+ All Categories
Home > Documents > Alaa R. Alameldeen , Ilya Wagner, Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

Alaa R. Alameldeen , Ilya Wagner, Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

Date post: 14-Feb-2016
Category:
Upload: nikita
View: 66 times
Download: 0 times
Share this document with a friend
Description:
Energy-Efficient Cache Design Using Variable-Strength Error-Correcting Codes. Alaa R. Alameldeen , Ilya Wagner, Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu Intel Corporation. 2011010631 Presenter : Gyu Seong , Kang. Contents. Background Variable Strength ECC - PowerPoint PPT Presentation
Popular Tags:
23
ntmouse@KOREA.ac.kr Energy-Efficient Cache Design Using Variable-Strength Error-Correcting Codes Alaa R. Alameldeen, Ilya Wagner, Zeshan Chishti, Wei Wu, Chris Wilkerson, Shih- Lien Lu Intel Corporation 2011010631 Presenter : Gyu Seong, Kang
Transcript
Page 1: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected]

Energy-Efficient Cache Design UsingVariable-Strength Error-Correcting Codes

Alaa R. Alameldeen, Ilya Wagner, Zeshan Chishti, Wei Wu, Chris Wilkerson, Shih-Lien Lu Intel Corporation

2011010631Presenter : Gyu Seong, Kang

Page 2: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 2 )

Contents

Background

Variable Strength ECC

Three types of VS-ECC

Cache characterization

Cache operation in low-voltage mode

ECC overhead

Simulation

Conclusion

Page 3: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 3 )

Background

Energy efficiency is the main design concern

“Reducing supply voltage” – one of the most effective method

This approach restricted from process variation

The minimum operating voltage, 'Vccmin'

Failures in cache memory determine the minimum voltage

Page 4: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 4 )

Background

The probability of multi-bit error is significantly lower than that of having zero or one in cache line.

Probability of a single bit failure(pBitFail) and probability of e failures in 64B cache line

Page 5: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 5 )

Background Error correcting code(ECC)

Recover error using additional parity bits The size of parity bits is proportional to correctable errors

With ECC, It can reduces operating voltage even lower, resulting in lower power consumption.

Selective high-strength protection of a few cache line SECDED(single error correcting, double error detecting) Multi-bit ECC for one or more error failures

Probability of a sing set persistent failure in a 16-way cache with DECTED or VS-ECC

Page 6: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 6 )

Variable strength ECC Based on the number of failing bits

Different strengths for different cache lines SECDED Multi-bit ECC

Additional tag information to distinguish cache line class

3 types of VS-ECC is proposed VS-ECC with a fixed number of regular and extended ECC VS-ECC with line disable + fixed number of regular and extended ECC VS-ECC with variable number of correction bit(1 to 4)

Page 7: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 7 )

Variable strength ECC VS-ECC with a fixed number of regular and extended ECC

Extended ECC bit SECDED set to 0 Multi-bit ECC set to 1

Additional parity data is stored in Extended ECC array.

Page 8: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 8 )

Variable strength ECC VS-ECC with line disable + fixed number of regular and extended ECC

Extended ECC bit SECDED 0 Multi-bit ECC 1

Save additional parity data in Extended ECC array

Disable bit Disable cache line for more than two persistent failures in the low-volt-

age mode Better soft error coverage

Page 9: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 9 )

Variable strength ECC VS-ECC with variable number of correction bit(1 to 4)

Number of ECC blocks SECDED to 4EC5ED

Pointer to Extended ECC block ECC data address for Extended ECC block

Page 10: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 10 )

Variable strength ECC Cache line need to be classified for low-voltage mode

4 eECC field / cache set Only 4 lines can be active and contain protected data. Rest of the cache is inactive and undertest.

Cache characterization Reset All the E-bit and valid bits for inactive cache blocks. Write back all the dirty data. Reduce the processor voltage to the target Vccmin Associate 4 eECC field & first 4 ways. Deactivate rest of the ways.(Loss 75% of cache capacity)

Use multi-bit ECC en/decoder for R/W operation during characterization

Page 11: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 11 )

Variable strength ECC Memory test for inactive region

Use traditional memory test method Write pre-defined pattern & read back

Under the test, if bit failure is detected Multi bit failure

Set E-bit Single bit failure

Write its location into lines' tag array If single-bit failure again in the same line in the remainder test, Compare its location with the one stored in the tag.

Hit – uses SECDED Miss – Multi-bit failure, set E-bit

The test continues until 5 or more E-bit set to 1 or algorithm completes.

Page 12: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 12 )

Variable strength ECC Cache characterization for VS-ECC-Variable

Same characterization as VS-ECC-Fixed Additional step to know the exact number of error bits

¼ of the cache is tested at a time Require higher testing accuracy

Cache characterization for VS-ECC-Disable Same characterization as VS-ECC-Fixed Function correctly with lower testing accuracy

Page 13: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 13 )

Variable strength ECC – Operation

Flow chart of cache operation in low voltage mode for VS-ECC-Fixed

Page 14: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 14 )

ECC Overhead Binary BCH Code Parity bit for 64B(29, 512b) data

10bit = 1bit correction Additional 1bit for detection

SECDED 10bit + 1bit 1 cycle latency for decoding

4EC5ED 40bit + 1bit 15 cycle latency for decoding

Page 15: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 15 )

Simulation setup Cycle-accurate, execution-driven IA32 simulator

OOO model based on Intel Core i7 2GHz 32 KB, 8-way set-associative icache, dcache 2MB, 16-way set-associative L2 cache 64byte cache line

Page 16: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 16 )

Simulation setup ECC configuration

Baseline – All SECDED 12 cycle L2 hit + 1 cycle for SECDED

Fixed-strength ECC DECTED – additional 1 cycle for ECC 4EC5ED – additional 15 cycle for ECC

MS-ECC [Chishti et al., MICRO 2009]

4 bit error correction per segment(64bit) 1MB 8-way L2 cache with 1 cycle latency(Data : ECC = 1:1)

VS-ECC-Fixed – 12 x SECDED + 4 x 4EC5ED VS-ECC-Disable – 12 x SECDED + 4 x 4EC5ED VS-ECC-Variable – 16 x SECDED + 12 x 10bit ECC block

Page 17: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 17 )

Simulation result – Reliability

Failure probability as a function of supply voltage for dif-ferent configurations

Page 18: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 18 )

Normalized IPC for different benchmark

Simulation result – Performance

Page 19: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 19 )

Simulation result – Energy efficient

Normalized Vccmin, Frequency, Power, and EPI Baseline Vccmin : 830mV fBaseline Frequency : 2000MHz

Norm. Vccmin Norm. Freq Norm. Power Norm. EPI0

0.2

0.4

0.6

0.8

1

Baseline DECTED 4EC5ED MS-ECC VS-ECC-Fixed VS-ECC-Variable VS-ECC-Disable

Page 20: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 20 )

Conclusion Low supply voltage condition

A few multi-bit failure in cache While the majority of lines exhibit zero or one errors

Variable-strength error correcting codes Selectively high-strength protection of a few cache line Lines with no failure – SECDED for covering soft error Persistent failure – 4EC5ED Additional bit to support multi-bit ECC control 3 types of VS-ECC are proposed

VS-ECC-Fixed VS-ECC-Variable VS-ECC-Disable

VS-ECC can Avoids significant decreases in cache capacity Incurs minimal additional area overhead

VS-ECC-Disable even better previous published MS-ECC in terms of power & EPI

Page 21: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 21 )

Q & A ?

Page 22: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 22 )

Appendix ECC Hardware overhead

Page 23: Alaa  R.  Alameldeen ,  Ilya  Wagner,  Zeshan Chishti , Wei Wu, Chris Wilkerson, Shih-Lien Lu

[email protected] ( 23 )

Appendix MS-ECC


Recommended