+ All Categories
Home > Documents > Alkaline Seafloor Hydrothermal Systems: Experimental Simulation...

Alkaline Seafloor Hydrothermal Systems: Experimental Simulation...

Date post: 05-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
27
Alkaline Seafloor Hydrothermal Systems: Experimental Simulation of CO 2 -Peridotite-Seawater Reactions Thomas M. Carpenter John P. Kaszuba Melissa Fittipaldo Michael Rearick Los Alamos National Laboratory Los Alamos, NM
Transcript
Page 1: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Alkaline Seafloor Hydrothermal Systems: Experimental Simulation of

CO2-Peridotite-Seawater Reactions

Thomas M. Carpenter

John P. Kaszuba

Melissa Fittipaldo

Michael Rearick

Los Alamos National LaboratoryLos Alamos, NM

Page 2: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Alkaline Seafloor Hydrothermal Systems

Lost City Field (Kelley et al., 2001) is a prime example

• 15km off axis

• 1.5 Ma oceanic crust

Page 3: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Lost City Field

• Carbonate vent chimneys

• Fluids vented at 40°-75°C, pH 9.0 to 9.8

• “driven by heat of exothermic serpentinizationreactions between seawater and mantle rocks”

(Kelley et al., 2001)

Page 4: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Today’s Talk

Could alkalinity of these systems be explained by peridotite-seawater reaction in the presence of (magmatic) CO2?

Could these hydrothermal systems serve as analogues for geologic carbon sequestration in oceanic crust?

Experimental perspective of CO2-peridotite-seawater reactions

• Published experimental studies as baseline

• Aqueous geochemical effects

• Mineralogic and petrologic effects

Page 5: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Experimental Approach

• Rocking autoclave with flexible cell hydrothermal apparatus

• 300°C and 500 bars• Rock = Lherzolite• Fluid = Synthetic Seawater• Brine:Rock ≅ 10:1• Experiment procedure

Brine + rock for 38 hoursInject 2 mol% CO2 into ongoing reaction, react additional 530 hours

Page 6: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Experimental ApparatusOperating Conditions:

500 bars (7350 psi) @ 300 C

Maximum Conditions:

565 bars (8200 psi) @ 425 C

Page 7: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Phase Compositions, System H2O-CO2

0

200

400

600

800

1000

0 20 40 60 80 100

mole % CO2

Pres

sure

(bar

s)

0

200

400

600

800

1000

150

275 200

250

350325

300

Page 8: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Experimental Approach

Supercritical CO2 fluid

Seawater Solution

Peridotite Minerals

Valve

Page 9: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Opx

Ol

Cpx

clinopyroxenite

lherzolite

dunite

orthopyroxenite

harzburgite

olivine websterite

wherlite

olivine clinopyroxenite olivine orthopyroxenite

websterite

Peridotite

Page 10: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Mineral Compositions

Phase Mass % Composition

Olivine 71.4% Forsterite 89%, Fayalite 11%

Enstatite 18.4%wollasonite 4%, Enstatite 77%, Ferrosilite

19%

Diopside 10.2%wollasonite 52%, Enstatite 45%, Ferrosilite

3%

*All compositional values represent the mean of five separate analyses

Page 11: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Powdered Peridotite as Reactant

Page 12: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Enstatite

Olivine

Mineral Reactants (Fragments)

Page 13: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

10 20 30 40 50 60 70

x10 3

10

20

30

40

50

60

70

Inte

nsity

.

te

drite

TalcMagnesite

Anhydrite

Lizardite

Mineral Products

Page 14: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Olivine

Enstatite

Reaction Textures (Dissolution/Precipitation)

Page 15: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Reaction Textures (Dissolution)

Page 16: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Euhedral Magnesite Precipitation

Page 17: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Euhedral Anhydrite Precipitation

Page 18: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

mM

/Kg

Inject CO2

100 200 300 400 500

CO2

Ca++

Fe++

SiO2

Mg++

Reaction time (hours)

Aqueous Fluid Chemistry – Cations and CO2

Page 19: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

2

3

4

5

6

7

8

0 100 200 300 400 500 600

Measured pH

Calculated in-situ pH

Inject CO2

pH

Reaction time (hours)

Aqueous Fluid Chemistry – pH

Page 20: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

1. Talc, not serpentine, is principal alteration product

2. Magnesite crystallizes

3. Anhydrite crystallizes (and dissolves)

4. Did not “match” pH observed at Lost Citya) More CO2 (to generate alkalinity) in experiment?

5. Ongoing calculations to understand this experiment and plan the next suite

a) Alkalinity

b) Mg vs SiO2 activity (why talc?)

c) Mass balance & sequestering reactions

Conclusions

Page 21: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Acknowledgements

LANL Colleagues and Contributors:

David Janecky, Bill Carey, Steve Chipera, Dale Counce, Ren-Guan Duan, George Guthrie

FundingLos Alamos National Laboratory LDRD

LA-UR #06-5181

Page 22: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Experimental Simulation of Alkaline Seafloor Hydrothermal Systems

Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo, Michael S. Rearick, Los Alamos National Laboratory

Flow of seawater through hydrothermal systems exhibiting “black smoker” chimneys has previously been shown to alter peridotite to serpentinite (Janecky and Seyfried 1986). The Lost City hydrothermal field (Kelley et al. 2001) shows that certain seafloor hydrothermal systems can also vent alkaline fluids from “white smokers.” Experiments were conducted in a flexible cell hydrothermal apparatus on seawater-lherzolite-CO2 systems to simulate alkaline hydrothermal systems and determine the extent of brine-rock reaction. The synthetic lherzolite was comprised of 71.4% forsteritic olivine, 18.4% diopside, and 10.2% enstatite. The lherzolite was reacted at 300˚C and 500 bar in a synthetic seawater solution with an ionic strength of 0.69 to approach steady state, then injected with supercritical CO2 and reacted for ~550 hours.

Brine-rock reaction decreases pH from 7.4 to ~5, consumes ~50 mMol of aqueous magnesium and nearly all of the aqueous sodium and potassium. Approximately 2 to 4 mol percent CO2 was injected into these experiments after achiving brine-rock equilibrium. Calcium concentrations decrease (~1 to 2 mMol) following CO2 injection, whereas magnesium concentrations rebound (~1 mMol), as do the silica concentrations (3 to 7 mMol), both likely a result of increased brine acidity. Significantdissolution of olivine and pyroxenes occurred, as shown by surface pits and etching. The powdered solid reactants have been extensively serpentinized, and mineral fragments developed serpentine overgrowths. Needle-like laths of calcium sulfate and rhombs of magnesium carbonate were extensively precipitated on the reactants and the inner surfaces of the reaction cell. The experiments experienced a gradual pressure decrease following CO2 injection (27 bars); this pressure decrease is a result of dissolution and mineralization of CO2.

These reactions provide initial constraints as to the extent and rate of reactions occurring in alkaline hydrothermal systems. Additionally, the extensive formation of magnesium carbonate minerals indicates that direct injection of carbon dioxide into magnesium silicate rich terranes, as such peridotite hosted hydrothermal systems may be a viable means of sequestering anthropogenic CO2.

LA-UR #06-5181 Fall 2006 meeting of the Geological Society of America, October 23, 2006

Page 23: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Input received from discussions and Q&A

1) Immiscible CO2 phase as ultimate source for alkalinity is novel hypothesis but requires much work

2) Heat of serpentinization hypothesis for alkaline vents is contentious

3) A 3rd hypothesis for source of alkalinity: seawater reacts with gabbros at depth to generate Ca(OH)2(aq), which generates both carbonates and alkalinity with release to ocean floor

Page 24: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Extra Slides

Page 25: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Quantitative X-Ray Analysis:-Reaction Products

0 10 20 30 40 50

% of products

Talc

Magnesite

Anhydrite

Lizardite

Page 26: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Change in Pressure after Injection of CO2

-16

-14

-12

-10

-8

-6

-4

-2

00 20 40 60 80 100 120

Time (minutes from peak pressure)

Pres

sure

cha

nge

(bar

)

Page 27: Alkaline Seafloor Hydrothermal Systems: Experimental Simulation …phlip/LDRD_ER/Carpenter_et_al.,_GSA... · 2007. 3. 19. · Thomas M. Carpenter, John P. Kaszuba, Melissa Fittipaldo,

Relevance for Other Geologic Environments?

0

100

200

0 100 200 300 400

Temperature (C)

Pre

ssur

e (M

Pa)

0

2

4

6

8

Dep

th (k

m)

Carbonate Veins

DeepSaline Aquifers

Decarbonation Reactions

CO2

critical point

20oC/km

60oC/km

H2O critical point

Deep Natural Gas Resources

CO2-H2OSaddlePoint

XCO

2 = 2

0%

X CO

2 = 5

%

Diagenesis BeginsMetamorphism

Begins

CarbonateCements

after Kaszuba et al., 2006


Recommended