+ All Categories
Home > Documents > AIAA Experiments on Heat Transfer in a Cryogenic Engine

AIAA Experiments on Heat Transfer in a Cryogenic Engine

Date post: 06-Jul-2018
Category:
Upload: brunno-vasques
View: 220 times
Download: 0 times
Share this document with a friend

of 5

Transcript
  • 8/17/2019 AIAA Experiments on Heat Transfer in a Cryogenic Engine

    1/5

    J O U R N A L O F   P R O P U L S I O N  A N D  P O W E R

    Vol. 9, No. 2,

     March-April

      1993

    Experiments

     on

     Heat Transfer

     in a

     Cryogenic Engine

    Thrust Chamber

    N .  Sugathan,*  K .  Srinivasan,t  a n d S . Srinivasa M u r th y $

    Indian

      Institute of  Technology,  Madras 600036, India

    Tests are

     conducted

      on a cryogenic engine using  liquid oxygen as

     oxidizer

     an d

     gaseous hydrogen

     as

     fuel

      with

    water as a  coolant. Th e coolant flow passage of the  thrust

     chamber

     is of m illed channel

     configuration.

     M easured

    heat

     transfer results compare well with

     those predicted by a

     therma l analysis

     using the

     standard Bartz

     correlation

    and the

     Hess

     and Kunz

     correlation

     for hot gas

     side

     a nd

     coolant

     side heat transfer

      coefficients, respectively.  This

    confirms the  conclusions  of a  recent

      theoretical

      study by the

      authors

      in which a  comparison  of  various heat

    transfer

      correlations was made.

    Nomenclature

    C  =  characteristic velocity, m/s

    c

    p

      =  specific heat, kJ/kg  K

    D  =  diameter of cross section, m

    D*  =

      throat diameter, m

    h =

      convective heat transfer coefficient, W/m

    2

     K

    k

      =

      thermal conductivity,

     W/m K

    M

      =  Mach number

      of  flow

    m =  mass

      flow

      rate, kg/s

    P  =

      pressure,

     bar

    Pr

      =

      Prandtl number

    q

      =

      heat

      f lux,

      k W /m

    2

    Re  =  Reynolds number

    r

    c

      =

      radius

      of

      curvature

      of

      throat section,

      m

    T =  temperature,  K

    t

      =

      wall

     thickness measured

      from

      exposed side,

      m

    x  =  axial distance  from  throat, m

     L

    =

      absolute viscosity,

      kg m/s

    r  =  specific heat ratio

    Subscripts

    a  =  adiabatic

    b =

      bulk

    c  =  coolant

    ch   =

      chamber

    g = hot

     combustion

      gas

    in j  =  injection

    t  =  total

    w  =  wall

    0  =

      stagnation

     value

    1-4

      =

      axial

     locations as in

     Fig.

      1.

    Superscripts

    r

      = temperature at depth of 1.5 mm on hot gas side

      =  temperature  at depth  of 0.5 mm on hot gas side

    Introduction

    I

    N

      the thermal design of cooling systems for the thrust

    chambers of rocket engines, reliable estimation of the

     cool-

    R eceived May

     31,1991;

     revision received Sept.  25,1991; accepted

    for  publication  Oct.  15,  1992.  Copyright © 1992 by the  American

    Institute

      of

      Aeronautics

      and

      Astronautics, Inc.

      All rights

      reserved.

    * R efrigeration  and Air  Conditioning Laboratory, Department  of

    Mechanical Engineering; currently  Engineer  SF, Liquid Propulsion

    Systems

     Center,

     Department of

      Space,

      Trivandrum 695547,

      India.

    tRefrigeration  and Air

      Conditioning

      L aboratory, Department  of

    Mechanical Engineering; currently  Associate  Professor, Instrumen-

    tation and

     S ervices U nit, Indian

     In stitute of Science, Bangalore

     560012,

    India.

    ^Professor

      and

      Head,  Refrigeration

      and Air Conditioning

      Labo-

    ratory,

      Department  of  Mechanical

      Engineering.

    an t  side  and the hot gas  side heat transfer  coefficients  is of

    great

      importance. In an earlier

      paper,

    1

     a critical evaluation

    of  nine combinations

      of

      coolant side

      and hot gas

      side heat

    transfer  correlations  w as carried  out by the authors.  B y com-

    paring

     it  with limited published experimental data on engine

    cooling,  it was found that the  Hess  and Kunz

     correlation

    2

    '

    3

    for the coolant  side

     heat

     transfer coefficient and the  standard

    Bartz

     correlation

    4

      for hot gas  side heat transfer coefficient,

    are

     suitable

     f or

     thermal design

      of

      regeneratively cooled cryo-

    genic

      engines. However,  it was  felt  that  a  detailed experi-

    mental verification was essential. In this

     article,

     such a study

    is presented with gaseous hydrogen

      as

      fuel ,  liquid oxygen

      as

    oxidizer,

      and

      water

      as the

      coolant.

      The

      present  study also

    confirms

     the earlier contention that the above-mentioned pair

    of

     heat transfer coefficients

      is the

      best suitable

      fo r

      carrying

    out

     the thermal design.

    Experimenta l

     Ground Test Setup

    T he

     configuration

     of a

     scaled model

      fo r

     static testing

     of the

    cryogenic engine is shown in Fig. 1, and the details are given

    in Table 1.  T he walls of the thrust chamber  of this engine  are

    made

     of a

     milled channel copper substrate enclosed

     in a

     stain-

    less steel outer shell. The two materials are  bonded together

    by vacuum brazing. Coolant entry  an d exit manifolds  of the

    engine

     are tig-welded. A

      16-element

     coaxial injector is used

    fo r

      admitting t he  fuel,  gaseous hydrogen (GH2)  and the ox-

    idizer, liquid oxygen (LOX). A rigimesh porous face plate is

    used

      to

     provide transpiration cooling.

    G H

    2

    © Flow

    @

    Pressure

     Water

      ©

    Temperature

    Axial locations

    for temperature

    measurements

    INJECTOR

    N O T E : -  A l l d i m e n s i o n s a re i n m m

    Fig. 1

      Engine configuration.

  • 8/17/2019 AIAA Experiments on Heat Transfer in a Cryogenic Engine

    2/5

    SUGATHAN,  SRINIVASAN, AND MURTHY:  HEAT TRANSFER IN A THRUST

     CHAMBER

    241

    Ta ble   1  Conf igurat ion  of the

      subscale

      engine

    Table  2

      Details

     of instrumentation

    Sea level

      chamber

      area  ratio

    Characteristic length

    Nozzle

      contraction

      area

      ratio

    N ozzle ex tension

    Injector

    Igniter

    No. of coolant

      channels

    8.46

    84 cm

    3.09

    H2  dump-cooled  from  area

      ratio

    8.46-140

    Coaxial multielement type

     with

      18

    elements

    Centrally

      mounted electrical

      type

    with  p r e bu r n e r

    .40

    Coolant

      channel geometry

    Chamb er  wal l

      thickness,

      mm

    Channel width, mm

    Channel height , mm

    Cylindrical

    portion

    1.5

    4 .0

    1.5

    Throat

    1.0

    1.4

    2.0

    Nozzle

    exit

    2.0

    7 .4

    1.0

    HE-LN2cooled heat  e x c h a n g e r (only  f o r c r y o G H

    2

    t e s t )

    C V - C h e c k  valve

    R V - R e l i e f v a l v e

    V V - V e n t   valve

    Q C -Quick  c o n n e c t o r

    SV- Start  valve

    PR-  P r e s s u r e  regulator

    F  -Filter

    OR-Or ifice/Flow meter

    L

      -

      Level

      indicator

    P G - P r e s s u r e g a u g e

    PT-

      Pressure

     transducer

    BV-  Ball  v a l v e

    F i g .  2 Schematic of test setup

    A   schematic

      diagram

      of the  engine  test  setup  is shown in

    Fig. 2 . The experimental

     facility

      includes

     test

      stand structure,

    propellant  feed system, auxiliary  fluid  circuits,  and instru-

    mentat ion. The test

      stand

      structure  supports the engine in the

    horizontal  position  and the

      thrust

      is

      transmitted

      to it through

    suitable load cells. T he propellant feed system consists of GH2

    a n d L O X   subsystems. Each  subsystem  is  composed  of  facil-

    ities  fo r pressurization,

      filling,

      draining, cool  d o wn ,

      purging,

    and monitoring of various

      parameters.

      Other

      main

      compo-

    nents

      of the  test  facility  are the

      high-pressure

      ru n

      tank

      fo r

    storing GH2 and the superinsulated LOX tank. LOX is trans-

    ferred  to the engine by an  oxygen  gas pressurization  system.

    The liquid  feed

      lines

      ar e

      insulated  with  polyurethane

      foam.

    Helium   gas is

     used

      for the pilot

     pressure source

      fo r

      regulator

    an d  also

      command

      pressure

      to cryogenic valves.

    Locations  of  temperature, pressure,  an d

      flow

      transducers

    on

      the engine hardware are also

      shown

      in

     Fig.  1.  Pertinent

    details of instrumentation are  given  in

      Table

      2. Platinum

    resistance sensors  ar e used  fo r  fuel  an d oxidizer temperature

    measurement . Thermocouples are used for coolant and cham-

    ber   wall temperature measurement.  I n  four  axial  positions  of

    the  chamber

      identified

      in

     Fig.

      1,

      three

      thermocouples  each

    Pressure transducers

    Type

    A ccuracy

      class

    Temperature transducers

    Thermocouple types

    Gauge

    Resistance temperature devices (RTD)

    Type

    Sensitivity

    Response  time

    A ccuracy

    Flowmeters

    Type

    Accuracy

    Digital

     panel meter (DPM)

    Type

    Display

    Accuracy

    Thin

      film/strain gauge

    ±0.5%

    Copper-Constantan and

    Chromel-Alumel

    24 swg

    Platinum

      resistance

    0.00395 n/°C

    100/300  ms

    0.75% or 1%

    Turbine

    0.15%

    D u e l

     slope

      integrating

      type

    3.5

      digit

    ±0.1%

    Table 3 Test condit ions

    Param eter

    Value

    Chamb er

      pressure

    LOX  injection  pressure and tempera-

    ture

    G H 2  injection  pressure  an d

      tempera-

    ture

    Injection   velocity  ratio  (fuel/oxidizer)

    L O X   flow  rate

    GH 2

      flow rate

    Coolant

      w at er  flow  rate

    Coolant  temperature

    N ominal  firing

      time

    10

      ± 0.2 bar

    10 ± 0.2 bar and 90 K

    14.5

      ± 0.2 bar and 300 K

    41

    0.58 ±  0.01  kg/s

    0.097

      ±

      0.0002  kg/s

    6   kg/s

    310   K

    50

      s

     (test

      1)

    20 0  s (test

      2)

    Hot exposed

    Waf

      0.5mm

    Inner

      milled

    chamber  (Cu)

    Fi g .

      3 Tem perature probe  locations

    are installed as shown in

      Fig.

      3.  High

      precision

      in locating

    the  thermocouples  is ensured  by the use of a  computerized

    numerically controlled

      riiilling

      machine to drill the holes.  T he

    thermocouples are spot-welded to the

     flat

     bottom of the holes.

    Experimenta l  Procedure

    The  engine is tested  in a pressure-fed

      mode

     for a 50- and

    200-s  duration. The  test conditions  are given in

     Table

     3.  T he

    propellant

      flow

      rates,  and

      thereby

      th e  combustion  chamber

    pressure,

     are maintained

     constant  during both tests

     by setting

    the injector

      upstream

     pressures at predetermined  values. Also,

    the water

      flow

      rate  is maintained at 6  kg/s  during tests. This

    is

      achieved by calibrating the

      entire  coolant

      line

      with

      th e

    engine hardw are prior

     to the

      test.

    Tests

     are conducted according to a

     predetermined test

     se-

    quence. Countdown starts  30 min  before  th e  start  of engine

    ignition,

      an d

      ends

      10 min

      after

      th e

      engine firing.  Steady con-

    ditions are observed

     about

      10 s

     from

      th e

     start. Data obtained

  • 8/17/2019 AIAA Experiments on Heat Transfer in a Cryogenic Engine

    3/5

    242

    SUGATHAN, SRINIVASAN,

     AND MURTHY:

      HEAT

     TRANSFER IN A

     THRUST CHAMBER

    from  th e  experiments  are  used  in the  thermal  analysis for

    making a comparison

     w ith

     the predictions made based on the

    authors'

      earlier

     paper.

    1

    Calculation Procedure

    Heat transfer

      calculations

      using

     the measured temperature

    data are done

      considering

     one-dimensional, steady-state heat

    conduction in the radial direction as already described  by the

    authors.

    1

    Considering  th e  wall  thickness  an d  rib-effect  in heat  trans-

    fer,  th e coolant

      side

      wall

     temperature

      T

    W tC

      an d exposed  wall

    temperature  T

    W tg

      ar e  extrapolated

      using

      measured tempera-

    tures

      inside

      th e  wal l .  Here,  th e

      temperature gradient

      in the

    ribs  between coolant channels  is taken  as linear.

    F or instance,  near the inlet point  of coolant, the  measured

    values of temp eratures  are

    T

    W tl

      =

      440 K

    T'

    W tl

      =  410 K

    T

    Ctl

      =

      310 K

    an d

      the extrapolated

      temperatures

      are

    T

    W ig

      =  460 K

    T

    W tC

      =

      4 0 0 K

    Making use of

     one-dimensional,  steady-state heat  conduc-

    tion

     equation

     in the

     copper

     shell in the direction o f local radius

    of

      curvature, the  local

      heat

      flux  is  calculated  as

    Q

      —  *w\

    • •

      u f

    • -

     w

     r)'*'  /1

     

    w g  wc  ( )

    =  (0.35

      x  60)70.0015  14 x

      10

    3

      k W / m

    2

    Also

    which

      yields

    q

      =

    h

    gtt

      =

      4.76  k W / m

    2

      K

    (2)

    where  T

    W t0

    ,

      th e

      adiabatic  wall  temperature

      of gas

      stream

      at

    th e

      location,

      is

      calculated

      using

    =

      T

    g

     

    (3)

    wh er e

      <

    R

      is the

      boundary- layer  recovery

      factor which

      varies

    from  0.9 to

      0.99

      depending  on the  Prandtl

      n u mber

      of the

    flowing  gas. Equation

     (3) is a modification of

     standard equation

    4

    T

     

    *•

      w. a

    (4)

    This

     modification

      is

     done

     to account for the  influence  of static

    ga s temperature  T

    g

    ,

      which is

     calculated  from

      R e f . 4

    T

    g

      =

      T

    ch

    /[l

    - 1 ) 1 2 ]

    (5)

    In  th e present

      work

      T

    ch

    ,  th e  adiabatic  combustion  tempera-

    ture,

      which

      is a  function  of

      mixture  ratio  (O/F  =  0.6)

      an d

    chamber  pressure,

      is taken  from  R e f .  8.  T

    w

    ^  calculated the

    same way is

     equal

      to

      3398

      K.

    Also,

      by

     considering heat  balance

      in

     one-dimensional

      steady

    state

    q

      =

    whereby

    wf

     

    T

    c

    )

    = 155

      k W / m

    2

      K

    (6 )

    (7)

    Results and

     Discussion

    Figures 4-7 present the pressure and temperature data ob-

    tained during

     the

     50-s engine

     test, and Figs.

     8-11 show similar

    data  obtained  from  the  200-s  engine  test.  The  combustion

    chamber

      pressure  during

      both

      th e

      tests

      was maintained at 10

    bar. This  w as achieved because pressure drops  of both pro-

    pellants

      in  injectors

      could

      be

      predicted

      accurately, and the

    coefficient

      of discharge fo r both propellants were k n o wn pre-

    cisely.

     The temperatures recorded

      from

     the inner copper

     shell

    at   different  radial depths  from

      th e

      surface  exposed

      to hot

      gas

    show

      similar

      trend. Temperatures  are transient up to 10 s

    from

      th e

      start

      of

      engine

      firing  before  steady state  is

     attained.

    O t h e r

     properties

     of the combustion product remain con stant;

    th e heat  transfer  coefficient  in the hot gas

     side

      is a  function

    of  chamber pressure  only.

    15

    P

    f ini

    n . .

    0, 1 nj

    -5 0 10 20

      30

    Firing  time (s)

    50

    60

    Fig. 4

      Pressure

      variation  as a function of t ime in test  1 .

    500

    -i <

    Tw,2

    T

    w,1

    Tw,4 „

    T E S T - 1

    300

    20 30

      40

    Firing

      time (s)

    50 60

    Fig. 5  W a l l

      temperature variation

      as a function of  t im e  in  test  1 a t

    0.5-mm   depth.

    45 0

    TEST-1

    300

    20 30 40

    Firing

      time ( s)

    50

    60

    Fig. 6

      W a l l  temperature variation

      as a function of t ime in test 1 at

    1.5-mm

      depth.

  • 8/17/2019 AIAA Experiments on Heat Transfer in a Cryogenic Engine

    4/5

    SUGATHAN, SRINIVASAN, AND MURTHY:  HEAT TRANSFER IN A THRUST CHAMBER

    243

    350

    2 3 2 5 -

    300,

    T c , 4

    T

    c , 3

    20 30 40

    Firing  time (s)

    T E S T - 1

    I

    450

    50 60

    Fig. 7

      Coolant

      temperature

      variat ion

     as a function of t ime in

     test

      1 .

    5400 -

    310-

    300.

    0 10

    T'w,3

    100

    Firing

      time (s)

    150

    2 0 0 2 1 0

    Fi g .

      10

      Wall  temperature variation

     as a function of t ime in test 2 at

    1.5-mm

      depth.

    - 5 0  50 100

     

    150 200

    Firing  time

     ( s)

    Fi g .

      8

      Pressure

      variat ion as a

      function

      of

      t ime

      in test 2.

    500 -

    5

      **°

    3

     

    m

    p

     

    t

    £0

     

    u

    350-

    300

    C

    3

    ______

      _̂_

     

    Tw,i

      \

    \

     

    '

      TEST-2

    I I  I . I

    0 50 100 150  200

    21C

    Firing  time  s)

    Fig. 9

      W a l l

      temperature variat ion as a function of t ime in test 2 at

    0.5-mni  depth.

    The  experimentally

     determined

      hot gas side

     heat

      transfer

    coefficients

      ar e

     compared with

     th e

     standard

     Bartz

     correlation

    4

    C

      '

    S

      r

    r

    °

      (8)

    wh er e 0

     is the correction

      factor

      for

     property  variation across

    the boundary  layer,  given by

    (9)

    1 + M

    2

    (r -

    -  M

    2

    (r -  l)/2]}

    068

    P is the chamber static pressure measured  at an axial  location

    of

      50 mm

      from

      the

      coolant inlet

      as

      shown

      in

      Fig. 1.  C

      is

    calculated   at  stagnation conditions  as given in Re f. 4.

    T he   coolant side heat  transfer

      coefficients

      derived  from  th e

    experiments  are  compared  with the

     Hess

      an d  Kunz correla-

    tion

    2

    -

    3

    h

    c

      =

      (k

    c

    /D)[0.020SRe

    0

    c

    8

    Pr°

    c

    4

    (l

      +

      0.01457^7 )̂]  (10)

    A s

      seen

      in Fig.  12 ,  h

    c

      derived

      from

      tests,  closely

      matches

    with

     the predictions from  E q. (10). T he

     S ieder-Tate

     correlation

    4

    E320

    300

    T

    c> 2

    0 10

    50

    100

    Firing   time (s )

    150

    2 002 1C

    F ig .  11 Coolant temperature variation as a function of t ime in test 2 .

    400

    300

    200

    100

    E x perimental

    a  T e s t - 1

    y Test -2

     

    — Sieder-Tate

    4

    — - - NAL°

    |

    Thrust

      chamber  axial

     distance

    (mm)

    F ig .

      12 Comparison of

     coolant

      s ide heat transfer

      coefficients.

    Experimental

    n  Test-1

    y Test-2

    Predicted

    —————  Std.Bartz

    4

    ——  • —  Mod.Bartz

    7

     - -

    NAL

    6

    Thrust chamber

     axial  distance

    (mm)

    Fi g .  13 Comparison of hot gas si e heat transfer coeff icients .

  • 8/17/2019 AIAA Experiments on Heat Transfer in a Cryogenic Engine

    5/5

    24 4

    SUGATHAN, SRINIVASAN, AND MURTHY:  HEAT TRANSFER IN A

     THRUST

     CHAMBER

    700

    o 500

    S.

    400

    300

    Data derived

      from

    T e s t - 1   Test-2

    §Thrust chamber  axial  distance

    (mm)

    Fig. 14 Comparison of

      temperatures

      at various  locations

    overpredicts  th e  heat  transfer coefficient,  whereas,  t h e N a-

    tional Aerospace Laboratory (NAL), Japan correlation

    6

      un-

    derpredicts   th e heat  transfer coefficient.

      Similarly,

      th e

      values

    of   fi

    g

      derived  from  test data match  well with

      the

      predictions

    of

      Eq. (8) as

      shown

      in  Fig.  13 .  Bot h  modified  Bartz

    7

      an d

    N A L

    6

      correlations underpredict  the gas  side  heat  transfer

    coefficient.  Coolant a nd wall temperature variations predicted

    from

      th e

      one-dimensional thermal  analysis

    1

      using

      th e

     pair

      of

    standard  Bartz, and  Hess,  and

      Ku n z

     correlations  are  com-

    pared  with  measured

      values

      in  Fig.  14. In the  case  of tem-

    peratures, the deviations are  within

      +10.7%

     to  — 1 . 8 % .

    Conclusions

    Test

      results obtained  on a cryogenic

     engine

      with  water as

    coolant match  well

      with

      th e  predictions

      made

      from  a  one-

    dimensional  thermal  analysis using the standard  Bartz  equa-

    tion for the ho t gas side heat

     transfer

      coefficient,  and the Hess

    an d

      Kunz correlation  for the coolant side heat  transfer coef-

    ficient.

      It is

      suggested that

      this

      pair

      of

      correlations

      may be

    used for the  thermal design  of thrust chambers.

    References

    ^ugathan,

      N ., Srinivasan, K., and Srinivasa Murthy, S.,

      "Com-

    parison

      of Heat

      Transfer

      Correlations  fo r Cryogenic

     E ngine T hrust

    Ch ambe r Design,"  Journal of Propulsion and Power, Vol.  7, No. 6,

    1991,

     pp. 962-967.

    2

    ARQUARDF Corp., "Thrust  C h a m b e r Cooling Techniques for

    Space

      Craft  Engines: Final Report,"

      N A S A C R - 5 0 9 5 9 ,  July

     1963.

    3

    Hess,

     H. L., and  Kunz, H. R., "A  Study of Forced Convection

    Heat

      Transfer to  Super-Critical

      Hydrogen,"

      Transactions

      of the

    American Society

      of

     Mechanical  Engineers, Journal  of  Heat  Transfer,

    Vol. 87,

     Feb.

     1965, pp. 41-48.

    4

    Huzel,

      D .

      K .,

      an d Hu an g , D .

      H., "Design

      of

      Liquid

     P ropellant

    R o cke t Engines,"

     NASA

     SP-125, 1971.

    5

    Yanagawa, K.,  Fuji to,  T.,  Katsuda, H., and  Miyjima,

      H.,

      "De-

    velopment

     of LOX/LH2 Engine

     LE-5," AIAA/SAE/ASME

      20th

     Joint

    Propulsion Conf.,

     AIAA

     Paper

      84-1223,

      Cincinnati, OH,

      J u n e

     11-

    13,

      1984.

    6

    K u m akawa,  A.,  Niino,

      M .,

      Yatsuyanagi,  N., Gomi,  H.,

      Saka-

    moto, H.,  an d

     Sasaki, M.,

      A  Study  of the

     Cooling

      of Low

     Thrust

    L O 2 / L H 2 Rocket Engine,"

     Proceedings

     o f  the 13th International

     Sym-

    posium  on

      Space

      Technology  an d  Science,  Tokyo, 1983,  pp .  301-

    306.

    7

    Steer , T .

     E., "The

     D esign and

     M anufacture

      of a Liquid Hydrogen

    Thrust

     Chamber,"

      Space  Flight,

     Vol.

      1, Feb.

      1970,

     pp.

     135-142.

    8

    Gordon,  S., and McBride, B.

      .„

      "Theoretical

      Performance  of

    Liquid  ydrogen  with Liquid

      Oxy g e n as

     Rocket Propellant," NASA

    TM-5-21-59E,

      March

     1959.

    R e c o m m e n d e d

      R e a d i n g

      f r o m

      t h e I E duca t i on  S e r ie s

    INLETS

    FOR

    SUPERSONIC

    MISSILES

    J o h n  J M a h o n e y

    Place your order  today Call

      1

     -800/682-AIA A

    American

     Institute

     of Aeronautics and A stronautics

    Publications

     Customer

     Service,

     9 Jay

     Could Ct.,

     P.O. Box

     753,

     Waldorf,

     MD 20604

    Phone

     301/645-5643,  Dept.  415,

     FAX

     301/843-0159

    This book

     describes the

     design, op eration,

    performance, and selection of the

      inlets (also

    known

     as intakes and

     air-induction systems)

    indispensible to

      proper functioning

     of an

     air-

    breathing engine.  Topics include: Functions

    and Fundamentals; Supersonic

      D i ff u s e r s ;

    Subsonic

      Diffusers;

     Viscous  E f fe c t s ;

    O p e r a t i o n a l Characteristics;

      P e r fo r m a n c e

    Estimation;  Installation

     Factors; Variable

    Geometry; Proof of Capability.

    1991,

     237

     p p, illus,

     Hardback

    ISBN

      0-930403-79-7

    AIAA Members $45.95

    Nonmembers $57.95

    O r d e r

      :

     79-7

     (830)

    S a l e s

     T a x : C A

     r e s i d e n t s , 8.25%; D C ,

     6 . F o r

     s h i p p i n g

     a n d

      h a n d l i n g

     a dd

     $4.75

      f o r 1 -4 b o o k s

     (call

    fo r

      r a t es

      fo r h i g h e r

     quantities).

      O r d e r s

      u n d e r

     $50.00 must

      b e p r e p a i d .

      P l eas e

      a l l o w  4

     w e e k s

     f o r

    d e l i v e r y .

      P r i c es

     a r e s u b j e c t t o

      c h a n g e

     without  n o t i c e .

      R e t u r n s

     will  b e a c c e p t e d within  1 5 d a y s .


Recommended