+ All Categories
Home > Documents > AGUS HARYANTO 01 March 2010. Examine the moving boundary work or P.dV work. Identify the first law...

AGUS HARYANTO 01 March 2010. Examine the moving boundary work or P.dV work. Identify the first law...

Date post: 05-Jan-2016
Category:
Upload: julia-newton
View: 213 times
Download: 0 times
Share this document with a friend
35
AGUS HARYANTO 01 March 2010
Transcript
Page 1: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

AGUS HARYANTO01 March 2010

Page 2: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

Examine the moving boundary work or P.dV work.

Identify the first law of thermodynamics for closed (fixed mass) systems.

Develop the general energy balance for closed systems.

Define the specific heat at constant volume and at constant pressure.

Relate the specific heats to the changes in internal energy and enthalpy of ideal gases.

Changes in internal energy and enthalpy for incompressible substances.

Solve energy balance problems for closed (fixed mass) systems that involve heat and work interactions.

Page 3: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

Wb = F.s Wb = F.ds Wb = PA.ds Wb = P.dV

Page 4: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

The area under the process curve on a P-V diagram is equal, in magnitude, to the work done during a quasi-equilibrium expansion or compression process of a closed system.

On the P-v diagram, it represents the Wb done per unit mass.)

Page 5: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.
Page 6: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.
Page 7: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

In a car engine, the boundary work done by the expanding hot gases is used to overcome friction between the piston and the cylinder, to push atmospheric air out of the way, and to rotate the crankshaft.

Page 8: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

A rigid tank contains air at 500 kPa and 150°C. As a result of heat transfer to the surroundings, the temperature and pressure inside the tank drop to 65°C and 400 kPa, respectively. Determine the boundary work done during this process.

Page 9: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

Analysis: P-V diagram

of the process is shown.

The boundary work can be determined :

Page 10: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

A frictionless piston–cylinder device contains 10 lbm of steam at 60 psia and 320F. Heat is now transferred to the steam until the temperature reaches 400F. If the piston is not attached to a shaft and its mass is constant, determine the work done by the steam during this process.

Page 11: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.
Page 12: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

Analysis The pressure of the steam remains constant during this process since both the atmospheric pressure and the weight of the piston remain constant. For a constant-pressure process (Mind that V = mv):

Page 13: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

From the superheated vapor table (Table A–6E), the specific volumes are determined to be v1 = 7.4863 ft3/lbm at state 1 (60 psia, 320oF), v2 = 8.3548 ft3/lbm at state 2 (60 psia, 400oF). Substituting these values yields:

Page 14: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

A piston–cylinder device initially contains 0.4 m3 of air at 100 kPa and 80°C. The air is now compressed to 0.1 m3 in such a way that the temperature inside the cylinder remains constant. Determine the work done during this process.

Page 15: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.
Page 16: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.
Page 17: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

Pressure and volume are often related by PVn = C, where n and C are constants.

Page 18: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

For ideal gas (PV = mRT), then:

Special cases (n = 1), then: (isothermal)

Page 19: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

A piston–cylinder device contains 0.05 m3 of a gas initially at 200 kPa. At this state, a linear spring that has a spring constant of 150 kN/m is touching the piston but exerting no force on it. Now heat is transferred to the gas, causing the piston to rise and to compress the spring until the volume inside the cylinder doubles. If the cross-sectional area of the piston is 0.25 m2, determine (a) the final pressure inside the cylinder, (b) the total work done by the gas, and (c) the fraction of this work done against the spring to compress it.

Page 20: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.
Page 21: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

Final pressure = 200 + 120 = 320 kPa

Page 22: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.
Page 23: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

From Ch. 2:

In the rate form:

For constant rate:

Page 24: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

Differential form:

Closed system undergo cycle: Esystem = E2 - E1 = 0 Ein - Eout = 0 Ein = Eout. No mass flow (closed system):

Page 25: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

where : Q = Qnet,in = Qin - Qout (is the net

heat input) W = Wnet,out = Wout - Win

(is the net work output)

Page 26: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

A piston–cylinder device contains 25 g of saturated water vapor that is maintained at a constant pressure of 300 kPa. A resistance heater within the cylinder is turned on and passes a current of 0.2 A for 5 min from a 120-V source. At the same time, a heat loss of 3.7 kJ occurs. (a) Show that for a closed system the boundary work Wb and the change in internal energy U in the first-law relation can be combined into one term, H, for a constant pressure process. (b) Determine the final temperature of the steam.

Page 27: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.
Page 28: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

(a)

Page 29: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

(b) To find T2 we need other property. Work is only electrical work, which is determined from:

Apply the Equation resulted in (a)

Page 30: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

Finally, from Table A-6:

Page 31: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

A rigid tank is divided into two equal parts by a partition. Initially, one side of the tank contains 5 kg of water at 200 kPa and 25°C, and the other side is evacuated. The partition is then removed, and the water expands into the entire tank. The water is allowed to exchange heat with its surroundings until the temperature in the tank returns to the initial value of 25°C. Determine (a) the volume of the tank, (b) the final pressure, and (c) the heat transfer for this process.

Page 32: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.
Page 33: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.
Page 34: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

(c) Under stated assumptions and observations, the energy balance on the system can be expressed as:

Page 35: AGUS HARYANTO 01 March 2010.  Examine the moving boundary work or P.dV work.  Identify the first law of thermodynamics for closed (fixed mass) systems.

Recommended