+ All Categories
Home > Documents > Alfven Waves in Toroidal Plasmas

Alfven Waves in Toroidal Plasmas

Date post: 06-Jan-2018
Category:
Upload: diane-charles
View: 237 times
Download: 3 times
Share this document with a friend
Description:
Outline Introduction to Alfven waves Alfven waves in tokamaks Toroidicity-induced Alfven Eigenmodes (TAE) Energetic-particle modes (EPM) Discrete Alfven eigenmodes ( TAE) Summary
40
Alfven Waves in Toroidal Plasmas S. Hu College of Science, GZU Supported by NSFC Summer School 2007, Chen gdu
Transcript
Page 1: Alfven Waves in Toroidal Plasmas

Alfven Wavesin Toroidal Plasmas

S. HuCollege of Science, GZU

Supported by NSFC

Summer School 2007, Chengdu

Page 2: Alfven Waves in Toroidal Plasmas

Outline

• Introduction to Alfven waves• Alfven waves in tokamaks• Toroidicity-induced Alfven Eigenmode

s (TAE)• Energetic-particle modes (EPM)• Discrete Alfven eigenmodes ( TAE)• Summary

Page 3: Alfven Waves in Toroidal Plasmas

Introduction to Alfven Waves

• Basic pictures of Alfven waves• Importance of Alfven waves• Alfven waves in nonuniform plasmas• Shear modes vs. compressional modes

Page 4: Alfven Waves in Toroidal Plasmas

Alfven Waves (Shear Modes)

m

FPA

PA

TVBV

xV

txV

t

2

00

202

2//

22

2

2

2//

22

2

2

0

~~~~

~~

String line Field

xxBB

xB

B

Page 5: Alfven Waves in Toroidal Plasmas

Alfven Waves & Energetic Particles• Importance in Fusion Studies: The Alfven frequencies are comparable t

o the characteristic frequencies of energetic / alpha particles in heating / ignition experiments.

• Basic Waves in Space Investigations: The Alfven waves widely exist in space,

e.g., the Earth’s magnetosphere, the solar-terrestrial region, and so on. The interactions between the Alfven waves and the energetic particles also play important roles in physical understandings.

Page 6: Alfven Waves in Toroidal Plasmas

Alfven Waves

0~~exp~~ ,

~~

~~~

const.0 ,0

~:ionLinearizat

0

22

2

222

2

22

20000

0//

//

0

2

2//

22

2

2

0

00

0

0

xzA

x

yzA

zAzyA

Az

AA

ukVx

u

kkV

kV

xtizikyikxQQ

xVxB

Bt

B

tB

BV

lV

t

QQQ

t

t

eB

u

uuB

Eu

BuEJB

EB

BJuuu

Page 7: Alfven Waves in Toroidal Plasmas

Alfven Waves(Compressional Modes)

componentnalcompressio

,~

~ tocoupled

~modeshear

~

ntsdisplaceme Fluid

eq-~ and eq-~

~ :component nalCompressio

~ ~ :componentShear

modenalcompressio

,0~~

modeshear ,0~0const.

0//

0

2

2//

22

2

2

//

222

2

2

2

22

2

0

BB

B

BBV

lV

ttB

B

ukkVx

u

ukVx

V

//

//A

A//

xyzA

x

xzA

A

uu

uB

Page 8: Alfven Waves in Toroidal Plasmas

Alfven Waves in Tokamaks

• Basic equations• Ballooning formalism• Shear Alfven equation• The s- diagram

[ Lee and Van Dam, 1977 Connor, Hastie, Taylor, 1978 ]

Page 9: Alfven Waves in Toroidal Plasmas

Basic Equations

00

0

0

0

0

00

022

0

//

////

uuu

u

J

JAAAABJB

BuE

AEBEB

BJuu

PPtP

t

Pt

t

ltAE

tt

Pt

P

q

P

Page 10: Alfven Waves in Toroidal Plasmas

Ballooning Formalism

//

//

11~ :1 ,0 :

21ˆ1ˆˆ

expˆexp,,,~

00

, :,,geometry Toroidal

l

mOrnqRmnqkmrnqr

mrnqmrnqmrnq

immrnqtinirt

qqrs

BRBrqBBq

rgf

Raqr

m

nmmm

m

PP

PPP

PP

P

eeB

BABABB

Page 11: Alfven Waves in Toroidal Plasmas

Shear Alfven Equation

drive ge/interchanballooning : termThird

oncontributi inertial : termSecond

bending line-field :First term

2 , ,

sin1 ,coscos

line field magnetic thealong coordinate extended the:,

cos1

~~ ,0~~cos21

~

200

2

222

0

21

2

2

2

2

BPqRVRq

sffsfV

BBf

V

AA

A

Page 12: Alfven Waves in Toroidal Plasmas

The s- Diagram

• First ballooning-mode stable regime (with the low pressure-gradient)

• Ballooning-mode unstable regime (with pressure-gradient inbetween)

• Second ballooning-mode stable regime (with the high pressure-gradient)

Page 13: Alfven Waves in Toroidal Plasmas

TAE

• Localized and extended potentials• Alfven continuum and frequency gap• Toroidicity-induced Alfven eigenmodes• TAE features

[ Cheng, Chen, Chance, AoP, 1985 ]

Page 14: Alfven Waves in Toroidal Plasmas

Localized and Extended Potentials

eigenmodesAlfven possible 1 ,0~~~:1~ potential Localized

spectrumfrequency Alfven 0~cos21~

equation sMathieu' : potential Extended

,sin1

coscos ,0~~cos21

~

22

2

22

2

2

222

2

2

O

Ω

Ωsf

fsfVVΩ

A

Page 15: Alfven Waves in Toroidal Plasmas

Alfven Frequency Spectrum

spectrum continumm with thecoupling No,

141 :1 of case The

~

:2

around gapsfrequency Alfven

,,2,1 ,, ;,0

sfrequencieAlfven of spectrum Continuum : of sEigenvalue

1 ,0~cos21~

:equation sMathieu'

222

2

2222

22

22222

22

2

UL

UL

jLjUjj

UjjLjj

UjLj

ΩΩΩ

Ωj

OΩΩΩ

ΩΩΩjΩΩ

jΩΩΩΩΩ

Ω

Ω

Page 16: Alfven Waves in Toroidal Plasmas

Toroidal Alfven Eigenmodes

22222

22222

22

22

2

222

2

2

,41~1

1

:1 ,1relation Dispersion

sin1

coscos ,0~~~

:1 with potential localized theofon Contributi

ULUL

U

L

ΩΩΩssC

ssCΩΩΩ

ssC

ΩΩΩΩs

sf

fsfVVΩ

Page 17: Alfven Waves in Toroidal Plasmas

TAE Features• Existence of the Alfven frequency gap due

to the finite-toroidicity coupling between the neighboring poloidal harmonics.

• Existence of eigenmodes with their frequencies located inside the Alfven frequency gap.

• These modes experience negligible damping due to their frequencies decoupled from the continuum spectrum.

Page 18: Alfven Waves in Toroidal Plasmas

EPM

• Gyro-kinetic equation• Vorticity equation• Wave-particle resonances• EPM features

[ Chen, PoP, 1994 ]

Page 19: Alfven Waves in Toroidal Plasmas

Gyro-Kinetic Equation

CCC

CCC

C

C

vOk

OLk

mcqBvvBvv

fcm

qfL

cmq

tLfL

QQQ

fcm

qftf

,~

~~~ :ordering-Gyro

,sincossign ,2 ,2

,,,,

,, :spacecenter -guiding tion toTransforma

~~~ˆ

ˆ ,0ˆ~

0 :equation Vlasov

21

//

021

//022

//

00

00000

eevVevxX

VXvx

vBvE

vBv

xv

vBvE

xv

Page 20: Alfven Waves in Toroidal Plasmas

Gyro-Kinetic Equation (cont.)

////

//

//1

0//

//

0

g0

00g0

g

////

1//

10

D0

0

0

0*

g0//g0D

D//

//

~~ ,exp formon perturbatiwith

exp~exp1~~

exp~~exp~~

~~~~

~

ˆ

~

XcAi

Ltidi

iLBck

JviLJX

viB

f

iLJQFfmqiLgf

vX

JiBck

JvJJ

J

QF

F

ffmqigii

Xv

Ck

kk

kk

C

vekXk

Xekvk

X

Page 21: Alfven Waves in Toroidal Plasmas

Vorticity Equation

j

j

j jj j

k

j j

B

BckJJvJ

Bf

BckJJvJJQFf

mq

gX

JvqigqJ

XJ

Bf

mvq

ckBk

XBc

QvBdddQ

//102

00

g0

//10

20D2

00g0

2

//

1//

D0

//

20

0

g02//

2

220

2

//02

2

//

02

000

~~1

~~~~

~~

~141

4

equationVoticity equation kinetic-Gyro

0

Page 22: Alfven Waves in Toroidal Plasmas

Vorticity Equation (cont.)

ncompressio Kinetic ~4

drive Ballooning

~ˆ4Inertial

~

bending line-Field~

~

~

2

1

~~

4

:equationAlfven Shear ~~0~

0~ ,0

0D2

02

2

2

22

//0

2

//0

2

2

20D02

00*

2

20

g02

D0

//0

2

//02

2

//

//g0

EE

CD*

ACE

EC

j j

j j

gJcq

ωFωmcqπ

Vk

XBk

XBnn

TT

JQFJFJf

mq

gqJXB

kX

Bc

E

Bf

Page 23: Alfven Waves in Toroidal Plasmas

Wave-Particle Resonances

K b

bbba

bbsa

sa

sa

sa

b

ab

b

ab

l

a

la

sa

sa

sa

sa

ba

b

l

a

ls

la

la

KI

ISIC

vdlQ

vdlQ

vdsI

CSSSSSCSIG

IiSvdsIiIiGg

bgbgagag

SSiS

vig

vi

Xg

DD

////D

//

2121

//

21//

D////

12

cotcot :Resonances

2 ,sin ,cos

,2 ,

~~~~cot2

exp~expexp~

,~,~,~,~

~~~~~

:equation kinetic-Gyro

Page 24: Alfven Waves in Toroidal Plasmas

EPM Features• The Alfven modes gain energy by resonant

interactions between Alfven waves and energetic particles.

• The mode frequencies are characterized by the typical frequencies of energetic particles via the wave-particle resonance conditions.

• The gained energy can overcome the continuum damping.

Page 25: Alfven Waves in Toroidal Plasmas

TAE

• Theoretical model• Bound states in the second

ballooning-mode stable regime• Basic features• Kinetic excitations

[ Hu and Chen, PoP, 2004 ]

Page 26: Alfven Waves in Toroidal Plasmas

Theoretical Model

Page 27: Alfven Waves in Toroidal Plasmas

Basic Equations

Page 28: Alfven Waves in Toroidal Plasmas

Some Definitions

Page 29: Alfven Waves in Toroidal Plasmas
Page 30: Alfven Waves in Toroidal Plasmas
Page 31: Alfven Waves in Toroidal Plasmas

TAE Features

• Existence of potential wells due to ballooning curvature drive.

• Bound states of Alfven modes trapped in the MHD potential wells.

• The trapped feature decouples the discrete Alfven eigenmodes from the continuum spectrum.

Page 32: Alfven Waves in Toroidal Plasmas
Page 33: Alfven Waves in Toroidal Plasmas
Page 34: Alfven Waves in Toroidal Plasmas
Page 35: Alfven Waves in Toroidal Plasmas
Page 36: Alfven Waves in Toroidal Plasmas
Page 37: Alfven Waves in Toroidal Plasmas
Page 38: Alfven Waves in Toroidal Plasmas
Page 39: Alfven Waves in Toroidal Plasmas

Summary

• Introduction to shear Alfven waves in tokamaks and their interaction with energetic particles.

• Discussions on the toroidicity-induced Alfven eigenmode (TAE), the energetic-particle continuum mode (EPM), as well as the discrete Alfven eigenmode ( TAE).

Page 40: Alfven Waves in Toroidal Plasmas

• alpha-TAE: Bound states in the potential wells due to the ballooning drive.

• EPM: Frequencies determined by the wave-particle resonance conditions.

• TAE: Frequencies located inside the toroidal Alfven frequency gap.

Alpha-TAE vs. EPM/TAE


Recommended