+ All Categories
Home > Documents > alin 5.3-5.4

alin 5.3-5.4

Date post: 02-Dec-2014
Category:
Upload: monika-maytri
View: 61 times
Download: 4 times
Share this document with a friend
26
Vector Space 5.1. Real Vector Spaces 5.2. Subspaces 5.3. Linear Independence 5.4. Basis and Dimension 5.5. Row Space, Column Space, Nullspace 5.6. Rank and Nullity
Transcript

Vector Space5.1. Real Vector Spaces

5.2. Subspaces5.3. Linear Independence

5.4. Basis and Dimension5.5. Row Space, Column Space, Nullspace

5.6. Rank and Nullity

S = {v1, v2, v3, ., vr } is a non-empty set of vectors

Linear Independence:If the only solution of k1 v1+ k2 v2 + k3 v3. + kr vr = 0 is trivial (k1, k2, k3, ., kr = 0)

Linear Dependence:If the solution of k1 v1+ k2 v2 + k3 v3. + kr vr = 0 is non trivial

Diketahui : himpunan S = {v1, v2, v3, ., vr } Ditanyakan: apakah S linearly independent atau linearly dependent?

Jawab:1. Bentuk SPL Homogen 2. Tentukan solusinya 3. Jika solusinya trivial k1, k2, k3, ., kr = 0 maka S linearly independent k1 v1+ k2 v2 + k3 v3. + kr vr = 0

4. Jika solusinya non-trivial maka S linearly dependent

Example 4: determine whether u = (1, 2, 3), v = (5, 6, 1), w = (3, 2, 1) form a linear independent set. Solution : k1 (1, 2, 3) + k2 (5, 6, 1) + k3 (3, 2, 1) = (0, 0, 0)k1 + 5 k2 + 3 k3 = 0 2k1 + 6 k2 + 2 k3 = 0 3k1 k2 + k3 = 0 1 2 3 5 6 1 3 2 1 0 0 0

1 0 0

5 16 16

3 8 8

0 0 0

1 0 0

5 2 0

3 1 0

0 0 0

1 0 0

5 16 16

3 8 8

0 0 0

1 0 0

5 2 0

3 1 0

0 0 0

1 0 0 k1 = 0.5 k3

0 1 0

0.5 0.5 0

0 0 0

solusinya = { ( 0.5t, 0.5t, t ) }

k2 = 0.5 k3k3 = t

NON-TRIVIALmaka u, v, w tidak independen-linier ( linearly dependent )

Example 1: (page 241) If u = (2, 1, 0, 3), v = (1, 2, 5, 1), w = (7, 1, 5, 8), then the set S = {u, v, w} is linearly dependent, since 3u + v w = 0

linearly dependent (artinya: saling bergantung linier) u = (w v) / 3 v = w 3u w = 3u + v u depends linearly on v, w v depends linearly on u, w w depends linearly on u, v

Theorem 5.3.1 Theorem 5.3.2

Theorem 5.3.3:Let S = {v1, v2, v3, ., vr } be a set of vectors in Rn. If r n then S is linearly dependent The solution set of the following homogeneous system of linear equations is non trivial (Theorem 1.2.1) k1 v1+ k2 v2 + k3 v3. + kr vr = 0k1 v11 + k2 v21 + k3 v31 + .. + kr vr1 = 0 v12 v22 v32 vr2 v13 v23 v33 vr3 v1n v2n v3n vrnmore columns than rows

0 0 .. 0

Vector Space5.1. Real Vector Spaces

5.2. Subspaces5.3. Linear Independence

5.4. Basis and Dimension5.5. Row Space, Column Space, Nullspace

5.6. Rank and Nullity

Basis:V is any Vector Space S = { v1, v2, v3, , vn } where v1, v2, v3, , vn V then S is called a Basis for V if 1. S is linearly independent 2. S spans VA vector space can have more than one basisSee Figure 5.4.3

Cara menentukan apakah S basis untuk Ruang Vektor V:V adalah Ruang Vektor S = { v1, v2, v3, , vn } di mana v1, v2, v3, , vn V maka S disebut Basis dari V jika

1.

S linearly independentk1v1 + k2v2 + + knvn = 0 menghasilkan k1 = k2 = = kn = 0 (skalar)

2.

S merupakan rentang (span) dari Vuntuk sembarang vektor u V dipenuhi c1v1 + c2v2 + + cnvn = u artinya : ada solusi untuk c1, c2 , , cn (skalar)

DefinitionA non zero vector space V is called finite-dimensional if it contains a finite set of vectors { v1, v2, v3, ., vn } that forms a basis. If no such set exists, V is called infinite-dimensional. The dimension of the zero vector space { 0 = (0, 0, , 0) } is zero.

Contoh: (Example 1 page 253 & Example 3 page 254) Dalam contoh ini ditunjukkan dua basis untuk R3 B = {e1, e2, e3} dan S = {v1, v2, v3}

di mana e1 = (1, 0, 0); e2 = (0, 1, 0); e3 = (0, 0, 1) v1 = (1, 2, 1); v2 = (2, 9, 0); v3 = (3, 3, 4)

Cara menentukan apakah B / S basis untuk Ruang Vektor V:B disebut Basis dari V jika

1.

B linearly independent SPL Homogenk1v1 + k2v2 + + knvn = 0

menghasilkan k1 = k2 = = kn = 0 (skalar)

2.

B merupakan rentang (span) dari Vuntuk sembarang vektor u V dipenuhi c1v1 + c2v2 + + cnvn = u artinya : ada solusi untuk c1, c2 , , cn (skalar)

Contoh: (Example 1 page 253 & Example 3 page 254) Dalam contoh ini ditunjukkan dua basis untuk R3 B = {e1, e2, e3} dan S = {v1, v2, v3}

di mana e1 = (1, 0, 0); e2 = (0, 1, 0); e3 = (0, 0, 1) v1 = (1, 2, 1); v2 = (2, 9, 0); v3 = (3, 3, 4) Bukti bahwa B adalah basis untuk R3. B disebut basis standar untuk R3. B independen linier? B merentang R3?

k1e1 + k2e2 + k3e3 = 0

u = (x, y, z) R3

1 0 00 1 0 0 0 1

k1k2 k3

=

00 0

c1e1 + c2e2 + c3e3 = u1 0 0 0 1 0 c1 c2 = x y

B independen linier

0 0 1

c3

z

B merentang R3

Bukti bahwa S = {v1, v2, v3} juga basis R3 S = {v1, v2, v3} di mana v1 = (1, 2, 1); v2 = (2, 9, 0); v3 = (3, 3, 4)S independen linear?

k1v1 + k2v2 + k 3v3 = 0 1 2 3 2 9 3 1 0 4B2 2*B1 B3 B1

k1 k2 k3

=

0 0 0

1 2 12 5 -2 3 -3 1 0 0 0

2 9 0

3 3 4

0 0 0

1 0 0

Bukti bahwa S = {v1, v2, v3} juga basis R3 S = {v1, v2, v3} di mana v1 = (1, 2, 1); v2 = (2, 9, 0); v3 = (3, 3, 4)1 0 0 2 5 -2 3 -3 1 0 0 0

B3 + 2/5*B2

1 0 0

2 5 0

3 -3 -1/5

0 0 0

Solusi trivial: (0, 0, 0) S independen linier

Bukti bahwa S = {v1, v2, v3} juga basis R3S = {v1, v2, v3} di mana v1 = (1, 2, 1); v2 = (2, 9, 0); v3 = (3, 3, 4)u = (x, y, z) R3S merentang R3 ?

k1v1 + k2v2 + k 3v3 = u 1 2 3 k1 = x 1 2 3 x

2 9 31 0 4

k2k3

yz

21

90

34

yz

1 2 1B2 2*B1 B3 B1

2 9 01 0

3 3 42 5

x y z3 -3 x y 2x

0B3 + 2/5*B2 1 0 0

-22 5 0

13 -3 -1/5

zxx y 2x z + 2/5y 9/5x

1 0 0

2 5 0

3 -3 -1/5

x y 2x z + 2/5y 9/5x

k3 = 9x 2y 5z k2 = 1/5 (y 2x + 3k3) = 1/5 (25x 5y 15z) = 5x y 3z k1 = x 2k2 3k3 = x 10x + 2y 6z 27x + 6y + 15z = 36x + 8y + 9z S merentang R3. Maka S adalah (salah satu basis) R3

Dari contoh ini terlihat bahwa dimensi R3 = 3 karena B / S berisi 3 vektor B = { e1, e2, e3 } dan S = { v1, v2, v3 }

di mana e1 = (1, 0, 0); e2 = (0, 1, 0); e3 = (0, 0, 1) v1 = (1, 2, 1); v2 = (2, 9, 0); v3 = (3, 3, 4)

Theorem 5.4.3. All bases for a finite-dimensional vector space have the same number of vectors. Theorem 5.4.5. If V is a finite-dimensional vector space, and if S is a set in V with exactly n vectors, then S is a basis for V if either S spans V or S is linearly independent.

B = {e1, e2, e3}

dan

S = {v1, v2, v3}

di mana e1 = (1, 0, 0); e2 = (0, 1, 0); e3 = (0, 0, 1) v1 = (1, 2, 1); v2 = (2, 9, 0); v3 = (3, 3, 4)

Koordinat sebuah vektor akan berbeda jika dinyatakan berdasarkan basis yang berbeda(lihat Example 4 halaman 255)

(5, 1, 9)B ekivalen (1, 1, 2)S(11, 31, 7)B ekivalen (1, 3, 2)S(1, 1, 2)S = (1)*(1, 2, 1) + (1)*(2, 9, 0) + (2)*(3, 3, 4) = (1, 2, 1) + (2, 9, 0) + (6, 6, 8) = (5, 1, 9)

Contoh : Tentukan basis untuk ruang-solusi dari SPL berikut : x1 + 2x2 + 7x3 9x4 + 31x5 = 0 2x1 + 4x2 + 7x3 11x4 + 34x5 = 0 3x1 + 6x2 + 5x3 11x4 + 29x5 = 0 Penyelesaian : Jika ditulis dalam bentuk matriks augmented:12 3 1 0 0

24 6 2 0 0

77 5 7 -7 -16

-9-11 -11 -9 7 16

3134 29 31 -28 -64

00 0 0 0 0

B2 2*B1 B3 3*B1

B2 * (1/7) B3 * (1/16)

1 0 0

2 0 0

7 1 1

-9 -1 -1

31 4 4

0 0 0

B3 B2 B1 7*B2

1 0 0

2 0 0

0 1 0

-2 -1 0

3 4 0

0 0 0 2r + 2s 3t r = s 4t s t

x1 = 2x2 + 2x4 3x5 x2 bebas = r x3 = x4 4x5 x4 bebas = s x5 bebas = t

x1 x2 x3 x4 x5

x1 x2 x3

=

2r + 2s 3t r s 4t

=

2r + 2s 3t 1r + 0s + 0t 0r + 1s 4t

x4x5 = r 2 1 0 0 0

st

0r + 1s + 0t0r + 0s + 1t 3 0 4 0 1

+ s

2 0 1 1 0

+ t

v1

v2

v3

Basis Ruang Solusi = B = {v1, v2, v3 } dengan dimensi 3

Contoh : Tentukan basis untuk ruang-solusi dari SPL berikut : x1 + 2x2 + 7x3 9x4 + 31x5 = 0 2x1 + 4x2 + 7x3 11x4 + 34x5 = 0 3x1 + 6x2 + 5x3 11x4 + 29x5 = 0 Ruang Solusinya S = { ( 2r + 2s 3t, r, s 4t, s, t ) } = subset dari R5

Basis dari Ruang Solusi S = B = {v1, v2, v3 } Dimensi dari Ruang Solusi S = 3

P.R. u/ 2-12-2011 5.3. no. 1, 5

5.4. no. 10, 11, 13

Tes tgl. 3-12-2011 Sabtu, pk.8.00-9.00 Sifat : tertutup Materi: bab 5.1 s/d. 5.4


Recommended