+ All Categories
Home > Documents > Air Entrainment Rate Calculations

Air Entrainment Rate Calculations

Date post: 03-Jun-2018
Category:
Upload: javier-garcia
View: 233 times
Download: 0 times
Share this document with a friend

of 81

Transcript
  • 8/12/2019 Air Entrainment Rate Calculations

    1/81

    Air Entrainment Rate Calculations using

    Baum s Fire Induced Flow-field Formulation

    J. P. GoreMaurice J. Zucrow Laboratories

    School of Mechanical EngineeringPurdue University

    W. Lafayette, IN 47907 - 1003

    Acknowledgment: Work Supported by Building and Fire ResearchLaboratory, National Institute of Standards and TechnologyGaithersburg, Maryland, with Dr. Howard Baum serving as NIST ScientificOfficer. The work summarized here is a result of MS and PhD dissertationsby Dr. X. C. Zhou

    Institute of Mathematics and Its ApplicationsUniversity of Minnesota

    October 11-13, 1999

    P

    U

    R

    D

    U

    E

  • 8/12/2019 Air Entrainment Rate Calculations

    2/81

    1. MOTIVATION

    2. SPECIFIC OBJECTIVES

    3. THEORETICAL METHOD

    4. LDV MEASUREMENTS AND DISCUSSION

    5. PIV MEASUREMENTS AND DISCUSSION

    6. THERMAL EXPANSION SOURCE TERM

    AND VORTICITY DISTRIBUTION

    7. SUMMARY AND CONCLUSIONS

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    OUTLINE

  • 8/12/2019 Air Entrainment Rate Calculations

    3/81

    1. Air entrainment of accidental fires influences gas

    temperatures, radiation properties, fire growth rate andtoxicity of smoke.

    2. Existing correlations of air entrainment show a large scatterdue to different measurement techniques and boundaryconditions.

    3. In many numerical simulations an entrainment constant isassumed.

    4. Recent optical techniques provide an opportunity to measurethe instantaneous and mean entrainment velocity field.

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    MOTIVATION

  • 8/12/2019 Air Entrainment Rate Calculations

    4/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    DEFINITION OF ENTRAINMENT

    ri

    R

    0 xent

    uR2

    drurdx

    d2m i

    Local Air Entrainment Rate:

    Total Air Entrainment Rate:

    0,entx

    0 ri

    fR0 xent

    mdxuR2

    mdrur2m i&

  • 8/12/2019 Air Entrainment Rate Calculations

    5/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    PAST MEASUREMENT TECHNIQUES ( I )

    McCaffrey (1979)

  • 8/12/2019 Air Entrainment Rate Calculations

    6/81

  • 8/12/2019 Air Entrainment Rate Calculations

    7/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    PAST MEASUREMENT TECHNIQUES ( III )

    Zukoski and Coworkers (1980)

  • 8/12/2019 Air Entrainment Rate Calculations

    8/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Air Entrainment Correlations

    Author(s) Year Correlation Formula Dependent

    on Burner

    size?

    Dependent

    on Heat

    Release

    Rate?

    Yih 1952f

    3/53/1p0

    2ent mx)TC/Qg(153.0m && =

    No Yes

    Thomas et

    al.

    1963

    f3/53/1

    p020ent mx)TC/Qg(153.0m && =

    No Yes

    McCaffrey 1979

    f2/1

    0ent mxQ055.0m && =No Yes

    Cox and

    Chitty

    1980

    f5/4

    02/1

    ent mQx008.0m && =No Yes

    Hasemi 1982

    )037.0Q/x(Q043.0m 4.0

    0ent =&No Yes

    McCaffrey

    and Cox

    1982

    f48.0

    03.1

    ent mQx053.0m && =No Yes

    Tokunaga et

    al.

    1982

    )0337.0Q/x(QD070.0m 4.0

    002/1

    ent =&Yes Yes

    Beyler 1983 25.1ent )06.0x(073.0m +=&

    Yes No

    Cetegen et

    al.

    1984 3/5v

    3/1p0

    2ent )xx()TC/Qg(21.0m = &

    No Yes

    Delichatsios

    and Orloff

    1984 2/52/1ent xg034.0m =&

    No No

    Delichatsios 1987 2/1

    f

    f

    ent

    D

    x086.0Fr

    m)1S(

    m

    =

    + &&

    2/3

    ff

    ent

    D

    x093.0Fr

    m)1S(

    m

    =

    + &&

    2/5

    ff

    ent

    D

    x018.0Fr

    m)1S(

    m

    =

    + &&

    Yes No, but

    dependent

    on fuel

    type

    Koseki and

    Yumoto

    1988

    S)D/x2(26.3m 56.0

    ent=&Yes No, but

    dependent

    on fuel

    type

    Zukoski 1994

    fent mxD62.0m && =Yes Very

    weakly

  • 8/12/2019 Air Entrainment Rate Calculations

    9/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    An Example of Application of

    Some Air Entrainment Correlations

    x / D

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Fr

    fm

    ent

    /(S+1)m

    f

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    0.18

    0.20

    0.22

    Predicted air entrainment rate by different correlations7.1 cm toluene pool fire, no floor, mf = 0.083 g/s

    Q = 3.4 kW, XA= 90%, X

    R=30%, S=13.5, Fr

    f=0.109

    Delichatsios (1987)

    McCaffrey (1979)Cox and Chitty (1980)

    McCaffrey and Cox (1982)

    Delichatsios and Orloff (1984)

    Zukoski (1994)Beyler (1983)

  • 8/12/2019 Air Entrainment Rate Calculations

    10/81

    1. Consider air entrainment as a fire induced flow field using

    Baum s kinematic model, which involves flow componentsinduced by vorticity and thermal expansion.

    2. Develop and utilize techniques to measure the fire induced flowfield for model validation.

    3. Develop and utilize techniques to measure the vorticity andthermal expansion that induce the fire induced flow, to avoiduncertainties of combustion models.

    4. Compare the measured and predicted fire induced flow field tovalidate the overall model.

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    SPECIFIC OBJECTIVES

  • 8/12/2019 Air Entrainment Rate Calculations

    11/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Decomposition of the entrainment flow field:

    V~

    VVr

    where

    0V, the irrotational thermal expansion,

    and 0V~ , the incompressible flow caused by vorticity

    1. THE IRROTATIONAL FLOW Q

    QVr

    and V)V~

    V(Vr

    ,

    the governing equation of the irrotational component:

    QV

    Written is terms of a potential function (

    rx er

    ex

    V):

    Q)r

    r(rr

    1

    x2

    2(a)

    2. THE INCOMPRESSIBLE FLOW

    Q

    pVr

    and V~

    )V~

    V(Vr

    ,

    the governing equation of the imcompressible component is:

    pV~

    Written is terms of a stream function (

    rx err

    1e

    xr

    1V~ ):

    p2

    2

    2

    2

    rrr

    1

    rx

    (b)

  • 8/12/2019 Air Entrainment Rate Calculations

    12/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Correlations of Buoyant Diffusion Flame

    Structures (McCaffrey, 1983)

    n***)x(A)x(U

    1n2**)x(B

    T

    TT)x(

    })]x(R/r[exp{)x(U)r(u2

    xr

    })]x(R/r[exp{)x()r( 2r

    Centerline Axial Velocity and Excess Temperature

    Assuming Gaussian profiles, the axial velocity and

    excess temperature distributions are

  • 8/12/2019 Air Entrainment Rate Calculations

    13/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    The Source Terms based on Correlations

    The Flame Radius as a function of x from analysis

    of the advected energy balance:

    Thermal Expansion Source Term Distribution:

    d21RL

    I1U

    X1xR

    /**

    })]()[x(

    {)(

    )x(R)X1(

    })]x(R/r[exp{

    x

    )x(H)r(Q

    2R

    2r

    Vorticity Distribution:

    }})](/[{)(

    {)(

    )()(p

    2xRrexp

    xR

    r

    xR

    x2Urr

  • 8/12/2019 Air Entrainment Rate Calculations

    14/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Boundary Conditions: with Floor

    0 at x = 0 for all r

    0r

    0

    0x

    at r = 0 for all x

    Floor and Axis:

    Free Boundaries:

    22

    R

    xr2

    X1

    )()1(9

    F10

    d

    Fd22

    2

    F(0) = F(1) = 0

    )(F3/5 22 xr cos

    The Pool Burnerr(i) The Floor

  • 8/12/2019 Air Entrainment Rate Calculations

    15/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Boundary Conditions: without Floor

    0r

    0 at r = 0 for all x

    On inner boundaries:

    On outer boundaries:

    )()1(9

    F10

    d

    Fd22

    2

    F(-1) = F(1) = 0

    )(F3/5 22

    xr cos

    PoolBurner

    r(i)

    22

    R

    xr4

    X1

  • 8/12/2019 Air Entrainment Rate Calculations

    16/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Numerical Discretization:

    a typical element

    N

    EPW

    S

    n

    s

    ew

    r(p)

    x(p)

    xn(p)

    xs(p)

    xs(p)

    xp(p)

    xn(p)

    rw(p) re(p)

    rw(p)

    rp(p)

    re(p)

    p

    2w

    2e

    pwesn

    2w

    2e x)

    2

    rr)(r(Qx)

    rr

    rr()

    xx(

    2

    rr r

    PSSNNWWEEPP daaaaa

    )r

    r(xa

    e

    eE

    )r

    r(xa

    w

    wW

    n

    2w

    2e

    Nx

    1

    2a

    rr

    s

    2w

    2e

    Sx

    1

    2a

    rr

    SNWEP aaaaa

    x)2

    rr)(r(Qd

    2w

    2e

    Pr

  • 8/12/2019 Air Entrainment Rate Calculations

    17/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Multigrid Scheme

    j,ijm,ijm,ijp,ijp,ij,imj,imj,ipj,ipj,ij,i D~

    c~

    c~

    c~

    c~

    c

  • 8/12/2019 Air Entrainment Rate Calculations

    18/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    The Velocity Field

    )j(x)j(x

    )1j,i()1j,i()j,i(u

    snx

    )i(r)i(r

    )j,1i()j,1i()j,i(u

    wer

    )i(r1

    )i(r)i(r)j,1i()j,1i()j,i(u~

    pwex

    )i(r

    1

    )j(x)j(x

    )1j,i()1j,i()j,i(u~

    pnsr

    The irrotational velocity field:

    The incompressible velocity field:

  • 8/12/2019 Air Entrainment Rate Calculations

    19/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Comparison of the predictions and the

    correlations of the axial velocities at x = 42.5 cm

    Radial Position, cm0 5 10 15 20

    AxialVelocity,cm/s

    0

    50

    100

    150

    200

    250

    300

    Numerical Modeling

    Correlations of McCaffrey (1983)

  • 8/12/2019 Air Entrainment Rate Calculations

    20/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Effect of the Computational Domain Size

    Radial Position, cm

    0 10 20 30 40

    AxialVelocity,cm/s

    -5

    0

    5

    10

    15

    20

    25

    30

    at x=0.5 cm, r= 1 cm, x= 1 cm

    Prediction Computational Domain

    1 m by 4 m

    2 m by 4 m

    1 m by 5 m

    0.5 m by 4 m

    1 m by 2 m

    Radial Position, cm

    0 10 20 30 40

    AxialVelocity,cm/s

    0

    50

    100

    150

    200

    250

    at x= 42.5 cm, r= 1 cm, x= 1 cm

    Prediction Computational Domain

    1 m by 4 m

    2 m by 4 m

    1 m by 5 m

    0.5 m by 4 m

    1 m by 2 m

  • 8/12/2019 Air Entrainment Rate Calculations

    21/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Effect of the Grid Spacing Size

    Radial Position, cm

    0 5 10 15 20

    AxialVelocity,cm/s

    0

    50

    100

    150

    200

    250

    The predicted axial velocity at x=42.5 cm1 m by 4 m computational domain

    r= 1 cm, x= 1 cm

    r= 0.5 cm, x= 1 cm

    Prediction Grid size

    Radial Position, cm

    0 5 10 15 20

    AxialVelocity,cm

    /s

    -5

    0

    5

    10

    15

    2025

    30

    The predicted axial velocity at x=0.5 cm1 m by 4 m conputational domain

    r= 1 cm, x= 1 cm

    r= 0.5 cm, x= 1 cm

    Prediction Grid size

  • 8/12/2019 Air Entrainment Rate Calculations

    22/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    The Enclosure

  • 8/12/2019 Air Entrainment Rate Calculations

    23/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    The Fuel Supply System

  • 8/12/2019 Air Entrainment Rate Calculations

    24/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Laser Doppler Velocimeter (LDV)

  • 8/12/2019 Air Entrainment Rate Calculations

    25/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Measureed Mean Velocity Field

    Zhou and Gore (1995)

  • 8/12/2019 Air Entrainment Rate Calculations

    26/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Entrainment Rates Based On LDV

    Measured Mean Velocity Field

    Correlation

    Fr

    fm

    ent

    /(S+1)m

    f

    0.1 1 100.01

    0.1

    1

    10

    100

    1000

    Delichatsios(1987)

    Author Year Fuel Burner Method Symbol

    Present 1995 Toluene 7.1 cm LDV, Ri=11.5 cm

    LDV, Ri=6.5 cm

    LDV, Ri=4.5 cm

    LDV, Ri=flame

    Weckman 1989 Acetone 30 cm LDV(Axial Velocity)

    Beyler 1983 Propane 19 cm Hood

    Thomas 1965 Ethanol 91 cm Particle Tracking

    19 cm Hood

    Cetegen 1984 Nat. Gas 19 cm Hood

    50 cm Hood

    Toner 1987 Nat. Gas 19 cm Hood

    x / D

    .

    .

  • 8/12/2019 Air Entrainment Rate Calculations

    27/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Vorticity Distributions

    0

    5

    10

    15

    20

    25

    30

    Hinterface

    = 64 cm

    Dfloor

    = 51 cm

    Lip Height=0.2cm

    mf

    = 83 mg/sD=7.1cm, Toluene

    Vorticity,1/sec

    0

    5

    10

    15

    20

    Radial Position, cm

    0 2 4 6 8 10 12 14 160

    5

    10

    15

    20

    Flame Boundary

    Farthest Visible

    Flame Boundary

    Average Visiblex = 1 cm

    x = 5 cm

    x = 9 cmPOOL EDGE

    .

  • 8/12/2019 Air Entrainment Rate Calculations

    28/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Probability Density Function (PDF)

    of Radial Velocities at r = 3.5 cm

    0.00

    0.05

    0.10

    0.15

    0.20

    ProbabilityDensityFunction,s/cm

    0.00

    0.05

    0.10

    0.15

    Radial Velocity, cm/s

    -20 -15 -10 -5 0 5 10 15 20 25 300.00

    0.05

    0.10

    0.15

    D = 7.1 cm, Toluenem

    f= 83 mg/s

    Hinterface = 64 cm

    Lip Height = 0.2 cmD

    floor= 51 cm

    r = 6.5 cm

    x = 1 cm

    ur= 5.0 cm/su

    r' = 7.9 cm/s

    x = 5 cm

    ur= 6.3 cm/s

    ur' = 5.6 cm/s

    x = 9 cm

    ur= 12.2 cm/s

    ur' = 5.5 cm/s

    .

  • 8/12/2019 Air Entrainment Rate Calculations

    29/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Probability Density Function (PDF)

    of Axial Velocities at r = 3.5 cm

    0.00

    0.05

    0.10

    0.15

    0.20

    ProbabilityDensityFunction,s/cm

    0.00

    0.05

    0.10

    0.15

    Vertical Velocity, cm/s

    -20 -10 0 10 20 30 40 500.00

    0.05

    0.10

    0.15

    D = 7.1 cm, Toluenem

    f= 83 mg/s

    Hinterface = 64 cm

    Lip Height = 0.2 cmD

    floor= 51 cm

    r = 3.5 cm

    x = 1 cm

    ux= 42.72cm/su

    x' = 42.04 cm/s

    x = 5 cm

    ux= 22.71 cm/s

    ux' = 28.18 cm/s

    x = 9 cm

    ux= 6.44 cm/s

    ux' = 9.37 cm/s

    .

  • 8/12/2019 Air Entrainment Rate Calculations

    30/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Power Spectral Density (PSD)

    of Radial Velocities at r = 4.5 cm

    10-3

    10-2

    10-1

    100

    101

    PowerSpectrumDensityofRadialVelocity

    10-3

    10-2

    10-1

    100

    Frequency, Hz

    0.1 1 10 10010-3

    10-2

    10-1

    100

    D = 7.1 cm, Toluene, mf= 83 mg/s

    Hinterface

    = 64 cm, Lip Height = 0.2 cm

    Dfloor= 51 cm, r = 4.5 cm

    x = 9 cm

    x = 5 cm

    x = 1 cm

    .

  • 8/12/2019 Air Entrainment Rate Calculations

    31/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Power Spectral Density (PSD)

    of Axial Velocities at r = 4.5 cm

    10-3

    10-2

    10-1

    100

    101

    PowerSpectrumDensityofVerticalVe

    locity

    10

    -3

    10-2

    10-1

    100

    Frequency, Hz

    0.1 1 10 10010-3

    10-2

    10-1

    100

    D = 7.1 cm, Toluene, mf= 83 mg/s

    Hinterface

    = 64 cm, Lip Height = 0.2 cm

    Dfloor= 51 cm, r = 4.5 cm

    x = 9 cm

    x = 5 cm

    x = 1 cm

    .

  • 8/12/2019 Air Entrainment Rate Calculations

    32/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Measurements and Predictions of Axial Velocities

    around a 7.1 cm Toluene Pool Fire

    Radial Position, cm

    3.5 5.5 7.5 9.5 11.5 13.5-20

    0

    20

    40

    60

    -20

    0

    20

    40

    60

    80

    Ve

    rticalVelocity,cm/s

    -20

    0

    20

    40

    60

    D = 7.1 cm, Toluene, mf= 83 mg/s

    Hinterface= 64 cm, Lip Height = 0.2 cmDfloor = 51 cm

    x = 12 cm

    x = 6 cm

    x = 1 cm

    Radial Position, cm

    3.5 5.5 7.5 9.5 11.5 13.5-20

    0

    20

    40

    60

    -20

    0

    20

    40

    60

    80

    Ve

    rticalVelocity,cm/s

    -20

    0

    20

    40

    60

    D = 7.1 cm, Toluene, mf= 83 mg/s

    Hinterface= 64 cm, Lip Height = 0.2 cmDfloor = 51 cm

    x = 12 cm

    x = 6 cm

    x = 1 cm

  • 8/12/2019 Air Entrainment Rate Calculations

    33/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Measurements and Predictions of Radial Velocities

    around a 7.1 cm Toluene Pool Fire

    Radial Position, cm

    3.5 5.5 7.5 9.5 11.5 13.50

    10

    20

    30

    0

    10

    20

    30

    40

    RadialVelocity,cm/s

    0

    10

    20

    30

    D = 7.1 cm, Toluene, mf= 83 mg/s

    Hinterface= 64 cm, Lip Height = 0.2 cmDfloor = 51 cm

    x = 12 cm

    x = 6 cm

    x = 1 cm

    Radial Position, cm

    3.5 5.5 7.5 9.5 11.5 13.50

    10

    20

    30

    0

    10

    20

    30

    40

    Ra

    dialVelocity,cm/s

    0

    10

    20

    30

    D = 7.1 cm, Toluene, mf= 83 mg/s

    Hinterface

    = 64 cm, Lip Height = 0.2 cm

    Dfloor

    = 51 cm

    x = 12 cm

    x = 6 cm

    x = 1 cm

  • 8/12/2019 Air Entrainment Rate Calculations

    34/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Particle Imaging Velocimetry

    Based on CW Laser

  • 8/12/2019 Air Entrainment Rate Calculations

    35/81

  • 8/12/2019 Air Entrainment Rate Calculations

    36/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Instantaneous Velocity Vectors around a 7.1

    cm Toluene Pool fire without a Floor

    Radial Position, cm

    1 2 3 4 5 6 7 8 9 10 11

    AxialPosition,cm

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    50 cm/s

    Pool Edge

  • 8/12/2019 Air Entrainment Rate Calculations

    37/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Instantaneous Velocity Vectors around a 15

    cm Toluene Pool fire with a Floor

    Radial Position, cm

    7 9 11 13 15 17 19 21

    AxialPo

    sition,cm

    0

    2

    4

    6

    8

    10

    12

    14

    25 cm/sPool Edge

    A

  • 8/12/2019 Air Entrainment Rate Calculations

    38/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Instantaneous Velocity Vectors around a 15

    cm Toluene Pool fire without a Floor

    Radial Position, cm

    7 9 11 13 15 17 19 21

    AxialPo

    sition,cm

    0

    2

    4

    6

    8

    10

    12

    14

    25 cm/sPool Edge

  • 8/12/2019 Air Entrainment Rate Calculations

    39/81

  • 8/12/2019 Air Entrainment Rate Calculations

    40/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Mean Velocity Vectors around a 7.1 cm

    Toluene Pool fire with a Floor

    Radial Position, cm

    2.5 4.5 6.5 8.5 10.5

    A

    xialPosition,cm

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    10 cm/s

    Pool Edge

    Radial Position, cm

    2.5 4.5 6.5 8.5 10.5 12.5

    Pool Edge

    PIV Measurements LDV Measurements

    Mean entrainment flow field, Toluene, D = 7.1 cm, With a Floor

    mf= 83 mg/s, Dfloor= 51 cm, Hinterface= 64 cm, Hflame= 32 cm

  • 8/12/2019 Air Entrainment Rate Calculations

    41/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Mean Velocity Vectors around a 7.1 cm

    Toluene Pool fire without a Floor

    Radial Position, cm

    1 2 3 4 5 6 7 8 9 10 11

    AxialPosition,cm

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    50 cm/s

    Pool Edge

  • 8/12/2019 Air Entrainment Rate Calculations

    42/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Mean Velocity Vectors around a 15 cm

    Toluene Pool fire with a Floor

    Radial Position, cm

    7 9 11 13 15 17 19 21

    AxialPo

    sition,cm

    0

    2

    4

    6

    8

    10

    12

    14

    25 cm/sPool Edge

  • 8/12/2019 Air Entrainment Rate Calculations

    43/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Mean Velocity Vectors around a 15 cm

    Toluene Pool fire without a Floor

    Radial Position, cm

    7 9 11 13 15 17 19 21

    AxialPo

    sition,cm

    0

    2

    4

    6

    8

    10

    12

    14

    25 cm/sPool Edge

  • 8/12/2019 Air Entrainment Rate Calculations

    44/81

  • 8/12/2019 Air Entrainment Rate Calculations

    45/81

  • 8/12/2019 Air Entrainment Rate Calculations

    46/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Normalized Air Entrainment Rate for 15 and

    30 cm Pool Fires without a Floor

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Fr

    fm

    ent

    /(S+1)m

    f

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    0.18

    0.20

    0.22

    Fuel Pool(cm) Floor(cm) mf(mg/s) Data

    Methanol 30 none 980

    Heptane 15 none 385

    Toluene 30 none 2850Heptane 30 none 2660

    Toluene 15 none 370

    0.135(Z/D)0.78

    Methanol 15 none 245

    X / D

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Fr

    fm

    ent

    /(S+1)m

    f

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    0.18

    0.20

    0.22

    Fuel Pool(cm) Floor(cm) mf(mg/s) Data

    Methanol 30 none 980

    Heptane 15 none 385

    Toluene 30 none 2850Heptane 30 none 2660

    Toluene 15 none 370

    0.135(X/D)0.78

    Methanol 15 none 245

  • 8/12/2019 Air Entrainment Rate Calculations

    47/81

  • 8/12/2019 Air Entrainment Rate Calculations

    48/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    THE PHYSICAL SIGNIFICANCE OF

    THERMAL EXPANSION SOURCE TERM Q

    State Equation:

    t

    1

    R

    P

    t

    T

    2

    , and

    2

    1

    R

    PT (1)

    The Energy Equation:

    QTTVCt

    TC pp

    &r

    (2)

    The Mass Conservation Equation:

    0VV

    t

    rr(3)

    Substitute eq. (1) into eq. (2) and add to TCp eq. (3):

    )TQ(TC

    1V

    p

    &r

    (4)

  • 8/12/2019 Air Entrainment Rate Calculations

    49/81

  • 8/12/2019 Air Entrainment Rate Calculations

    50/81

  • 8/12/2019 Air Entrainment Rate Calculations

    51/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Gas Chromatography

    Column 1: H2, O2, N2, CH4, CO

    Column 2:

    CO2, C2H2, C2H4

  • 8/12/2019 Air Entrainment Rate Calculations

    52/81

  • 8/12/2019 Air Entrainment Rate Calculations

    53/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Radial Distribution of Mixture Fraction in

    the Near Field of 7.1 cm Natural Gas Flame

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Natural Gas, D = 7.1 cm, no floor

    Frf= 0.109, H

    flame= 36.4 cm,

    Mixtu

    reFraction

    0.0

    0.2

    0.4

    0.6

    0.8

    r, cm

    0 1 2 3 40.0

    0.2

    0.4

    0.6

    0.8

    Gaussian Logistic

    X = 1.5 cm

    = 1.0 cm

    = 0.5 cm

    Data

  • 8/12/2019 Air Entrainment Rate Calculations

    54/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Radial Distribution of Mixture Fraction in the

    Higher Region of 7.1 cm Natural Gas Flame

    0.0

    0.1

    0.2

    0.3

    Natural Gas, D = 7.1 cm, no floorFr

    f= 0.109, H

    flame= 36.4 cm,

    MixtureFraction

    0.0

    0.1

    0.2

    0.3

    0.4

    r, cm

    0 1 2 3 40.0

    0.2

    0.4

    0.6

    0.8

    Gaussian Logistic

    X = 10.0 cm

    = 5.0 cm

    = 2.0 cm

    Data

  • 8/12/2019 Air Entrainment Rate Calculations

    55/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Mole Fraction of Reactant Species as a

    Function of Mixture Fraction

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Mole

    Fraction

    0.00

    0.05

    0.10

    0.15

    0.20

    Mixture Fraction

    0.0 0.2 0.4 0.6 0.8 1.00.0

    0.2

    0.4

    0.6

    0.8

    CH4

    O2

    Data X, cm

    OPPDIF Prediction

    0.00.51.01.52.0

    3.05.0

    Data X, cm

    N2

    Natural Gas, D = 7.1 cm, no floorFrf= 0.109, Hflame = 36.4 cm

    Data X, cm

    0.00.51.01.52.0

    3.05.0

    10.012.0

    7.0

    Data X, cm

  • 8/12/2019 Air Entrainment Rate Calculations

    56/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Mole Fraction of Intermediate Combustion

    Products as a Function of Mixture Fraction

    Chemkin Prediction

    0.00

    0.01

    0.02

    0.03

    0.04

    MoleFraction

    0.000

    0.002

    0.004

    0.006

    0.008

    0.010

    Mixture Fraction

    0.0 0.2 0.4 0.6 0.8 1.00.00

    0.01

    0.02

    0.03

    C2H

    4

    C2H

    2

    H2

    OPPDIF Prediction

    Natural Gas FlameD = 7.1 cm, without floorFrf= 0.109, Hflame = 36.4 cm

    Data X, cm

    0.00.51.01.5

    2.03.05.0

    10.012.0

    7.0

    Data X, cm

  • 8/12/2019 Air Entrainment Rate Calculations

    57/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Mole Fraction of Combustion Products as a

    Function of Mixture Fraction

    0.00

    0.02

    0.04

    0.06

    0.08

    MoleFraction

    0.00

    0.01

    0.02

    0.03

    0.04

    Mixture Fraction

    0.0 0.2 0.4 0.6 0.8 1.00.00

    0.05

    0.10

    0.15

    CO2

    CO

    H2O

    OPPDIF Prediction

    Natural Gas Flame

    D = 7.1 cm, without floorFrf= 0.109, H

    flame= 36.4 cm

    Data X, cm

    0.00.51.01.5

    2.03.05.0

    10.012.0

    7.0

    Data X, cm

  • 8/12/2019 Air Entrainment Rate Calculations

    58/81

  • 8/12/2019 Air Entrainment Rate Calculations

    59/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Specific Volume Calculated Based on Species

    Concentration as a Function of Mixture Fraction

    chemkin predictionchemkin predictionchemkin prediction

    Mixture Fraction Z

    0.0 0.2 0.4 0.6 0.8 1.0

    ,m

    3/kg

    0

    1

    2

    3

    4

    5

    6

    7

    OPPDIF prediction

    Data X, cm

    0.5

    1.0

    1.5

    2.0

    Natural Gas FlameD = 7.1 cm, without floorFr

    f= 0.109, H

    flame= 36.4 cm

  • 8/12/2019 Air Entrainment Rate Calculations

    60/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Diffusivity Calculated Based on Species

    Concentration as a Function of Mixture Fraction

    chemkin predictionchemkin predictionchemkin prediction

    Mixture Fraction Z

    0.0 0.2 0.4 0.6 0.8 1.0

    DiffusionCoefficient,m

    2/s

    0e+0

    1e-4

    2e-4

    3e-4

    4e-4

    5e-4

    6e-4

    OPPDIF prediction

    D Data X, cm

    0.5

    1.0

    1.5

    2.0

    Natural Gas Flame

    D = 7.1 cm, without floorFr

    f= 0.109, H

    flame= 36.4 cm

  • 8/12/2019 Air Entrainment Rate Calculations

    61/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Thermal Expansion Source Term as a

    Function of Radial Distance in the Near Field

    -5

    0

    5

    10

    15

    20

    Natural Gas FlameD = 7.1 cm, without floorFr

    f= 0.109, H

    flame= 36.4 cm

    d

    /d/Z/d/dr(r

    DdZ/dr)/r,1/s

    -5

    0

    5

    10

    15

    20

    r, cm

    0 1 2 3 4-5

    0

    5

    10

    15

    20

    25

    Measured

    Correlations

    Visible Flame

    X = 2.0 cm

    = 1.5 cm

    = 0.5 cm

  • 8/12/2019 Air Entrainment Rate Calculations

    62/81

  • 8/12/2019 Air Entrainment Rate Calculations

    63/81

  • 8/12/2019 Air Entrainment Rate Calculations

    64/81

  • 8/12/2019 Air Entrainment Rate Calculations

    65/81

  • 8/12/2019 Air Entrainment Rate Calculations

    66/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Particle Imaging Velocimetry

  • 8/12/2019 Air Entrainment Rate Calculations

    67/81

  • 8/12/2019 Air Entrainment Rate Calculations

    68/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Instantaneous Velocity Vectors in the

    Near Field of a 7.1 cm Natural Gas Flame

    Radial Position, cm

    -4 -3 -2 -1 0 1 2 3 4

    Axial

    Position,cm

    0

    1

    2

    3

    4

    5

    6

    7

    8Natural Gas, Fr

    f= 0.109

    D = 7.1 cm, Hflame

    = 36.4

    Buoyant Diffusion Flame

    No Floor

    2.0 m/s

  • 8/12/2019 Air Entrainment Rate Calculations

    69/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Instantaneous Velocity Vectors in the intermittent

    Region of a 7.1 cm Natural Gas Flame

    Radial Position, cm

    -4 -3 -2 -1 0 1 2 3 4

    AxialPosition,cm

    24

    25

    26

    27

    28

    29

    30

    31Natural Gas, Fr

    f= 0.109

    D = 7.1 cm, without floor

    Buoyant Diffusion Flame

    Diffuser Burner

    4.0 m/s

  • 8/12/2019 Air Entrainment Rate Calculations

    70/81

  • 8/12/2019 Air Entrainment Rate Calculations

    71/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Mean Velocity Vectors in the Near Field

    of a 7.1 cm Natural Gas Flame

    Radial Position, cm

    -4 -3 -2 -1 0 1 2 3 4

    Axia

    lPosition,cm

    0

    1

    2

    3

    4

    5

    6

    7

    8

    Natural Gas, Frf= 0.109

    D = 7.1 cm, Hflame

    = 36.4

    Buoyant Diffusion FlameNo Floor

    2.0 m/s

  • 8/12/2019 Air Entrainment Rate Calculations

    72/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Mean Velocity Vectors in the Intermittent

    Region of a 7.1 cm Natural Gas Flame

    Radial Position, cm

    -4 -3 -2 -1 0 1 2 3 4

    Axia

    lPosition,cm

    24

    25

    26

    27

    28

    29

    30

    31Natural Gas, Fr

    f= 0.109

    D = 7.1 cm, without floor

    Buoyant Diffusion FlameDiffuser Burner

    4.0 m/s

  • 8/12/2019 Air Entrainment Rate Calculations

    73/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Radial Profiles of Mean Axial Velocities in

    the Near Field of a 7.1 cm Natural Gas Flame

    0

    40

    80

    120

    160

    200

    AxialVelocity,cm/s

    0

    40

    80

    120

    0

    20

    40

    60

    Radial Position, cm

    -5 -4 -3 -2 -1 0 1 2 3 4 50

    10

    20

    30

    x = 6 cm

    x = 4 cm

    x = 2 cm

    x = 1 cm

    Second measurement

    Buoyant Diffusion FlameNatural Gas, Frf= 0.109

    D = 7.1 cm, without floor

    First measurement

  • 8/12/2019 Air Entrainment Rate Calculations

    74/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Radial Profiles of Vorticities in the Near

    Field of a 7.1 cm Natural Gas Flame

    -20

    0

    20

    40

    6080

    100

    120

    Vorticity,1/sec

    -20

    0

    20

    40

    60

    80

    -40

    -20

    0

    20

    40

    60

    Radial Position, cm

    -5 -4 -3 -2 -1 0 1 2 3 4 5-40

    -20

    0

    20

    40

    x = 6 cm

    x = 4 cm

    x = 2 cm

    x = 1 cm

    from velocity field on 0.5 cm grid

    Buoyant Diffusion FlameNatural Gas, Fr

    f= 0.109

    D = 7.1 cm, without floor

    from velocity field on 0.25 cm gridfrom smoothed velocity field on 0.25 cm grid

    r

    u

    x

    u xr

    )j,1i(r)j,1i(r

    )j,1i(u)j,1i(u

    )1j,i(x)1j,i(x

    )1j,i(u)1j,i(u)j,i(

    xx

    rr

  • 8/12/2019 Air Entrainment Rate Calculations

    75/81

  • 8/12/2019 Air Entrainment Rate Calculations

    76/81

  • 8/12/2019 Air Entrainment Rate Calculations

    77/81

  • 8/12/2019 Air Entrainment Rate Calculations

    78/81

  • 8/12/2019 Air Entrainment Rate Calculations

    79/81

    P

    U

    R

    D

    U

    E

    Maurice J . Zucrow LaboratoriesSchool of Mechanical Engineering

    Measurements and Predictions of Radial

    Profiles of Axial Velocities

    0

    40

    80

    120

    160

    200

    AxialVelocity,cm/s

    0

    40

    80

    120

    0

    20

    40

    60

    Radial Position, cm

    -5 -4 -3 -2 -1 0 1 2 3 4 50

    10

    20

    30

    x = 6 cm

    x = 4 cm

    x = 2 cm

    x = 1 cm

    Second measurement

    Buoyant Diffusion Flame

    Natural Gas, Frf= 0.109

    D = 7.1 cm, without floor

    First measurement

    Predictions

  • 8/12/2019 Air Entrainment Rate Calculations

    80/81

  • 8/12/2019 Air Entrainment Rate Calculations

    81/81


Recommended