+ All Categories
Home > Documents > AISAMP Nov’08 1/25 The cost of information erasure in atomic and spin systems Joan Vaccaro...

AISAMP Nov’08 1/25 The cost of information erasure in atomic and spin systems Joan Vaccaro...

Date post: 21-Dec-2015
Category:
View: 218 times
Download: 2 times
Share this document with a friend
Popular Tags:
26
1 /25 /25 AISAMP Nov’08 AISAMP Nov’08 The cost of information erasure in atomic and spin systems Joan Vaccaro Griffith University Brisbane, Australia Steve Barnett University of Strathclyde Glasgow, UK
Transcript

11/25/25AISAMP Nov’08AISAMP Nov’08

The cost of information erasure in atomic and spin systems

Joan VaccaroGriffith University Brisbane, Australia

Steve BarnettUniversity of Strathclyde Glasgow, UK

22/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

IntroductioIntroductionn▀ Landauer erasureLandauer, IBM J. Res. Develop. 5, 183 (1961)

00

1

forward process:

0 0

1 0

time reversed:

?

Erasure is irreversible

Minimum cost

00/1

Process: maximise entropy subject to conservation of energy

BEFORE erasure AFTER erasure

env2 smicrostate # total N

)2ln( )ln( env kTNkT

)2ln(kTQ

# microstates

environment

)ln( envNkTQ

heat

)2ln( envNkTQ

33/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

▀ Exorcism of Maxwell’s demon

▀ Information is Physical information must be carried by physical system (not new)

its erasure requires energy expenditure

1871 Maxwell’s demon extracts work of Q from thermal reservoir by collecting only hot gas particles. (Violates 2nd Law: reduces entropy of whole gas)

Q

▀ Thermodynamic Entropy

1982 Bennet showed full cycle requires erasure of demon’s memory which costs at least Q :

Bennett, Int. J. Theor. Phys. 21, 905 (1982)

Cost of erasure is commonly expressed as entropic cost:

This is regarded as the fundamental cost of erasing 1 bit. BUT this result is implicitly associated with an energy cost:

)2ln(kS

STQ

Qwork

44/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

ImpactImpact

This talk

Energy CostEnergy Cost▀ from conservation of energy▀ simple 2-state atomic model ▀ re-derive Landauer’s minimum cost of kT ln2 per bit

▀ energy degenerate states of different spin ▀ conservation of angular momentum ▀ cost in terms of angular momentum only

Angular Momentum CostAngular Momentum Cost

▀ New mechanism▀ 2nd Law Thermodynamics

zJ

2

0

1dEE

55/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

Z

eP

kTE

E

/

▀ System:

0 1 0/1

Memory bit: 2 degenerate atomic states

Thermal reservoir: multi-level atomic gas at temperature T

E

Energy CostEnergy Cost

heat engine:

cold

work hot

heat pump:

work hot

cold 0/1

▀ recall heat pump

erasure

66/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

T

Z

eP

kTE

E

/

0 1

▀ Thermalise memory bit while increasing energy gap

0/1

2

11 P

2

10 P

77/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

T

Z

eP

kTE

E

/

▀ Thermalise memory bit while increasing energy gap

raise energy of state(e.g. Stark or Zeeman shift) 0

1dE

0/1

1

dEPdW 1

kTE

kTE

e

eP

/

/

11

kTEeP

/01

1

Work to raise state from E to E+dE

88/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

T

Z

eP

kTE

E

/

▀ Thermalise memory bit while increasing energy gap

0/1

dEPdW 1

01 P

Work to raise state from E to E+dE

2log10

/

/

01 kTdE

e

edEPW

EkTE

kTE

E

Total work

1

0

10 P

raise energy of state(e.g. Stark or Zeeman shift)

1

99/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

T

Z

eP

kTE

E

/

▀ Thermalise memory bit while increasing energy gap

0/1

dEPdW 1

01 P

Work to raise state from E to E+dE

2log10

/

/

01 kTdE

e

edEPW

EkTE

kTE

E

Total work

1

0

10 P

raise energy of state(e.g. Stark or Zeeman shift)

Thermalisation of memory bit:

Bring the system to thermal equilibrium at each step in energy:i.e. maximise the entropy of the system subject to conservation of energy.

THUS erasure costs energy because the conservation law for energy is used to perform the erasure

1010/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

• an irreversible process

• based on random interactions to bring the system to maximum entropy subject to a conservation law

• the conservation law restricts the entropy

• the entropy “flows” from the memory bit to the reservoir

▀ Principle of Erasure:

01

0/1

E

T

0

1dE

0/1

E

T

work

1111/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

▀ System:● spin ½ particles● no B or E fields so spins states are energy degenerate● collisions between particles cause spin exchanges

0/1Memory bit: single spin ½ particle

Reservoir: collection of N spin ½ particles.

Possible states

,,

,,

Simple representation: ,n

# of spin up

multiplicity (copy): 1,2,…

n particles are spin up

Angular Momentum Angular Momentum CostCost

nN

21

21

1212/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

0/1

zJ

▀ Angular momentum diagram

states

Memory bit:

Reservoir:,n

1,0,3,1,2,1,1,1

# of spin up

multiplicity (copy)

zJ

nN1,2,…

21

21state

number of states with

NnJ z 21

1313/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

▀ Reservoir as “canonical” ensemble (exchanging not energy)

Maximise entropy of reservoir

subject to

,

,, lnn

nn PP

NN

nPJn

nz 21

,,reservoir 2

1

,,

nnP&

Total is conserved

zJ

zJ

1,0,1

zJ

1,0 ,1

,n

Reservoir:Bigger spin bath:

,nP

1414/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

zJ

1,0 ,1

,n

1,0,1

zJ

1,0,1

▀ Reservoir as “canonical” ensemble (exchanging not energy)

Reservoir:Bigger spin bath:

Maximise entropy of reservoir

subject to

,

,, lnn

nn PP

1,

,

n

nP& NN

nPJn

nz 21

,,reservoir 2

21 zJ

10 1

Average spinZ

Z

J

Je2

2

Nn

ne

eP

1,

1

ln1

1515/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

0/1

▀ Erasure protocolReservoir:

1

ln1

zJ 2

1P

Nn

ne

eP

1,

2

1P

Memory spin:

zJ

1,0,1

1616/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

zJ

1,0,1

0/1

▀ Erasure protocolReservoir:

Nn

ne

eP

1,

1

ln1

zJ

Coupling

1,11,0

e

eP

1

eP

1

1

Memory spin:

1717/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

▀ Erasure protocolReservoir:

Nn

ne

eP

1,

1

ln1

0/1

e

eP

1

e

P1

1

Increase Jz using ancilla in

memory(control)

ancilla (target)

zJ

2

this operation costs

Memory spin:

and CNOT operation

,2

zJ

1,02

1818/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

,2

zJ

1,02

0/1

▀ Erasure protocolReservoir:

Nn

ne

eP

1,

1

ln1

zJ

2

2

2

1

e

eP

21

1

e

P

2

Coupling

1,21,0

Memory spin:

1919/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

zJ

1,0

m

1,m

0/1

▀ Erasure protocolReservoir:

Nn

ne

eP

1,

1

ln1

zJ

m

0 P

1 P

m

Repeat

Final state of memory spin & ancilla

memory erased ancilla in initial state

Memory spin:

2020/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

zJ

1,0

m

1,m

▀ Erasure protocolReservoir:

Nn

ne

eP

1,

1

ln1

m

Repeat

Final state of memory spin & ancilla

memory erased ancilla in initial state

0/1

zJ

Memory spin:

m

1P

2/

0 P

Total cost:The CNOT operation on state of memory spin consumes angular momentum. For step m:

m

m

e

eP

1

00 1mm

m

mz e

ePJ

memory (m-1) mth ancilla

mth ancilla

m=0 term includes cost of initial state

)1ln(2ln eJ z

Z

Z

J

Je2

2

2121/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

Single thermal reservoir: - used for both extraction and erasure

ImpactImpact

Q

erased memorywork

work

Q

heat engine

cycle

entropy

No net gain

Recall: Bennett’s exorcism of Maxwell’s demon

2222/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

cycle

Two Thermal reservoirs:

- one for extraction, - one for erasure

Q1heat engine

work

entropy

increased entropy

Net gain if T1 > T2

T1

T2

Q2

work

erased memory &Q energy decrease

Recall: heat engine

2323/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

spin reservoir

zJ

,11,0

cycleentropy

Here:Thermal and Spin reservoirs:

- extract from thermal reservoir- erase with spin reservoir

spin

Qheat engine

workerased

memory &Q energy decrease

zJ

increased entropy

Gain?

2424/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

zJ

,11,0

Shannon

cost work

entropy

E

thermal reservoir

spin reservoir New

mechanism:

2nd Law Thermodynamics

Clausius It is impossible to construct a device which will produce in a cycle no effect other than the transfer of heat from a colder to a hotter body.

Kelvin-Planck

It is impossible for a heat engine to produce net work in a cycle if it exchanges heat only with bodies at a single fixed temperature.

S 0

applies to thermal reservoirs only

obeyed for Shannon entropy

2525/25/25AISAMP Nov’08AISAMP Nov’08

Introduction Energy Cost Angular MtIntroduction Energy Cost Angular Mtmm Cost Impact Summary Cost Impact Summary

zJ

2zJ

2zJ

2zJ

2zJ

2zJ

2

▀ the cost of erasure depends on the nature of the reservoir and the conservation law

▀ energy cost

▀ angular momentum cost

2ln1

2lnkT where

kT

1

2ln

zJ

1

ln1

where

SummarySummary

0

1dEE

0

1dEE

0

11dEE

0

1dEE

0

1dEE

0

11dEE

▀ 2nd Law is obeyed: total entropy is not decreased

▀ New mechanism

zJ

,11,0

Shannon

cost work

entropy

E

thermal reservoir

spin reservoir

2626/25/25

Entropy CostEntropy Cost

AISAMP Nov’08AISAMP Nov’08

▀ physical system has states that are degenerate in energy, momentum, … e.g. encode in position of a particle:

logical 0 =logical 1 =

Memory bit: 1 “logical bit” with states Reservoir: many “logical bits”

Entropy CostEntropy Cost

010BA

1,0101

BA

1110, n

)ln(

)ln(

)ln(

2ln11

W

)ln(2ln H(increase in reservoir entropy)

NW

(microcanonical ensemble)

(canonical ensemble)

▀ define Hamming Weight ▀ define maximisation subject to fixed Hamming Weight▀ repeat the angular momentum protocol with W in place of Jz

▀ Shannon entropy cost:

)s1' logical of (# W


Recommended