+ All Categories
Home > Documents > AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Date post: 15-Jan-2017
Category:
Upload: sathish-k
View: 176 times
Download: 1 times
Share this document with a friend
123
Codeware, Inc. Sarasota, FL, USA www.codeware.com AIR VOLUME TANK DESIGN CALCULATIONS Item: AIR VOLUME TANK Vessel No: 207C-060 Customer: BAHRAIN NATIONAL GAS CO. (B.S.C.) Designer: FATIMA / SATHISH Date: June 4, 2014 You can edit this page by selecting Cover Page settings... in the report menu.
Transcript
Page 1: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Codeware, Inc.

Sarasota, FL, USA

www.codeware.com

AIR VOLUME TANK DESIGN CALCULATIONS

Item: AIR VOLUME TANK

Vessel No: 207C-060

Customer: BAHRAIN NATIONAL GAS CO. (B.S.C.)

Designer: FATIMA / SATHISH

Date: June 4, 2014

You can edit this page by selecting Cover Page settings... in the report menu.

Page 2: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Table of ContentsGeneral Arrangement Drawing..............................................................................................................................1/121

Deficiencies Summary............................................................................................................................................2/121

Nozzle Schedule......................................................................................................................................................3/121

Nozzle Summary.....................................................................................................................................................4/121

Pressure Summary.................................................................................................................................................5/121

Revision History......................................................................................................................................................6/121

Settings Summary...................................................................................................................................................7/121

Radiography Summary...........................................................................................................................................9/121

Thickness Summary.............................................................................................................................................10/121

Weight Summary...................................................................................................................................................11/121

Long Seam Summary...........................................................................................................................................12/121

Hydrostatic Test....................................................................................................................................................13/121

Vacuum Summary.................................................................................................................................................14/121

Cylinder #1.............................................................................................................................................................15/121

B16.9 Pipe Cap #1.................................................................................................................................................28/121

Straight Flange on B16.9 Pipe Cap #1.................................................................................................................31/121

Straight Flange on B16.9 Pipe Cap #2.................................................................................................................38/121

B16.9 Pipe Cap #2.................................................................................................................................................46/121

Nozzle #1 (N1)........................................................................................................................................................49/121

Nozzle #2 (N2)........................................................................................................................................................56/121

Nozzle #3 (N3)........................................................................................................................................................63/121

Nozzle #4 (N4)........................................................................................................................................................72/121

Nozzle #5 (N5)........................................................................................................................................................81/121

Nozzle #6 (N6)........................................................................................................................................................91/121

Legs #1...................................................................................................................................................................99/121

Wind Code...........................................................................................................................................................108/121

Ear lug..................................................................................................................................................................113/121

i

Page 3: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

General Arrangement Drawing

1/121

Page 4: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Deficiencies Summary

Deficiencies for Nozzle #3 (N3)The inner fillet weld (Leg41 = 3 mm) is less than the minimum of 4.56 mm (MAP condition per UW-16).

Warnings Summary

Warnings for B16.9 Pipe Cap #1External design temperature varies across this chamber. (warning)Check the following component(s): (warning)Cylinder #1 (warning)

Warnings for Ear lugLoading on brace plate and head are not considered. (warning)Ear lug brace plate should be removed before vessel is put in service. (warning)

Warnings for Nozzle #3 (N3)UCS-79: The extreme fiber elongation exceeds 5 percent. Heat treatment per UCS-56 may be required. SeeUCS-79(d)(4) or (5). (warning)

Warnings for Nozzle #4 (N4)UCS-79: The extreme fiber elongation exceeds 5 percent. Heat treatment per UCS-56 may be required. SeeUCS-79(d)(4) or (5). (warning)

2/121

Page 5: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Nozzle Schedule

Nozzlemark Service Size Materials Impact

Tested Normalized Fine Grain Flange Blind

N1 Nozzle #1 152.4 OD x 50.8 Nozzle SA-105 No No No N/A No

N2 Nozzle #2 152.4 OD x 50.8 Nozzle SA-105 No No No N/A No

N3 Nozzle #3 28.58 OD x 4.56 Nozzle SA-516 60 No No No N/A No

N4 Nozzle #4 34.92 OD x 4.13 Nozzle SA-516 60 No No No N/A No

N5 Nozzle #5 34.92 OD x 4.13 Nozzle SA-105 No No No N/A No

N6 Nozzle #6 NPS 0.75 Class 3000 DN 20 - threaded Nozzle SA-105 No No No N/A No

3/121

Page 6: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Nozzle Summary

Nozzlemark

OD(mm)

tn

(mm)Req t

n(mm)

A1? A2?Shell Reinforcement

Pad Corr(mm)

Aa/A

r(%)

Nom t(mm)

Design t(mm)

User t(mm)

Width(mm)

tpad

(mm)

N1 152.4 50.8 7.82 Yes Yes 12.7 N/A N/A N/A 1.6 Exempt

N2 152.4 50.8 7.82 Yes Yes 12.7 N/A N/A N/A 1.6 Exempt

N3 28.58 4.56 4.56 Yes Yes 12.7 N/A N/A N/A 1.6 Exempt

N4 34.92 4.13 3.11 Yes Yes 12.7 N/A N/A N/A 0 Exempt

N5 34.92 4.13 3.11 Yes Yes 12.7 N/A N/A N/A 0 Exempt

N6 34.92 4.13 3.11 Yes Yes 12.7 N/A N/A N/A 0 Exempt

tn: Nozzle thicknessReq tn: Nozzle thickness required per UG-45/UG-16Nom t: Vessel wall thicknessDesign t: Required vessel wall thickness due to pressure + corrosion allowance per UG-37User t: Local vessel wall thickness (near opening)Aa: Area available per UG-37, governing conditionAr: Area required per UG-37, governing conditionCorr: Corrosion allowance on nozzle wall* Head minimum thickness after forming

4/121

Page 7: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Pressure Summary

Pressure Summary for Chamber bounded by B16.9 Pipe Cap #2 and B16.9 Pipe Cap #1

IdentifierP

Design( kPa)

T

Design( °C)

MAWP( kPa)

MAP( kPa)

MAEP( kPa)

Te

external( °C)

MDMT( °C)

MDMTExemption

ImpactTested

B16.9 Pipe Cap #1 931.63 60 3,864.69 5,409.3 1,893.88 140 -105 Note 1 No

Straight Flange on B16.9 Pipe Cap #1 931.63 60 4,509.06 6,020.41 2,467.51 140 -105 Note 2 No

Cylinder #1 931.63 60 4,482.31 5,984.69 2,467.51 60 -105 Note 3 No

Straight Flange on B16.9 Pipe Cap #2 931.63 60 3,832.7 5,117.35 2,467.51 140 -105 Note 5 No

B16.9 Pipe Cap #2 931.63 60 3,284.99 4,597.9 1,893.88 140 -105 Note 4 No

Legs #1 931.63 60 931.63 N/A N/A N/A N/A N/A N/A

Nozzle #1 (N1) 931.63 60 5,273.18 7,040.69 2,467.43 60 -105 Note 6 No

Nozzle #2 (N2) 931.63 60 5,273.18 7,040.69 2,467.43 60 -105 Note 6 No

Nozzle #3 (N3) 931.63 60 5,273.18 7,040.69 2,467.43 60 -105 Note 7 No

Nozzle #4 (N4) 931.63 60 5,273.18 7,040.69 2,467.43 60 -105 Note 8 No

Nozzle #5 (N5) 931.63 60 4,283.21 6,007.19 1,893.88 140 -105 Note 9 No

Nozzle #6 (N6) 931.63 60 4,283.21 6,007.19 1,893.88 140 -105 Note 9 No

Chamber design MDMT is 0 °CChamber rated MDMT is -105 °C @ 931.63 kPa

Chamber MAWP hot & corroded is 931.63 kPa @ 60 °C

Chamber MAP cold & new is 4,597.9 kPa @ 45 °C

Chamber MAEP is 1,893.88 kPa @ 60 °CVacuum rings did not govern the external pressure rating.

Notes for MDMT Rating:

Note # Exemption Details

1. Straight Flange governs MDMT

2. Material is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.2028)

3. Material is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.1734)

4. Straight Flange governs MDMT

5. Material is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.203)

6. Pad is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.1733).

7. Nozzle is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.0304).

8. Nozzle is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.0256).

9. Nozzle is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.0219).

Design notes are available on the Settings Summary page.

5/121

Page 8: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Revision History

No. Date Operator Notes

0 6/4/2014 SATHISH New vessel created ASME Section VIII Division 1 [COMPRESS 2014 Build 7400]

1 6/4/2014 SATHISH

Converted from ASME Section VIII Division 1, 2013 Edition Metric to ASME Section VIIIDivision 1, 2010 Edition, A11 Addenda Metric. During the conversion, changes may havebeen made to your vessel (some may be listed above). Please check your vessel carefully.

6/121

Page 9: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Settings Summary

COMPRESS 2014 Build 7400

Units: SI

Datum Line Location: 0.00 mm from bottom seam

Design

ASME Section VIII Division 1, 2010 Edition, A11 Addenda Metric

Design or Rating: Get Thickness from PressureMinimum thickness: 1.5 mm per UG-16(b)Design for cold shut down only: NoDesign for lethal service (full radiography required): NoDesign nozzles for: Design P, find nozzle MAWP and MAPCorrosion weight loss: 100% of theoretical lossUG-23 Stress Increase: 1.20Skirt/legs stress increase: 1.0Minimum nozzle projection: 20 mmJuncture calculations for α > 30 only: YesPreheat P-No 1 Materials > 1.25" and <= 1.50" thick: NoUG-37(a) shell tr calculation considers longitudinal stress: NoButt welds are tapered per Figure UCS-66.3(a).

Hydro/Pneumatic Test

Shop Hydrotest Pressure: 1.3 times vesselMAWP

Test liquid specific gravity: 1.00Maximum stress during test: 90% of yield

Required Marking - UG-116

UG-116(e) Radiography: RT4UG-116(f) Postweld heat treatment: None

Code Cases\Interpretations

Use Code Case 2547: NoUse Code Case 2695: NoApply interpretation VIII-1-83-66: YesApply interpretation VIII-1-86-175: YesApply interpretation VIII-1-01-37: YesNo UCS-66.1 MDMT reduction: NoNo UCS-68(c) MDMT reduction: NoDisallow UG-20(f) exemptions: No

7/121

Page 10: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

UG-22 Loadings

UG-22(a) Internal or External Design Pressure : YesUG-22(b) Weight of the vessel and normal contents under operating or test conditions: YesUG-22(c) Superimposed static reactions from weight of attached equipment (external loads): NoUG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs: YesUG-22(f) Wind reactions: YesUG-22(f) Seismic reactions: NoUG-22(j) Test pressure and coincident static head acting during the test: NoNote: UG-22(b),(c) and (f) loads only considered when supports are present.

8/121

Page 11: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Radiography Summary

Radiography for Chamber bounded by B16.9 Pipe Cap #2 and B16.9 Pipe Cap #1

ComponentLongitudinal Seam Top Circumferential Seam Bottom Circumferential Seam

MarkCategory

(Fig UW-3) Radiography / Joint Type Category(Fig UW-3) Radiography / Joint Type Category

(Fig UW-3) Radiography / Joint Type

B16.9 Pipe Cap #1 N/A Seamless No RT N/A N/A B Full UW-11(a) / Type 1 RT1

Cylinder #1 A Spot UW-11(b) / Type 1 B Full UW-11(a) / Type 1 B Spot UW-11(b) / Type 1 RT4

B16.9 Pipe Cap #2 N/A Seamless No RT B Spot UW-11(b) / Type 1 N/A N/A RT3

Nozzle Longitudinal Seam Nozzle to Vessel Circumferential Seam Nozzle free end Circumferential Seam

Nozzle #6 (N6) N/A Seamless No RT D N/A / Type 7 N/A N/A N/A

Nozzle #1 (N1) N/A Seamless No RT D N/A / Type 7 N/A N/A N/A

Nozzle #2 (N2) N/A Seamless No RT D N/A / Type 7 N/A N/A N/A

Nozzle #3 (N3) A User Defined (E = 1.00) D N/A / Type 7 N/A N/A RT1

Nozzle #4 (N4) A User Defined (E = 1.00) D N/A / Type 7 N/A N/A RT1

Nozzle #5 (N5) N/A Seamless No RT D N/A / Type 7 N/A N/A N/A

Chamber bounded by B16.9 Pipe Cap #2 and B16.9 Pipe Cap #1 - UG-116(e) Radiography: RT4

9/121

Page 12: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Thickness Summary

ComponentIdentifier

Material Diameter(mm)

Length(mm)

Nominal t(mm)

Design t(mm)

Total Corrosion(mm)

JointE

Load

B16.9 Pipe Cap #1 SA-234 WPB 482.6 ID 131.76 12.7 7.72 3.2 1.00 External

Straight Flange on B16.9 Pipe Cap #1 SA-234 WPB 482.6 ID 97.24 12.7 8.37 3.2 1.00 External

Cylinder #1 SA-516 70 482.6 ID 700 12.7 8.37 3.2 0.85 External

Straight Flange on B16.9 Pipe Cap #2 SA-234 WPB 482.6 ID 97.24 12.7 8.37 3.2 0.85 External

B16.9 Pipe Cap #2 SA-234 WPB 482.6 ID 131.76 12.7 7.72 3.2 0.85 External

Nominal t: Vessel wall nominal thickness

Design t: Required vessel thickness due to governing loading + corrosion

Joint E: Longitudinal seam joint efficiency

* Head minimum thickness after forming

Load

internal: Circumferential stress due to internal pressure governs

external: External pressure governs

Wind: Combined longitudinal stress of pressure + weight + wind governs

Seismic: Combined longitudinal stress of pressure + weight + seismic governs

10/121

Page 13: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Weight Summary

ComponentWeight ( kg) Contributed by Vessel Elements Surface

Aream2Metal

New*Metal

Corroded* Insulation InsulationSupports Lining Piping

+ Liquid

Operating Liquid Test Liquid

New Corroded New Corroded

B16.9 Pipe Cap #1 43.4 32.5 0 0 0 0 0 0 32.5 33.1 0.47

Cylinder #1 104.6 78.2 0 0 0 0 0 0 128.1 129.9 1.08

B16.9 Pipe Cap #2 43.4 32.5 0 0 0 0 0 0 32.5 33.1 0.47

Legs #1 7.3 7.3 0 0 0 0 0 0 0 0 0.18

TOTAL: 198.8 150.5 0 0 0 0 0 0 193.1 196.1 2.2

* Shells with attached nozzles have weight reduced by material cut out for opening.

Component

Weight ( kg) Contributed by Attachments SurfaceAream2Body Flanges Nozzles &

Flanges PackedBeds

Ladders &Platforms

Trays TraySupports

Rings &Clips

VerticalLoads

New Corroded New Corroded

B16.9 Pipe Cap #1 0 0 0.1 0.1 0 0 0 0 0 0 0

Cylinder #1 0 0 15.8 15.5 0 0 0 0 8.6 0 0.1

B16.9 Pipe Cap #2 0 0 0.1 0.1 0 0 0 0 0 0 0

Legs #1 0 0 0 0 0 0 0 0 0 0 0

TOTAL: 0 0 16.1 15.7 0 0 0 0 8.6 0 0.11

Vessel operating weight, Corroded: 173 kgVessel operating weight, New: 223 kgVessel empty weight, Corroded: 173 kgVessel empty weight, New: 223 kgVessel test weight, New: 417 kgVessel test weight, Corroded: 369 kgVessel surface area: 2.3 m2

Vessel center of gravity location - from datum - lift condition

Vessel Lift Weight, New: 223 kgCenter of Gravity: 350.34 mm

Vessel Capacity

Vessel Capacity** (New): 193 litersVessel Capacity** (Corroded): 196 liters**The vessel capacity does not include volume of nozzle, piping or other attachments.

11/121

Page 14: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Long Seam Summary

Shell Long SeamAngles

Component Seam 1

Cylinder #1 0°

Shell Plate Lengths

Component StartingAngle Plate 1

Cylinder #1 0° 1,556.03 mm

*North is located at 0°*Plate Lengths use the circumference of the vessel based on the mid diameter of the components

Shell Rollout

12/121

Page 15: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Hydrostatic Test

Shop test pressure determination for Chamber bounded by B16.9 Pipe Cap #2 and B16.9 Pipe Cap #1 basedon MAWP per UG-99(b)

Shop hydrostatic test gauge pressure is 1,211.12 kPa at 45 °C (the chamber MAWP = 931.63 kPa)

The shop test is performed with the vessel in the horizontal position.

IdentifierLocal testpressure

kPa

Test liquidstatic head

kPa

UG-99(b)stressratio

UG-99(b)pressure

factorB16.9 Pipe Cap #1 (1) 1,215.85 4.73 1 1.30

Straight Flange on B16.9 Pipe Cap #1 1,215.85 4.73 1 1.30

Cylinder #1 1,215.85 4.73 1 1.30

Straight Flange on B16.9 Pipe Cap #2 1,215.85 4.73 1 1.30

B16.9 Pipe Cap #2 1,215.85 4.73 1 1.30

Nozzle #1 (N1) 1,216.35 5.23 1 1.30

Nozzle #2 (N2) 1,216.35 5.23 1 1.30

Nozzle #3 (N3) 1,213.58 2.46 1 1.30

Nozzle #4 (N4) 1,213.61 2.5 1 1.30

Nozzle #5 (N5) 1,213.61 2.5 1 1.30

Nozzle #6 (N6) 1,213.61 2.5 1 1.30

Notes:(1) B16.9 Pipe Cap #1 limits the UG-99(b) stress ratio.(2) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-mostflange.

The field test condition has not been investigated for the Chamber bounded by B16.9 Pipe Cap #2 and B16.9 PipeCap #1.

The test temperature of 45 °C is warmer than the minimum recommended temperature of -88 °C so the brittlefracture provision of UG-99(h) has been met.

13/121

Page 16: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Vacuum Summary

Component Line of SupportElevation

above Datum(mm)

Length Le(mm)

B16.9 Pipe Cap #1 - 929 N/A

- 1/3 depth of B16.9 Pipe Cap #1 837.99 N/A

Straight Flange on B16.9 Pipe Cap #1 Top - 797.24 975.98

Straight Flange on B16.9 Pipe Cap #1 Bottom - 700 975.98

Cylinder #1 Top - 700 975.98

Cylinder #1 Bottom - 0 975.98

Straight Flange on B16.9 Pipe Cap #2 Top - 0 975.98

Straight Flange on B16.9 Pipe Cap #2 Bottom - -97.24 975.98

- 1/3 depth of B16.9 Pipe Cap #2 -137.99 N/A

B16.9 Pipe Cap #2 - -229 N/A

Note

For main components, the listed value of 'Le' is the largest unsupported length for the component.

14/121

Page 17: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Cylinder #1

ASME Section VIII Division 1, 2010 Edition, A11 Addenda Metric

Component: CylinderMaterial specification: SA-516 70 (II-D Metric p. 18, ln. 19)Material is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.1734)

Internal design pressure: P = 931.63 kPa @ 60 °CExternal design pressure: Pe = 931.63 kPa @ 60 °C

Static liquid head:

Pth = 4.73 kPa (SG = 1, Hs = 482.6 mm, Horizontal testhead)

Corrosion allowance Inner C = 1.6 mm Outer C = 1.6 mm

Design MDMT = 0 °C No impact test performedRated MDMT = -105 °C Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Spot UW-11(b) Type 1Top circumferential joint - Full UW-11(a) Type 1Bottom circumferential joint - Spot UW-11(b) Type 1

Estimated weight New = 104.6 kg corr = 78.2 kgCapacity New = 128.04 liters corr = 129.75 liters

ID = 482.6 mmLengthLc

= 700 mm

t = 12.7 mm

Design thickness, (at 60 °C) UG-27(c)(1)

t = P*R / (S*E - 0.60*P) + Corrosion= 931.63*242.9 / (138,000*0.85 - 0.60*931.63) + 3.2= 5.14 mm

Maximum allowable working pressure, (at 60 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t) - Ps= 138,000*0.85*9.5 / (242.9 + 0.60*9.5) - 0= 4,482.31 kPa

Maximum allowable pressure, (at 45 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t)= 138,000*0.85*12.7 / (241.3 + 0.60*12.7)= 5,984.69 kPa

External Pressure, (Corroded & at 60 °C) UG-28(c)

L / Do = 975.98 / 508 = 1.9212Do / t = 508 / 5.17 = 98.3386

15/121

Page 18: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

From table G: A = 0.000691From table CS-2Metric: B = 68.7111 MPa

Pa = 4*B / (3*(Do / t))= 4*68,711.1 / (3*(508 / 5.17))= 931.63 kPa

Design thickness for external pressure Pa = 931.63 kPa

ta = t + Corrosion = 5.17 + 3.2 = 8.37mm

Maximum Allowable External Pressure, (Corroded & at 60 °C) UG-28(c)

L / Do = 975.98 / 508 = 1.9212Do / t = 508 / 9.5 = 53.4759From table G: A = 0.001734From table CS-2Metric: B = 98.9641 MPa

Pa = 4*B / (3*(Do / t))= 4*98,964.13 / (3*(508 / 9.5))= 2,467.51 kPa

% Extreme fiber elongation - UCS-79(d)

EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*12.7 / 247.65)*(1 - 247.65 / ∞)= 2.5641%

The extreme fiber elongation does not exceed 5%.

External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)

Pv = W / (2*π*Rm) + M / (π*Rm2)

= 98.03*129.9 / (2*π*247.65) + 10000*137 / (π*247.652)= 15.2961 N/cm

α = Pv / (Pe*Do)= 100*15.2961 / (931.63*508)= 0.0032

n = 3

m = 1.23 / (L / Do)2

= 1.23 / (975.98 / 508)2

= 0.3332

Ratio Pe = (n2 - 1 + m + m*α) / (n2 - 1 + m)= (32 - 1 + 0.3332 + 0.3332*0.0032) / (32 - 1 + 0.3332)= 1.0001

Ratio Pe * Pe ≤ MAEP design cylinder thickness is satisfactory.

External Pressure + Weight + Wind Loading Check at Bottom Seam (Bergman, ASME paper 54-A-104)

Pv = 0.6*W / (2*π*Rm) + M / (π*Rm2)

= 0.60*98.03*-35.5 / (2*π*247.65) + 10000*6.3 / (π*247.652)

16/121

Page 19: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= -1.0161 N/cm

α = Pv / (Pe*Do)= 100*-1.0161 / (931.63*508)= -0.0002

n = 3

m = 1.23 / (L / Do)2

= 1.23 / (975.98 / 508)2

= 0.3332

Ratio Pe = (n2 - 1 + m + m*α) / (n2 - 1 + m)= (32 - 1 + 0.3332 + 0.3332*-0.0002) / (32 - 1 + 0.3332)= 1.0000

Ratio Pe * Pe ≤ MAEP design cylinder thickness is satisfactory.

Design thickness = 8.37 mm

The governing condition is due to external pressure.

The cylinder thickness of 12.7 mm is adequate.

17/121

Page 20: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Thickness Required Due to Pressure + External Loads

Condition Pressure P (kPa)

AllowableStressBeforeUG-23Stress

Increase (MPa)

Temperature (°C)

Corrosion C(mm) Location Load Req'd Thk Due to

Tension (mm)Req'd Thk Due to

Compression (mm)

St Sc

Operating, Hot & Corroded 931.63 138 118.09 60 3.2 Top Wind 0.68 0.67

Bottom Wind 0.68 0.68

Operating, Hot & New 931.63 138 119.28 60 0 Top Wind 0.68 0.67

Bottom Wind 0.68 0.68

Hot Shut Down, Corroded 0 138 118.09 60 3.2 Top Wind 0 0.01

Bottom Wind 0 0

Hot Shut Down, New 0 138 119.28 60 0 Top Wind 0 0.01

Bottom Wind 0 0

Empty, Corroded 0 138 118.09 21.11 3.2 Top Wind 0 0.01

Bottom Wind 0 0

Empty, New 0 138 119.28 21.11 0 Top Wind 0 0.01

Bottom Wind 0 0

Vacuum -931.63 138 118.09 60 3.2 Top Wind 0.8 0.81

Bottom Wind 0.8 0.8

Hot Shut Down, Corroded,Weight & Eccentric MomentsOnly 0 138 118.09 60 3.2

Top Weight 0.01 0.01

Bottom Weight 0 0

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (254 / 9.5)= 0.004675

B = 118.09 MPa

S = 138 / 1.00 = 138 MPa

ScHC = min(B, S) = 118.09 MPa

Allowable Compressive Stress, Hot and New- ScHN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (254 / 12.7)= 0.006250

B = 119.28 MPa

S = 138 / 1.00 = 138 MPa

ScHN = min(B, S) = 119.28 MPa

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (254 / 12.7)= 0.006250

B = 119.28 MPa

18/121

Page 21: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

S = 138 / 1.00 = 138 MPa

ScCN = min(B, S) = 119.28 MPa

Allowable Compressive Stress, Cold and Corroded- ScCC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (254 / 9.5)= 0.004675

B = 118.09 MPa

S = 138 / 1.00 = 138 MPa

ScCC = min(B, S) = 118.09 MPa

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableCS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (254 / 9.5)= 0.004675

B = 118.09 MPa

S = 138 / 1.00 = 138 MPa

ScVC = min(B, S) = 118.09 MPa

Operating, Hot & Corroded, Wind, Above Support Point

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 931.63*242.9 / (2*138,000*1.20*1.00 + 0.40*|931.63|)= 0.68 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 137 / (π*247.652*138,000*1.20*1.00) * 106

= 0 mm

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*129.9 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tt = tp + tm - tw (total required, tensile)= 0.68 + 0 - (0)= 0.68 mm

twc = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 129.9 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tc = |tmc + twc - tpc| (total, net tensile)= |0 + (0) - (0.68)|= 0.67 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*138,000*1.20*1.00*(9.5 - 0 + (0)) / (242.9 - 0.40*(9.5 - 0 + (0)))= 13,156.9 kPa

19/121

Page 22: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Operating, Hot & New, Wind, Above Support Point

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 931.63*241.3 / (2*138,000*1.20*1.00 + 0.40*|931.63|)= 0.68 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 137.7 / (π*247.652*138,000*1.20*1.00) * 106

= 0 mm

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*168.7 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tt = tp + tm - tw (total required, tensile)= 0.68 + 0 - (0)= 0.68 mm

twc = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 168.7 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0.01 mm

tc = |tmc + twc - tpc| (total, net tensile)= |0 + (0.01) - (0.68)|= 0.67 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*138,000*1.20*1.00*(12.7 - 0 + (0)) / (241.3 - 0.40*(12.7 - 0 + (0)))= 17,805.78 kPa

Hot Shut Down, Corroded, Wind, Above Support Point

tp = 0 mm (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) * MetricFactor (bending)= 137 / (π*247.652*138,000*1.20*1.00) * 106

= 0 mm

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*129.9 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tt = tp + tm - tw (total required, tensile)= 0 + 0 - (0)= 0 mm

tmc = M / (π*Rm2*Sc*Ks) * MetricFactor (bending)

= 137 / (π*247.652*118,088.35*1.20) * 106

= 0.01 mm

twc = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 129.9 / (2*π*247.65*118,088.35*1.20) * 104

= 0.01 mm

tc = tmc + twc - tpc (total required, compressive)= 0.01 + (0.01) - (0)

20/121

Page 23: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= 0.01 mm

Hot Shut Down, New, Wind, Above Support Point

tp = 0 mm (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) * MetricFactor (bending)= 137.7 / (π*247.652*138,000*1.20*1.00) * 106

= 0 mm

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*168.7 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tt = tp + tm - tw (total required, tensile)= 0 + 0 - (0)= 0 mm

tmc = M / (π*Rm2*Sc*Ks) * MetricFactor (bending)

= 137.7 / (π*247.652*119,275.31*1.20) * 106

= 0 mm

twc = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 168.7 / (2*π*247.65*119,275.31*1.20) * 104

= 0.01 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.01) - (0)= 0.01 mm

Empty, Corroded, Wind, Above Support Point

tp = 0 mm (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) * MetricFactor (bending)= 137 / (π*247.652*138,000*1.20*1.00) * 106

= 0 mm

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*129.9 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tt = tp + tm - tw (total required, tensile)= 0 + 0 - (0)= 0 mm

tmc = M / (π*Rm2*Sc*Ks) * MetricFactor (bending)

= 137 / (π*247.652*118,088.35*1.20) * 106

= 0.01 mm

twc = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 129.9 / (2*π*247.65*118,088.35*1.20) * 104

= 0.01 mm

tc = tmc + twc - tpc (total required, compressive)= 0.01 + (0.01) - (0)= 0.01 mm

21/121

Page 24: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Empty, New, Wind, Above Support Point

tp = 0 mm (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) * MetricFactor (bending)= 137.7 / (π*247.652*138,000*1.20*1.00) * 106

= 0 mm

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*168.7 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tt = tp + tm - tw (total required, tensile)= 0 + 0 - (0)= 0 mm

tmc = M / (π*Rm2*Sc*Ks) * MetricFactor (bending)

= 137.7 / (π*247.652*119,275.31*1.20) * 106

= 0 mm

twc = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 168.7 / (2*π*247.65*119,275.31*1.20) * 104

= 0.01 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.01) - (0)= 0.01 mm

Vacuum, Wind, Above Support Point

tp = P*R / (2*Sc*Ks + 0.40*|P|) (Pressure)= -931.63*242.9 / (2*118,088.35*1.20 + 0.40*|931.63|)= -0.8 mm

tm = M / (π*Rm2*Sc*Ks) * MetricFactor (bending)

= 137 / (π*247.652*118,088.35*1.20) * 106

= 0.01 mm

tw = 0.6*W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 0.60*129.9 / (2*π*247.65*118,088.35*1.20) * 104

= 0 mm

tt = |tp + tm - tw| (total, net compressive)= |-0.8 + 0.01 - (0)|= 0.8 mm

twc = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 129.9 / (2*π*247.65*118,088.35*1.20) * 104

= 0.01 mm

tc = tmc + twc - tpc (total required, compressive)= 0.01 + (0.01) - (-0.8)= 0.81 mm

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0.40*(t - tmc - twc))= 2*118,088.35*1.20*(9.5 - 0.01 - 0.01) / (242.9 - 0.40*(9.5 - 0.01 - 0.01))

22/121

Page 25: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= 11,247.13 kPa

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Above Support Point

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 43.7 / (π*247.652*118,088.35*1.00) * 106

= 0 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 129.9 / (2*π*247.65*118,088.35*1.00) * 104

= 0.01 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0.01)|= 0.01 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.01) - (0)= 0.01 mm

Operating, Hot & Corroded, Wind, Below Support Point

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 931.63*242.9 / (2*138,000*1.20*1.00 + 0.40*|931.63|)= 0.68 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 6.3 / (π*247.652*138,000*1.20*1.00) * 106

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= -35.5 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tt = tp + tm - tw (total required, tensile)= 0.68 + 0 - (0)= 0.68 mm

twc = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*-35.5 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tc = |tmc + twc - tpc| (total, net tensile)= |0 + (0) - (0.68)|= 0.68 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*138,000*1.20*1.00*(9.5 - 0 + (0)) / (242.9 - 0.40*(9.5 - 0 + (0)))= 13,156.59 kPa

23/121

Page 26: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Operating, Hot & New, Wind, Below Support Point

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 931.63*241.3 / (2*138,000*1.20*1.00 + 0.40*|931.63|)= 0.68 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 6.3 / (π*247.652*138,000*1.20*1.00) * 106

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= -47.5 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tt = tp + tm - tw (total required, tensile)= 0.68 + 0 - (0)= 0.68 mm

twc = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*-47.5 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tc = |tmc + twc - tpc| (total, net tensile)= |0 + (0) - (0.68)|= 0.68 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*138,000*1.20*1.00*(12.7 - 0 + (0)) / (241.3 - 0.40*(12.7 - 0 + (0)))= 17,803.58 kPa

Hot Shut Down, Corroded, Wind, Below Support Point

tp = 0 mm (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) * MetricFactor (bending)= 6.3 / (π*247.652*138,000*1.20*1.00) * 106

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= -35.5 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (0)= 0 mm

twc = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*-35.5 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0) - (0)|= 0 mm

24/121

Page 27: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Hot Shut Down, New, Wind, Below Support Point

tp = 0 mm (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) * MetricFactor (bending)= 6.3 / (π*247.652*138,000*1.20*1.00) * 106

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= -47.5 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (0)= 0 mm

twc = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*-47.5 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0) - (0)|= 0 mm

Empty, Corroded, Wind, Below Support Point

tp = 0 mm (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) * MetricFactor (bending)= 6.3 / (π*247.652*138,000*1.20*1.00) * 106

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= -35.5 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (0)= 0 mm

twc = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*-35.5 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0) - (0)|= 0 mm

Empty, New, Wind, Below Support Point

tp = 0 mm (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) * MetricFactor (bending)= 6.3 / (π*247.652*138,000*1.20*1.00) * 106

= 0 mm

25/121

Page 28: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= -47.5 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (0)= 0 mm

twc = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*-47.5 / (2*π*247.65*138,000*1.20*1.00) * 104

= 0 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0) - (0)|= 0 mm

Vacuum, Wind, Below Support Point

tp = P*R / (2*Sc*Ks + 0.40*|P|) (Pressure)= -931.63*242.9 / (2*118,088.35*1.20 + 0.40*|931.63|)= -0.8 mm

tm = M / (π*Rm2*Sc*Ks) * MetricFactor (bending)

= 6.3 / (π*247.652*118,088.35*1.20) * 106

= 0 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= -35.5 / (2*π*247.65*118,088.35*1.20) * 104

= 0 mm

tt = |tp + tm - tw| (total, net compressive)= |-0.8 + 0 - (0)|= 0.8 mm

twc = 0.6*W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 0.60*-35.5 / (2*π*247.65*118,088.35*1.20) * 104

= 0 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0) - (-0.8)= 0.8 mm

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0.40*(t - tmc - twc))= 2*118,088.35*1.20*(9.5 - 0 - 0) / (242.9 - 0.40*(9.5 - 0 - 0))= 11,260.99 kPa

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Below Support Point

tp = 0 mm (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) * MetricFactor (bending)= 0 / (π*247.652*138,000*1.00*1.00) * 106

26/121

Page 29: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= -35.5 / (2*π*247.65*138,000*1.00*1.00) * 104

= 0 mm

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (0)= 0 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0) - (0)|= 0 mm

27/121

Page 30: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

B16.9 Pipe Cap #1

ASME Section VIII Division 1, 2010 Edition, A11 Addenda Metric

Component: ASME B16.9 Pipe Cap (modified)NPS and Schedule: NPS 20 Sch 30 (XS) DN 500Material Specification: SA-234 WPB (II-D Metric p.10, ln. 42)Straight Flange governs MDMT

Internal design pressure: P = 931.63 kPa @ 60 °CExternal design pressure: Pe = 931.63 kPa @ 140 °C

Static liquid head:

Ps= 0 kPa (SG=1, Hs=0 mm Operating head)Pth= 4.73 kPa (SG=1, Hs=482.6 mm Horizontal test head)

Corrosion allowance: Inner C = 1.6 mm Outer C = 1.6 mm

Design MDMT = 0°C No impact test performedRated MDMT = -105°C Material is not normalized

Material is not produced to fine grain practicePWHT is not performedDo not Optimize MDMT / Find MAWP

Radiography: Category A joints - Seamless No RT Head to shell seam - Full UW-11(a) Type 1

Estimated weight*: new = 43.4 kg corr = 32.5 kgCapacity*: new = 32.5 liters corr = 33.1 liters* includes straight flange

Inner diameter = 482.6 mmNominal head thickness = 12.7 mmMinimum head thickness = 11.11 mmOverall length E = 229 mmStraight flange length Lsf = 97.24 mmNominal straight flange thickness tsf = 12.7 mmResults Summary

The governing condition is external pressure.Minimum thickness per UG-16 = 1.5 mm + 3.2 mm = 4.7 mmDesign thickness due to internal pressure (t) = 5.11 mmDesign thickness due to external pressure (te) = 7.72 mmGoverning straight flange design thickness = 8.37 mmMaximum allowable working pressure (MAWP) = 3,864.69 kPaMaximum allowable pressure (MAP) = 5,409.3 kPaMaximum allowable external pressure (MAEP) = 1,893.88 kPa

K (Corroded)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (485.8 / (2*122.25))2]=0.991302

28/121

Page 31: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

K (New)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (482.6 / (2*120.65))2]=1

Design thickness for internal pressure, (Corroded at 60 °C) Appendix 1-4(c)

t = P*D*K / (2*S*E - 0.2*P) + Corrosion= 931.63*485.8*0.991302 / (2*118,000*1 - 0.2*931.63) + 3.2= 5.1 mm

The head internal pressure design thickness is 5.11 mm.

Maximum allowable working pressure, (Corroded at 60 °C) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*118,000*1*(0.875*12.7 - 3.2) / (0.991302*485.8 +0.2*(0.875*12.7 - 3.2)) - 0= 3,864.69 kPa

The maximum allowable working pressure (MAWP) is 3,864.69 kPa.

Maximum allowable pressure, (New at 45 °C) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*118,000*1*0.875*12.7 / (1*482.6 +0.2*0.875*12.7) - 0= 5,409.3 kPa

The maximum allowable pressure (MAP) is 5,409.3 kPa.

Design thickness for external pressure, (Corroded at 140 °C) UG-33(d)

Equivalent outside spherical radius (Ro)Ro = Ko*Do

= 0.8675*508= 440.67 mm

A = 0.125 / (Ro / t)= 0.125 / (440.67 / 4.52)= 0.001281

From Table CS-2Metric: B = 90.9019

MPa

Pa = B / (Ro / t)= 90,901.92 / (440.67 / 4.52)= 931.63 kPa

t = 4.52 mm + Corrosion = 4.52 mm + 3.2 mm = 7.72 mmCheck the external pressure per UG-33(a)(1) Appendix 1-4(c)

t = 1.67*Pe*D*K / (2*S*E - 0.2*1.67*Pe) + Corrosion= 1.67*931.63*485.8*0.991302 / (2*118,000*1 - 0.2*1.67*931.63) + 3.2= 6.38 mm

The head external pressure design thickness (te) is 7.72 mm.

29/121

Page 32: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Maximum Allowable External Pressure, (Corroded at 140 °C) UG-33(d)

Equivalent outside spherical radius (Ro)Ro = Ko*Do

= 0.8675*508= 440.67 mm

A = 0.125 / (Ro / t)= 0.125 / (440.67 / (0.875*12.7 - 3.2))= 0.002244

From Table CS-2Metric: B = 105.482

MPa

Pa = B / (Ro / t)= 105,482 / (440.67 / (0.875*12.7 - 3.2))= 1,893.8783 kPa

Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(c)

P = 2*S*E*t / ((K*D + 0.2*t)*1.67) - Ps2

= 2*118,000*1*(0.875*12.7 - 3.2) / ((0.991302*485.8 +0.2*(0.875*12.7 - 3.2))*1.67) -0

= 2,314.19 kPa

The maximum allowable external pressure (MAEP) is 1,893.88 kPa.

30/121

Page 33: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Straight Flange on B16.9 Pipe Cap #1

ASME Section VIII Division 1, 2010 Edition, A11 Addenda Metric

Component: Straight FlangeMaterial specification: SA-234 WPB (II-D Metric p. 10, ln. 42)Material is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.2028)

Internal design pressure: P = 931.63 kPa @ 60 °CExternal design pressure: Pe = 931.63 kPa @ 140 °C

Static liquid head:

Pth = 4.73 kPa (SG = 1, Hs = 482.6 mm, Horizontal testhead)

Corrosion allowance Inner C = 1.6 mm Outer C = 1.6 mm

Design MDMT = 0 °C No impact test performedRated MDMT = -105 °C Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Seamless No RTCircumferential joint - Full UW-11(a) Type 1

Estimated weight New = 15.1 kg corr = 11.3 kgCapacity New = 17.79 liters corr = 18.02 liters

ID = 482.6 mmLengthLc

= 97.24 mm

t = 12.7 mm

Design thickness, (at 60 °C) UG-27(c)(1)

t = P*R / (S*E - 0.60*P) + Corrosion= 931.63*242.9 / (118,000*1.00 - 0.60*931.63) + 3.2= 5.13 mm

Maximum allowable working pressure, (at 60 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t) - Ps= 118,000*1.00*9.5 / (242.9 + 0.60*9.5) - 0= 4,509.06 kPa

Maximum allowable pressure, (at 45 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t)= 118,000*1.00*12.7 / (241.3 + 0.60*12.7)= 6,020.41 kPa

External Pressure, (Corroded & at 140 °C) UG-28(c)

L / Do = 975.98 / 508 = 1.9212Do / t = 508 / 5.17 = 98.3386From table G: A = 0.000691

31/121

Page 34: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

From table CS-2Metric: B = 68.7111 MPa

Pa = 4*B / (3*(Do / t))= 4*68,711.1 / (3*(508 / 5.17))= 931.63 kPa

Design thickness for external pressure Pa = 931.63 kPa

ta = t + Corrosion = 5.17 + 3.2 = 8.37mm

Maximum Allowable External Pressure, (Corroded & at 140 °C) UG-28(c)

L / Do = 975.98 / 508 = 1.9212Do / t = 508 / 9.5 = 53.4759From table G: A = 0.001734From table CS-2Metric: B = 98.9641 MPa

Pa = 4*B / (3*(Do / t))= 4*98,964.13 / (3*(508 / 9.5))= 2,467.51 kPa

Design thickness = 8.37 mm

The governing condition is due to external pressure.

The cylinder thickness of 12.7 mm is adequate.

32/121

Page 35: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Thickness Required Due to Pressure + External Loads

Condition Pressure P (kPa)

AllowableStress BeforeUG-23 Stress

Increase (MPa)

Temperature (°C)

Corrosion C(mm) Load Req'd Thk Due to

Tension (mm)

Req'd Thk Dueto

Compression(mm)

St Sc

Operating, Hot & Corroded 931.63 118 118 60 3.2 Wind 0.8 0.8

Operating, Hot & New 931.63 118 118 60 0 Wind 0.79 0.79

Hot Shut Down, Corroded 0 118 118 60 3.2 Wind 0 0

Hot Shut Down, New 0 118 118 60 0 Wind 0 0

Empty, Corroded 0 118 118 21.11 3.2 Wind 0 0

Empty, New 0 118 118 21.11 0 Wind 0 0

Vacuum -931.63 118 118 140 3.2 Wind 0.8 0.8

Hot Shut Down, Corroded, Weight &Eccentric Moments Only 0 118 118 60 3.2 Weight 0 0

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (254 / 9.5)= 0.004675

B = 118.09 MPa

S = 118 / 1.00 = 118 MPa

ScHC = min(B, S) = 118 MPa

Allowable Compressive Stress, Hot and New- ScHN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (254 / 12.7)= 0.006250

B = 119.28 MPa

S = 118 / 1.00 = 118 MPa

ScHN = min(B, S) = 118 MPa

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (254 / 12.7)= 0.006250

B = 119.28 MPa

S = 118 / 1.00 = 118 MPa

ScCN = min(B, S) = 118 MPa

Allowable Compressive Stress, Cold and Corroded- ScCC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (254 / 9.5)= 0.004675

B = 118.09 MPa

33/121

Page 36: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

S = 118 / 1.00 = 118 MPa

ScCC = min(B, S) = 118 MPa

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableCS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (254 / 9.5)= 0.004675

B = 118.09 MPa

S = 118 / 1.00 = 118 MPa

ScVC = min(B, S) = 118 MPa

Operating, Hot & Corroded, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 931.63*242.9 / (2*118,000*1.20*1.00 + 0.40*|931.63|)= 0.8 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 5 / (π*247.652*118,000*1.20*1.00) * 106

= 0 mm

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*32.6 / (2*π*247.65*118,000*1.20*1.00) * 104

= 0 mm

tt = tp + tm - tw (total required, tensile)= 0.8 + 0 - (0)= 0.8 mm

twc = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 32.6 / (2*π*247.65*118,000*1.20*1.00) * 104

= 0 mm

tc = |tmc + twc - tpc| (total, net tensile)= |0 + (0) - (0.8)|= 0.8 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*118,000*1.20*1.00*(9.5 - 0 + (0)) / (242.9 - 0.40*(9.5 - 0 + (0)))= 11,252.53 kPa

Operating, Hot & New, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 931.63*241.3 / (2*118,000*1.20*1.00 + 0.40*|931.63|)= 0.79 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 5 / (π*247.652*118,000*1.20*1.00) * 106

= 0 mm

34/121

Page 37: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*43.6 / (2*π*247.65*118,000*1.20*1.00) * 104

= 0 mm

tt = tp + tm - tw (total required, tensile)= 0.79 + 0 - (0)= 0.79 mm

twc = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 43.6 / (2*π*247.65*118,000*1.20*1.00) * 104

= 0 mm

tc = |tmc + twc - tpc| (total, net tensile)= |0 + (0) - (0.79)|= 0.79 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*118,000*1.20*1.00*(12.7 - 0 + (0)) / (241.3 - 0.40*(12.7 - 0 + (0)))= 15,227.01 kPa

Hot Shut Down, Corroded, Wind, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 5 / (π*247.652*118,000*1.20) * 106

= 0 mm

tw = 0.6*W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 0.60*32.6 / (2*π*247.65*118,000*1.20) * 104

= 0 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0)|= 0 mm

twc = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 32.6 / (2*π*247.65*118,000*1.20) * 104

= 0 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0) - (0)= 0 mm

Hot Shut Down, New, Wind, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 5 / (π*247.652*118,000*1.20) * 106

= 0 mm

tw = 0.6*W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 0.60*43.6 / (2*π*247.65*118,000*1.20) * 104

= 0 mm

35/121

Page 38: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0)|= 0 mm

twc = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 43.6 / (2*π*247.65*118,000*1.20) * 104

= 0 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0) - (0)= 0 mm

Empty, Corroded, Wind, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 5 / (π*247.652*118,000*1.20) * 106

= 0 mm

tw = 0.6*W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 0.60*32.6 / (2*π*247.65*118,000*1.20) * 104

= 0 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0)|= 0 mm

twc = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 32.6 / (2*π*247.65*118,000*1.20) * 104

= 0 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0) - (0)= 0 mm

Empty, New, Wind, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 5 / (π*247.652*118,000*1.20) * 106

= 0 mm

tw = 0.6*W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 0.60*43.6 / (2*π*247.65*118,000*1.20) * 104

= 0 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0)|= 0 mm

twc = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 43.6 / (2*π*247.65*118,000*1.20) * 104

= 0 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0) - (0)

36/121

Page 39: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= 0 mm

Vacuum, Wind, Bottom Seam

tp = P*R / (2*Sc*Ks + 0.40*|P|) (Pressure)= -931.63*242.9 / (2*118,000*1.20 + 0.40*|931.63|)= -0.8 mm

tm = M / (π*Rm2*Sc*Ks) * MetricFactor (bending)

= 5 / (π*247.652*118,000*1.20) * 106

= 0 mm

tw = 0.6*W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 0.60*32.6 / (2*π*247.65*118,000*1.20) * 104

= 0 mm

tt = |tp + tm - tw| (total, net compressive)= |-0.8 + 0 - (0)|= 0.8 mm

twc = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 32.6 / (2*π*247.65*118,000*1.20) * 104

= 0 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0) - (-0.8)= 0.8 mm

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0.40*(t - tmc - twc))= 2*118,000*1.20*(9.5 - 0 - 0) / (242.9 - 0.40*(9.5 - 0 - 0))= 11,249.74 kPa

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*Sc*Ks) * MetricFactor (bending)= 0 / (π*247.652*118,000*1.00) * 106

= 0 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 32.6 / (2*π*247.65*118,000*1.00) * 104

= 0 mm

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0)|= 0 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0) - (0)= 0 mm

37/121

Page 40: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Straight Flange on B16.9 Pipe Cap #2

ASME Section VIII Division 1, 2010 Edition, A11 Addenda Metric

Component: Straight FlangeMaterial specification: SA-234 WPB (II-D Metric p. 10, ln. 42)Material is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.203)

Internal design pressure: P = 931.63 kPa @ 60 °CExternal design pressure: Pe = 931.63 kPa @ 140 °C

Static liquid head:

Pth = 4.73 kPa (SG = 1, Hs = 482.6 mm, Horizontal testhead)

Corrosion allowance Inner C = 1.6 mm Outer C = 1.6 mm

Design MDMT = 0 °C No impact test performedRated MDMT = -105 °C Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Seamless No RTCircumferential joint - Spot UW-11(b) Type 1

Estimated weight New = 15.1 kg corr = 11.3 kgCapacity New = 17.79 liters corr = 18.02 liters

ID = 482.6 mmLengthLc

= 97.24 mm

t = 12.7 mm

Design thickness, (at 60 °C) UG-27(c)(1)

t = P*R / (S*E - 0.60*P) + Corrosion= 931.63*242.9 / (118,000*0.85 - 0.60*931.63) + 3.2= 5.47 mm

Maximum allowable working pressure, (at 60 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t) - Ps= 118,000*0.85*9.5 / (242.9 + 0.60*9.5) - 0= 3,832.7 kPa

Maximum allowable pressure, (at 45 °C) UG-27(c)(1)

P = S*E*t / (R + 0.60*t)= 118,000*0.85*12.7 / (241.3 + 0.60*12.7)= 5,117.35 kPa

External Pressure, (Corroded & at 140 °C) UG-28(c)

L / Do = 975.98 / 508 = 1.9212Do / t = 508 / 5.17 = 98.3386From table G: A = 0.000691

38/121

Page 41: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

From table CS-2Metric: B = 68.7111 MPa

Pa = 4*B / (3*(Do / t))= 4*68,711.1 / (3*(508 / 5.17))= 931.63 kPa

Design thickness for external pressure Pa = 931.63 kPa

ta = t + Corrosion = 5.17 + 3.2 = 8.37mm

Maximum Allowable External Pressure, (Corroded & at 140 °C) UG-28(c)

L / Do = 975.98 / 508 = 1.9212Do / t = 508 / 9.5 = 53.4759From table G: A = 0.001734From table CS-2Metric: B = 98.9641 MPa

Pa = 4*B / (3*(Do / t))= 4*98,964.13 / (3*(508 / 9.5))= 2,467.51 kPa

Design thickness = 8.37 mm

The governing condition is due to external pressure.

The cylinder thickness of 12.7 mm is adequate.

39/121

Page 42: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Thickness Required Due to Pressure + External Loads

Condition Pressure P (kPa)

AllowableStress BeforeUG-23 Stress

Increase (MPa)

Temperature (°C)

Corrosion C(mm) Load Req'd Thk Due to

Tension (mm)

Req'd Thk Dueto

Compression(mm)

St Sc

Operating, Hot & Corroded 931.63 118 118 60 3.2 Wind 0.94 0.94

Operating, Hot & New 931.63 118 118 60 0 Wind 0.93 0.93

Hot Shut Down, Corroded 0 118 118 60 3.2 Wind 0 0

Hot Shut Down, New 0 118 118 60 0 Wind 0 0

Empty, Corroded 0 118 118 21.11 3.2 Wind 0 0

Empty, New 0 118 118 21.11 0 Wind 0 0

Vacuum -931.63 118 118 140 3.2 Wind 0.8 0.8

Hot Shut Down, Corroded, Weight &Eccentric Moments Only 0 118 118 60 3.2 Weight 0 0

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (254 / 9.5)= 0.004675

B = 118.09 MPa

S = 118 / 1.00 = 118 MPa

ScHC = min(B, S) = 118 MPa

Allowable Compressive Stress, Hot and New- ScHN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (254 / 12.7)= 0.006250

B = 119.28 MPa

S = 118 / 1.00 = 118 MPa

ScHN = min(B, S) = 118 MPa

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (254 / 12.7)= 0.006250

B = 119.28 MPa

S = 118 / 1.00 = 118 MPa

ScCN = min(B, S) = 118 MPa

Allowable Compressive Stress, Cold and Corroded- ScCC, (table CS-2Metric)A = 0.125 / (Ro / t)

= 0.125 / (254 / 9.5)= 0.004675

B = 118.09 MPa

40/121

Page 43: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

S = 118 / 1.00 = 118 MPa

ScCC = min(B, S) = 118 MPa

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableCS-2 Metric)A = 0.125 / (Ro / t)

= 0.125 / (254 / 9.5)= 0.004675

B = 118.09 MPa

S = 118 / 1.00 = 118 MPa

ScVC = min(B, S) = 118 MPa

Operating, Hot & Corroded, Wind, Top Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 931.63*242.9 / (2*118,000*1.20*0.85 + 0.40*|931.63|)= 0.94 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 5 / (π*247.652*118,000*1.20*0.85) * 106

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= -32.6 / (2*π*247.65*118,000*1.20*0.85) * 104

= 0 mm

tt = tp + tm - tw (total required, tensile)= 0.94 + 0 - (0)= 0.94 mm

twc = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*-32.6 / (2*π*247.65*118,000*1.20*0.85) * 104

= 0 mm

tc = |tmc + twc - tpc| (total, net tensile)= |0 + (0) - (0.94)|= 0.94 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*118,000*1.20*0.85*(9.5 - 0 + (0)) / (242.9 - 0.40*(9.5 - 0 + (0)))= 9,561.98 kPa

Operating, Hot & New, Wind, Top Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 931.63*241.3 / (2*118,000*1.20*0.85 + 0.40*|931.63|)= 0.93 mm

tm = M / (π*Rm2*St*Ks*Ec) * MetricFactor (bending)

= 5 / (π*247.652*118,000*1.20*0.85) * 106

= 0 mm

41/121

Page 44: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= -43.6 / (2*π*247.65*118,000*1.20*0.85) * 104

= 0 mm

tt = tp + tm - tw (total required, tensile)= 0.93 + 0 - (0)= 0.93 mm

twc = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*-43.6 / (2*π*247.65*118,000*1.20*0.85) * 104

= 0 mm

tc = |tmc + twc - tpc| (total, net tensile)= |0 + (0) - (0.93)|= 0.93 mm

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*118,000*1.20*0.85*(12.7 - 0 + (0)) / (241.3 - 0.40*(12.7 - 0 + (0)))= 12,939.34 kPa

Hot Shut Down, Corroded, Wind, Top Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) * MetricFactor (bending)= 5 / (π*247.652*118,000*1.20*0.85) * 106

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= -32.6 / (2*π*247.65*118,000*1.20*0.85) * 104

= 0 mm

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (0)= 0 mm

twc = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*-32.6 / (2*π*247.65*118,000*1.20*0.85) * 104

= 0 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0) - (0)|= 0 mm

Hot Shut Down, New, Wind, Top Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) * MetricFactor (bending)= 5 / (π*247.652*118,000*1.20*0.85) * 106

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)

42/121

Page 45: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= -43.6 / (2*π*247.65*118,000*1.20*0.85) * 104

= 0 mm

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (0)= 0 mm

twc = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*-43.6 / (2*π*247.65*118,000*1.20*0.85) * 104

= 0 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0) - (0)|= 0 mm

Empty, Corroded, Wind, Top Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) * MetricFactor (bending)= 5 / (π*247.652*118,000*1.20*0.85) * 106

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= -32.6 / (2*π*247.65*118,000*1.20*0.85) * 104

= 0 mm

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (0)= 0 mm

twc = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*-32.6 / (2*π*247.65*118,000*1.20*0.85) * 104

= 0 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0) - (0)|= 0 mm

Empty, New, Wind, Top Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) * MetricFactor (bending)= 5 / (π*247.652*118,000*1.20*0.85) * 106

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= -43.6 / (2*π*247.65*118,000*1.20*0.85) * 104

= 0 mm

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (0)

43/121

Page 46: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= 0 mm

twc = 0.6*W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= 0.60*-43.6 / (2*π*247.65*118,000*1.20*0.85) * 104

= 0 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0) - (0)|= 0 mm

Vacuum, Wind, Top Seam

tp = P*R / (2*Sc*Ks + 0.40*|P|) (Pressure)= -931.63*242.9 / (2*118,000*1.20 + 0.40*|931.63|)= -0.8 mm

tm = M / (π*Rm2*Sc*Ks) * MetricFactor (bending)

= 5 / (π*247.652*118,000*1.20) * 106

= 0 mm

tw = W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= -32.6 / (2*π*247.65*118,000*1.20) * 104

= 0 mm

tt = |tp + tm - tw| (total, net compressive)= |-0.8 + 0 - (0)|= 0.8 mm

twc = 0.6*W / (2*π*Rm*Sc*Ks) * MetricFactor (Weight)= 0.60*-32.6 / (2*π*247.65*118,000*1.20) * 104

= 0 mm

tc = tmc + twc - tpc (total required, compressive)= 0 + (0) - (-0.8)= 0.8 mm

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0.40*(t - tmc - twc))= 2*118,000*1.20*(9.5 - 0 - 0) / (242.9 - 0.40*(9.5 - 0 - 0))= 11,252.53 kPa

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Top Seam

tp = 0 mm (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) * MetricFactor (bending)= 0 / (π*247.652*118,000*1.00*0.85) * 106

= 0 mm

tw = W / (2*π*Rm*St*Ks*Ec) * MetricFactor (Weight)= -32.6 / (2*π*247.65*118,000*1.00*0.85) * 104

= 0 mm

tt = tp + tm - tw(total required,tensile)

44/121

Page 47: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= 0 + 0 - (0)= 0 mm

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0) - (0)|= 0 mm

45/121

Page 48: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

B16.9 Pipe Cap #2

ASME Section VIII Division 1, 2010 Edition, A11 Addenda Metric

Component: ASME B16.9 Pipe Cap (modified)NPS and Schedule: NPS 20 Sch 30 (XS) DN 500Material Specification: SA-234 WPB (II-D Metric p.10, ln. 42)Straight Flange governs MDMT

Internal design pressure: P = 931.63 kPa @ 60 °CExternal design pressure: Pe = 931.63 kPa @ 140 °C

Static liquid head:

Ps= 0 kPa (SG=1, Hs=0 mm Operating head)Pth= 4.73 kPa (SG=1, Hs=482.6 mm Horizontal test head)

Corrosion allowance: Inner C = 1.6 mm Outer C = 1.6 mm

Design MDMT = 0°C No impact test performedRated MDMT = -105°C Material is not normalized

Material is not produced to fine grain practicePWHT is not performedDo not Optimize MDMT / Find MAWP

Radiography: Category A joints - Seamless No RT Head to shell seam - Spot UW-11(b) Type 1

Estimated weight*: new = 43.4 kg corr = 32.5 kgCapacity*: new = 32.5 liters corr = 33.1 liters* includes straight flange

Inner diameter = 482.6 mmNominal head thickness = 12.7 mmMinimum head thickness = 11.11 mmOverall length E = 229 mmStraight flange length Lsf = 97.24 mmNominal straight flange thickness tsf = 12.7 mmResults Summary

The governing condition is external pressure.Minimum thickness per UG-16 = 1.5 mm + 3.2 mm = 4.7 mmDesign thickness due to internal pressure (t) = 5.44 mmDesign thickness due to external pressure (te) = 7.72 mmGoverning straight flange design thickness = 8.37 mmMaximum allowable working pressure (MAWP) = 3,284.99 kPaMaximum allowable pressure (MAP) = 4,597.9 kPaMaximum allowable external pressure (MAEP) = 1,893.88 kPa

K (Corroded)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (485.8 / (2*122.25))2]=0.991302

46/121

Page 49: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

K (New)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (482.6 / (2*120.65))2]=1

Design thickness for internal pressure, (Corroded at 60 °C) Appendix 1-4(c)

t = P*D*K / (2*S*E - 0.2*P) + Corrosion= 931.63*485.8*0.991302 / (2*118,000*0.85 - 0.2*931.63) + 3.2= 5.44 mm

The head internal pressure design thickness is 5.44 mm.

Maximum allowable working pressure, (Corroded at 60 °C) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*118,000*0.85*(0.875*12.7 - 3.2) / (0.991302*485.8 +0.2*(0.875*12.7 - 3.2)) - 0= 3,284.99 kPa

The maximum allowable working pressure (MAWP) is 3,284.99 kPa.

Maximum allowable pressure, (New at 45 °C) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*118,000*0.85*0.875*12.7 / (1*482.6 +0.2*0.875*12.7) - 0= 4,597.9 kPa

The maximum allowable pressure (MAP) is 4,597.9 kPa.

Design thickness for external pressure, (Corroded at 140 °C) UG-33(d)

Equivalent outside spherical radius (Ro)Ro = Ko*Do

= 0.8675*508= 440.67 mm

A = 0.125 / (Ro / t)= 0.125 / (440.67 / 4.52)= 0.001281

From Table CS-2Metric: B = 90.9019

MPa

Pa = B / (Ro / t)= 90,901.92 / (440.67 / 4.52)= 931.63 kPa

t = 4.52 mm + Corrosion = 4.52 mm + 3.2 mm = 7.72 mmCheck the external pressure per UG-33(a)(1) Appendix 1-4(c)

t = 1.67*Pe*D*K / (2*S*E - 0.2*1.67*Pe) + Corrosion= 1.67*931.63*485.8*0.991302 / (2*118,000*1 - 0.2*1.67*931.63) + 3.2= 6.38 mm

The head external pressure design thickness (te) is 7.72 mm.

47/121

Page 50: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Maximum Allowable External Pressure, (Corroded at 140 °C) UG-33(d)

Equivalent outside spherical radius (Ro)Ro = Ko*Do

= 0.8675*508= 440.67 mm

A = 0.125 / (Ro / t)= 0.125 / (440.67 / (0.875*12.7 - 3.2))= 0.002244

From Table CS-2Metric: B = 105.482

MPa

Pa = B / (Ro / t)= 105,482 / (440.67 / (0.875*12.7 - 3.2))= 1,893.8783 kPa

Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(c)

P = 2*S*E*t / ((K*D + 0.2*t)*1.67) - Ps2

= 2*118,000*1*(0.875*12.7 - 3.2) / ((0.991302*485.8 +0.2*(0.875*12.7 - 3.2))*1.67) -0

= 2,314.19 kPa

The maximum allowable external pressure (MAEP) is 1,893.88 kPa.

48/121

Page 51: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Nozzle #1 (N1)

ASME Section VIII Division 1, 2010 Edition, A11 Addenda Metric

Pad inner diameter = 50.8 mmPad thickness = 50.8 mmTapped hole diameter = 15.88 mmTapped hole depth = 28.45 mmTapped hole bolt circle = 120.65 mmRaised face height = 1.52 mmRaised face outer diameter = 91.95 mmInner fillet = 12.7 mmtw(lower) = 12.7 mmDp = 152.4 mmte = 36.58 mm

Note: round inside edges per UG-76(c)

Note: Thread engagement shall comply with the requirements of UG-43(g).

Location and OrientationLocated on: Cylinder #1Orientation: 180°Nozzle center line offset to datum line: 232 mmEnd of nozzle to shell center: 292.1 mmPasses through a Category A joint: No

NozzleAccess opening: NoMaterial specification: SA-105 (II-D Metric p. 18, ln. 5)Bolt material specification: SA-193 B7 Bolt <= 64 (II-D Metric p. 334, ln. 32)Corrosion allowance: 1.6 mmProjection available outside vessel, Lpr: 36.58 mmLocal vessel minimum thickness: 12.7 mmLiquid static head included: 0 kPaLongitudinal joint efficiency: 1

49/121

Page 52: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(cm2)

For P = 5,273.18 kPa @ 60 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 7.82 50.8

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (mm)

Actual weldthroat size (mm) Status

Pad to shell fillet (Leg42) 6 8.89 weld size is adequate

Calculations for internal pressure 5,273.18 kPa @ 60 °C

Pad is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.1733).

Pad UCS-66 governing thickness: 12.7 mmPad rated MDMT: -105 °CParallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(54, 27 + (0) + (12.7 - 3.2))= 54 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(12.7 - 3.2), 2.5*(0) + 36.58)= 23.75 mm

Required thickness tr from UG-37(a)

tr = P*R / (S*E - 0.6*P)= 5,273.1779*242.9 / (138,000*1 - 0.6*5,273.1779)= 9.5 mm

50/121

Page 53: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Required thickness tr per Interpretation VIII-1-07-50

tr = P*R / (S*E - 0.6*P)= 5,273.1779*242.9 / (138,000*0.85 - 0.6*5,273.1779)= 11.22 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 19 mm or te or t = 9.5 mmtc(min) = lesser of 6 mm or 0.7*tmin = 6 mmtc(actual) = 0.7*Leg = 0.7*12.7 = 8.89 mm

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 5,273.1779*27 / (138,000*1 - 0.6*5,273.1779) + 1.6= 2.66 mm

ta = max[ ta UG-27 , ta UG-22 ]= max[ 2.66 , 0 ]= 2.66 mm

tb1 = P*R / (S*E - 0.6*P) + Corrosion= 5,273.1779*242.9 / (138,000*1 - 0.6*5,273.1779) + 3.2= 12.7 mm

tb1 = max[ tb1 , tb UG16 ]= max[ 12.7 , 3.1 ]= 12.7 mm

tb = min[ tb3 , tb1 ]= min[ 7.82 , 12.7 ]= 7.82 mm

tUG-45 = max[ ta , tb ]= max[ 2.66 , 7.82 ]= 7.82 mm

Available nozzle wall thickness new, tn = 50.8 mm

The nozzle neck thickness is adequate.

51/121

Page 54: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(cm2)

For P = 7,040.69 kPa @ 45 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 6.22 50.8

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (mm)

Actual weldthroat size (mm) Status

Pad to shell fillet (Leg42) 6 8.89 weld size is adequate

Calculations for internal pressure 7,040.69 kPa @ 45 °C

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(50.8, 25.4 + (0) + (12.7 - 0))= 50.8 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(12.7 - 0), 2.5*(0) + 36.58)= 31.75 mm

Required thickness tr from UG-37(a)

tr = P*R / (S*E - 0.6*P)= 7,040.6858*241.3 / (138,000*1 - 0.6*7,040.6858)= 12.7 mm

Required thickness tr per Interpretation VIII-1-07-50

tr = P*R / (S*E - 0.6*P)= 7,040.6858*241.3 / (138,000*0.85 - 0.6*7,040.6858)= 15.02 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

52/121

Page 55: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 19 mm or te or t = 12.7 mmtc(min) = lesser of 6 mm or 0.7*tmin = 6 mmtc(actual) = 0.7*Leg = 0.7*12.7 = 8.89 mm

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 7,040.6858*25.4 / (138,000*1 - 0.6*7,040.6858) + 0= 1.34 mm

ta = max[ ta UG-27 , ta UG-22 ]= max[ 1.34 , 0 ]= 1.34 mm

tb1 = P*R / (S*E - 0.6*P) + Corrosion= 7,040.6858*241.3 / (138,000*1 - 0.6*7,040.6858) + 0= 12.7 mm

tb1 = max[ tb1 , tb UG16 ]= max[ 12.7 , 1.5 ]= 12.7 mm

tb = min[ tb3 , tb1 ]= min[ 6.22 , 12.7 ]= 6.22 mm

tUG-45 = max[ ta , tb ]= max[ 1.34 , 6.22 ]= 6.22 mm

Available nozzle wall thickness new, tn = 50.8 mm

The nozzle neck thickness is adequate.

53/121

Page 56: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary(cm2)

For Pe = 2,467.43 kPa @ 60 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 7.59 50.8

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required forexternal pressure

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (mm)

Actual weldthroat size (mm) Status

Pad to shell fillet (Leg42) 6 8.89 weld size is adequate

Calculations for external pressure 2,467.43 kPa @ 60 °C

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(54, 27 + (0) + (12.7 - 3.2))= 54 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(12.7 - 3.2), 2.5*(0) + 36.58)= 23.75 mm

From UG-37(d)(1) required thickness tr = 9.5 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 19 mm or te or t = 9.5 mmtc(min) = lesser of 6 mm or 0.7*tmin = 6 mmtc(actual) = 0.7*Leg = 0.7*12.7 = 8.89 mm

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

54/121

Page 57: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

UG-45 Nozzle Neck Thickness Check

ta UG-28 = 3.95 mm

ta = max[ ta UG-28 , ta UG-22 ]= max[ 3.95 , 0 ]= 3.95 mm

tb2 = P*R / (S*E - 0.6*P) + Corrosion= 2,467.4304*242.9 / (138,000*1 - 0.6*2,467.4304) + 3.2= 7.59 mm

tb2 = max[ tb2 , tb UG16 ]= max[ 7.59 , 3.1 ]= 7.59 mm

tb = min[ tb3 , tb2 ]= min[ 7.82 , 7.59 ]= 7.59 mm

tUG-45 = max[ ta , tb ]= max[ 3.95 , 7.59 ]= 7.59 mm

Available nozzle wall thickness new, tn = 50.8 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 60 °C) UG-28(c)

L / Do = 49.8 / 152.4 = 0.3268Do / t = 152.4 / 2.35 = 64.7355From table G: A = 0.009534From table CS-2Metric: B = 119.798 MPa

Pa = 4*B / (3*(Do / t))= 4*119,798.02 / (3*(152.4 / 2.35))= 2,467.44 kPa

Design thickness for external pressure Pa = 2,467.44 kPa

ta = t + Corrosion = 2.35 + 1.6 = 3.95mm

55/121

Page 58: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Nozzle #2 (N2)

ASME Section VIII Division 1, 2010 Edition, A11 Addenda Metric

Pad inner diameter = 50.8 mmPad thickness = 50.8 mmTapped hole diameter = 15.88 mmTapped hole depth = 28.45 mmTapped hole bolt circle = 120.65 mmRaised face height = 1.52 mmRaised face outer diameter = 91.95 mmInner fillet = 12.7 mmtw(lower) = 12.7 mmDp = 152.4 mmte = 36.58 mm

Note: round inside edges per UG-76(c)

Note: Thread engagement shall comply with the requirements of UG-43(g).

Location and OrientationLocated on: Cylinder #1Orientation: 180°Nozzle center line offset to datum line: 600 mmEnd of nozzle to shell center: 292.1 mmPasses through a Category A joint: No

NozzleAccess opening: NoMaterial specification: SA-105 (II-D Metric p. 18, ln. 5)Bolt material specification: SA-193 B7 Bolt <= 64 (II-D Metric p. 334, ln. 32)Corrosion allowance: 1.6 mmProjection available outside vessel, Lpr: 36.58 mmLocal vessel minimum thickness: 12.7 mmLiquid static head included: 0 kPaLongitudinal joint efficiency: 1

56/121

Page 59: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(cm2)

For P = 5,273.18 kPa @ 60 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 7.82 50.8

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (mm)

Actual weldthroat size (mm) Status

Pad to shell fillet (Leg42) 6 8.89 weld size is adequate

Calculations for internal pressure 5,273.18 kPa @ 60 °C

Pad is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.1733).

Pad UCS-66 governing thickness: 12.7 mmPad rated MDMT: -105 °CParallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(54, 27 + (0) + (12.7 - 3.2))= 54 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(12.7 - 3.2), 2.5*(0) + 36.58)= 23.75 mm

Required thickness tr from UG-37(a)

tr = P*R / (S*E - 0.6*P)= 5,273.1779*242.9 / (138,000*1 - 0.6*5,273.1779)= 9.5 mm

57/121

Page 60: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Required thickness tr per Interpretation VIII-1-07-50

tr = P*R / (S*E - 0.6*P)= 5,273.1779*242.9 / (138,000*0.85 - 0.6*5,273.1779)= 11.22 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 19 mm or te or t = 9.5 mmtc(min) = lesser of 6 mm or 0.7*tmin = 6 mmtc(actual) = 0.7*Leg = 0.7*12.7 = 8.89 mm

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 5,273.1779*27 / (138,000*1 - 0.6*5,273.1779) + 1.6= 2.66 mm

ta = max[ ta UG-27 , ta UG-22 ]= max[ 2.66 , 0 ]= 2.66 mm

tb1 = P*R / (S*E - 0.6*P) + Corrosion= 5,273.1779*242.9 / (138,000*1 - 0.6*5,273.1779) + 3.2= 12.7 mm

tb1 = max[ tb1 , tb UG16 ]= max[ 12.7 , 3.1 ]= 12.7 mm

tb = min[ tb3 , tb1 ]= min[ 7.82 , 12.7 ]= 7.82 mm

tUG-45 = max[ ta , tb ]= max[ 2.66 , 7.82 ]= 7.82 mm

Available nozzle wall thickness new, tn = 50.8 mm

The nozzle neck thickness is adequate.

58/121

Page 61: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(cm2)

For P = 7,040.69 kPa @ 45 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 6.22 50.8

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (mm)

Actual weldthroat size (mm) Status

Pad to shell fillet (Leg42) 6 8.89 weld size is adequate

Calculations for internal pressure 7,040.69 kPa @ 45 °C

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(50.8, 25.4 + (0) + (12.7 - 0))= 50.8 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(12.7 - 0), 2.5*(0) + 36.58)= 31.75 mm

Required thickness tr from UG-37(a)

tr = P*R / (S*E - 0.6*P)= 7,040.6858*241.3 / (138,000*1 - 0.6*7,040.6858)= 12.7 mm

Required thickness tr per Interpretation VIII-1-07-50

tr = P*R / (S*E - 0.6*P)= 7,040.6858*241.3 / (138,000*0.85 - 0.6*7,040.6858)= 15.02 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

59/121

Page 62: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 19 mm or te or t = 12.7 mmtc(min) = lesser of 6 mm or 0.7*tmin = 6 mmtc(actual) = 0.7*Leg = 0.7*12.7 = 8.89 mm

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 7,040.6858*25.4 / (138,000*1 - 0.6*7,040.6858) + 0= 1.34 mm

ta = max[ ta UG-27 , ta UG-22 ]= max[ 1.34 , 0 ]= 1.34 mm

tb1 = P*R / (S*E - 0.6*P) + Corrosion= 7,040.6858*241.3 / (138,000*1 - 0.6*7,040.6858) + 0= 12.7 mm

tb1 = max[ tb1 , tb UG16 ]= max[ 12.7 , 1.5 ]= 12.7 mm

tb = min[ tb3 , tb1 ]= min[ 6.22 , 12.7 ]= 6.22 mm

tUG-45 = max[ ta , tb ]= max[ 1.34 , 6.22 ]= 6.22 mm

Available nozzle wall thickness new, tn = 50.8 mm

The nozzle neck thickness is adequate.

60/121

Page 63: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary(cm2)

For Pe = 2,467.43 kPa @ 60 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 7.59 50.8

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required forexternal pressure

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (mm)

Actual weldthroat size (mm) Status

Pad to shell fillet (Leg42) 6 8.89 weld size is adequate

Calculations for external pressure 2,467.43 kPa @ 60 °C

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(54, 27 + (0) + (12.7 - 3.2))= 54 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(12.7 - 3.2), 2.5*(0) + 36.58)= 23.75 mm

From UG-37(d)(1) required thickness tr = 9.5 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 19 mm or te or t = 9.5 mmtc(min) = lesser of 6 mm or 0.7*tmin = 6 mmtc(actual) = 0.7*Leg = 0.7*12.7 = 8.89 mm

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

61/121

Page 64: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

UG-45 Nozzle Neck Thickness Check

ta UG-28 = 3.95 mm

ta = max[ ta UG-28 , ta UG-22 ]= max[ 3.95 , 0 ]= 3.95 mm

tb2 = P*R / (S*E - 0.6*P) + Corrosion= 2,467.4304*242.9 / (138,000*1 - 0.6*2,467.4304) + 3.2= 7.59 mm

tb2 = max[ tb2 , tb UG16 ]= max[ 7.59 , 3.1 ]= 7.59 mm

tb = min[ tb3 , tb2 ]= min[ 7.82 , 7.59 ]= 7.59 mm

tUG-45 = max[ ta , tb ]= max[ 3.95 , 7.59 ]= 7.59 mm

Available nozzle wall thickness new, tn = 50.8 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 60 °C) UG-28(c)

L / Do = 49.8 / 152.4 = 0.3268Do / t = 152.4 / 2.35 = 64.7355From table G: A = 0.009534From table CS-2Metric: B = 119.798 MPa

Pa = 4*B / (3*(Do / t))= 4*119,798.02 / (3*(152.4 / 2.35))= 2,467.44 kPa

Design thickness for external pressure Pa = 2,467.44 kPa

ta = t + Corrosion = 2.35 + 1.6 = 3.95mm

62/121

Page 65: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Nozzle #3 (N3)

ASME Section VIII Division 1, 2010 Edition, A11 Addenda Metric

tw(lower) = 4 mmLeg41 = 3 mm

Note: round inside edges per UG-76(c)

Location and OrientationLocated on: Cylinder #1Orientation: 270°Nozzle center line offset to datum line: 232 mmEnd of nozzle to shell center: 292.7 mmPasses through a Category A joint: No

NozzleAccess opening: NoMaterial specification: SA-516 60 (II-D Metric p. 10, ln. 27)Inside diameter, new: 19.46 mmNominal wall thickness: 4.56 mmCorrosion allowance: 1.6 mmProjection available outside vessel, Lpr: 38.7 mmLocal vessel minimum thickness: 12.7 mmLiquid static head included: 0 kPaLongitudinal joint efficiency: 1

63/121

Page 66: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(cm2)

For P = 5,273.18 kPa @ 60 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 4.56 4.56

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to shell fillet (Leg41) 2.07 2.1 weld size is adequate

Nozzle to shell groove (Lower) 2.07 2.4 weld size is adequate

Calculations for internal pressure 5,273.18 kPa @ 60 °C

Nozzle is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.0304).

Nozzle UCS-66 governing thk: 4.56 mmNozzle rated MDMT: -105 °CParallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(22.66, 11.33 + (4.56 - 1.6) + (12.7 - 3.2))= 23.79 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(12.7 - 3.2), 2.5*(4.56 - 1.6) + 0)= 7.39 mm

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 5,273.1779*11.33 / (118,000*1 - 0.6*5,273.1779)= 0.52 mm

64/121

Page 67: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Required thickness tr from UG-37(a)

tr = P*R / (S*E - 0.6*P)= 5,273.1779*242.9 / (138,000*1 - 0.6*5,273.1779)= 9.5 mm

Required thickness tr per Interpretation VIII-1-07-50

tr = P*R / (S*E - 0.6*P)= 5,273.1779*242.9 / (138,000*0.85 - 0.6*5,273.1779)= 11.22 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

tmin = lesser of 19 mm or tn or t = 2.96 mmt1(min) or t2(min) = lesser of 6 mm or 0.7*tmin = 2.07 mmt1(actual) = 0.7*Leg = 0.7*3 = 2.1 mmThe weld size t1 is satisfactory.t2(actual) = 2.4 mmThe weld size t2 is satisfactory.

t1 + t2 = 4.5 >= 1.25*tmin

The combined weld sizes for t1 and t2 are satisfactory.

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 5,273.1779*11.33 / (118,000*1 - 0.6*5,273.1779) + 1.6= 2.12 mm

ta = max[ ta UG-27 , ta UG-22 ]= max[ 2.12 , 0 ]= 2.12 mm

tb1 = P*R / (S*E - 0.6*P) + Corrosion= 5,273.1779*242.9 / (138,000*1 - 0.6*5,273.1779) + 3.2= 12.7 mm

tb1 = max[ tb1 , tb UG16 ]= max[ 12.7 , 3.1 ]= 12.7 mm

tb = min[ tb3 , tb1 ]= min[ 4.56 , 12.7 ]= 4.56 mm

tUG-45 = max[ ta , tb ]

65/121

Page 68: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= max[ 2.12 , 4.56 ]= 4.56 mm

Available nozzle wall thickness new, tn = 4.56 mm

The nozzle neck thickness is adequate.

% Extreme fiber elongation - UCS-79(d)

EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*4.56 / 12.01)*(1 - 12.01 / ∞)= 18.9679%

The extreme fiber elongation exceeds 5 percent. Heat treatment per UCS-56 may be required. See UCS-79(d)(4) or(5).

66/121

Page 69: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(cm2)

For P = 7,040.69 kPa @ 45 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 2.96 4.56

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to shell fillet (Leg41) 3.19 2.1 weld size is NOT adequate

Nozzle to shell groove (Lower) 3.19 4 weld size is adequate

Calculations for internal pressure 7,040.69 kPa @ 45 °C

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(19.46, 9.73 + (4.56 - 0) + (12.7 - 0))= 26.99 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(12.7 - 0), 2.5*(4.56 - 0) + 0)= 11.39 mm

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 7,040.6858*9.73 / (118,000*1 - 0.6*7,040.6858)= 0.6 mm

Required thickness tr from UG-37(a)

tr = P*R / (S*E - 0.6*P)= 7,040.6858*241.3 / (138,000*1 - 0.6*7,040.6858)= 12.7 mm

67/121

Page 70: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Required thickness tr per Interpretation VIII-1-07-50

tr = P*R / (S*E - 0.6*P)= 7,040.6858*241.3 / (138,000*0.85 - 0.6*7,040.6858)= 15.02 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

tmin = lesser of 19 mm or tn or t = 4.56 mmt1(min) or t2(min) = lesser of 6 mm or 0.7*tmin = 3.19 mmt1(actual) = 0.7*Leg = 0.7*3 = 2.1 mm

** The weld size t1 is NOT satisfactory. **

t2(actual) = 4 mmThe weld size t2 is satisfactory.

t1 + t2 = 6.1 >= 1.25*tmin

** The weld size tc is NOT satisfactory. **

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 7,040.6858*9.73 / (118,000*1 - 0.6*7,040.6858) + 0= 0.6 mm

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.6 , 0 ]= 0.6 mm

tb1 = P*R / (S*E - 0.6*P) + Corrosion= 7,040.6858*241.3 / (138,000*1 - 0.6*7,040.6858) + 0= 12.7 mm

tb1 = max[ tb1 , tb UG16 ]= max[ 12.7 , 1.5 ]= 12.7 mm

tb = min[ tb3 , tb1 ]= min[ 2.96 , 12.7 ]= 2.96 mm

tUG-45 = max[ ta , tb ]= max[ 0.6 , 2.96 ]= 2.96 mm

68/121

Page 71: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Available nozzle wall thickness new, tn = 4.56 mm

The nozzle neck thickness is adequate.

69/121

Page 72: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary(cm2)

For Pe = 2,467.43 kPa @ 60 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 4.56 4.56

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required forexternal pressure

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to shell fillet (Leg41) 2.07 2.1 weld size is adequate

Nozzle to shell groove (Lower) 2.07 2.4 weld size is adequate

Calculations for external pressure 2,467.43 kPa @ 60 °C

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(22.66, 11.33 + (4.56 - 1.6) + (12.7 - 3.2))= 23.79 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(12.7 - 3.2), 2.5*(4.56 - 1.6) + 0)= 7.39 mm

Nozzle required thickness per UG-28 trn = 0.5 mm

From UG-37(d)(1) required thickness tr = 9.5 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

tmin = lesser of 19 mm or tn or t = 2.96 mmt1(min) or t2(min) = lesser of 6 mm or 0.7*tmin = 2.07 mmt1(actual) = 0.7*Leg = 0.7*3 = 2.1 mm

70/121

Page 73: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

The weld size t1 is satisfactory.t2(actual) = 2.4 mmThe weld size t2 is satisfactory.

t1 + t2 = 4.5 >= 1.25*tmin

The combined weld sizes for t1 and t2 are satisfactory.

UG-45 Nozzle Neck Thickness Check

ta UG-28 = 2.1 mm

ta = max[ ta UG-28 , ta UG-22 ]= max[ 2.1 , 0 ]= 2.1 mm

tb2 = P*R / (S*E - 0.6*P) + Corrosion= 2,467.4304*242.9 / (138,000*1 - 0.6*2,467.4304) + 3.2= 7.59 mm

tb2 = max[ tb2 , tb UG16 ]= max[ 7.59 , 3.1 ]= 7.59 mm

tb = min[ tb3 , tb2 ]= min[ 4.56 , 7.59 ]= 4.56 mm

tUG-45 = max[ ta , tb ]= max[ 2.1 , 4.56 ]= 4.56 mm

Available nozzle wall thickness new, tn = 4.56 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 60 °C) UG-28(c)

L / Do = 39.1 / 28.58 = 1.3684Do / t = 28.58 / 0.5 = 57.1128From table G: A = 0.002266From table CS-2Metric: B = 105.6884 MPa

Pa = 4*B / (3*(Do / t))= 4*105,688.43 / (3*(28.58 / 0.5))= 2,467.36 kPa

Design thickness for external pressure Pa = 2,467.36 kPa

ta = t + Corrosion = 0.5 + 1.6 = 2.1mm

71/121

Page 74: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Nozzle #4 (N4)

ASME Section VIII Division 1, 2010 Edition, A11 Addenda Metric

tw(lower) = 5 mmLeg41 = 5 mm

Note: round inside edges per UG-76(c)

Location and OrientationLocated on: Cylinder #1Orientation: 270°Nozzle center line offset to datum line: 650 mmEnd of nozzle to shell center: 292.7 mmPasses through a Category A joint: No

NozzleAccess opening: NoMaterial specification: SA-516 60 (II-D Metric p. 10, ln. 27)Inside diameter, new: 26.67 mmNominal wall thickness: 4.13 mmCorrosion allowance: 0 mmProjection available outside vessel, Lpr: 38.7 mmLocal vessel minimum thickness: 12.7 mmLiquid static head included: 0 kPaLongitudinal joint efficiency: 1

72/121

Page 75: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(cm2)

For P = 5,273.18 kPa @ 60 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 3.11 4.13

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to shell fillet (Leg41) 2.89 3.5 weld size is adequate

Nozzle to shell groove (Lower) 2.89 3.4 weld size is adequate

Calculations for internal pressure 5,273.18 kPa @ 60 °C

Nozzle is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.0256).

Nozzle UCS-66 governing thk: 4.13 mmNozzle rated MDMT: -105 °CParallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(26.67, 13.34 + (4.13 - 0) + (12.7 - 3.2))= 26.96 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(12.7 - 3.2), 2.5*(4.13 - 0) + 0)= 10.32 mm

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 5,273.1779*13.34 / (118,000*1 - 0.6*5,273.1779)= 0.61 mm

73/121

Page 76: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Required thickness tr from UG-37(a)

tr = P*R / (S*E - 0.6*P)= 5,273.1779*242.9 / (138,000*1 - 0.6*5,273.1779)= 9.5 mm

Required thickness tr per Interpretation VIII-1-07-50

tr = P*R / (S*E - 0.6*P)= 5,273.1779*242.9 / (138,000*0.85 - 0.6*5,273.1779)= 11.22 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

tmin = lesser of 19 mm or tn or t = 4.13 mmt1(min) or t2(min) = lesser of 6 mm or 0.7*tmin = 2.89 mmt1(actual) = 0.7*Leg = 0.7*5 = 3.5 mmThe weld size t1 is satisfactory.t2(actual) = 3.4 mmThe weld size t2 is satisfactory.

t1 + t2 = 6.9 >= 1.25*tmin

The combined weld sizes for t1 and t2 are satisfactory.

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 5,273.1779*13.34 / (118,000*1 - 0.6*5,273.1779) + 0= 0.61 mm

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.61 , 0 ]= 0.61 mm

tb1 = P*R / (S*E - 0.6*P) + Corrosion= 5,273.1779*242.9 / (138,000*1 - 0.6*5,273.1779) + 3.2= 12.7 mm

tb1 = max[ tb1 , tb UG16 ]= max[ 12.7 , 1.5 ]= 12.7 mm

tb = min[ tb3 , tb1 ]= min[ 3.11 , 12.7 ]= 3.11 mm

tUG-45 = max[ ta , tb ]

74/121

Page 77: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= max[ 0.61 , 3.11 ]= 3.11 mm

Available nozzle wall thickness new, tn = 4.13 mm

The nozzle neck thickness is adequate.

% Extreme fiber elongation - UCS-79(d)

EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*4.13 / 15.4)*(1 - 15.4 / ∞)= 13.4021%

The extreme fiber elongation exceeds 5 percent. Heat treatment per UCS-56 may be required. See UCS-79(d)(4) or(5).

75/121

Page 78: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(cm2)

For P = 7,040.69 kPa @ 45 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 3.11 4.13

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to shell fillet (Leg41) 2.89 3.5 weld size is adequate

Nozzle to shell groove (Lower) 2.89 5 weld size is adequate

Calculations for internal pressure 7,040.69 kPa @ 45 °C

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(26.67, 13.34 + (4.13 - 0) + (12.7 - 0))= 30.16 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(12.7 - 0), 2.5*(4.13 - 0) + 0)= 10.32 mm

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 7,040.6858*13.34 / (118,000*1 - 0.6*7,040.6858)= 0.83 mm

Required thickness tr from UG-37(a)

tr = P*R / (S*E - 0.6*P)= 7,040.6858*241.3 / (138,000*1 - 0.6*7,040.6858)= 12.7 mm

76/121

Page 79: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Required thickness tr per Interpretation VIII-1-07-50

tr = P*R / (S*E - 0.6*P)= 7,040.6858*241.3 / (138,000*0.85 - 0.6*7,040.6858)= 15.02 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

tmin = lesser of 19 mm or tn or t = 4.13 mmt1(min) or t2(min) = lesser of 6 mm or 0.7*tmin = 2.89 mmt1(actual) = 0.7*Leg = 0.7*5 = 3.5 mmThe weld size t1 is satisfactory.t2(actual) = 5 mmThe weld size t2 is satisfactory.

t1 + t2 = 8.5 >= 1.25*tmin

The combined weld sizes for t1 and t2 are satisfactory.

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 7,040.6858*13.34 / (118,000*1 - 0.6*7,040.6858) + 0= 0.83 mm

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.83 , 0 ]= 0.83 mm

tb1 = P*R / (S*E - 0.6*P) + Corrosion= 7,040.6858*241.3 / (138,000*1 - 0.6*7,040.6858) + 0= 12.7 mm

tb1 = max[ tb1 , tb UG16 ]= max[ 12.7 , 1.5 ]= 12.7 mm

tb = min[ tb3 , tb1 ]= min[ 3.11 , 12.7 ]= 3.11 mm

tUG-45 = max[ ta , tb ]= max[ 0.83 , 3.11 ]= 3.11 mm

Available nozzle wall thickness new, tn = 4.13 mm

77/121

Page 80: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

The nozzle neck thickness is adequate.

78/121

Page 81: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary(cm2)

For Pe = 2,467.43 kPa @ 60 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 3.11 4.13

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required forexternal pressure

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to shell fillet (Leg41) 2.89 3.5 weld size is adequate

Nozzle to shell groove (Lower) 2.89 3.4 weld size is adequate

Calculations for external pressure 2,467.43 kPa @ 60 °C

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(26.67, 13.34 + (4.13 - 0) + (12.7 - 3.2))= 26.96 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(12.7 - 3.2), 2.5*(4.13 - 0) + 0)= 10.32 mm

Nozzle required thickness per UG-28 trn = 0.59 mm

From UG-37(d)(1) required thickness tr = 9.5 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

tmin = lesser of 19 mm or tn or t = 4.13 mmt1(min) or t2(min) = lesser of 6 mm or 0.7*tmin = 2.89 mmt1(actual) = 0.7*Leg = 0.7*5 = 3.5 mm

79/121

Page 82: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

The weld size t1 is satisfactory.t2(actual) = 3.4 mmThe weld size t2 is satisfactory.

t1 + t2 = 6.9 >= 1.25*tmin

The combined weld sizes for t1 and t2 are satisfactory.

UG-45 Nozzle Neck Thickness Check

ta UG-28 = 0.59 mm

ta = max[ ta UG-28 , ta UG-22 ]= max[ 0.59 , 0 ]= 0.59 mm

tb2 = P*R / (S*E - 0.6*P) + Corrosion= 2,467.4304*242.9 / (138,000*1 - 0.6*2,467.4304) + 3.2= 7.59 mm

tb2 = max[ tb2 , tb UG16 ]= max[ 7.59 , 1.5 ]= 7.59 mm

tb = min[ tb3 , tb2 ]= min[ 3.11 , 7.59 ]= 3.11 mm

tUG-45 = max[ ta , tb ]= max[ 0.59 , 3.11 ]= 3.11 mm

Available nozzle wall thickness new, tn = 4.13 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 60 °C) UG-28(c)

L / Do = 39.3 / 34.92 = 1.1253Do / t = 34.92 / 0.59 = 58.9737From table G: A = 0.002646From table CS-2Metric: B = 109.136 MPa

Pa = 4*B / (3*(Do / t))= 4*109,136 / (3*(34.92 / 0.59))= 2,467.45 kPa

Design thickness for external pressure Pa = 2,467.45 kPa

ta = t + Corrosion = 0.59 + 0 = 0.59mm

80/121

Page 83: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Nozzle #5 (N5)

ASME Section VIII Division 1, 2010 Edition, A11 Addenda Metric

tw(lower) = 5 mmLeg41 = 5 mm

Note: Per UW-16(b) minimum inside corner radius r1 = min [1 / 4*t , 3 mm] = 1.98 mm

Location and OrientationLocated on: B16.9 Pipe Cap #2Orientation: 0°End of nozzle to datum line: -254.39 mmCalculated as hillside: NoDistance to head center, R: 0 mmPasses through a Category A joint: No

NozzleAccess opening: NoMaterial specification: SA-105 (II-D Metric p. 18, ln. 5)Description: NPS 0.75 Class 3000 DN 20 - threadedInside diameter, new: 26.67 mmWall thickness, tn: 4.13 mmMinimum wall thickness: 4.13 mmCorrosion allowance: 0 mmProjection available outside vessel, Lpr: 25.7 mmHeavy barrel length, Lhb: 5 mmLocal vessel minimum thickness: 11.11 mmLiquid static head included: 0 kPaLongitudinal joint efficiency: 1

81/121

Page 84: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(cm2)

For P = 4,283.21 kPa @ 60 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 3.11 4.13

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to shell fillet (Leg41) 2.89 3.5 weld size is adequate

Nozzle to shell groove (Lower) 2.89 3.4 weld size is adequate

Calculations for internal pressure 4,283.21 kPa @ 60 °C

Nozzle is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.0219).

Nozzle UCS-66 governing thk: 4.13 mmNozzle rated MDMT: -105 °CParallel Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-2)

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(26.67, 13.34 + (4.13 - 0) + (11.11 - 3.2))= 26.67 mm

Outer Normal Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-2)

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(11.11 - 3.2), 2.5*(4.13 - 0) + 0)= 10.32 mm

te = MIN( 5 + 0*tan(30) , 0*tan(60) )= 0 mm

82/121

Page 85: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 4,283.2074*13.34 / (138,000*1 - 0.6*4,283.2074)= 0.42 mm

Required thickness tr from UG-37(a)(c)

tr = P*K1*D / (2*S*E - 0.2*P)= 4,283.2074*0.8941*485.8 / (2*118,000*1 - 0.2*4,283.2074)= 7.91 mm

Required thickness tr per Interpretation VIII-1-07-50

tr = P*D*K / (2*S*E - 0.2*P)= 4,283.21*485.8*0.991302 / (2*118,000*0.85 - 0.2*4,283.21)= 10.33 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

tmin = lesser of 19 mm or tn or t = 4.13 mmt1(min) or t2(min) = lesser of 6 mm or 0.7*tmin = 2.89 mmt1(actual) = 0.7*Leg = 0.7*5 = 3.5 mmThe weld size t1 is satisfactory.t2(actual) = 3.4 mmThe weld size t2 is satisfactory.

t1 + t2 = 6.9 >= 1.25*tmin

The combined weld sizes for t1 and t2 are satisfactory.

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 4,283.2074*13.34 / (138,000*1 - 0.6*4,283.2074) + 0= 0.42 mm

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.42 , 0 ]= 0.42 mm

tb1 = 11.97 mm

tb1 = max[ tb1 , tb UG16 ]= max[ 11.97 , 1.5 ]

83/121

Page 86: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= 11.97 mm

tb = min[ tb3 , tb1 ]= min[ 3.11 , 11.97 ]= 3.11 mm

tUG-45 = max[ ta , tb ]= max[ 0.42 , 3.11 ]= 3.11 mm

Available nozzle wall thickness new, tn = 4.13 mm

The nozzle neck thickness is adequate.

84/121

Page 87: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(cm2)

For P = 6,007.19 kPa @ 45 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 3.11 4.13

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to shell fillet (Leg41) 2.89 3.5 weld size is adequate

Nozzle to shell groove (Lower) 2.89 5 weld size is adequate

Calculations for internal pressure 6,007.19 kPa @ 45 °C

Parallel Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-2)

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(26.67, 13.34 + (4.13 - 0) + (11.11 - 0))= 28.58 mm

Outer Normal Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-2)

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(11.11 - 0), 2.5*(4.13 - 0) + 0)= 10.32 mm

te = MIN( 5 + 0*tan(30) , 0*tan(60) )= 0 mm

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 6,007.1908*13.34 / (138,000*1 - 0.6*6,007.1908)= 0.6 mm

85/121

Page 88: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Required thickness tr from UG-37(a)(c)

tr = P*K1*D / (2*S*E - 0.2*P)= 6,007.1908*0.9*482.6 / (2*118,000*1 - 0.2*6,007.1908)= 11.11 mm

Required thickness tr per Interpretation VIII-1-07-50

tr = P*D*K / (2*S*E - 0.2*P)= 6,007.19*482.6*1 / (2*118,000*0.85 - 0.2*6,007.19)= 14.54 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

tmin = lesser of 19 mm or tn or t = 4.13 mmt1(min) or t2(min) = lesser of 6 mm or 0.7*tmin = 2.89 mmt1(actual) = 0.7*Leg = 0.7*5 = 3.5 mmThe weld size t1 is satisfactory.t2(actual) = 5 mmThe weld size t2 is satisfactory.

t1 + t2 = 8.5 >= 1.25*tmin

The combined weld sizes for t1 and t2 are satisfactory.

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 6,007.1908*13.34 / (138,000*1 - 0.6*6,007.1908) + 0= 0.6 mm

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.6 , 0 ]= 0.6 mm

tb1 = 12.35 mm

tb1 = max[ tb1 , tb UG16 ]= max[ 12.35 , 1.5 ]= 12.35 mm

tb = min[ tb3 , tb1 ]= min[ 3.11 , 12.35 ]= 3.11 mm

tUG-45 = max[ ta , tb ]

86/121

Page 89: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= max[ 0.6 , 3.11 ]= 3.11 mm

Available nozzle wall thickness new, tn = 4.13 mm

The nozzle neck thickness is adequate.

87/121

Page 90: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary(cm2)

For Pe = 1,893.88 kPa @ 140 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 3.11 4.13

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required forexternal pressure

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to shell fillet (Leg41) 2.89 3.5 weld size is adequate

Nozzle to shell groove (Lower) 2.89 3.4 weld size is adequate

Calculations for external pressure 1,893.88 kPa @ 140 °C

Parallel Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-2)

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(26.67, 13.34 + (4.13 - 0) + (11.11 - 3.2))= 26.67 mm

Outer Normal Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-2)

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(11.11 - 3.2), 2.5*(4.13 - 0) + 0)= 10.32 mm

te = MIN( 5 + 0*tan(30) , 0*tan(60) )= 0 mm

Nozzle required thickness per UG-28 trn = 0.45 mm

From UG-37(d)(1) required thickness tr = 7.82 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

88/121

Page 91: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

UW-16(d) Weld Check

tmin = lesser of 19 mm or tn or t = 4.13 mmt1(min) or t2(min) = lesser of 6 mm or 0.7*tmin = 2.89 mmt1(actual) = 0.7*Leg = 0.7*5 = 3.5 mmThe weld size t1 is satisfactory.t2(actual) = 3.4 mmThe weld size t2 is satisfactory.

t1 + t2 = 6.9 >= 1.25*tmin

The combined weld sizes for t1 and t2 are satisfactory.

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

ta UG-28 = 0.45 mm

ta = max[ ta UG-28 , ta UG-22 ]= max[ 0.45 , 0 ]= 0.45 mm

tb2 = 7.07 mm

tb2 = max[ tb2 , tb UG16 ]= max[ 7.07 , 1.5 ]= 7.07 mm

tb = min[ tb3 , tb2 ]= min[ 3.11 , 7.07 ]= 3.11 mm

tUG-45 = max[ ta , tb ]= max[ 0.45 , 3.11 ]= 3.11 mm

Available nozzle wall thickness new, tn = 4.13 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 140 °C) UG-28(c)

L / Do = 25.7 / 34.92 = 0.7359Do / t = 34.92 / 0.45 = 77.6718From table G: A = 0.002789From table CS-2Metric: B = 110.3241 MPa

Pa = 4*B / (3*(Do / t))= 4*110,324.15 / (3*(34.92 / 0.45))

89/121

Page 92: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= 1,893.85 kPa

Design thickness for external pressure Pa = 1,893.85 kPa

ta = t + Corrosion = 0.45 + 0 = 0.45mm

90/121

Page 93: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Nozzle #6 (N6)

ASME Section VIII Division 1, 2010 Edition, A11 Addenda Metric

tw(lower) = 5 mmLeg41 = 5 mm

Note: round inside edges per UG-76(c)

Location and OrientationLocated on: B16.9 Pipe Cap #1Orientation: 0°End of nozzle to datum line: 954.39 mmCalculated as hillside: NoDistance to head center, R: 0 mmPasses through a Category A joint: No

NozzleAccess opening: NoMaterial specification: SA-105 (II-D Metric p. 18, ln. 5)Description: NPS 0.75 Class 3000 DN 20 - threadedInside diameter, new: 26.67 mmNominal wall thickness: 4.13 mmCorrosion allowance: 0 mmProjection available outside vessel, Lpr: 25.7 mmLocal vessel minimum thickness: 11.11 mmLiquid static head included: 0 kPaLongitudinal joint efficiency: 1

91/121

Page 94: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(cm2)

For P = 4,283.21 kPa @ 60 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 1.5 4.13

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to shell fillet (Leg41) 2.89 3.5 weld size is adequate

Nozzle to shell groove (Lower) 2.89 3.4 weld size is adequate

Calculations for internal pressure 4,283.21 kPa @ 60 °C

Nozzle is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.0219).

Nozzle UCS-66 governing thk: 4.13 mmNozzle rated MDMT: -105 °CParallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(26.67, 13.34 + (4.13 - 0) + (11.11 - 3.2))= 26.67 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(11.11 - 3.2), 2.5*(4.13 - 0) + 0)= 10.32 mm

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 4,283.2074*13.34 / (138,000*1 - 0.6*4,283.2074)= 0.42 mm

92/121

Page 95: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Required thickness tr from UG-37(a)(c)

tr = P*K1*D / (2*S*E - 0.2*P)= 4,283.2074*0.8941*485.8 / (2*118,000*1 - 0.2*4,283.2074)= 7.91 mm

Required thickness tr per Interpretation VIII-1-07-50

tr = P*D*K / (2*S*E - 0.2*P)= 4,283.21*485.8*0.991302 / (2*118,000*1 - 0.2*4,283.21)= 8.77 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

tmin = lesser of 19 mm or tn or t = 4.13 mmt1(min) or t2(min) = lesser of 6 mm or 0.7*tmin = 2.89 mmt1(actual) = 0.7*Leg = 0.7*5 = 3.5 mmThe weld size t1 is satisfactory.t2(actual) = 3.4 mmThe weld size t2 is satisfactory.

t1 + t2 = 6.9 >= 1.25*tmin

The combined weld sizes for t1 and t2 are satisfactory.

ASME B16.11 Coupling Wall Thickness Check

Interpretation VIII-1-83-66 has been applied.

Wall thickness req'd per ASME B16.11 2.1.1: tr1 = 0.54 mm (E =1)Wall thickness per UG-16(b): tr3 = 1.5 mm

Available nozzle wall thickness new, tn = 4.13 mm

The nozzle neck thickness is adequate.

93/121

Page 96: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(cm2)

For P = 6,007.19 kPa @ 45 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 1.5 4.13

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to shell fillet (Leg41) 2.89 3.5 weld size is adequate

Nozzle to shell groove (Lower) 2.89 5 weld size is adequate

Calculations for internal pressure 6,007.19 kPa @ 45 °C

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(26.67, 13.34 + (4.13 - 0) + (11.11 - 0))= 28.58 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(11.11 - 0), 2.5*(4.13 - 0) + 0)= 10.32 mm

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 6,007.1908*13.34 / (138,000*1 - 0.6*6,007.1908)= 0.6 mm

Required thickness tr from UG-37(a)(c)

tr = P*K1*D / (2*S*E - 0.2*P)= 6,007.1908*0.9*482.6 / (2*118,000*1 - 0.2*6,007.1908)= 11.11 mm

94/121

Page 97: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Required thickness tr per Interpretation VIII-1-07-50

tr = P*D*K / (2*S*E - 0.2*P)= 6,007.19*482.6*1 / (2*118,000*1 - 0.2*6,007.19)= 12.35 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

tmin = lesser of 19 mm or tn or t = 4.13 mmt1(min) or t2(min) = lesser of 6 mm or 0.7*tmin = 2.89 mmt1(actual) = 0.7*Leg = 0.7*5 = 3.5 mmThe weld size t1 is satisfactory.t2(actual) = 5 mmThe weld size t2 is satisfactory.

t1 + t2 = 8.5 >= 1.25*tmin

The combined weld sizes for t1 and t2 are satisfactory.

ASME B16.11 Coupling Wall Thickness Check

Interpretation VIII-1-83-66 has been applied.

Wall thickness req'd per ASME B16.11 2.1.1: tr1 = 0.75 mm (E =1)Wall thickness per UG-16(b): tr3 = 1.5 mm

Available nozzle wall thickness new, tn = 4.13 mm

The nozzle neck thickness is adequate.

95/121

Page 98: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary(cm2)

For Pe = 1,893.88 kPa @ 140 °C

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 3.11 4.13

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required forexternal pressure

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to shell fillet (Leg41) 2.89 3.5 weld size is adequate

Nozzle to shell groove (Lower) 2.89 3.4 weld size is adequate

Calculations for external pressure 1,893.88 kPa @ 140 °C

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(26.67, 13.34 + (4.13 - 0) + (11.11 - 3.2))= 26.67 mm

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(11.11 - 3.2), 2.5*(4.13 - 0) + 0)= 10.32 mm

Nozzle required thickness per UG-28 trn = 0.45 mm

From UG-37(d)(1) required thickness tr = 7.82 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

tmin = lesser of 19 mm or tn or t = 4.13 mmt1(min) or t2(min) = lesser of 6 mm or 0.7*tmin = 2.89 mmt1(actual) = 0.7*Leg = 0.7*5 = 3.5 mm

96/121

Page 99: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

The weld size t1 is satisfactory.t2(actual) = 3.4 mmThe weld size t2 is satisfactory.

t1 + t2 = 6.9 >= 1.25*tmin

The combined weld sizes for t1 and t2 are satisfactory.

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

ta UG-28 = 0.45 mm

ta = max[ ta UG-28 , ta UG-22 ]= max[ 0.45 , 0 ]= 0.45 mm

tb2 = 7.07 mm

tb2 = max[ tb2 , tb UG16 ]= max[ 7.07 , 1.5 ]= 7.07 mm

tb = min[ tb3 , tb2 ]= min[ 3.11 , 7.07 ]= 3.11 mm

tUG-45 = max[ ta , tb ]= max[ 0.45 , 3.11 ]= 3.11 mm

Available nozzle wall thickness new, tn = 4.13 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 140 °C) UG-28(c)

L / Do = 25.7 / 34.92 = 0.7359Do / t = 34.92 / 0.45 = 77.6718From table G: A = 0.002789From table CS-2Metric: B = 110.3241 MPa

Pa = 4*B / (3*(Do / t))= 4*110,324.15 / (3*(34.92 / 0.45))= 1,893.85 kPa

97/121

Page 100: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Design thickness for external pressure Pa = 1,893.85 kPa

ta = t + Corrosion = 0.45 + 0 = 0.45mm

98/121

Page 101: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Legs #1

Leg material:

Leg description: 2x2x1/4 Equal Angle(Leg out)

Number of legs: N = 4Overall length: 150 mmBase to girth seam length: 221 mmBolt circle: 584.2 mmAnchor bolt size: 12 mmAnchor bolt material:Anchor bolts/leg: 4Anchor bolt allowable stress: Sb = 137.895 MPaAnchor bolt corrosion allowance: 0 mmAnchor bolt hole clearance: 9.53 mmBase plate width: 95 mmBase plate length: 125 mmBase plate thickness: 12 mm (1.63 mm required)Base plate allowable stress: 165.474 MPaFoundation allowable bearing stress: 11.4 MPaEffective length coefficient: K = 1.2Coefficient: Cm = 0.85Leg yield stress: Fy = 248.211 MPaLeg elastic modulus: E = 199,947.953 MPaLeg to shell fillet weld: 6.35 mm (0.38 mm required)Legs braced: No

Note: The support attachment point is assumed to be 25.4 mm up from the cylinder circumferential seam.

99/121

Page 102: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

LoadingForceattack

angle °

Legposition °

Axialend load

N

Shearresisted

N

Axialfa

MPa

Bendingfbx

MPa

Bendingfby

MPa

RatioH1-1

RatioH1-2

Windoperatingcorroded

Moment =130.7 N-m

0

0 -13.7 67.0 -0.023 0.882 0 0.0044 0.0052

90 405.9 67.0 0.671 0.634 0.86 0.0128 0.0136

180 663.2 67.0 1.096 1.896 0 0.0181 0.0189

270 405.9 67.0 0.671 0.634 0.86 0.0128 0.0136

45

0 -13.7 67.0 -0.023 0.63 0.608 0.0063 0.0074

90 -13.7 67.0 -0.023 0.63 0.608 0.0063 0.0074

180 663.2 67.0 1.096 1.644 0.608 0.0199 0.0211

270 663.2 67.0 1.096 1.644 0.608 0.0199 0.0211

LoadingForceattack

angle °

Legposition °

Axialend load

N

Shearresisted

N

Axialfa

MPa

Bendingfbx

MPa

Bendingfby

MPa

RatioH1-1

RatioH1-2

GoverningCondition

Windoperating

new

Moment =131.4 N-m

0

0 59.5 67.0 0.098 0.953 0 0.0057 0.0065

90 530.4 67.0 0.876 0.828 0.86 0.0153 0.0162

180 789.1 67.0 1.304 2.092 0 0.0206 0.0215

270 530.4 67.0 0.876 0.828 0.86 0.0153 0.0162

45

0 59.5 67.0 0.098 0.701 0.608 0.0075 0.0087

90 59.5 67.0 0.098 0.701 0.608 0.0075 0.0087

180 789.1 67.0 1.304 1.84 0.608 0.0225 0.0237

270 789.1 67.0 1.304 1.84 0.608 0.0225 0.0237

100/121

Page 103: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

LoadingForceattack

angle °

Legposition °

Axialend load

N

Shearresisted

N

Axialfa

MPa

Bendingfbx

MPa

Bendingfby

MPa

RatioH1-1

RatioH1-2

Windempty

corroded

Moment =130.7 N-m

0

0 -13.7 67.0 -0.023 0.882 0 0.0044 0.0052

90 405.9 67.0 0.671 0.634 0.86 0.0128 0.0136

180 663.2 67.0 1.096 1.896 0 0.0181 0.0189

270 405.9 67.0 0.671 0.634 0.86 0.0128 0.0136

45

0 -13.7 67.0 -0.023 0.63 0.608 0.0063 0.0074

90 -13.7 67.0 -0.023 0.63 0.608 0.0063 0.0074

180 663.2 67.0 1.096 1.644 0.608 0.0199 0.0211

270 663.2 67.0 1.096 1.644 0.608 0.0199 0.0211

LoadingForceattack

angle °

Legposition °

Axialend load

N

Shearresisted

N

Axialfa

MPa

Bendingfbx

MPa

Bendingfby

MPa

RatioH1-1

RatioH1-2

Windemptynew

Moment =131.4 N-m

0

0 59.5 67.0 0.098 0.953 0 0.0057 0.0065

90 530.4 67.0 0.876 0.828 0.86 0.0153 0.0162

180 789.1 67.0 1.304 2.092 0 0.0206 0.0215

270 530.4 67.0 0.876 0.828 0.86 0.0153 0.0162

45

0 59.5 67.0 0.098 0.701 0.608 0.0075 0.0087

90 59.5 67.0 0.098 0.701 0.608 0.0075 0.0087

180 789.1 67.0 1.304 1.84 0.608 0.0225 0.0237

270 789.1 67.0 1.304 1.84 0.608 0.0225 0.0237

101/121

Page 104: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

LoadingForceattack

angle °

Legposition °

Axialend load

N

Shearresisted

N

Axialfa

MPa

Bendingfbx

MPa

Bendingfby

MPa

RatioH1-1

RatioH1-2

Windvacuum

corroded

Moment =130.7 N-m

0

0 -13.7 67.0 -0.023 0.882 0 0.0044 0.0052

90 405.9 67.0 0.671 0.634 0.86 0.0128 0.0136

180 663.2 67.0 1.096 1.896 0 0.0181 0.0189

270 405.9 67.0 0.671 0.634 0.86 0.0128 0.0136

45

0 -13.7 67.0 -0.023 0.63 0.608 0.0063 0.0074

90 -13.7 67.0 -0.023 0.63 0.608 0.0063 0.0074

180 663.2 67.0 1.096 1.644 0.608 0.0199 0.0211

270 663.2 67.0 1.096 1.644 0.608 0.0199 0.0211

Leg Calculations (AISC manual ninth edition)

Axial end load, P1 (Based on vessel total bending moment acting at leg attachment elevation)

P1 = Wt / N + 4*Mt / (N*D)= 2,121.5 / 4 + 4*1e3*131.4 / ( 4*508)= 789.09 N

Allowable axial compressive stress, Fa (AISC chapter E)

Local buckling check (AISC 5-99)

b / t = (2 / 0.25) < (76 / Sqr(36)) so Qs = 1

Flexural-torsional buckling (AISC 5-317)

Shear center distance wo = 1.6775ro

2 = wo2 + (Iz + Iw) / A

= 1.67752 + (5.99 + 22.98) / 6.0516= 7.6 cm2

Torsional constant J = 0.81 cm4

Shear modulus G = 76.98 GPa

Fej = G*J / (A*ro2)

= 76,979.962*0.81 / (6.0516*7.6011)= 1.361 GPa

K*l / rw = 1.2*123.76 / 19.49 = 7.6209

Few = π2*E / (K*l / rw)2

= π2*199.948 / (7.6209)2

= 33.979 GPa

H = 1 - (wo2 / ro

2)= 1 - (16.782 / 760.1067)= 0.6298

Fe = ((Few + Fej) / (2*H))*(1 - Sqr(1 - (4*Few*Fej*H) / (Few + Fej)2))= ((33.979 + 1.361) / (2*0.6298))*(1 - Sqr(1 - (4*33.979*1.361*0.6298) / (33.979 + 1.361)2))= 1.341 GPa

102/121

Page 105: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Equivalent slenderness ratio

K*l / r = π*Sqr(E / Fe)= π*Sqr(199.948 / 1.341)= 38.3638

Cc = Sqr(2*π2*E / (Fy*Qs))= Sqr(2*π2*199,948 / (248.211*1))= 126.0993

K*l / r = 1.2*123.76 / 9.95 = 14.932

Fa = 1 * (1 - (K*l / r)2 / (2*Cc2))*Fy / (5 / 3 + 3*(K*l / r) / (8*Cc)-(K*l / r)3 / (8*Cc

3))= 1 * (1 - (38.3638)2 / (2*126.09932))*248.211 / (5 / 3 + 3*(38.3638) / (8*126.0993)-(38.3638)3 / (8*126.09933))= 133.198 MPa

Allowable axial compression and bending (AISC chapter H)

Note: r is divided by 1.35 - See AISC 6.1.4, pg. 5-314

F'ex = 1*12*π2*E / (23*(K*l / r)2)

= 1*12*π2*199,948 / (23*(12.9593)2)= 6,130.64 MPa

F'ey = 1*12*π2*E / (23*(K*l / r)2)

= 1*12*π2*199,948 / (23*(12.9593)2)= 6,130.64 MPa

Fb = 1*0.66*Fy= 1*0.66*248.211= 163.819 MPa

Compressive axial stress

fa = P1 / A= 789.09 / 605.1601= 1.304 MPa

Bending stresses

fbx = F*cos(α)*L / (Ix / Cx) + P1*Ecc / (Ix / Cx)= 66.97*cos(45)*123.76 / (1e4*14.4849 / 15.04) + 789.09*15.04 / (1e4*14.4849 / 15.04)= 1.84 MPa

fby= F*sin(α)*L / (Iy / Cy)= 66.97*sin(45)*123.76 / (1e4*14.48 / 15.04)= 0.608 MPa

AISC equation H1-1

H1-1 = fa / Fa + Cmx*fbx / ((1 - fa / F'ex)*Fbx) + Cmy*fby / ((1 - fa / F'

ey)*Fby)= 1.304 / 133.198 + 0.85*1.84 / ((1 - 1.304 / 6,130.64)*163.819) + 0.85*0.608 / ((1 - 1.304 / 6,130.64)*163.819)= 0.0225

AISC equation H1-2

H1-2 = fa / (0.6*1*Fy) + fbx / Fbx + fby / Fby

103/121

Page 106: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= 1.304 / (0.6*1*248.211) + 1.84 / 163.819 + 0.608 / 163.819= 0.0237

4, 2x2x1/4 Equal Angle legs are adequate.

Anchor bolts - Wind operating corroded condition governs

Tensile loading per leg (4 bolts per leg)

R = 4*M / (N*BC) - 0.6*W / N= 4*189.9 / (4*0.5842) - 0.6*1,695.32 / 4= 70.74 N

Required area per bolt

Ab = R / (Sb*n)= 70.74 / (137.895*100*4)= 0.0013 cm2

Area of a 12 mm bolt (corroded) = 0.8019 cm2

12 mm bolts are satisfactory.

Check the leg to vessel fillet weld, Bednar 10.3, Wind operating new governs

Note: continuous welding is assumed for all support leg fillet welds.

Zw = (2*b*d + d2) / 3= (2*5.08*2.6238 + 2.62382) / 3= 11.1805 cm2

Jw = (b + 2*d)3 / 12 - d2*(b + d)2 / (b + 2*d)= (5.08 + 2*2.6238)3 / 12 - 2.62382*(5.08 + 2.6238)2 / (5.08 + 2*2.6238)= 52.2321 cm3

E = d2 / (b + 2*d)= 26.242 / (50.8 + 2*26.24)= 6.67 mm

Governing weld load fx = Cos(0)*66.97 = 66.97 NGoverning weld load fy = Sin(0)*66.97 = 0 N

f1 = P1 / Lweld= 789.09 / 10.3275= 76.41 N/cm (V

L direct shear)

f2= fy*Lleg*0.5*b / Jw= 0*12.3763*0.5*5.08 / 52.2321= 0 N/cm (V

L torsion shear)

f3 = fy / Lweld= 0 / 10.3275= 0 N/cm (V

c direct shear)

f4 = fy*Lleg*E / Jw= 0*12.3763*0.6666 / 52.2321= 0 N/cm (V

c torsion shear)

104/121

Page 107: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

f5 = (fx*Lleg + P1*Ecc) / Zw= (66.97*12.3763 + 789.09*1.5037) / 11.1805= 180.26 N/cm (M

L bending)

f6 = fx / Lweld= 66.97 / 10.3275= 6.48 N/cm (Direct outward radial shear)

f = Sqr((f1 + f2)2 + (f3 + f4)2 + (f5 + f6)2)= Sqr((76.41 + 0)2 + (0 + 0)2 + (180.26 + 6.48)2)= 201.77 N/cm (Resultant shear load)

Required leg to vessel fillet weld leg size (welded both sides + top)

tw = f / (0.707*0.55*Sa)= 20.18 / (0.707*0.55*138)= 0.38 mm

The 6.35 mm leg to vessel attachment fillet weld size is adequate.

Base plate thickness check, AISC 3-106

fp = P / (B*N)= 874.6 / (95*125)= 0.074 MPa

Required base plate thickness is the largest of the following: (1.63 mm)

tb = Sqr(0.5*P / Sb)= Sqr(0.5*874.6 / 165.474)= 1.63 mm

tb = 0.5*(N - d)*Sqr(3*fp / Sb)= 0.5*(125 - 50.8)*Sqr(3*0.074 / 165.474)= 1.36 mm

tb = Sqr(3*Pt*0.5*Abs(OD - BC) / Sb)= Sqr(3*70.74*0.0197*Abs(508 - 584.2) / 165.474)= 1.39 mm

The base plate thickness is adequate.

105/121

Page 108: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Check the leg to vessel attachment stresses, WRC 107 (Wind vacuum corroded governs)

Applied Loads

Radial load: Pr = -66.97 NCircumferential moment: Mc = 0 N-mCircumferential shear: Vc = 0 NLongitudinal moment: ML = 8.49 N-mLongitudinal shear: VL = -13.71 NTorsion moment: Mt = 0 N-mInternal pressure: P = -931.63kPaMean shell radius: Rm = 247.65 mmLocal shell thickness: T = 9.5 mmShell yield stress: Sy = 249 MPaDesign factor: 3

Maximum stresses due to the applied loads at the leg edge (includes pressure)

γ = Rm / T = 247.65 / 9.5 = 26.0695

C1 = 25.4, C2 = 20.82 mm

Local circumferential pressure stress = P*Ri / T =-23.821 MPa

Local longitudinal pressure stress = P*Ri / (2*T) =-11.914 MPa

Maximum combined stress (PL+P

b+Q) = -25.17 MPa

Allowable combined stress (PL+P

b+Q) = +-3*S = +-414 MPa

The maximum combined stress (PL+P

b+Q) is within allowable limits.

Maximum local primary membrane stress (PL) = -24 MPa

Allowable local primary membrane stress (PL) = +-1.5*S = +-207 MPa

The maximum local primary membrane stress (PL) is within allowable limits.

106/121

Page 109: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Stresses at the leg edge per WRC Bulletin 107

Figure value β Au Al Bu Bl Cu Cl Du Dl

3C* 4.3905 0.0923 0 0 0 0 0.124 0.124 0.124 0.124

4C* 4.7211 0.0975 0.131 0.131 0.131 0.131 0 0 0 0

1C 0.1505 0.098 0 0 0 0 0.669 -0.669 0.669 -0.669

2C-1 0.1108 0.098 0.496 -0.496 0.496 -0.496 0 0 0 0

3A* 0.6531 0.096 0 0 0 0 0 0 0 0

1A 0.099 0.1105 0 0 0 0 0 0 0 0

3B* 2.1309 0.0898 -0.31 -0.31 0.31 0.31 0 0 0 0

1B-1 0.0526 0.0927 -1.296 1.296 1.296 -1.296 0 0 0 0

Pressure stress* -23.821 -23.821 -23.821 -23.821 -23.821 -23.821 -23.821 -23.821

Total circumferential stress -24.8 -23.201 -21.587 -25.173 -23.028 -24.366 -23.028 -24.366

Primary membranecircumferential stress* -24.001 -24.001 -23.38 -23.38 -23.697 -23.697 -23.697 -23.697

3C* 4.3202 0.0975 0.124 0.124 0.124 0.124 0 0 0 0

4C* 4.7594 0.0923 0 0 0 0 0.138 0.138 0.138 0.138

1C-1 0.1577 0.0942 0.703 -0.703 0.703 -0.703 0 0 0 0

2C 0.1148 0.0942 0 0 0 0 0.51 -0.51 0.51 -0.51

4A* 0.86 0.096 0 0 0 0 0 0 0 0

2A 0.0563 0.1073 0 0 0 0 0 0 0 0

4B* 0.5782 0.0898 -0.083 -0.083 0.083 0.083 0 0 0 0

2B-1 0.0832 0.0955 -1.986 1.986 1.986 -1.986 0 0 0 0

Pressure stress* -11.914 -11.914 -11.914 -11.914 -11.914 -11.914 -11.914 -11.914

Total longitudinal stress -13.155 -10.59 -9.018 -14.396 -11.266 -12.286 -11.266 -12.286

Primary membranelongitudinal stress* -11.873 -11.873 -11.707 -11.707 -11.776 -11.776 -11.776 -11.776

Shear from Mt 0 0 0 0 0 0 0 0

Circ shear from Vc 0 0 0 0 0 0 0 0

Long shear from VL 0 0 0 0 0.021 0.021 -0.021 -0.021

Total Shear stress 0 0 0 0 0.021 0.021 -0.021 -0.021

Combined stress (PL+Pb+Q) -24.8 -23.201 -21.587 -25.173 -23.028 -24.366 -23.028 -24.366

Note: * denotes primary stress.

107/121

Page 110: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Wind Code

Building Code: ASCE 7-02Elevation of base above grade: 0.0000 ft (0.0000 m)Increase effective outer diameter by: 0.0000 ft (0.0000 m) Wind Force Coefficient Cf: 0.5200 Basic Wind Speed:, V: 92.0002 mph (148.0600 km/h) Importance Factor:, I: 1.0000Exposure category: CWind Directionality Factor, Kd: 0.9500Topographic Factor, Kzt: 1.0000Enforce min. loading of 0.48 kPa: Yes

Vessel Characteristics

Vessel height, h: 3.7730 ft (1.1500 m)Vessel Minimum Diameter, b

Operating, Corroded: 1.6562 ft (0.5048 m)Empty, Corroded: 1.6562 ft (0.5048 m)

Fundamental Frequency, n1

Operating, Corroded: 69.4139 HzEmpty, Corroded: 69.4172 Hz

Vacuum, Corroded: 69.4139 Hz Damping coefficient, β

Operating, Corroded: 0.0200Empty, Corroded: 0.0200

Vacuum, Corroded: 0.0200

Table Lookup Values

2.4.1 Basic Load Combinations for Allowable Stress DesignThe following load combinations are considered in accordance with ASCE section 2.4.1:

5. D + P + Ps + W7. 0.6D + P + Ps + WWhereD = Dead loadP = Internal or external pressure loadPs = Static head loadW = Wind load

Wind Deflection Reports:

Operating, CorrodedEmpty, CorrodedVacuum, CorrodedWind Pressure Calculations

108/121

Page 111: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Wind Deflection Report: Operating, Corroded

ComponentElevation of

bottom abovebase (mm)

Effective OD(m)

Elastic modulusE (MPa)

InertiaI (m4)

Platformwind shear at

Bottom (N)

Total windshear at

Bottom (N)

bendingmoment at

Bottom (N-m)

Deflectionat top (mm)

B16.9 Pipe Cap #1 921 0.51 200,133.3 * 0 48.8 5 0.01

Cylinder #1 (top) 221 0.51 200,133.3 0.0004535 0 212.9 137 0.01

Legs #1 0 0 199,948.0 5.794e-007 0 267.9 189.9 0.01

Cylinder #1 (bottom) 221 0.51 200,133.3 0.0004535 0 55 6.3 0.01

B16.9 Pipe Cap #2 221 0.51 200,133.3 * 0 48.8 5 0.01

*Moment of Inertia I varies over the length of the componentWind Deflection Report: Empty, Corroded

ComponentElevation of

bottom abovebase (mm)

Effective OD(m)

Elastic modulusE (MPa)

InertiaI (m4)

Platformwind shear at

Bottom (N)

Total windshear at

Bottom (N)

bendingmoment at

Bottom (N-m)

Deflectionat top (mm)

B16.9 Pipe Cap #1 921 0.51 202,272.2 * 0 48.8 5 0.01

Cylinder #1 (top) 221 0.51 202,272.2 0.0004535 0 212.9 137 0.01

Legs #1 0 0 199,948.0 5.794e-007 0 267.9 189.9 0.01

Cylinder #1 (bottom) 221 0.51 202,272.2 0.0004535 0 55 6.3 0.01

B16.9 Pipe Cap #2 221 0.51 202,272.2 * 0 48.8 5 0.01

*Moment of Inertia I varies over the length of the componentWind Deflection Report: Vacuum, Corroded

ComponentElevation of

bottom abovebase (mm)

Effective OD(m)

Elastic modulusE (MPa)

InertiaI (m4)

Platformwind shear at

Bottom (N)

Total windshear at

Bottom (N)

bendingmoment at

Bottom (N-m)

Deflectionat top (mm)

B16.9 Pipe Cap #1 921 0.51 195,600.0 * 0 48.8 5 0.01

Cylinder #1 (top) 221 0.51 200,133.3 0.0004535 0 212.9 137 0.01

Legs #1 0 0 199,948.0 5.794e-007 0 267.9 189.9 0.01

Cylinder #1 (bottom) 221 0.51 200,133.3 0.0004535 0 55 6.3 0.01

B16.9 Pipe Cap #2 221 0.51 195,600.0 * 0 48.8 5 0.01

*Moment of Inertia I varies over the length of the componentWind Deflection Report: Hydrotest, New, field

ComponentElevation of

bottom abovebase (mm)

Effective OD(m)

Elastic modulusE (MPa)

InertiaI (m4)

Platformwind shear at

Bottom (N)

Total windshear at

Bottom (N)

bendingmoment at

Bottom (N-m)

Deflectionat top (mm)

B16.9 Pipe Cap #1 921 0.51 200,933.3 * 0 0 0 0

Cylinder #1 (top) 221 0.51 200,933.3 0.0006064 0 0 44.5 0

Legs #1 0 0 199,948.0 5.794e-007 0 0 44.5 0

Cylinder #1 (bottom) 221 0.51 200,933.3 0.0006064 0 0 0 0

B16.9 Pipe Cap #2 221 0.51 200,933.3 * 0 0 0 0

*Moment of Inertia I varies over the length of the component-->

Wind Deflection Report: Hydrotest, Corroded, field

ComponentElevation of

bottom abovebase (mm)

Effective OD(m)

Elastic modulusE (MPa)

InertiaI (m4)

Platformwind shear at

Bottom (N)

Total windshear at

Bottom (N)

bendingmoment at

Bottom (N-m)

Deflectionat top (mm)

B16.9 Pipe Cap #1 921 0.51 200,933.3 * 0 0 0 0

109/121

Page 112: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Cylinder #1 (top) 221 0.51 200,933.3 0.0004535 0 0 43.7 0

Legs #1 0 0 199,948.0 5.794e-007 0 0 43.7 0

Cylinder #1 (bottom) 221 0.51 200,933.3 0.0004535 0 0 0 0

B16.9 Pipe Cap #2 221 0.51 200,933.3 * 0 0 0 0

*Moment of Inertia I varies over the length of the component-->

Wind Pressure (WP) Calculations

Gust Factor (G¯) Calculations

Kz = 2.01 * (Z/Zg)2/α

= 2.01 * (Z/274.3200)0.2105

qz = 0.613 * Kz * Kzt * Kd * V2 * I= 0.613 * Kz * 1.0000 * 0.9500 * 41.12782 * 1.0000= 985.0416 * Kz

WP = qz * G * Cf (Minimum 0.48 kPa)= qz * G * 0.5200 (Minimum 0.48 kPa)

Design Wind Pressures

Height Z(m) Kz qz

(kPa)

WP:Operating

(kPa)

WP:Empty(kPa)

WP: HydrotestNew(kPa)

WP: HydrotestCorroded

(kPa)

WP:Vacuum

(kPa)

4.6 0.8489 0.8367 0.4788 0.4788 N.A. N.A. 0.4788Design Wind Force determined from: F = Pressure * Af , where Af is the projected area.

Height Z(m) Kz qz(kPa) WP(kPa) %PRESSURESTABLEVOC%-->Height Z(m) Kz qz(kPa) WP(kPa) %PRESSURESTABLEVEC%

-->Height Z(m) Kz qz(kPa) WP(kPa) %PRESSURESTABLEVVC%

-->

Gust Factor Calculations

Operating, CorrodedEmpty, CorrodedVacuum, Corroded

Gust Factor Calculations: Operating, Corroded

Vessel is considered a rigid structure as n1 = 69.4139 Hz ≥ 1 Hz.

z¯ = max ( 0.60 * h , zmin )= max ( 0.60 * 3.7730 , 15.0000 )= 15.0000

Iz¯ = c * (33 / z¯)1/6

= 0.2000 * (33 / 15.0000)1/6

110/121

Page 113: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= 0.2281Lz¯ = l * (z¯ / 33)ep

= 500.0000 * (15.0000 / 33)0.2000

= 427.0566Q = Sqr(1 / (1 + 0.63 * ((b + h) / Lz¯)0.63))

= Sqr(1 / (1 + 0.63 * ((1.6562 + 3.7730) / 427.0566)0.63))= 0.9805

G = 0.925 * (1 + 1.7 * gQ * Iz¯ * Q) / (1 + 1.7 * gv * Iz¯)= 0.925 * (1 + 1.7 * 3.40* 0.2281 * 0.9805) / (1 + 1.7 * 3.40 * 0.2281)= 0.9147

Gust Factor Calculations: Empty, Corroded

Vessel is considered a rigid structure as n1 = 69.4172 Hz ≥ 1 Hz.

z¯ = max ( 0.60 * h , zmin )= max ( 0.60 * 3.7730 , 15.0000 )= 15.0000

Iz¯ = c * (33 / z¯)1/6

= 0.2000 * (33 / 15.0000)1/6

= 0.2281Lz¯ = l * (z¯ / 33)ep

= 500.0000 * (15.0000 / 33)0.2000

= 427.0566Q = Sqr(1 / (1 + 0.63 * ((b + h) / Lz¯)0.63))

= Sqr(1 / (1 + 0.63 * ((1.6562 + 3.7730) / 427.0566)0.63))= 0.9805

G = 0.925 * (1 + 1.7 * gQ * Iz¯ * Q) / (1 + 1.7 * gv * Iz¯)= 0.925 * (1 + 1.7 * 3.40* 0.2281 * 0.9805) / (1 + 1.7 * 3.40 * 0.2281)= 0.9147

Gust Factor Calculations: Vacuum, Corroded

Vessel is considered a rigid structure as n1 = 69.4139 Hz ≥ 1 Hz.

z¯ = max ( 0.60 * h , zmin )= max ( 0.60 * 3.7730 , 15.0000 )= 15.0000

Iz¯ = c * (33 / z¯)1/6

= 0.2000 * (33 / 15.0000)1/6

= 0.2281Lz¯ = l * (z¯ / 33)ep

= 500.0000 * (15.0000 / 33)0.2000

= 427.0566Q = Sqr(1 / (1 + 0.63 * ((b + h) / Lz¯)0.63))

= Sqr(1 / (1 + 0.63 * ((1.6562 + 3.7730) / 427.0566)0.63))= 0.9805

111/121

Page 114: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

G = 0.925 * (1 + 1.7 * gQ * Iz¯ * Q) / (1 + 1.7 * gv * Iz¯)= 0.925 * (1 + 1.7 * 3.40* 0.2281 * 0.9805) / (1 + 1.7 * 3.40 * 0.2281)= 0.9147

Table Lookup Values

α = 9.5000, zg = 274.3200 m [Table 6-2, page 74]c = 0.2000, l = 500.0000, ep = 0.2000 [Table 6-2, page 74]a¯ = 0.1538, b¯ = 0.6500 [Table 6-2, page 74]zmin = 15.0000 ft [Table 6-2, page 74]gQ = 3.40 [6.5.8.1 page 30]gv = 3.40 [6.5.8.1 page 30]

112/121

Page 115: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Ear lug

Geometry Inputs

Attached To Cylinder #1

Material SA 516 Gr.60

Distance of Lift Point From Datum 800 mm

Angular Position 63.40° and 243.40°

Length of Lug, L 100 mm

Width of Lug, B 100 mm

Thickness of Lug, t 12 mm

Hole Diameter, d 30 mm

Pin Diameter, Dp 28 mm

Lug Diameter at Pin, D 100 mm

Weld Size, tw 8 mm

Width of Pad, Bp 120 mm

Length of Pad, Lp 140 mm

Pad Thickness, tp 12 mm

Pad Weld Size, twp 8 mm

Weld Length, L3 127 mm

Length to Brace Plate, L1 50 mm

Load Angle from Vertical, φ 0.0000 °

Has Brace Plate Yes

113/121

Page 116: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Intermediate Values

Load Factor 1.5000

Vessel Weight (new, incl. Load Factor), W 335 kg

Lug Weight (new), Wlug 9 kg (Qty=2)

Allowable Stress, Tensile, σt 137.757 MPa

Allowable Stress, Shear, σs 91.838 MPa

Allowable Stress, Bearing, σp 206.636 MPa

Allowable Stress, Bending, σb 153.071 MPa

Allowable Stress, Weld Shear, τallowable 91.838 MPa

Allowable Stress set to 1/3 Sy per ASME B30.20 No

Summary Values

Required Lift Pin Diameter, dreqd 3.38 mm

Required Lug Thickness, treqd 0.28 mm

Estimated Brace Plate Length 12 mm

Lug Stress Ratio, σratio 0.01

Weld Shear Stress Ratio, τratio 0.01

Lug Design Acceptable

Local Stresses WRC 107 Acceptable

Maximum Out of Plane Lift Angle - Weak Axis Bending 77.39°COMPRESS recommends a spreader beam be used to prevent weak axis bending of the top lugs.Ear lug brace plate should be removed before vessel is put in service.

Lift Forces

Fr = force on vessel at lugFr = [W / cos(φ1)]*(1 - x1 / (x1 + x2))

= (335.2*9.8) / cos(0.0000)*(1 - 254/ (254 +254))

= 1,643.5 Nwhere 'x1' is the distance between this lug and the center of gravity

'x2' is the distance between the second lift lug and the center of gravity

Lug Pin Diameter - Shear stress

dreqd = (2*Fv / (π*σs))0.5

= (2*1,643.5 / (π*91.84))0.5 = 3.38 mm

dreqd / Dp = 3.38 / 28 = 0.12 Acceptable

σ = Fv / A= Fv / (2*(0.25*π*Dp

2))

114/121

Page 117: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

= 1,643.5 / (2*(0.25*π*282)) = 1.33 MPa

σ / σs = 1.33 / 91.84 = 0.01 Acceptable

Lug Thickness - Tensile stress

treqd = Fv / ((D - d)*σt)= 1,643.5 / ((100 - 30)*137.76) = 0.17 mm

treqd / t = 0.17 / 12 = 0.01 Acceptable

σ = Fv / A= Fv / ((D - d)*t)= 1,643.5 / ((100 - 30)*12) = 1.96 MPa

σ / σt = 1.96 / 137.76 = 0.01 Acceptable

Lug Thickness - Bearing stress

treqd = Fv / (Dp*σp)= 1,643.5 / (28*206.64) = 0.28 mm

treqd / t = 0.28 / 12 = 0.02 Acceptable

σ = Fv / Abearing

= Fv / (Dp*(t))= 1,643.5 / (28*(12)) = 4.89 MPa

σ / σp = 4.89 / 206.64 = 0.02 Acceptable

Lug Thickness - Shear stress

treqd = [Fv / σs] / (2*Lshear)= (1,643.5 / 91.84) / (2*39.04) = 0.23 mm

treqd / t = 0.23 / 12 = 0.02 Acceptable

τ = Fv / Ashear

= Fv / (2*t*Lshear )= 1,643.5 / (2*12*39.04) = 1.75 MPa

τ / σs = 1.75 / 91.84 = 0.02 Acceptable

Shear stress length (per Pressure Vessel and Stacks, A. Keith Escoe)

115/121

Page 118: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

φ = 55*Dp / d= 55*28 / 30= 51.3333°

Z = 0.5*(D - d) + 0.5*Dp*(1 - cos(φ))= 0.5*(100 - 30) + 0.5*28*(1 - cos(51.3333))= 40.25 mm

Z1 = 0.5*D - sqr(0.25*D*D - (0.5*Dp*sin(φ))2)= 0.5*100 - sqr(0.25*100*100 - (0.5*28*sin(51.3333))2)= 1.21 mm

Lshear = Z - Z1= 39.04 mm

Lug Plate Stress

Lug stress, tensile + bending, during rotational lift:σ ratio = [Ften / (Aten*σt)] + [Mbend / (Zbend*σb)] ≤ 1

= [(Ftop(α)*sin(α) ) / (t*B*σt)] + [(6*Ftop(α) *L*cos(α) ) / (t*B2 * σb)] ≤1

= 1,643.5*sin(90.0) / (12*100*137.76) + 6*(1,643.5)*100*cos(90.0)/ (12*1002*153.07)

= 0.01 Acceptable

Weak Axis Bending Stress

Maximum lift cable angle from vertical θ = 77.39°

σb = M / Z = (F*sin(θ)* L1) / ZF*cos(θ) = 0.5*W => F = 0.5*W / cos(θ)θ = arctan( (2*σb*Z ) / (W* L1) )

θ = arctan( (2*153.07*(100*122/6) ) /(3,287*50) ) = 77.39°

Loading on brace plate and head are not considered.

116/121

Page 119: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Weld Stress

Weld stress, direct and torsional shear, during rotational lift:

Direct shear:

Maximum weld shear stress occurs at lift angle 90.00°; lift force = 1,643.5 N

Aweld = 0.707*tw*(2*L3 + 2*B)= 0.707*8*(2*127 + 2*100) = 2,567.82 mm2

τt = Fr*cos(α) / Aweld

= 1,643.5*cos(90.0) / 2,567.82 = 0 MPa

τs = Fr*sin(α) / Aweld

= 1,643.5*sin(90.0) / 2,567.82 = 0.64 MPa

τ = sqr( τt2 + τs

2 )= sqr( 02 + 0.642 ) = 0.64 MPa

τ / τallowable = 0.64 / 91.84 = 0.01 ≤ 1Acceptable

Pad Weld Stress

Direct shear:

Maximum weld shear stress occurs at lift angle 90.00°; lift force = 1,643.5 N

Aweld = 0.707*twp*(2*Lp + Bp)= 0.707*8*(2*140 + 120) = 2,262.4 mm2

τt = Fr*cos(α) / Aweld

= 1,643.5*cos(90.0) / 2,262.4 = 0 MPa

τs = Fr*sin(α) / Aweld

= 1,643.5*sin(90.0) / 2,262.4 = 0.73 MPa

117/121

Page 120: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

τ = sqr( τt2 + τs

2 )= sqr( 02 + 0.732 ) = 0.73 MPa

τ / τallowable = 0.73 / 91.84 = 0.01 ≤ 1Acceptable

WRC 107 Analysis

Geometry

Height(radial): 12 mm Pad Thickness: 12mm

Width (circumferential): 100 mm Pad Width: 120mm

Length 127 mm Pad Length: 140mm

Fillet Weld Size: 8 mm Pad Weld Size: 8mm

Located on: Cylinder #1 (127 mm from top end)Location Angle: 63.40° and 243.40°

Applied Loads

Radial load: Pr = 0 NCircumferential moment: Mc = 0 N-mCircumferential shear: Vc = 0 NLongitudinal moment: ML = 29.58 N-mLongitudinal shear: VL = 1,643.48NTorsion moment: Mt = 0 N-mInternal pressure: P = 0 kPaMean shell radius: Rm = 247.65 mmShell yield stress: Sy = 262 MPaDesign factor: 3

Maximum stresses due to the applied loads at the lug edge (includes pressure)

γ = Rm / T = 247.65 / 24.7 = 10.0263

C1 = 58, C2 = 71.5 mm

Local circumferential pressure stress = P*Ri / T =0 MPa

Local longitudinal pressure stress = P*Ri / (2*T) =0 MPa

Maximum combined stress (PL+P

b+Q) = 0.47 MPa

Allowable combined stress (PL+P

b+Q) = +-3*S = +-414 MPa

The maximum combined stress (PL+P

b+Q) is within allowable limits.

Maximum local primary membrane stress (PL) = -0.08 MPa

Allowable local primary membrane stress (PL) = +-1.5*S = +-207 MPa

The maximum local primary membrane stress (PL) is within allowable limits.

118/121

Page 121: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Stresses at the lug edge per WRC Bulletin 107

Figure value β Au Al Bu Bl Cu Cl Du Dl

3C* 1.227 0.2915 0 0 0 0 0 0 0 0

4C* 1.612 0.2731 0 0 0 0 0 0 0 0

1C 0.0978 0.2522 0 0 0 0 0 0 0 0

2C-1 0.0653 0.2522 0 0 0 0 0 0 0 0

3A* 0.3573 0.2511 0 0 0 0 0 0 0 0

1A 0.0906 0.2831 0 0 0 0 0 0 0 0

3B* 1.2279 0.2693 -0.076 -0.076 0.076 0.076 0 0 0 0

1B-1 0.0385 0.2676 -0.172 0.172 0.172 -0.172 0 0 0 0

Pressure stress* 0 0 0 0 0 0 0 0

Total circumferential stress -0.248 0.097 0.248 -0.097 0 0 0 0

Primary membranecircumferential stress* -0.076 -0.076 0.076 0.076 0 0 0 0

3C* 1.2803 0.2731 0 0 0 0 0 0 0 0

4C* 1.5788 0.2915 0 0 0 0 0 0 0 0

1C-1 0.0905 0.2764 0 0 0 0 0 0 0 0

2C 0.0585 0.2764 0 0 0 0 0 0 0 0

4A* 0.6255 0.2511 0 0 0 0 0 0 0 0

2A 0.0489 0.3118 0 0 0 0 0 0 0 0

4B* 0.3767 0.2693 -0.028 -0.028 0.028 0.028 0 0 0 0

2B-1 0.058 0.2933 -0.234 0.234 0.234 -0.234 0 0 0 0

Pressure stress* 0 0 0 0 0 0 0 0

Total longitudinal stress -0.262 0.207 0.262 -0.207 0 0 0 0

Primary membranelongitudinal stress* -0.028 -0.028 0.028 0.028 0 0 0 0

Shear from Mt 0 0 0 0 0 0 0 0

Circ shear from Vc 0 0 0 0 0 0 0 0

Long shear from VL 0 0 0 0 -0.234 -0.234 0.234 0.234

Total Shear stress 0 0 0 0 -0.234 -0.234 0.234 0.234

Combined stress (PL+Pb+Q) -0.262 0.207 0.262 -0.207 0.469 0.469 0.469 0.469

Note: * denotes primary stress.

Maximum stresses due to the applied loads at the pad edge (includes pressure)

γ = Rm / T = 247.65 / 12.7 = 19.5

C1 = 68, C2 = 78 mm

Local circumferential pressure stress = P*Ri / T =0 MPa

Local longitudinal pressure stress = P*Ri / (2*T) =0 MPa

Maximum combined stress (PL+P

b+Q) = 0.83 MPa

Allowable combined stress (PL+P

b+Q) = +-3*S = +-414 MPa

The maximum combined stress (PL+P

b+Q) is within allowable limits.

Maximum local primary membrane stress (PL) = -0.22 MPa

Allowable local primary membrane stress (PL) = +-1.5*S = +-207 MPa

119/121

Page 122: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

The maximum local primary membrane stress (PL) is within allowable limits.

120/121

Page 123: AIR VOLUME TANK COMPRESS DESIGN CALCULATIONS

Stresses at the pad edge per WRC Bulletin 107

Figure value β Au Al Bu Bl Cu Cl Du Dl

3C* 1.6096 0.3182 0 0 0 0 0 0 0 0

4C* 2.5827 0.3041 0 0 0 0 0 0 0 0

1C 0.0644 0.288 0 0 0 0 0 0 0 0

2C-1 0.0336 0.288 0 0 0 0 0 0 0 0

3A* 0.8525 0.2874 0 0 0 0 0 0 0 0

1A 0.0773 0.3252 0 0 0 0 0 0 0 0

3B* 1.961 0.3009 -0.221 -0.221 0.221 0.221 0 0 0 0

1B-1 0.0246 0.3004 -0.365 0.365 0.365 -0.365 0 0 0 0

Pressure stress* 0 0 0 0 0 0 0 0

Total circumferential stress -0.586 0.145 0.586 -0.145 0 0 0 0

Primary membranecircumferential stress* -0.221 -0.221 0.221 0.221 0 0 0 0

3C* 1.6817 0.3041 0 0 0 0 0 0 0 0

4C* 2.5285 0.3182 0 0 0 0 0 0 0 0

1C-1 0.0584 0.3066 0 0 0 0 0 0 0 0

2C 0.0333 0.3066 0 0 0 0 0 0 0 0

4A* 1.6352 0.2874 0 0 0 0 0 0 0 0

2A 0.0362 0.349 0 0 0 0 0 0 0 0

4B* 0.8286 0.3009 -0.11 -0.11 0.11 0.11 0 0 0 0

2B-1 0.0395 0.3263 -0.538 0.538 0.538 -0.538 0 0 0 0

Pressure stress* 0 0 0 0 0 0 0 0

Total longitudinal stress -0.648 0.427 0.648 -0.427 0 0 0 0

Primary membranelongitudinal stress* -0.11 -0.11 0.11 0.11 0 0 0 0

Shear from Mt 0 0 0 0 0 0 0 0

Circ shear from Vc 0 0 0 0 0 0 0 0

Long shear from VL 0 0 0 0 -0.414 -0.414 0.414 0.414

Total Shear stress 0 0 0 0 -0.414 -0.414 0.414 0.414

Combined stress (PL+Pb+Q) -0.648 0.427 0.648 -0.427 0.827 0.827 0.827 0.827

Note: * denotes primary stress.

121/121


Recommended