati, Italy.

42. P. Palni (for the ALICE Collaboration), Multiplicity dependence of strangeness and charged particle produc-tion in proton-proton collisions, Epiphany2019, Jan 8-11, Kraków, Poland.

43. P. Palni (for the ATLAS Collaboration), Measurements of dileptons and photon pairs from two-photon scat-tering in ultra-peripheral and hadronic Pb+Pb collisions with the ATLAS detector, Quark Matter 2019, Nov4-9, Wuhan, China.

44. K. Burka (for the ATLAS Collaboration), Flow harmonics and mean pT correlations in 5.02 TeV Pb+Pb andp+Pb collisions with the ATLAS detector, Initial Stages 2019, June 24-28, New York, USA, poster.

45. J. Kremer (on behalf of the ATLAS, Electroweak boson measurements in p+Pb and Pb+Pb collisions withATLAS, The 7th Conference on Large Hadron Collider Physics, 20 - 25 May, Puebla, Mexico.

46. J. Kremer (on behalf of the ATLAS Collaboration), Production of W± bosons in pp collisions at√s=5.02

TeV with the ATLAS detector, The 7th Conference on Large Hadron Collider Physics, 20 - 25 May, Puebla,Mexico, poster.

47. A. Ogrodnik (for the ATLAS Collaboration), Observation of light-by-light scattering in lead-lead collisions inthe ATLAS experiment, ILHC-ICTP2019, May 27-31, Trieste, Italy.

48. A. Ogrodnik (for the ATLAS Collaboration), Light-by-light scattering in lead-lead collisions in the ATLASexperiment, Epiphany2019, Jan 8-11, Kraków, Poland.

49. A. Ogrodnik, Light-by-light scattering in lead-lead collisions in the ATLAS experiment - from evidence toobservation, XIV Polish Workshop On Ultra-relativistic Heavy Ion Collisions, April 6-7, Kraków, Poland.

50. K. Burka Azimuthal anisotropy in 5.02 TeV Pb+Pb and 5.44 TeV Xe+Xe collisions with the ATLAS experi-ment, XIV Polish Workshop On Ultra-relativistic Heavy Ion Collisions, April 6-7, Kraków, Poland.

51. M. Przybycień, Production of electroweak bosons in Pb+Pb, p+Pb and pp collisions with the ATLAS detector,European Physical Society Conference on High Energy Physics (EPS HEP 2019), 10-17 July 2019, Ghent,Belgium.

52. L. Adamczyk, Measurements of single diffraction using forward proton tagging at ATLAS, EDS Blois 2019:The 18th conference on Elastic and Diffractive Scattering, June 23-29, 2019, ICISE, Quy Nhon, Vietnam.

53. K. Janas, The track-based alignment of the ALFA Roman Pot detectors of the ATLAS experiment, The 7thConference on Large Hadron Collider Physics, 20 - 25 May, Puebla, Mexico, poster.

Page 131: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

11.2. CONTRIBUTED CONFERENCE PRESENTATIONS 119

54. I. Łakomiec, Study of the proton reconstruction efficiency with the ALFA detector using an overlay techniqueof Monte Carlo signal events with zero-bias, The 7th Conference on Large Hadron Collider Physics, 20 - 25May, Puebla, Mexico, poster.

55. M. Idzik (on behalf of the LHCb UT Working Group), SALT, a 128-channel readout ASIC for UpstreamTracker in the LHCb Upgrade, TWEPP 2019 Topical Workshop on Electronics for Particle Physics, 2-6September 2019, Santiago de Compostela, Spain.

56. J. Moroń, M. Firlej, T. Fiutowski, M. Idzik, K. Świentek, Development of ultra-low power 10-bit SAR ADC in65 nm CMOS technology, TWEPP 2019 Topical Workshop on Electronics for Particle Physics, 2-6 September2019, Santiago de Compostela, Spain.

57. M. Firlej, T. Fiutowski, J. Fonseca, M. Idzik, Sz. Kulis, P. Moreira, J. Moroń, K. Swientek, An lpGBTsub-system for environmental monitoring and control of experiments, TWEPP 2019 Topical Workshop onElectronics for Particle Physics, 2-6 September 2019, Santiago de Compostela, Spain.

58. T. Fiutowski, M. Firlej, M. Idzik, J. Moroń, K. Swientek, An ultra-low power, fast 10–bit SAR ADC formulti-channel readout ASICs in 65 nm CMOS, 2019 IEEE NSS&MIC, 26 October - 2 November, Manchester,UK.

59. A. Obłąkowska-Mucha, New simulation of particle fluence for the LHCb VELO Upgrade, 14th Trento Work-shop on Advanced Silicon Radiator Detectors, 25-27 February 2019, Trento, Italy.

60. A. Obłąkowska-Mucha, Study of the physics models for fluence simulation in LHC environment, 34th RD50Workshop on Radiation hard semiconductor devices for very high luminosity colliders, 12-14 June 2019,Lancaster, UK.

61. A. Obłąkowska-Mucha, LHCb simulations, predictions, comparison with data, Radiation effects in the LHCexperiments and impact on operation and performance, 11-12 February 2019, CERN, Geneva.

62. A. Dendek, ML techniques used in LHCb analyses and online applications, 8th International Conference onNew Frontiers in Physics, 21-29 August 2019 Kolymbari, Greece.

63. A. Dendek, Machine Learning in High Energy Physics, Machine Learning in Poland, 22-25.11.2019, Warszawa.

64. M. Majewski, Analysis, and machine learning anomaly detection of the VELO-LHCb calibration, II Trans-Siberian School on High Energy Physics, 1–5 April 2019, Tomsk, Russian Federation.

65. M. Majewski, Machine Learning in Velo LHCb monitoring and calibration in Run I and II, SymposiumArtificial Intelligence for Science, Industry and Society 2019, Mexico.

66. P. Kopciewicz, Software platform for the monitoring and calibration of the LHCb upgrade I silicon detectors,XXV Cracow EPIPHANY Conference on Advances in Heavy Ion Physics, 8-11 January 2019, Kraków, Poland.

67. P. Kopciewicz, Investigations on the radiation damage of the LHCb VELO: a full review, VCI2019 - The 15thVienna Conference on Instrumentation, 18-22 February 2019, Vienna, Austria, poster.

68. P. Kopciewicz, The Upgrade of LHCb VELO, IPRD2019 - The 15th Topical Seminar on Innovative Particleand Radiation Detectors, 14-17 October 2019, Siena, Italy.

69. P. Kopciewicz, The Upgrade II of LHCb VELO, IPRD2019 - The 15th Topical Seminar on Innovative Particleand Radiation Detectors, 14-17 October 2019, Siena, Italy, poster.

Page 132: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

120 CHAPTER 11. CONFERENCES

70. W. Krupa, Recent results of the CKM angle γ measurement at LHCb and prospect for Run III and Run IV,3rd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics, 23-28 Czerwiec 2019, KrakówPoland, poster.

71. B. Rachwał, A modular software framework for test beam data analysis. The TbGaudi package, 7th BeamTelescopes and Test Beams Worksop, 14-18 January 2019, CERN, Geneva.

72. B. Rachwał, The LHCb VELO Upgrade - sensor R&D with the Timepix3 Telescope, VIII InternationalCourse ”Detectors and Electronics for HEP, Astrophysics, Space and Medical Physics”, 1-5 April, 2019, INFNNational Laboratories of Legnaro.

73. B. Mindur, Chromium GEM detectors performance studies, 6th International Conference on MicroPatternGaseous Detectors (MPGD 2019), 5-10 May 2019, La Rochelle, France, poster.

74. P. Jurgielewicz, B. Mindur, M. Szypulska, P. Hottowy, Scalable real-time DAQ system for neural signalanalysis, 11th Congress of the Societas Humboldtiana Polonorum, 12-15 September 2019, Szczecin, Poland,poster.

75. T. Fiutowski, S. Koperny, B. Łach, B. Mindur, P. Wiącek, W. Dąbrowski, Noise optimisation of GEM-basedfull-field XRF imaging system, 6th International Conference on MicroPattern Gaseous Detectors (MPGD2019), 5-10 May 2019, La Rochelle, France, poster.

76. B. Trzpil-Jurgielewicz, W. Dąbrowski, P. Hottowy, Low-distortion CMOS preamplifier for neuroelectronicinterfaces, 11th Congress of the Societas Humboldtiana Polonorum, 12-15 September 2019, Szczecin, Poland,poster.

77. B. Trzpil-Jurgielewicz, W. Dąbrowski, P. Hottowy, A 0.0046mm2 low-distortion CMOS neural preamplifierfor large-scale neuroelectronic interfaces, 9th international IEEE/EMBS conference on Neural Engineering(NER) 20-23 March 2019, San Francisco, California, poster.

78. N.P. Shah, S. Madugula, L. Grosberg, G. Mena, P. Tandon, P. Hottowy, A. Sher, A. Litke, S. Mitra,E.J. Chichilnisky, Optimization of electrical stimulation for a high-fidelity artificial retina, 9th internationalIEEE/EMBS conference on Neural Engineering (NER) 20-23 March 2019, San Francisco, California, poster.

79. T. Fiutowski, P. Frączek, S. Koperny, M. Lankosz,B. Łach, A. Mendys, B. Mindur, A. Sikorska, K. Świentek, P.Wiącek, P.M. Wróbel, W. Dąbrowski, Czy coś tu jest ukryte? Budowa i działanie systemu do obrazowania dziełsztuki metodą fluorescencji rentgenowskiej, Ogólnopolska konferencja szkoleniowa ”100 lat kryminalistyki”, 7czerwca 2019, Kraków.

T. Fiutowski, S. Koperny, P. Krupska, B. Łach, A. Mendys, B. Mindur, A. Sikorska, P. Wiącek, P.M. Wróbel,W. Dąbrowski, Design and performance of a macro-XRF scanner based on GEM type gaseous detector, 2ndworkshop on MA-XRF, Macro X-ray Fluorescence Scanning in Conservation, Art and Archaeology, 15-16October, 2019, Catania, Italy, poster.

80. M Szypulska, P. Wiacek, A. Skoczeń, T. Fiutowski, I. Ahmed, E. Kublik, W. Dąbrowski, P. Hottowy, Modularmicroelectronic system for advanced microstimulation experiments using silicon probes, Forum of Neuroscience: 7–11 July 2018, Berlin, Germany, poster.

81. D. Wojtas, K. Wierzbanowski, M. Bieda, R. Chulist, A. Jarzębska, Ł. Maj, K. Sztwiertnia, M. Wróbel, W.Pachla, F. Muhaffel, Phase Composition and Microstructure of Antibacterial Coatings Deposited on TitaniumFabricated by Hydrostatic Extrusion, Proc. of 27-th Inter. Conf.: ‘Processing and Fabrication of AdvancedMaterials – XXVII’, pp. 274–280, 27–29 May 2019, Jonkoping, Sweden – oral

Page 133: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

11.2. CONTRIBUTED CONFERENCE PRESENTATIONS 121

82. P. Kot, A. Baczmański, E. Gadalińskka, S. Wroński, M. Wroński, M. Wróbel, G. Bokuchava, Ch. Scheffzuk,K. Wierzbanowski, Neutron diffraction and elastic-plastic models used to study evolution of phase stressesin Al/SiCp composite during thermal cycling and mechanical loading, Book of Abstracts of the InternationalConference on Electron, Positron, Neutron and X-Ray Scattering under External Influences, p. 63, 21–26October 2019, Yerevan-Meghri, Armenia – poster

83. D. Wojtas, K. Wierzbanowski, M. Marciszko, A. Baczmański, R. Chulist, A. Jarzębska, X-ray diffraction peakprofile analysis of ultrafine-grained titanium by Williamson-Hall models, Book of Abstracts of the InternationalConference on Electron, Positron, Neutron and X-Ray Scattering under External Influences, p. 62, 21–26October 2019, Yerevan-Meghri, Armenia – poster

84. A. Oponowicz, M. Marciszko, A. Baczmański, S. Wroński, M. Wrobel, Ch. Genzel, M. Klaus, C. Braham, H.Sidhom, Application of MMXD and MGIXD methods for stress measurements in the mechanically treatedsurface layer of tungsten, 21th International Conference ”Advanced materials and technologies”, 18–24 July2019, Kaunas University of Technology, Palanga, Lithuania, Book of Abstracts of the 21st InternationalConference-School, pp. 1822–7759 – poster

85. K. Jasiewicz, B. Wiendlocha, J. Toboła, Short range order in superconducting(TaNb)0.67(HfZrTi)0.33 high entropy alloy – KKR-CPA studies, XIX Krajowa Konferencja Nadprzewodnictwa– Niekonwencjonalne nadprzewodnictwo i silnie skorelowane układy elektronowe, 6–11.10.2019, Bronisławów,Polska – poster.

86. J. Toboła, Levinsky, C. Candolfi, A. Dauscher, J. Hejtmanek, B. Lenoir, Interplay between electronic structure,crystal structure and electron transport properties in tetrahedrites studied from ab initio calculations, 17thEuropean Conference on Thermoelectrics ECT2019, 23–25.09.2019, Limassol, Cyprus – oral

87. J. Toboła, Levinsky, C. Candolfi, A. Dauscher, J. Hejtmanek, B. Lenoir, Interplay between electronic structureand crystalstructure yielding efficient thermoelectric properties in (Cu–M)12(Sb–As)4S13 tetrahedrites/tennantites,European C–MetAC Days, 3–6.12.2019, Dresden, Germany – oral

88. M. Rybski, J. Toboła, First principles calculations of cathode materials for Li-ion batteries, Internationalthermoelectric workshop on New materials for direct conversion of heat into electricity, 8–9.05.2019 Kraków,Polska – poster.

89. M. Rybski, J. Toboła, Korelacja między strukturą elektronową a właściwościami elektrochemicznymi bateriiLi-/Na-jonowych, 13–18.09.2019, 45. Zjazd Fizyków Polskich, Kraków, Polska – poster.

90. M. Rybski, J. Toboła, J. Molenda, Electrochemical behaviuors in Li/Na ion battery systems from KKR–CPAcalculations, 5th Workshop on ab initio phonon calculations, 3–6.12.2019, Institute of Nuclear Physics PANKraków, Poland – poster.

91. S. Gutowska, G. Kuderowicz, B. Wiendlocha, ”Influence of the spin-orbit coupling on the electron-phononinteraction in superconductors: several case studies.” 5th workshop on ab initio phonon calculations, Kraków,December 3–6, 2019 – oral

92. S. Gutowska, G. Kuderowicz, B. Wiendlocha, ”Effect of the spin-orbit coupling on the electron-phonon interac-tion in superconductors: several case studies.” XIX National Conference on Superconductivity , 6–11.10.2019,Bronisławów, Poland – oral

Page 134: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

122 CHAPTER 11. CONFERENCES

93. B. Wiendlocha, S. Misra, A. Dauscher, B. Lenoir, C. Candolfi, J. Toboła, ”Effect of the resonant In dopanton the electronic structure, effective mass and lifetimes in SnTe studied using Bloch spectral functions” 17thEuropean Conference on Thermoelectrics (ECT 2019) , 23–25.09.2019, Limassol, Cyprus – oral

94. B. Wiendlocha, ”Domieszki rezonansowe w materiałach termoelektrycznych – struktura elektronowa i włas-ności transportowe”, 45. Zjazd Fizyków Polskich , Kraków, 13–18 IX 2019 – oral

95. B. Wiendlocha, S. Misra, A. Dauscher, B. Lenoir, C. Candolfi, J. Toboła ”Electronic structure, lifetimes andcarrier delocalization in SnTe doped with resonant In impurity studied using Bloch spectral functions”, 38thInternational Conference on Thermoelectrics (ICT 2019) 30.06–04.07.2019, Gyeongju, South Korea – oral

96. S. Gutowska, B. Wiendlocha, Wpływ sprzężenia spin-orbita na oddziaływanie elektron-fonon w nadprzewod-nikach, XLV Zjazd Fizyków Polskich, 13–18.09.2019, Kraków, Polska – poster

97. S. Gutowska, K. Górnicka, M.J. Winiarski, W. Xie, R.J. Cava, T. Klimczuk, B. Wiendlocha, Electron-phonondriven superconductivity of LiBi, XIX Krajowa Konferencja Nadprzewodnictwa, 6–11 October, Bronisławów,Poland – oral

98. S. Gutowska, B. Wiendlocha, The influence of the spin-orbit coupling on the electron-phonon coupling insuperconductors, Workshop Electron-phonon coupling: Computational methods for electronic transport innanostructures and in bulk materials, 14–16 October, Lugano, Switzerland – poster

99. S. Gutowska, K. Górnicka, M.J. Winiarski, W. Xie, R.J. Cava, T. Klimczuk, B. Wiendlocha, Electron-phonondriven superconductivity of LiBi, 5th Workshop on ab initio phonon calculations, 3–6 December, Kraków,Poland – oral

100. G. Kuderowicz, B. Wiendlocha, Struktura elektronowa i sprzężenie elektron-fonon w niecentrosymetrycznymThCoC2 i ThCo(1−x)NixC2, 45. Zjazd Fizyków Polskich, 13–18 IX 2019, Kraków, Polska – poster

101. G. Kuderowicz, B. Wiendlocha, Electronic structure and electron-phonon coupling in noncentrosymmetricThCoC2 and ThCo(1−x)NixC2, XIX Krajowa Konferencja Nadprzewodnictwa, 6–11 X 2019, Bronisławów,Polska – poster

102. G. Kuderowicz, K. Górnicka, T. Klimczuk, E.M. Carnicom, R.J. Cava, B. Wiendlocha, Superconductivityand soft-mode behavior in LiPd2X compounds (X=Si,Ge,Sn), 5th workshop on ab initio phonon calculations,3–6 XII 2019, Kraków, Polska – poster

103. T. Kozik, M. Śniechowski, W. Łużny, Molecular dynamics study of the SAM/PMMA interface. 11th Inter-national Conference on X-Ray Investigations of Polymer Structure, 3–6 December 2019, Ustroń, Poland –oral

104. M. Śniechowski , T. Kozik, W. Łużny, Structure and dynamics of highly conducting PEDOT systems, 11th In-ternational Conference on X-Ray Investigations of Polymer Structure, 3–6 December 2019, Ustroń, Poland –poster

105. R. Wirecka, D. Lachowicz, A. Żywczak, M. Gajewska, M.M. Marzec, A. Bernasik, Synthesis and character-ization of magnetic nanoparticles embedded in poly(3-hexylthiophene-2,5-diyl) for photovoltaic applications6th Nano Today Conference 16–20.06.2019; Lizbona, Portugalia – poster

106. R. Wirecka, D. Lachowicz, M.M. Marzec, M. Gajewska, A. Bernasik, Ferrite nanoparticles characterizationby X–ray Photoelectron Spectroscopy coupled with Gas Cluster Ion Beam, 16th International conference onAdvanced Nanomaterials, ANM2019, 17–19.07.2019; Aveiro, Portugalia – oral

Page 135: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

11.2. CONTRIBUTED CONFERENCE PRESENTATIONS 123

107. R. Wirecka, D. Lachowicz, A. Żywczak, M.M. Marzec, M. Gajewska, A. Bernasik Charakterystyka fizyko-chemiczna nanocząstek magnetycznych w przewodzącej otoczce do zastosowań w elektronice organicznej, 45.Zjazd Fizyków Polskich 13–18.09.2019; Kraków – poster

108. J. Haberko, Light Transport in 3-Dimensional Hyperuniform Dielectric Networks, Frontiers in Optics + LaserScience, Washington DC, USA, 15–19.09.2019 – oral

109. I. Bugański, J. Wolny, H. Takakura: A real space structure refinement of i–ZnMgTm. ICQ14, 14-th Interna-tional Conference on Quasicrystals, 26–31 May 2019, Kranjska Gora, Slovenia: book of abstracts – poster

110. J. Wolny, R. Strzałka, I. Bugański: From a single slit to periodic, modulated, and quasiperiodic crystals– a new approach to the diffraction analysis of aperiodic systems. ICQ14: 14 International Conference onQuasicrystals : 26–31 May 2019, Kranjska Gora, Slovenia : book of abstracts s. 34 – oral

111. R. Strzałka, I. Bugański, J. Wolny: New corrections for phasons and multiple scattering in d-AlCuRh. ICQ14:14 International Conference on Quasicrystals : 26–31 2019, Kranjska Gora, Slovenia : book of abstracts – oral

112. J. Śmietańska, J. Śliwiak, M. Jaskólski, M. Gilski, Z. Dauter, R. Strzałka, J. Wolny: Structural aspects ofmodulated Hyp-1 – PR-10 protein from St. John’s wort, ICQ14, 14 International Conference on Quasicrystals: 26–31 May 2019, Kranjska Gora, Slovenia : book of abstracts – poster

113. J. Wolny, From a single slit to periodic, modulated and quasiperiodic crystals – a new approach to thediffraction analysis of aperiodic systems. ECM, 32 European Crystallographic Meeting : 18–23.08.2019,Vienna, Austria: book of abstract – poster

114. J. Śmietańska, J. Śliwiak, M. Jaskólski, M. Gilski, Z. Dauter, R. Strzałka, J. Wolny: Novel approach tostructure determination of complex protein. ECM 32: 32 European Crystallographic Meeting : 18–23.08.2019,Vienna, Austria: book of abstract., s. 374 – poster

115. I. Bugański, J. Wolny, H. Takakurai: The real space refinement of the icosahedral quasicrystal. ECM 32, 32European Crystallographic Meeting : 18–23.08.2019, Vienna, Austria : book of abstract – poster

116. R. Strzałka, I. Bugański, J. Wolny: Nowe poprawki na fazony i rozpraszanie wielokrotne w dekagonalnymkwazikrysztale AlCuRh. XLV zjazd fizyków polskich: Kraków 13–18 września 2019, program i streszczeniaKraków 2019 – poster

117. J. Wolny, R. Strzałka, Równoważność masy i energii jako podstawa fizyki relatywistycznej – w : XLV zjazdfizyków polskich, Kraków 13–18 września 2019 – oral

118. J. Stec, J. Tarasiuk, S. Wroński, R. Filipek, Calculations of micropore carbon materials permeability basedon stead-state pore-scale flow in 3D microstructure created based on X-ray computed tomography, Nano-scale characterization for cutting-edge materials research and sustainable materials development, DresdenNanoanalysis symposium : August 30, 2019, Dresden, Germany – poster

119. J. Stec, J. Tarasiuk, S. Wroński, R. Filipek, Calculations of micropore carbon materials permeability based onsteady-state pore-scale flow in 3D microstructure created based on X-ray computed tomography, Proceedingsof II European summer school on Materials science : 28.VIII – 30.VIII 2019 Dresden / ed. by Magdalena Bieda; Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, Poland, Dresden FraunhoferCluster Nanoanalysis, Germany. — Kraków–Dresden, Institute of Metallurgy and Materials Science of thePolish Academy of Sciences, 2019 – poster

Page 136: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

124 CHAPTER 11. CONFERENCES

120. A. Wit, S. Wroński, J. Tarasiuk, Simulation and optimization of porous bone-like microstructures with specificmechanical properties, 17th youth symposium on experimental solid mechanics: eds. Daniel Kytyr, ZoltanMajor, Tomas Doktor, Prague, Czech Technical University, Acta Polytechnica CTU Proceedings, vol. 25, 6–8June 2019 – oral

121. S. Wroński, J. Kamiński, A. Wit, J. Tarasiuk, P. Lipinski, Anisotropic bone response based on FEM simulationand real micro computed tomography of bovine bone, Computer Methods in Biomechanics & BiomedicalEngineering, 44-th congress of the Societe de Biomecanique, 28–30 October 2019, Poitiers, France – oral

122. Z.S. Hadiji, A. Wit, C. Dreistadt, S. Wroński, P. Lipinski, J. Tarasiuk, Evolution of mechanical fields duringthe gait cycle in healthy and implanted femoral bones, Computer Methods in Biomechanics & BiomedicalEngineering, 44-th congress of the Societe de Biomecanique, 28–30 October 2019, Poitiers, France – oral

123. A. Wit, S. Wroński, J. Tarasiuk, Z.S. Hadiji, P. Lipinski, C. Dreistadt, Modeling human gait cycle using FEmethod and results of backward kinematics, Computer Methods in Biomechanics & Biomedical Engineering,44th congress of the Societe de Biomecanique, 28–30 October 2019, Poitiers, France – poster

124. J. CIESLAK, Mossbauer investigations of FeCrNiCo-based high entropy alloys, International Conference onHyperfine Interactions and its applications (Hyperfine 2019), Goa 10-15 February 2019

125. L. SAMEK, Z. STĘGOWSKI, K. STYSZKO, L. FURMAN, M. ZIMNOCH, K. ROŻAŃSKI, Określenieudziału źródeł frakcji PM2.5 metodą receptorową (PMF) w Krakowie, XI Konferencja Naukowa OchronaPowietrza w Teorii i Praktyce, 22-25 Października 2019, Zakopane

126. A. SZCZYPKA, K. MATUSIAK, J. CHWIEJ, A. JUNG, Different liquids influence in MCP-N detectorsproperties, XVI Kongres Polskiego Towarzystwa Fizyki Medycznej, 12–15 czerwca 2019, Gliwice, plakat

127. K. MATUSIAK, A. LENCZUK, A. JUNG, J. CHWIEJ, The influence of postreadout temperature in thermo-luminescent detectors stability, XVI Kongres Polskiego Towarzystwa Fizyki Medycznej, 12–15 czerwca 2019,Gliwice, plakat

128. K. PŁANETA, Z. SETKOWICZ, D. RYSZAWY, N. JANIK-OLCHAWA, K. MATUSIAK, B. OSTACHOW-ICZ, J. CHWIEJ, Application of total reflection X-ray fluorescence (TXRF) method to identify elementalchanges occurring in rat organs after intracranial implantation of human glioblastoma multiforme cell line,National Scientific Conference for PhD Students : II edition : Cracow, March 02, 2019, plakat

129. A. DRÓŻDŻ, K. MATUSIAK, Z. SETKOWICZ, A. KUBALA-KUKUŚ, I. STABRAWA, M. CIARACH, K.JANECZKO, D. HORAK, M. BABIC, J. CHWIEJ, Assessment of the biodistribution and potential side effectsof in vivo exposition to iron oxides nanoparticles by means of total X-ray fluorescence spectroscopy, TXRF2019: 18th international conference on Total Reflection X-ray Fluorescence analysis and related methods : June25–28, 2019, Girona, Spain, plakat

130. K. MATUSIAK, K. PŁANETA, A. DRÓŻDŻ, [ET AL.], P. WRÓBEL, J. CHWIEJ, Badanie długofalowychzmian pierwiastkowych powstałych w wątrobie i nerkach po podaniu nanocząstek tlenku żelaza w otoczce zD-Mannitolu z zastosowaniem metody TXRF i EXRF, XLV zjazd fizyków polskich : Kraków 13–18 września2019, plakat

131. K. MATUSIAK, A. DRÓŻDŻ, Z. SETKOWICZ, M. CIARACH, K. JANECZKO, D. HORAK, M. BABIC,J. CHWIEJ, The preliminary study of biochemical changes occurring in rats heart after the exposure toD-mannitol coated iron (III) oxide nanoparticles, Nano and fast vibrational spectroscopy : seminar : June17–18, 2019, Kraków, plakat

Page 137: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

11.2. CONTRIBUTED CONFERENCE PRESENTATIONS 125

132. J. CHWIEJ, K. PŁANETA, K. MATUSIAK, B. OSTACHOWICZ, D. RYSZAWY, N. JANIK-OLCHAWA,Z. SETKOWICZ, The use of TXRF method for the analysis of potential biomarkers of human glioblastomamultiforme invasiveness in the rat brain, TXRF2019 : 18th international conference on Total Reflection X-rayFluorescence analysis and related methods : June 25–28, 2019, Girona, Spain

133. P. KASPRZYK, J. DUDAŁA, D. ADAMEK, B. KWINTA, M. LANKOSZ, Preliminary results of biomolecularcomposition of the pathological changes of human musce tissue usinf FTIR spectroscopy, Nano and fastvibrational spectroscopy seminar, 17-18 czerwiec 2019, Kraków, plakat

134. J. DUDAŁA, M. BIAŁAS, Utlility of deparaffinised samples for differentiation of adrenal gland lesion basedon FTIR measurements, Nano and fast vibrational spectroscopy seminar, 17-18 czerwiec 2019, Kraków, plakat

135. M. ULATOWSKA-BIAŁAS, J. DUDAŁA, K. OKOŃ, The use of FTIR spectroscopy for search of a biomolec-ular pattern differentiating adrenal gland tumours, 31st European Congress of Pathology Pathology is Nice,7-11 September 2019, Nice, France, plakat

136. J. DUDAŁA, O. FAŁOWSKA, Zastosowanie dozymetrii radiofotoluminescencyjnej RPLGD w dozymetriiindywidualnej i klinicznej, IV konferencja z zakresu detekcji promieniowania jonizującego oraz kontroli jakościw rentgenodiagnostyce, radioterapii i medycynie nuklearnej, 3-6 września 2019, Klimkówka k. Rymanowa

137. A.D. SUROWKA, A. ZIOMBER, M. CZYZYCKI,A. GIANONCELLI, D. BEDOLLA,G. BIRARDA, K.KASPER, M. SZCZERBOWSKA-BORUCHOWSKA, L. VACCARI, Molecular and elemental contrast mi-croscopy for biochemical fingerprinting of the cellular action mechanisms underlying tDCS in appetite control,3rd International Brain Stimulation Conference Vancouver, Canada, February 24-27, 2019, plakat

138. A.D. SUROWKA, G. BIRARDA, M. SZCZERBOWSKA-BORUCHOWSKA, A. ZIOMBER-LISIAK, A. GI-ANONCELLI, L. VACCARI, Model-based baseline correction algorithm for mid-IR measurements of complextissue-substrate systems, ICAVS2019 New Zaeland, Auckland 7-12 July 2019

139. A.D. SUROWKA, G. BIRARDA, M. SZCZERBOWSKA-BORUCHOWSKA, A. ZIOMBER,A. GIANON-CELLI, L. VACCARI, Model-based Baseline Correction Routine for FTIR Measurements of Complex Tissue-Substrate Systems, XVth International Conference on Molecular Spectroscopy Poland, Wojanów, 15-19September 2019

140. A.D. SUROWKA, A. ZIOMBER-LISIAK, M. CZYZYCKI, A. GIANONCELLI, D. BEDOLLA, G. BIRARDA,K. KASPER, M. SZCZERBOWSKA-BORUCHOWSKA, L.VACCARI, Fingerprinting the Cellular Mecha-nisms of Appetite Control by tDCS in Substantia Nigra Neurons, XVth International Conference on MolecularSpectroscopy Poland, Wojanów, 15-19 September 2019, plakat

141. K. KASPER, A.D. SURÓWKA, A. ZIOMBER-LISIAK, M. CZYŻYCKI, A. MIGLIORI, P. WRÓBEL, M.SZCZERBOWSKA-BORUCHOWSKA, Molecular and Elemental Changes in Brain Structures of Obese RatsFollowing a Therapy by Transcranial Direct Current Stimulation (tDCS), XVth International Conference onMolecular Spectroscopy Poland, Wojanów, 15-19 September 2019, plakat

142. K. KASPER, A. D. SURÓWKA, A. ZIOMBER-LISIAK, M. CZYŻYCKI, A. MIGLIORI, P. WRÓBEL, M.SZCZERBOWSKA-BORUCHOWSKA, Molecular and elemental composition changes in the brain of obeserats induced by transcranial direct current stimulation (tDCS), Nano and Fast Vibrational Spectroscopy,Kraków, Polska, 17 – 18 czerwiec 2019. poster

Page 138: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

126 CHAPTER 11. CONFERENCES

143. M. M. GRZELAK, M. LANKOSZ, S. HOTLOŚ, Ł. CHMURA, D. ADAMEK, R. JACH, Imaging of pathologi-cal human tissues using FTIR spectroscopy: ovarian cancer case study, Nano and fast vibrational spectroscopyseminar, 17-18 czerwiec 2019, Kraków, plakat

144. P. PASZCZA, M. SZCZYGIEL, Z. MATUSZAK, Modelling of Effectiveness of Photodynamic Therapy forSingle Cells and Multicellular Spheroids, XLVI Winter School, The light side of the Force, Faculty of Bio-chemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 11-15 February 2019, Zakopane,plakat

145. P. PASZCZA, Z. MATUSZAK, Modelling of Effectiveness of Photodynamic Therapy for Single Cells andMulticellular Spheroids, Nano and Fast Vibrational Spectroscopy Seminar, Jagiellonian University,17–18 June,2019, Kraków, plakat

146. S.M. DUBIEL, Effect of magnetism on lattice dynamics as seen by Mossbauer spectroscopy, 5th workshop onab initio phonon calculations, Cracow, December 3–6, 2019

147. M. OUNACER, A. ESSOUMHI, A. RAZOUK, A. FNIDIKI, F. RICHOMME, J. JURASZEK, S.M. DUBIEL,M. SAHLAOUI, M. SAJIEDDINE, Structural, magnetic and Mossbauer studies of CoMg-ferrite nanoparticles,MECAME-GFSM 2019, 5th Mediterranean Conference on the Applications of the Mossbauer Effect & 41thWorkshop of the French speaking Group of Mossbauer Spectroscopy : Montpellier, 19–23 May 2019

148. A. WANDZILAK, S. McWILLIAMS, D. BESSAS, R. BJORNSSON, E. BILL, P. HOLLAND, S. DEBEER,NRVS and NFS study of an N2-reducing molecular iron-potassium complex, International Conference on theApplications of the Mossbauer Effect, 01-06 September, 2019, Dalian, China

149. L. SAMEK, Z. STĘGOWSKI, K. STYSZKO, L. FURMAN, Zastosowanie metody receptorowej PMF (PositiveMatrix Factorization) do identyfikacji źródeł zanieczyszczeń pyłowych powietrza w Krakowie oraz oszacowaniaich udziału w masie pyłów, Seminarium „Modelowanie jakości powietrza w Polsce“ 15 lutego 2019, Warszawa

150. L. SAMEK, Możliwości analityczne systemu EDXRF pracowni Fluorescencji Rentgenowskiej, Wydziału Fizykii Informatyki Stosowanej, AGH Akademii Górniczo-Hutniczej, 100 lat kryminalistyki, 7 czerwca 2019, Kraków

151. L.SAMEK, Z.STEGOWSKI, K. STYSZKO , L. FURMAN, M. ZIMNOCH, K. RÓŻAŃSKI, E. KONDURACKA,Seasonal variation of elemental, ionic concentrations and estimated sources of PM2.5 fraction in the urbanarea of Kraków, 7th Iberian Meeting, Aerosols Science and Technology, RICTA19, 9-11 July 2019, Lisbon

152. L. SAMEK, Z. STĘGOWSKI, L. FURMAN, K. STYSZKO, Enhancing the Inventory of Aerosol SourceProfiles Characterized by Nuclear Analytic Techniques in Support of Air Quality Management, IAEA TCProject Meeting, 25-29 November 2019, Lisbon

153. M. J. KRAWCZYK, M.Woloszyn, P.Gronek, K.Kulakowski, and J.Mucha, The Heider Balance and theLooking-Glass Self , Conference on Complex Systems CCS’19, Singapore, September 30 - October 4, 2019,poster.

154. P. Bancerowski, K. MALARZ, Influence of group leader strength on group opinion unanimity, Conference onComplex Systems, Sep. 30-Oct. 4, 2019, Singapore (SG)

155. K. MALARZ, K. Kułakowski, Paradox of integration- cellular automata approach, 10th Polish Symposium onPhysics in Economy and Social Sciences, Jul. 3-5, 2019, Swierk (PL)

Page 139: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

11.2. CONTRIBUTED CONFERENCE PRESENTATIONS 127

156. P. GAWROŃSKI, K. Kułakowski, A. Chizhik, A. Stupakiewicz, Micromagnetic simulation of spiral domainstructures in microwires under influence of circular magnetic field, 12 Symposium on Hysteresis Modelingand Micromagnetics, Heraklion, Crete, May 19-22, 2019, poster.

157. P. GAWROŃSKI, K. Kułakowski, A. Chizhik, A. Stupakiewicz, Transformation between spiral and circularmagnetic domain structures in microwires with negative magnetostriction, Joint European Magnetic Symposia2019: Uppsala, Sweden , 26-30 Aug 2019, poster.

158. P. Kulczycki, D. Kruszewski, Detection of Rare Elements in Investigation of Medical Problems, 11th AsianConference on Intelligent Information and Database Systems, Yogyakarta (Indonezja), 8-11 kwietnia 2019.

159. P. A. Kowalski, K. Franus, S. Łukasik, Crow Search Algorithm for Continuous Optimization Tasks, 2019 6thInternational Conference on Control, Decision and Information Technologies, Paryż (Francja), 23-26 kwiecień2019, ss 7-12

160. P. Kulczycki, Procedures for Outliers Detection, Clustering, and Classification Based on NonparametricMethodology, The 2019 International Conference on Computational Intelligence, Information Technology andSystems Research, Lublin, 13-15 czerwca 2019, ss. 3-4.

161. S. Łukasik, M. Skublewska-Paszkowska, M. Charytanowicz, Nonparametric Density Estimation for HumanMotion Tracking, The 2019 International Conference on Computational Intelligence, Information Technologyand Systems Research, Lublin, 13-15 czerwca 2019, ss. 11-12.

162. S. Łukasik, D. Sarkowicz, P.A. Kowalski, Multi-Objective Optimization with the Whale Optimization Algo-rithm, The 2019 International Conference on Computational Intelligence, Information Technology and SystemsResearch, Lublin, 13-15 czerwca 2019, s. 13.

163. G. Gołaszewski, P. Kulczycki, T. Szumlak, S. Łukasik, An Algorithm to Reconstruct Long Lived Particlesin LHCb CERN Experiment, The 2019 International Conference on Computational Intelligence, InformationTechnology and Systems Research, Lublin, 13-15 czerwca 2019, ss. 14-15.

164. P. A. Kowalski, K. Sapała, W. Warchałowski, PM10 Forecasting Through Applying Convolution Neural Net-work Techniques, 27th International Conference on Modelling, Monitoring and Management of Air Pollution,Aveiro (Portugalia), 26-28 czerwiec 2019, ss 1-12.

165. P.A. Kowalski, J. Błoniarz, Ł. Chmura, Convolutional Neural Networks in the Ovarian Cancer Detection,11th European Symposium on Computational Intelligence and Mathematics 2019 (ESCIM 2019), Toledo(Hiszpania), 7-10 padziernika 2019, ss. 18-20.

166. P. Kulczycki, Methodically Unified Procedures for Outlier Detection, Clustering and Classification, The FutureTechnologies Conference 2019, San Francisco (USA), 24-25 października 2019.

167. P. A. Kowalski, K. Sapała, and W. Warchałowski, Convolution Neural Network PM-10 Prediction SystemBased on a Dense Measurement Sensor Network in Poland, Air Quality, Pollution and Management 2019,Kuala Lumpur (Malezja), 5-6 grudnia 2019, s. 293.

168. J. M. MICHALIK, W. WILCZYŃSKA-MICHALIK, M. MICHALIK, CZ. KAPUSTA, Magnetic micropariclesform industrial pollution sources in soils, 10th International Conference on Fine Particle Magnetism; Gijón;26-31/05/2019 (Oral)

Page 140: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

128 CHAPTER 11. CONFERENCES

169. A. GILARSKA, J. LEWANDOWSKA-ŁAŃCUCKA, A. BUŁA, W. HORAK, A. ŁATKIEWICZ, M. NOWAKOWSKA,Bioaktywne hydrożelowe materiały hybrydowe do regeneracji tkanki kostnej, konferencja krajowa „III Dok-toranckie Sympozjum Nanotechnologii NanoMat”, Łódź, 13-14.06.2019 (Oral)

170. E .GUMIENICZEK-CHŁOPEK, J. ODROBIŃSKA, CZ. KAPUSTA, SZ. ZAPOTOCZNY, Biopolimerowenanokapsuły z magnetycznym rdzeniem przeznaczone do aplikacji biomedycznych, konferencja krajowa „IIIDoktoranckie Sympozjum Nanotechnologii NanoMat, Łódź,13-14.06.2019 (Oral)

171. S. FIEJDASZ, A. GILARSKA, S. ZAPOTOCZNY, M. NOWAKOWSKA, C. KAPUSTA, Hydrogel-basedhybrid magnetic scaffolds for tissue engineering applications, 30th Annual Conference of the European Societyfor Biomaterials conference (ESB2019) Dresden, Germany, 9-13.09.2019 (Poster)

172. A. GILARSKA, S. FIEJDASZ, S. ZAPOTOCZNY, M. NOWAKOWSKA, C. KAPUSTA, Otrzymywanie iwłaściwości nanocząstek magnetycznych do zastosowań w inżynierii tkankowej, konferencja krajowa Dokonanianaukowe doktorantów, Poznań, 30.03.2019 (Poster)

173. E. GUMIENICZEK-CHŁOPEK, J. ODROBIŃSKA, Biopolimerowe kapsuły zawierające nanocząstki super-paramagnetyczne jako funkcjonalne nośniki przeznaczone do aplikacji biomedycznych, konferencja krajowaDokonania naukowe doktorantów, Poznań, 30.03.2019 (Poster)

174. A. GILARSKA, S. FIEJDASZ, S. ZAPOTOCZNY, M. NOWAKOWSKA, CZ. KAPUSTA, Magnetic nanopar-ticles as inorganic components of hybrid materials for tissue regeneration, konferencja międzynarodowa XXXVI-Ith Biennial Meeting of the Spanish Royal Society of Physics, Saragossa, Hiszpania, 16-17.07.2019 (Poster)

175. E. GUMIENICZEK-CHŁOPEK, J. ODROBIŃSKA, SZ. ZAPOTOCZNY, CZ. KAPUSTA, Magnetically Nav-igated Polysaccharides-based Capsules as Smart Delivery Systems, konferencja międzynarodowa XXXVIIthBiennial Meeting of the Spanish Royal Society of Physics, Saragossa, Hiszpania, 16-17.07.2019 (Poster)

176. A. GILARSKA, S. FIEJDASZ, S. ZAPOTOCZNY, M. NOWAKOWSKA, C. KAPUSTA, Magnetic nanopar-ticles as inorganic components of hybrid materials for tissue regeneration, konferencja międzynarodowa Inter-NanoPoland 2019, Katowice, 16-17.10.2019 (Poster)

177. E. GUMIENICZEK-CHŁOPEK, J. ODROBIŃSKA, CZ. KAPUSTA, SZ.Z APOTOCZNY, Magnetically Nav-igated Capsules as Smart Delivery Systems Designed for Biomedical Applications, konferencja międzynaro-dowa InterNanoPoland 2019, Katowice, 16-17.10.2019 (Poster)

178. I. BIAŁO, Anomalous phonon dispersion in Nd2−xCexCuO4 studied by inelastic x-ray scattering; (coauthors:B. Yu, W. TABIŚ, M. Greven, A. Bosak, A. KOZŁOWSKI, N. Barisic), 5th workshop on ab initio phononcalculations: Cracow, December 3–6, 2019 (oral)

179. I. BIAŁO, Charge density wave order in cuprates under extreme conditions; (coauthors: A. KOZŁOWSKI,W. TABIŚ, N. Barisić, D. Pelc); Superstripes 2019: quantum complex matter: Ischia, Italy, June 23–29, 2019(oral)

180. W. TABIŚ, Charge correlations and the Fermi surface reconstruction in cuprate superconductors; (coauthors:Izabela BIAŁO, Barisic Neven), 45th General meeting of Polish physicists: Kraków, September 13–18, 2019(oral)

181. I. BIAŁO, Synchrotron x-ray studies of the charge density wave order; (coauthors: W. TABIŚ, N. Barisić, Z.Anderson, Y. Tang, B. Yu, M. Greven), Paris Edge: cutting-edge topics in quantum materials: internationalconference: September 25–28, 2019, Paris (oral)

Page 141: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

11.2. CONTRIBUTED CONFERENCE PRESENTATIONS 129

182. I. BIAŁO, Uniaxial pressure studies of charge correlations in cuprates; (coauthors: BIAŁO, Wojciech TABIŚ,Andrzej KOZŁOWSKI, Neven Barisić), XIX National Conference on Superconductivity : unconventionalsuperconductivity and strongly correlated electron systems: October 6-11, 2019, Bronisławów (oral)

183. I. BIAŁO, X-ray studies of charge correlations in cuprates under extreme conditions; (coathors: W. TABIŚ,N. Barisić ), ISSRNS’2019: 14th International School and Symposium on Synchrotron Radiation in NaturalScience: 9–14 June 2019, Zakopane, Poland (oral)

184. J. Stępień, NLD as the means of studying near surface crystallographic structure in pristine and TM dopedsingle crystals bismuth chalcogenides; (coauthors: M. Jurczyszyn, K. Maćkosz, A. KOZŁOWSKI, Z. KĄKOL,M. Sikora), ISSRNS’2019: 14th International School and Symposium on Synchrotron Radiation in NaturalScience: 9–14 June 2019, Zakopane, Poland (poster)

185. R. ZALECKI, Magnetic and transport properties of YBCO superconductors fabricated by MG and IF meth-ods; (coauthors: W.M. WOCH, M. KOWALIK, M. GIEBUŁTOWSKI, P. Pęczkowski), XIX National Con-ference on Superconductivity: unconventional superconductivity and strongly correlated electron systems:October 6-11, 2019, Bronisławów (poster)

186. M. GIEBUŁTOWSKI, Oxygenation temperature dependency on the critical temperature and the criticalcurrent of thallium based superconductors; (coauthors: W.M. WOCH, R. ZALECKI, M. KOWALIK, Ł.GONDEK), 17th Czech and Slovak Conference on Magnetism, June 3 – 7, 2019, Kosice, Slovakia (poster)

187. W. M. WOCH, Critical exponents of T l0.8Bi0.3Sr1.8Ba0.2Ca2Cu3Ox bulk superconductor; (coauthors: R.ZALECKI, M. GIEBUŁTOWSKI, J. NIEWOLSKI, J. PRZEWOŹNIK, Cz. KAPUSTA), XIX National Con-ference on Superconductivity: unconventional superconductivity and strongly correlated electron systems:October 6-11, 2019, Bronisławów

188. Sylwia Sowa, Structure and low temperature physical properties of selected U-T (T=Mo, Nb, Pt, Ru, Ti)alloys with a cubic γ − U phase; (coauthors: N.-T.H. Kim-Ngan, Magdalena Krupska-Klimczak, VolodymyrButurlim, Ladislav Havela, Zbigniew TARNAWSKI, Maciej CHROBAK), Future engineering 2019: technicaland organizational innovations for industry: 5th international science and business conference, Radom 2019(oral)

189. M. Kowalik, Estimation of Critical Temperature of High-Temperature Superconductor by Neural Network,(coauthors: W. Tokarz, M. Giebułtowski, W.M. Woch, R. Zalecki, J. Niewolski), Theoretical Foundations ofMachine Learning, Kraków 2019 (poster)

190. M. Kowalik, The application of unsupervised learning to the AC susceptibility data of High-TemperatureSuperconductors (coauthors: R. Zalecki, M. Giebułtowski, W. Tokarz, J. Niewolski and J. M. Michalik),GHOST Day: Applied Machine Learning Conference, Poznań 2019 (poster)

191. M. Kowalik, (coauthor:Simon Mandlık) Data science, artificial intelligence and predicting electricity consump-tion on the example of Romania, Scientific Conference KITS 2019 – VII edition, Kraków 2019 (poster)

192. M. ŚLĘZAK, A. KOZIOŁ-RACHWAŁ, Annual Conference on Magnetism and Magnetic Materials, Las Vegas,USA 4-8.11.2019 (oral)

193. M. ŚLĘZAK, A. KOZIOŁ-RACHWAŁ, Annual Conference on Magnetism and Magnetic Materials, Las Vegas,USA 4-8.11.2019 (oral)

Page 142: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

130 CHAPTER 11. CONFERENCES

194. M. ŚLĘZAK, A. KOZIOŁ-RACHWAŁ, Annual Conference on Magnetism and Magnetic Materials, Las Vegas,USA 4-8.11.2019 (poster)

195. M. ŚLĘZAK, A. KOZIOŁ-RACHWAŁ,14th Joint MMM-Intermag Conference, Washington DC, USA, 14-18.01.20199 (oral)

196. M. ŚLĘZAK, A. KOZIOŁ-RACHWAŁ, 14th Joint MMM-Intermag Conference, Washington DC, USA, 14-18.01.2019 (oral)

197. M. ŚLĘZAK, 4th Polish Scientific Networks conference ’Science&Technology’, Poznań, 19-21.09.2019 (oral)

198. M. ŚLĘZAK, Exchange bias in CoO/Fe(110) bilayers: a ferromagnet drives an antiferromagnet, LIV ZakopaneSchool of Physics Breaking Frontiers: Submicron Structures in Physics and Biology, 21-25 May 2019, Zakopane(oral)

199. M. ŚLĘZAK, 45 Zjazd Fizyków Polskich PTF 13-18.09.2019 (oral)

200. T. ŚLĘZAK, A. KOZIOŁ RACHWAŁ, P. DRÓŻDŻ, 24th Soft Magnetic Materials Conference, Poznań,Poland, September 4-7, 2019 (oral)

201. T. ŚLĘZAK, A. KOZIOŁ RACHWAŁ, P. DRÓŻDŻ, 24th Soft Magnetic Materials Conference, Poznań,Poland, September 4-7, 2019 (poster)

202. T. ŚLĘZAK, A. KOZIOŁ RACHWAŁ, P. DRÓŻDŻ, 24th Soft Magnetic Materials Conference, Poznań,Poland, September 4-7, 2019 (poster)

203. M. Przybylski, Tuning of Easy Magnetization Axis by Thickness, Covering and Quantum Confinement, Semi-nar of Department of Physics and Energy Science, University of Colorado, Colorado Springs, USA, 12.07.2019,

204. M. Przybylski, O nanotechnologii dla profesjonalistów oraz o kierowaniu centrum badawczym dla laików,Zjazd Fizyków Polskich, Kraków, Poland, 15-20.09.2019,

205. M. Dąbrowski, M. Cinal, M. Przybylski, Fine tuning of canted magnetization in stepped Fe films throughthickness variation, Au capping and quantum confinement, Annual Meeting on Magnetism and MagneticMaterials, Las Vegas, USA, 4-8.11.2019 (oral),

206. M. Przybylski, J. Żukrowski, K. Łątka, Z. Su, P. Kulik, Z. Celiński, V. Harris, Correlation of hyperfine fielddistribution and isomer shifts with magnetic properties in Mo-substituted Z-type barium hexaferrites, AnnualMeeting on Magnetism and Magnetic Materials, Las Vegas, USA, 4-8.11.2019 (oral),

207. M. Przybylski, J. Żukrowski, N. Alghamdi, J. Stroud, J. H. Hankiewicz, Z. Celiński, Mossbauer and magnetom-etry studies of ferrite particles for magnetic resonance imaging thermometry, Annual Meeting on Magnetismand Magnetic Materials, Las Vegas, USA, 4-8.11.2019

11.3 Conferences organized by the Faculty

• 100th anniversary of AGH—Conference on challanges in physics and engineering Kraków, 18.10.2019

• 45th Congress of Polish Physical Society—100th anniversary of Physics at AGH, Kraków, 13–18.09.2019

Page 143: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

11.3. CONFERENCES ORGANIZED BY THE FACULTY 131

• STAR Collaboration Meeting - the physics program of the STAR experiment at RHIC Kraków, August 19-23,2019

• XIV Polish Workshop on Relativistic Heavy-Ion Collisions: Interplay between soft and hard probes of heavy-ion collisions Kraków, April 6-7, 2019

• REGIONAL INFO DAY - KRAKOW2019 Digital forensics: evidence analysis via intelligent systems andpractices Kraków, March 29-31.03, 2019

Page 144: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

132 CHAPTER 11. CONFERENCES

Page 145: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 12

Seminars

12.1 Seminar presentations

1. P. Szumniak, 4.06.2019 , Condensed Matter Theory and QC2 seminar, University of Basel, Hinge, surface andhybrid chiral states in 3D quantum Hall systems with charge density modulation,

2. A. Mreńca-Kolasińska, 18.09.2019, Theory Seminar of the Department of Physics, National Cheng KungUniversity, Tainan, Taiwan, Modeling of transport phenomena in graphene systems with n-p junctions.

3. J. Toboła, J. Cieślak, K. Jasiewicz, B. Wiendlocha, M. Calvo-Dahlborg, U. Dahlborg, Ab initio calculationsof electronic structure, magnetic and superconducting properties of high entropy alloys, 11.12.2019, Seminarof Department of Physics, City University of Hong Kong, China.

4. J. Toboła, Impact of chemical disorder on energy conversion in solids (thermoelectrics, magnetocalorics, ion-batteries) in view of ab initio calculations, 20.11.2019, Seminarium Oddziału Badań Magnetyków INTiBSPAN, Wrocław, Polska.

5. B. Wiendlocha, ”Ab initio calculations of electron transport properties in thermoelectric materials”, PohangUniversity of Science and Technology, Pohang, South Korea, 10.07.2019

6. S. Gołąb, Obliczenia ab initio własności nadprzewodników bizmutowych: wpływ efektów relatywistycznych,Środowiskowe Seminarium FCS, 17.04.2019, Kraków, Polska

7. J. Haberko, Metamaterials for controlling light polarization and asymmetric transmission of light, Universityof Fribourg, Department of Physics, Switzerland – invited seminar talk

8. R. Strzałka, Ostatnie osiągnięcia w udokładnianiu modeli strukturalnych kwazikryształów, ŚrodowiskoweSeminarium Fizyki Ciała Stałego, WFiIS AGH, 06.03.2019

9. Ł. Gondek, 13.02.2019, Seminar of Institute of Low Temperature and Structural Research, Wrocław, Neutronsfor magnetism and hydrogen storage.

10. D. RYBICKI, 14.06.2019, Seminarium Instytutu Fizyki, Akademia Pedagogiczna, Kraków, Charge distributionin the CuO2 plane in the cuprates

133

Page 146: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

134 CHAPTER 12. SEMINARS

11. W. TABIŚ, Electronic orders and the Fermi surface reconstruction in cuprate superconductors, University ofZagreb, 25 January 2019

12. W. TABIŚ, Charge order and its impact on the Fermi surface topology in cuprate superconductors. Uniwer-sytet Marii Curie-Skłodowskiej, Lublin, 29 January 2019

13. I. BIAŁO, Studies of charge ordering in high-TC superconductors under extreme conditions, ACMiN seminar,Kraków 30.05.2019;

14. I. BIAŁO, Studies of charge correlations in selected high TC cuprate superconductors by means of synchrotrontechniques; University of Zagreb, 25 January 2019

15. P. Gawronski, Micromagnetic simulations of domain structures in microwires, Seminar of Group of Nano-magnetism and Magnetization Processes, Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, Spain,20 September 2019.

16. Z. Burda, Zastosowanie macierzy losowych do wyboru optymalnego portfela, Centrum im. Hugona Steinhausa,Politechnika Wrocławska, 22.05.2019

17. S. M. DUBIEL, Seminarium „Mikroskopowe zjawiska w stopach Fe-Cr związane z ich własnościami makroskopowymi”Wydział Inżynierii Metali i Informatyki Przemysłowej AGH, 5 marzec 2019

18. S. M. DUBIEL, Seminarium “ Effect of magnetism on lattice dynamics – Mossbauer spectroscopic view”, 7thOctober 2019, National Argonne Laboratory, Lemont IL, USA

19. K. RÓŻAŃSKI. Czy zdołamy zatrzymać globalne ocieplenie? Seminarium Krakowskiego Oddziału PolskiegoTowarzystwa Przyjaciół Nauk o Ziemi, Kraków, 11 lutego 2019.

20. Ł. CHMURA, M. GAŁKOWSKI. Globalne ocieplenie – fakty i mity. Wykład w ramach UniwersytetuDziecięcego. Ośrodek Kultury im. C. K. Norwida, Kraków, 11 marca 2019.

21. P. WACHNIEW, E. Łokas. Kriokonity - sekretne życie lodowców. Seminarium Krakowskiego OddziałuPolskiego Towarzystwa Przyjaciół Nauk o Ziemi, Kraków, 14 października 2019.

22. K. RÓŻAŃSKI. Czy zdołamy zahamować globalne ocieplenie? Seminarium Polskiego Towarzystwa Fizy-cznego, Oddział w Białymstoku, Białystok, 23 listopada 2019.

23. J. NĘCKI. History and future of coal mining in Poland - Greenhouse gas and air quality perspectives, Seminar,Institute of Environmental Physics, Heidelberg University, Heidelberg, 12 December 2019

24. K. RÓŻAŃSKI. Globalne ocieplenie. Spotkanie Klubu Tygodnika Powszechnego, Kraków, 12 grudnia 2019.

25. J. BARTYZEL. Naukowiec o klimacie. . . i nie tylko. Małopolska Noc Naukowców, 27.09.2019, Kraków,Poland

26. R. Szymańska, Zagadki biotechnologii – wykład z warsztatami, 02.02.2019, Uniwersytet Otwarty AGH

Page 147: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

12.2. SEMINARS ORGANIZED BY THE FACULTY 135

12.2 Seminars organized by the Faculty

1. 2019/12/13, prof. dr hab. inż. Wojciech Łużny (KFMS WFiIS AGH) Sto lat fizyki na AGH

2. 2019/12/06, prof. dr hab. Janusz Wolny (WFiIS AGH) Seminarium dziekańskie

3. 2019/11/29, prof. dr hab. inż. Zbigniew Kąkol (KFCS WFiIS AGH) Ewaluacja Jakości Działalności Naukowej

4. 2019/11/22, dr inż. Michał Gałkowski (KZFJ WFiIS AGH) Pomiary lotnicze i modelowanie transportu gazówcieplarnianych w atmosferze Europy - misja CoMet 1.0

5. 2019/11/15, prof. dr hab. Stanisław Dubiel (WFiIS AGH) Effect of Magnetism on Lattice Vibrations

6. 2019/11/08, prof. dr hab. Krzysztof Kurek (Narodowe Centrum Badań Jądrowych) POLFEL—Polski laserna swobodnych elektronach

7. 2019/10/25, prof. dr. Janez Dolinsek (University of Ljubljana, Faculty of Mathematics and Physics, Ljubl-jana, Slovenia, Jozef Stefan Institute, Condensed Matter Physics Department, Ljubljana, Slovenia) Physicalproperties of high-entropy alloys

8. 2019/10/11, prof. dr hab. Zdzisław Burda (KISiFK WFiIS AGH) Dynamika rozkładu bogactwa

9. 2019/06/14, Prezentacje prac wyróżnionych w sesji studenckich kół naukowych

10. 2019/06/07, dr Maciej Czapkiewicz (Katedra Elektroniki WIEiT AGH) Model dyspersji barier energetycznychaktywowanego termicznie procesu przełączania magnetyzacji w układach cienkich warstw z magnetyczną ani-zotropią prostopadłą

11. 2019/05/31, prof. dr hab. Janusz Adamowski (KISiFK WFiIS AGH) Ujemna temperatura bezwzględna

12. 2019/05/24, dr inż. Tomasz Stopa (IBM) Komputer kwantowy IBM Qiskit—presentations — Tomasz Stopa- github — Qiskit.org — IBM-Q

13. 2019/05/17, dr inż. Michał Zegrodnik (Akademickie Centrum Meteriałów i Nanotechnologii, AGH) Nad-przewodnictwo wysokotemperaturowe oraz inne stany o złamanej symetrii w układach silnie skorelowanychelektronów

14. 2019/05/10, dr inż. Krzysztof Kolasiński Sztuczna inteligencja, zastosowanie, możliwości i ograniczenia, faktyi mity

15. 2019/04/26, Roland Schnuerer (Cockcroft Institute and University of Liverpool, Warrington, UK) NovelSilicon-based Beamline Monitors for Medical Accelerators

16. 2019/04/05, dr hab. Ryszard Zach (Katedra Fizyki Matriałów, Instytut Fizyki, WFMiI, Politechnika Krakowska)Własności magnetyczne związków miedzymetalicznych pod wysokim ciśnieniem

17. 2019/03/29, Prof. Jesus Medina Moreno (Department of Mathematics University of Cadiz, Spain) Mathe-matical tools applied to Digital Forensic

18. 2019/03/22, dr hab. inż. Aleksandra Jung (KFMiB WFiIS AGH) Ocena wydajności pozaustrojowej terapiiwątroby z wykorzystaniem modelowania kompartmentowego

Page 148: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

136 CHAPTER 12. SEMINARS

19. 2019/03/15, dr Michał Nowak (ACMiN AGH) W poszukiwaniu stanów związanych Majorany w nanostruk-turach hybrydowych

20. 2019/03/08, dr inż. Michał Ślęzak (KFCS WFiIS AGH) Reorientacja spinowa i kontrola anizotropii magne-tycznej w niskowymiarowych układach ferro- i antyferromagnetycznych

21. 2019/03/01, prof. dr hab. inż. Kazimierz Różański (KZFJ WFiIS AGH) Od Paryża do Katowic: Czy zdołamyzahamować globalne ocieplenie?

22. 2019/01/25, dr inż. Jarosław Kanak (Katedra Elektroniki Wydział Informatyki, Elektroniki i TelekomunikacjiAGH) Badania strukturalne układów cienkowarstwowych pod kątem zastosowań w elektronice spinowej

23. 2019/01/18, dr Zbigniew Bukowski (Instytut Niskich Temperatur i Badań Strukturalnych, Polskiej AkademiiNauk, Wrocław) Magnetyzm i nadprzewodnictwo w domieszkowanym EuFe2As2

24. 2019/01/11, dr inż. Paweł Wójcik (KISiFK WFiIS AGH) Rola oddziaływania spin-orbita w niskowymiarowychstrukturach półprzewodnikowych

Page 149: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Part III

Promotion proceedings

137

Page 150: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława
Page 151: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 13

Defended PhD thesis

• 14.11.2019mgr inż. Szymon Bugiel”Development of monolithic pixel detectors”supervisor: prof. dr hab. inż. Marek Idzikauxiliary supervisor: prof. dr inż. Tomasz Fiutowski

• 17.10.2019mgr inż. Justyna Kutorasińska”Wykorzystanie zaawansowanych metod spektroskopowych w badaniach nad patogenezą epilepsji na przykładziemodeli zwierzęcych”supervisor: dr hab. inż. Joanna Chwiej

• 23.09.2019mgr inż. Jakub Kremer”Measurement of W boson production in pp collisions at 5.02 TeV and optimisation of electron identificationin Pb+Pb collisions with the ATLAS detector”supervisor: prof. dr hab. inż. Iwona Grabowska-Bołd

• 12.09.2019mgr inż. Piotr Janus”Measurement of W boson production in Pb+Pb collisions at 5.02 TeV with the ATLAS detector”supervisor: prof. dr hab. inż. Mariusz Przybycień

• 09.09.2019mgr inż. Roma Bugiel”Beam test studies of monolithic pixel structures for CLIC vertex detector”supervisor: prof. dr hab. inż. Marek Idzikauxiliary supervisor: dr inż. Krzysztof Świentek

139

Page 152: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

140 CHAPTER 13. DEFENDED PHD THESIS

• 17.06.2019mgr inż. Kamil Goc”Hydrogen storage properties of magnesium hydride nanocomposites with graphite and transition metals”supervisor: prof. dr Czesław Kapustacosupervisor: prof. Akito Takasaki

• 17.06.2019mgr inż. Witold Prendota”Properties of Fe-Mn-Si and Ni-Ti shape memory alloys prepared by pulsed-current sintering”supervisor: prof. dr Czesław Kapustacosupervisor: prof. Akito Takasaki

• 18.04.2019mgr inż. Karol Borkowski”Analysis and correction of errors in diffusion tensor imaging due to gradient inhomogeneity”supervisor: dr hab. Artur Krzyżak

• 02.04.2019mgr inż. Jakub Chęciński”Modeling of magnetization dynamics in spintronic oscillators”supervisor: prof. dr hab. Tomasz Stobiecki

• 31.01.2019mgr inż. Agnieszka Dróżdż”Wykorzystanie zaawansowanych metod spektroskopowych do badania wpływu nanoczsstek tlenków żelazana organizmy żywe”supervisor: dr hab. inż. Joanna Chwiejauxiliary supervisor: dr inż. Katarzyna Matusiak

• 4.01.2019rmgr inż. Elżbieta Strzałka”Modelowanie obrazowania ładunku uwięzionego w planarnych kropkach kwantowych z wykorzystaniem mikroskopiibramki skanującej”supervisor: prof. dr hab. inż. Bartłomiej Szafran

Page 153: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 14

Habilitations in physics by the FacultyCouncil

1. 20.09.2019Paweł WójcikWpływ oddziaływania spin-orbita oraz efektów orbitalnych na własności niskowymiarowych struktur półprze-wodnikowych i nadprzewodzących

2. 01.07.2019Agnieszka Obłąkowska-MuchaZniszczenia radiacyjne w detektorze wierzchołka spektrometru LHCb. Pierwsza obserwacja procesur B0

s →D∓s K

∗±.

3. 11.02.2019Damian RybickiElektronowe własności spinowe oraz ładunkowe nadprzewodników wysokotemperaturowych oraz perowskitówmanganowych

4. 14.09.2019Bartłomiej Wiendlocha, Domieszki rezonansowe w materiałach termoelektrycznych – struktura elektronowa iwłasności transportowe

141

Page 154: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

142 CHAPTER 14. HABILITATIONS IN PHYSICS BY THE FACULTY COUNCIL

Page 155: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 15

Habilitations of the employees in theexternal institutions

1. 16.12.2019, dr Piotr Kotko, Instytut Fizyki Jądrowej PAN w Krakowie, Niezmiennicze względem cechowaniaamplitudy poza powłoką masy w Chromodynamica Kwantowej: formalizm i zastosowania.

143

Page 156: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

144 CHAPTER 15. HABILITATIONS OF THE EMPLOYEES IN THE EXTERNAL INSTITUTIONS

Page 157: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Part IV

Grants

145

Page 158: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława
Page 159: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 16

National Research Council (NCN)grants

1. SONATA BIS NCN 2018/30/E/ST3/0037 Wpływ rozkładu ładunku oraz fluktuacji spinowych na temperaturękrytyczną w nadprzewodnikach wysokotemperaturowych 2019-09-03 2024-09-02

2. ETIUDA, UMO-2019/32/T/ST3/00191) Rola korelacji ładunkowych w mechanizmie nadprzewodnictwa wysokotem-peraturowego, Izabela BIAŁO, Nov 2019 to Jul 2020

3. MINIATURA 2 2018/02/X/ST3/01741 The application of machine learning to the superconduting transition,M. KOWALIK, 9 January 2019 - 8 January 2020

4. OPUS NCN 2015/17/B/ST2/00101 Badanie czasoprzestrzennej dynamiki zderzeń jądrowych poprzez kolek-tywne korelacje wielocząstkowe prof. dr hab. PIOTR BOŻEK 2016-01-25 2019-01-24

5. OPUS NCN 2015/17/B/ST2/02904 Wkład do rozwoju trygera wysokiego poziomu eksperymentu LHCboraz przyszłościowych półprzewodnikowych systemów do precyzyjnej rekonstrukcji położenia cząstek naład-owanych. dr hab. TOMASZ SZUMLAK 2016-01-25 2019-01-24

6. OPUS NCN 2015/17/B/ST3/01204 Teoretyczne i doświadczalne badanie wpływu energii formowania i tem-peratury na skład fazowy i własności stopów wysokiej entropii otrzymywanych nowatorską metodą dr hab.JAKUB TADEUSZ CIEŚLAK 2016-03-16 2019-03-15

7. OPUS NCN 2015/17/B/ST3/01161 Symulacje zjawisk interferencyjnych na złączach n-p indukowanych elek-trostatycznie w grafenie przez sondę skanującą prof. dr hab. BARTŁOMIEJ SZAFRAN 2016-01-26 2019-08-25

8. OPUS NCN 2015/19/B/ST3/00543 Sterowalne właściwości magnetyczne nanostruktur spintronicznych nabazie stopu FeRh dr hab. TOMASZ ŚLĘZAK 2016-10-03 2019-10-02

9. OPUS NCN 2015/19/B/ST2/00989 Badanie ekskluzywnej i prawie ekskluzywnej produkcji stanów o małychmasach z wykorzystaniem tagerów w przód w eksperymencie ATLAS na akceleratorze LHC. dr LESZEKSTANISŁAW ADAMCZYK 2016-08-09 2019-10-08

10. OPUS NCN 2016/21/B/ST2/01083 Analiza zniszczeń radiacyjnych pozycjoczułych planarnych mikro-paskowychsensorów krzemowych dla fizyki wysokich energii dr AGNIESZKA MAGDALENA OBŁĄKOWSKA-MUCHA2017-03-01 2020-02-29

147

Page 160: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

148 CHAPTER 16. NATIONAL RESEARCH COUNCIL (NCN) GRANTS

11. PRELUDIUM NCN 2015/17/N/ST3/02266 Symulacje mikroskopii bramki skanującej dla układów dwuwymi-arowych z oddziaływaniem spin-orbita. KRZYSZTOF KOLASIŃSKI 2016-02-25 2019-02-24

12. PRELUDIUM NCN 2016/21/N/ST3/00287 Wpływ nieporządku fazonowego na obraz dyfrakcyjny strukturkwaziperiodycznych IRENEUSZ JÓZEF BUGAŃSKI 2017-03-02 2020-03-01

13. HARMONIA NCN 2015/18/M/ST2/00162 Badanie dyfrakcji i natury spinu protonu w oddziaływaniach pro-tonów i ciężkich jonów w eksperymencie STAR na akceleratorze RHIC. prof. dr hab. MARIUSZ PRZYBY-CIEŃ 2016-04-08 2019-04-07

14. SONATA NCN 2015/19/D/NZ9/00060 Nowe lipidy prenylowe - występowanie, biosynteza i działanie biolog-iczne dr hab. RENATA MARIOLA SZYMAŃSKA 2016-06-14 2019-06-13

15. SONATA NCN 2015/19/D/ST8/00818 Badanie eksperymentalne in-situ oraz modelowanie mechanizmów od-kształcenia metali heksagonalnych podczas rozciągania. dr MARCIN RAFAŁ WROŃSKI 2016-07-18 2019-07-17

16. SONATA BIS 2014/14/E/ST3/00026 Sprzężenia i anizotropia magnetyczna wieloskładnikowych nanokom-pozytów i ferrofluidów badane technikami wysokorozdzielczej spektroskopii rentgenowskiej dr hab. MARCINANDRZEJ SIKORA 2015-05-27 2020-05-26

17. SONATA NCN 2016/23/D/ST8/00669 Hydrożelowe magnetyczne materiały hybrydowe potencjalnie przy-datne do regeneracji tkanki kostnej dr SYLWIA FIEJDASZ 2017-09-29 2020-09-28 ”

18. OPUS NCN 2016/23/B/ST10/00909 Ocena możliwości zastosowania analiz pełnego składu izotopowego wody(zawartość deuteru, tlenu-18 oraz tlenu-17) w hydrologii prof. dr hab. KAZIMIERZ RÓŻAŃSKI 2017-09-012020-08-31

19. PRELUDIUM NCN 2016/23/N/ST1/01355 Uczenie statystyczne dla łańcuchów Markowa GABRIELA BEATACIOŁEK 2017-09-22 2019-09-21

20. PRELUDIUM NCN 2016/21/N/ST3/00287 Wpływ nieporządku fazonowego na obraz dyfrakcyjny strukturkwaziperiodycznych IRENEUSZ JÓZEF BUGAŃSKI 2017-03-02 2020-03-01

21. OPUS NCN 2016/21/B/NZ7/01747 Zmiana ekspresji mikroRNA ludzkich monocytów krwi obwodowej wskutekekspozycji na cząsteczki pyłu zawieszonego PM 2,5 in vitro-potencjalny związek między zanieczyszczeniempowietrza a miażdżycą dr hab. EWA KONDURACKA 2017-05-17 2020-05-16

22. OPUS NCN 2016/21/B/NZ7/01747 Stan początkowy i wczesna ewolucja w zderzeniach jądrowych o na-jwyższych energiach prof. dr hab. PIOTR BOŻEK 2019-02-04 2022-02-03

23. MINiATURA NCN 2018/02/X/ST3/01741/1 Analiza przejścia nadprzewodzącego za pomocą uczenia maszynowegodr MARCIN BARTŁOMIEJ KOWALIK 2019-01-23 2020-01-22

24. ETIUDA NCN 2018/28/T/ST2/00047 Measurement of W boson production in Pb+Pb collisions at 5.02 TeVwith the ATLAS detector PIOTR ANDRZEJ JANUS 2018-10-01 2019-09-30

25. ETIUDA NCN 2018/28/T/ST2/00048 Measurement of W boson production in pp collisions at 5.02 TeVand optimization of electron identification in Pb+Pb collisions with the ATLAS detector JAKUB KREMER2018-10-01 2019-09-30

Page 161: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

149

26. PRELUDIUM NCN 2017/27/N/ST2/01880 Inteligentne oprogramowanie monitorujące oraz testy krzemowychsensorów pikselowych dla zmodernizowanego detektora wierzchołka w eksperymencie LHCb. MACIEJ WITOLDMAJEWSKI 2018-08-27 2020-08-26

27. SONATA BIS 2017/26/E/ST5/00043 Opracowanie modelu przebudowy tkanki kosntej pod wpływem działa-jących obciążeń dr hab. SEBASTIAN ŁUKASZ WROŃSKI 2018-04-09 2022-04-08

28. SONATA BIS 2017/26/E/ST3/00119 Rola stanów rezonansowych, sprzężenia spin-orbita i nieporządku wnadprzewodnictwie wybranych materiałów dr hab. BARTŁOMIEJ ADAM WIENDLOCHA 2018-04-09 2023-04-08

29. SONATA 2017/26/D/ST3/00109 Badanie nadprzewodnictwa niekonwencjonalnego w cienkich warstwach met-alicznych dr PAWEŁ WÓJCIK 2018-03-21 2021-03-20

30. OPUS NCN 2017/25/B/ST8/00134 Badanie procesu odkształcenia sprężysto-plastycznego i mikrozniszczeńw materiałach polikrystalicznych przy użyciu metod dyfrakcyjnych i modelu samouzgodnionego prof. dr hab.ANDRZEJ BACZMAŃSKI 2018-01-30 2021-01-29

31. MINIATURA NCN 2018/02/X/ST3/01741/1 Analiza przejścia nadprzewodzącego za pomocą uczenia maszynowegodr Marcin Bartłomiej Kowalik 2019-01-09 2020-01-08

32. MINIATURA NCN 2019/03/X/NZ7/01265 Analiza wpływu struktury szkieletu karotenoidowego na własnościfizykochemiczne hemoglobiny dr JOANNA MARIA FIEDOR 2019-12-19 2020-12-18

33. SONATA NCN 2018/31/D/ST2/02731 Badania Chromodynamiki Kwantowej przy użyciu lagranżjanu MHVdr hab. Piotr Kotko 2019-07-04 2021-07-03

34. HARMONIA NCN 2018/30/M/ST2/00395 Badanie dyfrakcji i natury spinu protonu w oddziaływaniach pro-tonów i ciężkich jonów w eksperymencie STAR na akceleratorze RHIC prof. dr hab. MARIUSZ PRZYBY-CIEŃ 2019-10-31 2022-10-30

35. MINIATURA NCN 2019/03/X/NZ4/00629 Badanie wpływu preparatyki na skład pierwiastkowy archiwalnychpreparatów tkankowych dr Paweł Marek Wróbel 2019-11-22 2020-11-21

36. SHENG NCN 2018/30/Q/ST2/00101 Dynamika gorącej materii QCD w zderzeniach ciężkich jonów: odmałych do dużych systemów dr hab. Adam Bzdak 2019-07-26 2022-07-25

37. PRELUDIUM NCN 2018/31/N/ST2/01471 Innowacyjne zastosowanie inteligencji obliczeniowej do analizyrozpadu Bs-¿Ds*K* oraz autonomicznej oceny jakości danych detektora UT w eksperymencie LHCb WojciechArtur Krupa 2019-07-26 2021-07-25

38. ETIUDA NCN 2019/32/T/ST3/00191 Rola korelacji ładunkowych w mechanizmie nadprzewodnictwa wysokotem-peraturowego Izabela Biało 2019-10-01 2020-07-31

39. OPUS NCN 2018/29/B/ST2/00244 Stan początkowy i wczesna ewolucja w zderzeniach jądrowych o na-jwyższych energiach prof. dr hab. Piotr Bożek 2019-02-04 2022-02-03

40. ETIUDA NCN 2019/32/T/ST3/00044 Transport ładunku i spinu w nanoukładach na bazie silicenu BartłomiejRzeszotarski 2019-10-01 2020-09-30

41. OPUS NCN 2018/31/B/ST2/03998 Wkład do uruchomienia oraz obsługi trygera wysokiego poziomu w zmod-ernizowanym eksperymencie LHCb. dr hab. TOMASZ SZUMLAK 2019-06-21 2022-06-20

Page 162: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

150 CHAPTER 16. NATIONAL RESEARCH COUNCIL (NCN) GRANTS

42. MINIATURA NCN 2018/02/X/ST3/03220 Wpływ domieszkowania metalami przejściowymi na powierzch-niowe stany elektronowe w kanonicznych izolatorach topologicznych typu Bi2Se3 dr Maciej Szymon Chrobak2019-04-24 2020-04-23

43. SONATA BIS NCN 2018/30/E/ST3/00377 Wpływ rozkładu ładunku oraz fluktuacji spinowych na temper-aturę krytyczną w nadprzewodnikach wysokotemperaturowych dr hab. DAMIAN TOMASZ RYBICKI 2019-09-03 2024-09-02

44. MINIATURA NCN 2018/02/X/ST3/03299 Zwiększenie oddziaływania ferromagnetyk/antyferromagnetyk epi-taksjalnych warstw Fe/FeO dr ANNA MARIA KOZIOŁ-RACHWAŁ 2019-04-24 2020-04-23

Page 163: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 17

Grants of Ministry of Science andHigher Education (MNiSW)

1. SPUB 20.11.220.918 Stacja pomiaru składu atmosfery KASLAB na Kasprowym Wierchu prof. dr hab. KAZ-IMIERZ RÓŻAŃSKI 2017-2019

2. DIALOG 0047/2016 Innowacje w procedurach transferu technologii: Nauka-Przemysł prof. dr hab. ZBIG-NIEW KĄKOL 2016-12-16 2018-12-15

3. DIR/PM/2016/02 Wsparcie udziału polskich zespołów naukowych w ESRF oraz CERN dr hab. TOMASZSZUMLAK 2016-12-22 2017-01-22, Wsparcie udziału polskich zespołów naukowych w ESRF oraz CERN

4. DIR/WK/2016/16 Eksperyment LHCb przy akceleratorze LHC w CERN prof. dr hab. MARIUSZ WITEK2016-09-27 2020-12-31

5. DIR/WK/2016/13 Eksperyment ATLAS przy akceleratorze LHC w CERN. prof. dr hab. BARBARAWOSIEK 2016-08-23 2021-12-31

6. DI2016 004546 Transport ładunku i spinu w nanoukładach na bazie silicenu BARTŁOMIEJ RZESZOTARSKI2017-09-26 2021-09-25

7. DIR/WK/2018/04 Modernizacja i przystosowanie detektora ATLAS do pracy przy akceleratorze HL-LHC wCERN prof. dr hab. WŁADYSŁAW DĄBROWSKI 2018-07-01 2023-06-30

8. NAWA Polskie Powroty 2019, PPN/PPO/2019/1/00014, Wojciech TABIŚ, March 2020 to Feb 2024

151

Page 164: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

152 CHAPTER 17. GRANTS OF MINISTRY OF SCIENCE AND HIGHER EDUCATION (MNISW)

Page 165: AGH University of Science and Technology · 2020. 7. 8. · ii ADDRESS OF THE FACULTY OFFICE AGH University of Science and Technology (Akademia Górniczo-Hutnicza im. Stanisława

Chapter 18

EU grants and other foreign sources

1. FNP TEAM-NET POIR.04.04.00-00-15E5/18 Rekonfigurowalny detektor do pomiaru przestrzennego rozkładudawki promieniowania dla zastosowań w przygotowaniu indywidualnych planów leczenia pacjentów dr hab.TOMASZ SZUMLAK 2019-10-01 2023-09-30

2. UE European Social Fund, Operational Programme Knowledge Education Development (OP KED), Inter-dyscyplinarne Środowiskowe Studia Doktoranckie „Fizyczne, Chemiczne i Biofizyczne Podstawy Nowoczes-nych Technologii i Inżynierii Materiałowej” (FCB), prof dr hab. JANUSZ ADAMOWSKI 01.09.2017-31.08.2022

3. UE European Social Fund, Regional Operational Programme for the Małopolska Region, Małopolska ChmuraEdukacyjna - nowy model nauczania, prof. dr hab inż ZBIGNIEW KĄKOL 01.01.2016-30.06.2023

4. 654168 AIDA 2020 Advanced European Infrastructures for Detectors at Accelerators prof. dr hab. MAREKIDZIK 2015-05-01 2019-04-30

5. Horizon 2020 (ERC Research & Innovation Action, Innovation Action, Marie Skłodowskiej-Curie Actions)MEMO2: Methane goes mobile-measurements and modeling dr JAROSŁAW MAREK NĘCKI 2017-03-012021-02-28

6. FNP HOMING POIR.04.04.00-00-5CE6/18-00, Spinowe i typologiczne stany w hybrydowym półprzewodnictwie-nadprzewodnictwie nanostruktury do skalowalnych obliczeń kwantowych, dr PAWEŁ ZBIGNIEW SZUM-NIAK, 2018-12-01 2020-11-30

7. UNEP sub programme: Climate Change 2018-2019, DTIE18-EN040 Badanie uwalniania metanu z sieciprzesyłowych gazu ziemnego na terenach zurbanizowanych dr JAROSŁAW MAREK NĘCKI 2018-07-05 2019-12-15

153


Recommended