+ All Categories
Home > Documents > ALTERNATIVES FOR POWER GENERATION IN THE GREATER … · 2020. 5. 29. · 3 Development Options for...

ALTERNATIVES FOR POWER GENERATION IN THE GREATER … · 2020. 5. 29. · 3 Development Options for...

Date post: 03-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
135
ALTERNATIVES FOR POWER GENERATION IN THE GREATER MEKONG SUB-REGION Volume 2: Power Sector Vision for the Kingdom of Cambodia Final 20 March 2016
Transcript
  • ALTERNATIVES FOR POWER GENERATION IN THE GREATER MEKONG SUB-REGION

    Volume2:

    Power Sector Vision for the KingdomofCambodia

    Final

    20 March 2016

  • FINAL

    IntelligentEnergySystems IESREF:5973 ii

    DisclaimerThis report has been prepared by Intelligent Energy Systems Pty Ltd (IES) and

    MekongEconomics (MKE) in relationtoprovisionofservices toWorldWideFund

    forNature(WWF).Thisreportissuppliedingoodfaithandreflectstheknowledge,

    expertiseandexperienceof IESandMKE. Inconducting theresearchandanalysis

    forthisreportIESandMKEhaveendeavouredtousewhatitconsidersisthebest

    information available at the date of publication. IES and MKE make no

    representationsorwarrantiesas to theaccuracyof theassumptionsorestimates

    onwhichtheforecastsandcalculationsarebased.

    IESandMKEmakenorepresentationorwarrantythatanycalculation,projection,

    assumption or estimate contained in this report should or will be achieved. The

    reliance that the Recipient places upon the calculations and projections in this

    reportisamatterfortheRecipient’sowncommercialjudgementandIESacceptsno

    responsibilitywhatsoeverforanylossoccasionedbyanypersonactingorrefraining

    fromactionasaresultofrelianceonthisreport.

  • FINAL

    IntelligentEnergySystems IESREF:5973 iii

  • FINAL

    IntelligentEnergySystems IESREF:5973 iv

    AcronymsAD AnaerobicDigestion

    ADB AsianDevelopmentBank

    ASEAN AssociationofSoutheastAsianNations

    ASES AdvancedSustainableEnergySector

    BAU BusinessAsUsual

    BNEF BloombergNewEnergyFinance

    BTU/Btu BritishThermalUnit

    CAGR CompoundAnnualGrowthRate

    CAPEX CapitalExpenditure

    CCGT CombinedCycleGasTurbine

    CCS CarbonCaptureandStorage

    COD CommercialOperationsDate

    CSP ConcentratedSolarPower

    DNI DirectNormalIrradiation

    DTU TechnicalUniversityofDenmark

    EAC ElectricityAuthorityofCambodia

    EDC ElectriciteDuCambodge

    EE EnergyEfficiency

    EIA EnergyInformationAdministration

    FOB FreeonBoard

    FOM FixedOperatingandMaintenance

    HV HighVoltage

    GDP GrossDomesticProduct

    GHI GlobalHorizontalIrradiance

    GMS GreaterMekongSubregion

    GT GasTurbine

    HFO HeavyFuelOil

    ICT InformationandCommunicationTechnology

    IEA InternationalEnergyAgency

    IES IntelligentEnergySystemsPtyLtd

    IPP IndependentPowerProducer

  • FINAL

    IntelligentEnergySystems IESREF:5973 v

    IRENA InternationalRenewableEnergyAgency

    LCOE OverallLevelisedCostofElectricity

    LNG LiquefiedNaturalGas

    MERRA ModernEra-RetrospectiveAnalysis

    MKE MekongEconomics

    MIME MinistryofIndustry,MiningandEnergy

    MME MinistryofMinesandEnergy

    MOIT MinistryofIndustryandTrade(Vietnam)

    MV MediumVoltage

    NASA NationalAeronauticsandSpaceAdministration(the

    UnitedStates)

    NPV NetPresentValue

    NREL NationalRenewableEnergyLaboratory(theUnitedStates)

    OECD OrganisationforEconomicCo-operationandDevelopment

    OPEC OrganisationofthePetroleumExportingCountries

    OPEX OperationalExpenditure

    PDR People’sDemocraticRepublic(ofLaos)

    PEA ProvincialElectricityAuthority(Thailand)

    PEC ProvincialElectricityCompany

    PRC People’sRepublicofChina

    PV Photovoltaic

    RE RenewableEnergy

    REE RuralElectricityEnterprise

    RGC RoyalGovernmentofCambodia

    ROR RunofRiver

    SCADA/EMS SupervisoryControlandDataAcquisition/Energy

    ManagementSystem

    SES SustainableEnergySector

    SWERA SolarandWindEnergyResourceAssessment

    SWH SolarWaterHeating

    UN UnitedNations

    USD UnitedStatesDollar

    VOM VariableOperatingandMaintenance

    WEO WorldEnergyOutlook

  • FINAL

    IntelligentEnergySystems IESREF:5973 vi

    WWF WorldWideFundforNature

    WWF-

    GMPO

    WWF–GreaterMekongProgrammeOffice

  • FINAL

    IntelligentEnergySystems IESREF:5973 vii

    TableofContents1 Introduction 9

    1.1 ReportStructure 9

    2 Background:Cambodia’sElectricitySector 11

    2.1 IndustryStructure 11

    2.2 PowerSystem 11

    2.3 InstalledCapacity 12

    2.4 ElectricityDemand 14

    2.5 GenerationSupply 15

    2.6 PowerImports 17

    3 DevelopmentOptionsforCambodia’sElectricitySector 19

    3.1 NaturalGasResources 19

    3.2 CoalResources 20

    3.3 NuclearEnergy 21

    3.4 HydroPower 21

    3.5 WindPower 22

    3.6 SolarPower 26

    3.7 BiomassandBiogass 29

    3.8 OceanEnergy 29

    3.9 RenewableEnergyPotentialandSeasonality 29

    4 CambodiaDevelopmentScenarios 31

    4.1 Scenarios 31

    4.2 TechnologyCostAssumptions 34

    4.3 FuelPricingOutlook 36

    4.4 CambodiaRealGDPGrowthOutlook 38

    4.5 PopulationGrowth 40

    4.6 CommittedGenerationProjectsinBAU,SESandASESScenarios 40

    4.7 ImportsandExports 41

    4.8 Technical-EconomicPowerSystemModelling 42

    5 BusinessasUsualScenario 45

    5.1 BusinessasUsualScenario 45

    5.2 DemandGrowth 45

    5.3 InstalledCapacityDevelopment 47

    5.4 ProjectedGenerationMix 50

    5.5 GridtoGridPowerFlows 53

    5.6 GenerationFleetStructure 53

    5.7 ReserveMarginandGenerationTrends 55

    5.8 ElectrificationandOffGrid 57

    6 SustainableEnergySectorScenario 58

    6.1 SustainableEnergySectorScenario 58

    6.2 DemandGrowth 58

    6.3 InstalledCapacityDevelopment 60

    6.4 ProjectedGenerationMix 64

    6.5 GridtoGridPowerFlows 67

    6.6 GenerationFleetStructure 67

    6.7 ReserveMarginandGenerationTrends 69

  • FINAL

    IntelligentEnergySystems IESREF:5973 viii

    6.8 ElectrificationandOffGrid 72

    7 AdvancedSustainableEnergySectorScenario 74

    7.1 AdvancedSustainableEnergySectorScenario 74

    7.2 DemandGrowth 74

    7.3 InstalledCapacityDevelopment 76

    7.4 ProjectedGenerationMix 79

    7.5 GridtoGridPowerFlows 82

    7.6 GenerationFleetStructure 82

    7.7 ReserveMarginandGenerationTrends 84

    7.8 ElectrificationandOff-Grid 86

    8 AnalysisofScenarios 89

    8.1 EnergyandPeakDemand 89

    8.2 EnergyIntensity 91

    8.3 GenerationMixComparison 92

    8.4 CarbonEmissions 94

    8.5 HydroPowerDevelopments 95

    8.6 AnalysisofBioenergy 95

    8.7 SecurityofSupplyIndicators 97

    8.8 InterregionalPowerFlows 100

    9 EconomicImplications 102

    9.1 OverallLevelisedCostofElectricity(LCOE) 102

    9.2 LCOEComposition 103

    9.3 OffgridCostComparison 105

    9.4 CumulativeCapitalInvestment 106

    9.5 OperatingCosts,AmortisedCapitalCostsandEnergyEfficiencyCosts 110

    9.6 FuelPriceSensitivity 116

    9.7 ImpactofaCarbonPrice 117

    9.8 RenewableTechnologyCostSensitivity 118

    9.9 JobsCreation 119

    10 Conclusions 122

    10.1ComparisonofScenarios 122

    10.2EconomicImplications 124

    10.3IdentifiedBarriersfortheSESandASES 125

    10.4Recommendations 126

    AppendixA TechnologyCosts 129

    AppendixB FuelPrices 133

    AppendixC MethodologyforJobsCreation 134

  • FINAL

    IntelligentEnergySystems IESREF:5973 9

    1 IntroductionIntelligent Energy Systems Pty Ltd (“IES”) and Mekong Economics (“MKE”) havebeen retained byWWF – GreaterMekong ProgrammeOffice (“WWF-GMPO”) toundertakeaprojectcalled“Produceacomprehensivereportoutliningalternativesfor power generation in the Greater Mekong Sub-region”. This is to developscenarios for the countries of the GreaterMekong Sub-region (GMS) that are asconsistentaspossiblewithWWF’sGlobalEnergyVisiontothePowerSectorsofallGreater Mekong Subregion countries. The objectives of WWF’s vision are: (i)contributetoreductionofglobalgreenhouseemissions(cutby>80%of1990levelsby2050);(ii)reducedependencyonunsustainablehydroandnuclear;(iii)enhanceenergyaccess; (iv) takeadvantageofnewtechnologiesandsolutions; (v)enhancepower sector planning frameworks for the region:multi-stakeholder participatoryprocess;and(vi)developenhancementsforenergypolicyframeworks.

    Thepurposeofthisreportistoprovidedetailedcountry-leveldescriptionsofthreescenariosfortheKingdomofCambodia’s(Cambodia’s)powersector:

    • BusinessasUsual (BAU)powergenerationdevelopmentpathwhich isbasedoncurrentpowerplanningpractices,currentpolicyobjectives,

    • Sustainable Energy Sector (SES) scenario, where measures are taken tomaximally deploy renewable energy 1 and energy efficiency measures toachieveanear-100%renewableenergypowersector;and

    • Advanced Sustainable Energy Sector (ASES) scenario,which assumes amorerapid advancement and deployment of new and renewable technologies ascomparedtotheSES.

    The scenarios were based on public data, independent assessments of resourcepotentials, information obtained from published reports and power systemmodellingoftheGMSregionfortheperiod2015to2050.Allprojectionspresentedinthisreportcommenceintheyear2015.

    1.1 ReportStructureThisreporthasbeenstructuredinthefollowingway:

    • Section2setsoutrecentoutcomesforCambodia’selectricityindustry;

    • Section3summarisesthemaindevelopmentoptionscoveringbothrenewableenergyandfossilfuels;

    • Section4providesabriefsummaryofthescenariosthatweremodelledandasummaryofsomekeyassumptions;

    • Section5setsoutthekeyresultsforthebusinessasusualscenario;

    1Proposed but not committed fossil fuel based projects are not developed. Committed and existing fossil fuelbasedprojectsareretiredattheendoftheir lifetimeandnotreplacedwithotherfossil fuelprojects. A leastcostcombinationofrenewableenergygenerationisdevelopedtomeetdemand.

  • FINAL

    IntelligentEnergySystems IESREF:5973 10

    • Section6setsoutthekeyresultsforthesustainableenergysectorscenario;

    • Section7 sets out the key results for an advanced sustainable energy sectorscenario;

    • Section 8 provides comparative analysis of the scenarios based on thecomputationofanumberofsimplemetricsthatfacilitatecomparison;

    • Section9providesanalysisofeconomicimplicationsforeachscenario;and

    • Section10providesthemainconclusionsfromthemodelling.

    Thefollowingappendicesprovidesomeadditionalinformationforthescenarios:

    • AppendixAcontainsthetechnologycostassumptionsthatwereused;

    • AppendixBprovidesthefuelpriceprojectionsthatwereused;and

    • Appendix C sets out some information on the methodology used forestimatingjobscreationforeachscenario.

    Note that unless otherwise stated, all currency in the report is Real 2014UnitedStatesDollars(USD).

  • FINAL

    IntelligentEnergySystems IESREF:5973 11

    2 Background:Cambodia’sElectricitySector2.1 IndustryStructure

    Anoverall structural representationofCambodia’selectricitysector isprovided inFigure 1. The governing bodies and rule making institutions are the RoyalGovernment of Cambodia (RGC), Electricity Authority of Cambodia (EAC) andMinistryofMinesandEnergy(MME).

    The Electricite Du Cambodge (EDC) is the state-owned entity responsible fordevelopinggeneration,transmissionanddistributionrequirementsthroughoutthecountry.TheEDCisownedbytheMMEandtheMinistryofEconomicsandFinance.

    Otherserviceprovidersincludeprivateentities(IPPs)inprovincialtowns,ProvincialElectricityCompanies(PECs)insmalltownsandRuralElectricityEnterprises(REEs).REEsgenerallyoperatesmalldieselgeneratorsfortheirownusewithinmini-grids.

    Figure1 StructureofCambodia’sElectricitySector

    Source:CountryReportPresentation,Ritouch,May2011

    2.2 PowerSystemArepresentationofCambodia’spowersystemisillustratedinFigure2.Thediagramhighlightsthepresentstateofthecountry'snationalpowersystemintermsofthe

  • FINAL

    IntelligentEnergySystems IESREF:5973 12

    locations of key generation resources and the 115/220 kV transmission lines thatinterconnectthenationalsystemandtheirpaths.

    Figure2 CambodiaElectricitySystem(2014)

    Cambodia’stransmissionsysteminitiallyconsistedof24isolatedprovincialsupplygrids,whichhavegraduallybeenintegratedintothesinglemaingridoverthepast10 years with all provinces expected to be connected by 2020. Cambodia’selectricitypricesareoneofthehighest intheASEANregionasthepowersectorrelieson importeddiesel to satisfydemand forelectricity.Other featuresof theCambodianpowersystem(asofend2014)include:

    • Totalinstalledgenerationcapacity:1,511MW;

    • Totalelectricitysupplied:4,861GWh;

    • Totalelectricitydemand:4,144GWh;

    • Peakdemand(systemwide):927MW;

    • ImportstoDomesticGenerationRatio:37%to63%;and

    • Villageelectrificationratesofapproximately62%.

    2.3 InstalledCapacityFigure3showstheinstalledcapacityonanational levelbytypeofgenerationforthe period from2004 to 2014. This illustrates that Cambodia’s power generationcapabilityremainedquitelimited(oflessthan400MW)andentirelydependenton

    Demand Centre

  • FINAL

    IntelligentEnergySystems IESREF:5973 13

    dieselandfueloiluntilafter2010.From2011to2014,total installedcapacityhasincreased significantly and has become more diversified with hydro and coalprojectsplaying roles in the capacitymix. Figure4 illustrates the capacitymix inpercentagebyendof2014.This shows thathydropowerhasbecomeCambodia’sdominant generation technology, accounting for 62% of the total 1,511 MWinstalledcapacity.Itisfollowedbydiesel/heavyfueloil(HFO)at19%,coal-firedat18%andbiomassat1%.

    Figure3 CambodiaPowerGenerationInstalledCapacity(2004-14)

    Source:EACStatistics(2015)

    0

    200

    400

    600

    800

    1,000

    1,200

    1,400

    1,600

    2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

    Hydro Diesel/HFO Coal Biomass

  • FINAL

    IntelligentEnergySystems IESREF:5973 14

    Figure4 CambodiaCapacityFuelMix(2014)

    Source:EACStatistics(2015)

    2.4 ElectricityDemandFigure5graphs theelectricity supplied toCambodia (that isgeneratedwithin thecountry aswell as imported fromneighbouring countries) and theelectricity thathasbeensoldtoendusersinCambodia.Annualaveragegrowthratesfrom2004to2014 are also plotted on the chart. Over the period shown, national electricitydemand inCambodiahas increasednearly six-fold, fromsome704GWh to4,144GWh,withacompoundannualgrowthrate(CAGR)of19.4%,whichisquitehighfora power system. Such rapidly growing demand has been attributed to: (1)Cambodia’seconomicgrowthasmeasuredbyannualGDPgrowthrateswhichhavebeen in range from 7% to 8%, (2) urban population growth, and (3) increasedelectrificationrates.Some70%ofCambodia’snationaldemandisconcentratedinPhnomPenh.Demand isexpectedtocontinuetorise in linewithageneralpolicydirectionofincreasingaccesstoelectricitywithaccessbeingprovidedtoruralareasand also the expansion of the transmission system in order to reduce deliveredelectricitycosts2.

    The residential sector has traditionally consumed the highest proportion of totalelectricityconsumptioninthecountry.ThisisillustratedinFigure6,whereitcanbeseenthatfor2012theresidentialshareofelectricityconsumptionwassome50%ofthe total,while consumption attributable to the commercial and services sectorsmadeupsome28%withtheindustrialsectormakinguptheremaining18%.

    2For example, if an isolated grid that is poweredmainly by expensive diesel generation is interconnected to thenationalsystemwhichcanpoolgenerationfromavarietyofsources,includingsayhydroandsolargeneration,thentheneed for runningdiesel units to supply electricity canbe avoidedhence the total cost of supplying electricityreduced.

    Hydro62%

    Diesel/HFO19%

    Coal18%

    Biomass1%

  • FINAL

    IntelligentEnergySystems IESREF:5973 15

    Figure5 ElectricityDemandTrends(2004-14)

    Source:EACStatistics(2015)

    Figure6 ElectricityDemandSharesbyCategory(2012)

    Source:IEA(2014)

    2.5 GenerationSupplyFigure 7 showsCambodia’s annual electricity generation from2004 to 2014. Thisillustrates that as a result of recent significant capacity additions, the domesticpower supply almostdoubled in2014 to reacha total of 3,058GWh. Theoverall

    0%

    5%

    10%

    15%

    20%

    25%

    30%

    0

    1,000

    2,000

    3,000

    4,000

    5,000

    6,000

    2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

    GWh

    ElectricitySupplied ElectricitySold AnnualGrowth,%

    Industrial18%

    Commercial&Services

    28%

    Residenjal50%

    Others4%

  • FINAL

    IntelligentEnergySystems IESREF:5973 16

    sharesof generationby fuel type areplotted for 2014 in Figure8.Aswas earlierobserved for the capacity mix, the generation mix reflects the dominance ofhydropower in Cambodia’s power system, with hydro generation accounting fornearly61%ofthetotal.Thiswasfollowedbycoal-basedgenerationat28%,dieselandHFOatsome11%andbiomassmakinguptheremainderat0.5%.Itshouldbenoted that total generation from generators in Cambodia is lower than the totalelectricity supplied because Cambodia currently has a reliance on power importsfromneighbouringcountries(showninFigure9).

    Figure7 TotalElectricityGeneration(2000-2014)

    0

    500

    1,000

    1,500

    2,000

    2,500

    3,000

    3,500

    2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

    GWh

  • FINAL

    IntelligentEnergySystems IESREF:5973 17

    Figure8 DomesticGenerationMixProportionbyFuelType(2014)

    Source:EACStatistics(2015)

    2.6 PowerImportsCambodia’sNationalGridreceivesimportedelectricitysupplyfromVietNamat230kVand22kV,Thailandat115kVand22kVandLaosat22kVinterconnections.TheMinistryofMinesandEnergy(MME)hasinplaceanagreementwiththeMinistryofIndustryandTrade(MOIT)inVietNamforpowerpurchasesfromVietNamthrougha number of cross-border transmission lines. Supply from Thailand via theProvincial Electricity Authority of Thailand (PEA) is sold to some of the ProvincialElectricity Companies (PECs) in areas near the Cambodia and Thailand border.MostoftheseimportsarenotconnectedtoCambodia’snationalsystem. ImportsfromLaoPDRaremanagedviaEDCandsuppliedtotheSteungTrengarea.

    Figure9illustratesthevariationsinelectricityimportsfrom2004to2014.Overthelast year, 1,803GWh or 37% of Cambodia’s total electricity demandwasmet bypower transfers fromVietNam, Thailand and Lao PDR. The largest proportion ofimported electricity was recorded in 2011, withmore than 64% of the domesticdemandsuppliedfromoverseassources.VietNamisthelargestpowerexportertoCambodia,delivering70%ofthecountry’stotalimportedelectricity,withThailandsupplyinganother29%andLaoPDRtheremaining1%.

    Hydro60.5%

    Diesel/HFO10.7%

    Coal28.2%

    Biomass0.5%

  • FINAL

    IntelligentEnergySystems IESREF:5973 18

    Figure9 CambodiaElectricityImports(2004-14)

    Source:EACStatistics(2015)

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    0

    500

    1,000

    1,500

    2,000

    2,500

    3,000

    3,500

    2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

    GWh

    Generajon Imports ImportShare,%

  • FINAL

    IntelligentEnergySystems IESREF:5973 19

    3 DevelopmentOptionsforCambodia’sElectricitySector3.1 NaturalGasResources

    Cambodia currently imports all of its oil and natural gas needs from Singapore,ThailandandVietNam.

    There is an estimated 140 billion cubic meters of gas reserves in Cambodiaincludingitsoffshorebasins3.In2005itwasannouncedgaswasfoundinonewelllocated in Block A (see Figure 10). To date no gas (and oil) production hascommencedduetotheuncertainlegalframeworkandinsufficientservicecapacityandinfrastructuretosupporttheprocessing.Thegovernmenthowevercontinuespushing towards oil and gas production, hoping for it to happen sooner ratherthanlatertoreduceenergyrelianceonothercountries.

    3IEEJ, “Sustainable Development of Energy and Electricity Policy in Cambodia”, 21 June 2015, available:

    https://eneken.ieej.or.jp/data/6231.pdf.

  • FINAL

    IntelligentEnergySystems IESREF:5973 20

    Figure10 Cambodia’sOilandGasExplorationBlocks

    3.2 CoalResourcesEstimatesofcoalreservesinCambodiaarelow.Coalreservesareknowntoexistin the Stung Treng province located in northern Cambodia (shown in Figure 11)andasofearly2013,14exploration licenseshavebeen issued tocompanies forlocalcoalexploration4.Cambodia’sfirst120MWcoal-firedpowerplant,suppliedwith imported coal, commenced operation in February 2014 in Steung HavDistrict,SihanoukvilleProvince.

    4CurrentSituationoftheMiningIndustryinCambodia,MIME,2013

  • FINAL

    IntelligentEnergySystems IESREF:5973 21

    Figure11 CambodiaCoalMap

    3.3 NuclearEnergyTherearenocurrentplanstoincorporatenucleartechnologyintothecapacitymix.

    3.4 HydroPowerCambodia has an estimated hydro potential of 10,000MW, with currently lessthan 10% developed. Approximately 50% of these resources are located in theMekongRiverBasin,40%on tributariesof theMekongRiver,and the remaining10% in the south-western coastal areas. Hydro has been a focus of recentdevelopments with previous studies highlighting 42 potential hydropowerprojects,withatotalinstalledcapacityof1,825MW,beingcapableofgeneratingaround9,000GWh/yearof electricity5. Figure12 indicatespossible locations forhydropowerdevelopmentthroughoutthecountry.

    By end of 2014, approximately 830 MW of installed hydropower capacity hadbeen in operation, approximately 800MWwas under construction and another198MWbeingconsideredforfeasibility.

    5http://www.reegle.info/policy-and-regulatory-overviews/KH,accessed10April2015

  • FINAL

    IntelligentEnergySystems IESREF:5973 22

    Figure12 PossibleHydroSitesinCambodia

    Source:PowerDevelopmentPlan,MIME

    3.5 WindPowerCambodiadoesnothavevastwindresources.Onaveragethewindspeedsacrossthecountryareunder3m/s.Thetechnicalpotentialrepresentsanupperlimitandshows1,380MWcategorisedatorabovegoodwindspeeds6.

    Nevertheless, some parts of Cambodia may present opportunities for winddevelopments.Thesewindresourceareasaregenerallyfoundinthesouthernpartof the great lake Tonle Sap, themountainous districts in the southwest and thecoastal regions (Sihanoukville, Kampot, Kep and Koh Kong regions) and have anannualaveragewindspeedof5m/sorgreater.AlthoughthepotentialinCambodiaissmall relativetotheotherGMScountrieswindmaybeviablegivenCambodia’srelatively lowenergy levelsand technicalmaturityofwind technology.Windpilotprojects, in part financed by the government of Belgium and the EuropeanCommission,arecurrentlyinplaceinthecountry.

    Figure 13 shows average monthly wind speed measurements for Cambodia asreportedbyNASAAtmosphereScienceDataCentreforthelocationsthathavethe

    6Studywasbasedonglobalwindsandwerenotsupportedbygroundmeasurements

  • FINAL

    IntelligentEnergySystems IESREF:5973 23

    highest average wind speeds throughout the year. This shows that a number oflocations inCambodiarecordhighwindspeedsduringtheperiodofNovembertoFebruary.

    Basedonanalysisofmonthlywindspeedmeasurementstakenatdifferentlocationsin Cambodia,when the locationswith the bestwind potential are shaded over amap of Cambodia, as illustrated in Figure 14, we can see that in the main thelocations are along the country’s eastern region and south-west coastal area. Adifferent source of wind speed measurements based on higher resolutioninformation is illustrated in Figure 15. This figure shows 3TIER’s Global WindDataset7which provides average annual wind speed at 80 meters above groundlevel. This is largely consistent with the lower resolution information that wasprocessedtoproduceFigure14,withgreatestpotentialshowninthenortheastofthe country and a belt ofwind potential from the south coast towards thewestborder of Thailand. Figure 16 shows anothermapofwind speeds at 50mabovegroundlevelwithafocusonoffshorewindspeeds.Thisshowsthattheredoesnotappeartobehighoffshorewindpotential.

    Figure 17 shows the DTU Global Wind Atlas8onshore and 30 km offshore windclimatedatasetwhichaccountsforhighresolutionterraineffectsfor100maboveground level. Accordingtothe IRENAglobalatlasdescription:“thiswasproducedusingmicroscalemodellingintheWindAtlasAnalysisandApplicationProgramandcapture small scale spatial variability of winds speeds due to high resolutionorography (terrain elevation), surface roughness and surface roughness changeeffects.ThelayerssharedthroughtheIRENAGlobalAtlasareservedat1kmspatialresolution.ThefullAtlascontainsdataatahigherspatialresolutionof250m,andsomeoftheIRENAGlobalAtlastoolsaccessthesedataforaggregatedstatistics.”

    7Source:3TIERdatasetwasaccessedviatheIRENAGlobalAtlasServer:http://irena.masdar.ac.ae/.8See:http://globalwindatlas.com/.

  • FINAL

    IntelligentEnergySystems IESREF:5973 24

    Figure13 MonthlyWindSpeedsforSelectedLocationsinCambodia(m/s)

    Source:NASAAtmosphereScienceDataCentre,obtainedviatheSWERAGeospatialToolkit

    Figure14 LocationsinCambodiawithGreatestWindPotential

  • FINAL

    IntelligentEnergySystems IESREF:5973 25

    Figure15 3TIER’sGlobalWindDataset5kmonshorewindspeedat80mheight9

    Source:3TIER’sGlobalWindDataset(accessedviaIRENAGlobalAtlas)

    Figure16 Global Wind 50m Height from MERRA by Sander and Partner10averagedfor1980to2011(OffshoreWindPotential)

    Source:MERRAbySanderandPartner(accessedviaIRENAGlobalAtlas)

    9Averageforperiod1980.10Meanwindspeedat50mbasedonvaluesforeachhourduringtheperiod1980-2011.

  • FINAL

    IntelligentEnergySystems IESREF:5973 26

    Figure17 AverageWindSpeed1kmat100mAGLDTU(2015)

    Source:IRENAGlobalAtlasandGlobalWindAtlas(2015)

    3.6 SolarPowerCambodia is considered to have high solar energy potential, which has beenestimatedtobeatleast8,074MW11accordingtothelatestADBstudy12ontheGMSrenewable energy development opportunities in 2015. An earlier study onrenewable energy options for Cambodia’s rural electrification had also indicatedthat significant parts of the country have average direct normal irradiation (DNI)levels in excess of 5 kWh per square meter per day. Despite these favourableconditions for solar energydevelopmentboth forDNI andGHI (GlobalHorizontalIrradiance)basedtechnologies,thecurrentinstalledcapacityinCambodiaforsolarphotovoltaicsremainsataverylowleveloflessthan2MW.Figure 18 plots monthly average DNI levels for selected sights with the highestannual average DNI levels in Cambodia. This shows the monthly variationthroughouttheyearforsolarDNIandisaproxyforexpectedgenerationfromsolarforms of electricity generation. This highlights that November through to AprilexhibitexcellentsolarconditionsandthatthesewouldbesuitableforphotovoltaicsandwouldlikelybeabletosupportConcentratedSolarPower(CSP)technology.Themap shading the locations of solar for Cambodia is provided in Figure 19,

    11Represents thetechnicalpotential taking intoaccountwaterbodies,protectedareas,orareasunsuitable forPVdevelopmentbecauseofslopeandelevation.IESestimatestheactualpotentialtobesignificantlyhigher.12 Source: http://www.adb.org/publications/renewable-energy-developments-and-potential-gms, accessed: 10February2016.

  • FINAL

    IntelligentEnergySystems IESREF:5973 27

    highlightingthewaterbodies. Figure20plotsmeasurementsofGlobalHorizontalIrradiancebasedon a high resolutiondatasetwhich largely shows consistentGHImeasurements throughout the country with higher concentration towards thenortheastregionofthecountryandconsistentwiththeDNImeasurements.

    Figure18 MonthlyDNILevelsforSelectedLocationsinCambodia

    Source:NASAAtmosphereScienceDataCentre,obtainedviatheSWERAGeospatialToolkit

    Figure19 MainLocationswithSolarPowerPotentialinCambodiaforDNI

  • FINAL

    IntelligentEnergySystems IESREF:5973 28

    Figure20 3TIER’sGlobalSolarDataset(3kminW/m^2)forGHI

    Source:3TIER’sGlobalSolarDataset(accessedviaIRENAGlobalAtlas)

    Figure21 3TIER’sGlobalSolarDataset(3kminW/m^2)forGHIandCambodia’sTransmissionNetwork(2013)

    Source:3TIER’sGlobalSolarDataset(accessedviaIRENAGlobalAtlas)

  • FINAL

    IntelligentEnergySystems IESREF:5973 29

    3.7 BiomassandBiogassCambodia has significant biomass resources such as that from forests, plantationforests,ricehusksandpalmtrees.Biomasscanbeusedforpowerrequirementsorconverted intoother fuels.The2015ADBstudyestimatedCambodia’s theoreticalbiomass energy generation potential at 15,025 GWh/year and technical biogaspotentialfromlivestockmanureisestimatedat13,590,766kWh/day.

    Biomass-basedenergy generation inCambodiahas gainedmomentumduring thelast 2-3 years with biomass gasification technologies being in use for captiveconsumptionaswellaselectricitygenerationandsupplycompanies;however,theenergyefficiencyislowandimplementedprojectsremainsmallinscale.

    ExamplesofabiomassprojectincludetheBattambangricehuskgasificationprojectcapable of generating 200 kW from processing 2 tonnes of rice per hour. Thispresents future biomass opportunities as Cambodia increases its rice exportpotentialsuchastheoperationofthecogenerationpowerplantattheGoldenRicemill inKampongSpeu(25t/hprocessingcapacity).Several largescaleprojectsareplannedatvarioussugarcaneandpalmoilplantations.Therearealsovariousothersmallerbiomasspilotprojectsatricemills,icefactories,brickfactoriesandgarmentfactories,ofaround40projectswithcapacitiesbetween150kWand700kW.

    3.8 OceanEnergyThere are no studies of ocean/marine energy in Cambodia highlighting anysignificantpotentialtodeveloptidalorwavetechnologiesintothegenerationmix.

    3.9 RenewableEnergyPotentialandSeasonalityTherenewableenergypotentialwehaveassessedandwillassumeinthemodellingofthepowersectorscenariosinthisreportforCambodiahasbeensummarisedinTable1.ThenumberspresentedherehavebeendrawnfrommultiplesourcesandinformedbyIESanalysisofIRENA’sGlobalAtlasdata.

  • FINAL

    IntelligentEnergySystems IESREF:5973 30

    Table1 Summary of Estimated Renewable Energy Potential (CompiledfromVariousSourcesandAnalysis)

    RenewableEnergyResource Potential(MW) Sourceandcomments

    Hydro(Large) 10,000 Seesection3.4.

    Hydro(Small) 700 WorldSmallHydropowerDevelopmentReport(2013).

    PumpStorage 0 Lackofstudiesavailable.

    Solar Atleast11,000IESassessmentbasedonDNIandGHIresourcemapsandassociateddataasdescribedinsection3.6.

    WindOnshore 500andupPowerSectorVisionfortheMekongRegion:theBlueCircle(2015).

    WindOffshoreEvidenceforpotential,

    butassumed0MWRefertoresourcemapsinsection3.5.

    Biomass 2,392 IESprojectionsbasedondatafromRenewableEnergyDevelopmentsandPotentialintheGreaterMekongSubregion(ADB,2015).Biogas 1,591

    Geothermal 0 Lackofstudiesavailable.

    Ocean 0 Lackofstudiesavailable.

    Figure 22 plots the seasonal variation of renewable energy generation profiles inCambodia for solar and wind. This shows that unlike some of the other GMScountries, seasonal patterns of expected solar and wind generation tend to becorrelatedthroughSeptembertoMay,althoughthereisamonsoonalwindpatternthattendstocoincidewiththerainyseason.Similarly,totheotherGMScountries,there is anti-correlation in seasonal patterns of the wet season and when solarirradiationreachesitspeak.Throughmid-JunetoOctoberlowsolarirradiationandwind speeds would be complemented by higher levels of generation fromhydropower during thewet season. Thus solar, wind and hydro are likely to begoodcomplementarytechnologiesinCambodia.

    Figure22 SeasonalSolarandWindProfilesandWetSeason

  • FINAL

    IntelligentEnergySystems IESREF:5973 31

    4 CambodiaDevelopmentScenariosInthissection,wedefinethethreescenariosforCambodia’selectricitysectorthatwe havemodelled: the Business as Usual (BAU), Sustainable Energy Sector (SES),and Advanced SES (ASES) scenarios. We also set out the assumptionsmade fortechnology costs (section 4.2) and fuel prices (section 4.3) before providing thedetailsforanumberofCambodia-specificassumptions–inparticular:ourassumedeconomic outlook for Cambodia, a list of generation projects that we considercommitted13and comments on the status of power import projects. FurtherassumptionsforeachscenarioareprovidedinSection5,Section6andSection7.

    4.1 ScenariosThe three development scenarios (BAU, SES and ASES) for Cambodia areconceptuallyillustratedinFigure23.

    Figure23 GMSPowerSectorScenarios

    TheBAU scenario is characterisedbyelectricity industrydevelopments consistentwiththecurrentstateofplanningwithintheGMScountriesandreflectiveofgrowthrates in electricity demand consistent with an IES view based on currentdevelopments, existing renewable energy targets, where relevant, aspirationaltargets for electrification rates, and energy efficiency gains that are largelyconsistentwiththepoliciesseenintheregion.

    13That is, construction is already in progress, the project is near to commissioning or it is in an irreversible /advancedstateoftheplanningprocess.

  • FINAL

    IntelligentEnergySystems IESREF:5973 32

    Incontrast,theSESseekstotransitionelectricitydemandtowardsthebestpracticebenchmarksofotherdevelopedcountries in termsofenergyefficiency,maximisetherenewableenergydevelopment,ceasethedevelopmentoffossilfuelresources,and make sustainable and prudent use of undeveloped conventional hydroresources.Whererelevant,itleveragesadvancesinoff-gridtechnologiestoprovideaccess to electricity to communities that are located far from the grid. The SEStakesadvantageofexisting,technicallyprovenandcommerciallyviablerenewableenergytechnologies.

    TheASESassumesthatthepowersectorisabletomorerapidlytransitiontowardsa100% renewable energy technology mix under an assumption that renewableenergytechnologiescanbedeployedmorerapidlythan intheSESscenarioand ithas renewable energy technology costs decliningmore rapidly compared to BAUandSESscenarios.AsummaryofthekeyfeaturesofthethreescenariosisgiveninTable214.

    Table2 KeyFeaturesofBAU,SESandASES

    Scenario Demand SupplyBAU Demandisforecasttogrowin

    linewithhistoricalelectricityconsumptiontrendsandprojectedGDPgrowthratesusingtechniquesthatarelargelythesameaswhatistypicallydoneingovernmentplans.Electricvehicleuptakeisassumedtoreach15%acrossallcarsandmotorcyclesby2050(1.1m).

    Generatornewentryfollowsthatofpowerdevelopmentplansforthecountryincludinglimitedlevelsofrenewableenergy.

    SES • AssumesatransitiontowardsenergyefficiencybenchmarkfortheindustrialsectorofHongKong15andofSingaporeforthecommercialsectorbyyear2050.

    • Fortheresidentialsector,itwasassumedthatresidential

    • Assumesnofurthercoalandgasnewentrybeyondwhatisalreadyunderstoodtobecommitted.

    • Amodestamountoflargescalehydro(between4,000to5,000MWintotal)isdeployedinLaoPDRandMyanmaraboveandbeyondwhatisunderstoodtobe

    14Note thatwe summarise thekeydrivershere. For furtherdetails,please refer to the separate IESassumptionsdocument.15Based on our analysis of comparators in Asia, Hong Kong had the lowest energy to GDP intensity for industrialsectorwhileSingaporehadthelowestforthecommercialsector.

  • FINAL

    IntelligentEnergySystems IESREF:5973 33

    Scenario Demand Supplydemandperelectrifiedcapitagrowsto750kWhpaby2050,38%lessthanintheBAU.

    • Demand-responsemeasuresassumedtobephasedinfrom2021withsome15%ofdemandbeingflexible16by2050.

    • SlowergridelectrificationratesforthenationalgridsinCambodiaandMyanmarcomparedtotheBAU,butdeploymentofoff-gridsolutionsthatachievesimilarlevelsofelectricityaccess.

    • Mini-grids(off-gridnetworks)areassumedtoconnecttothenationalsysteminthelonger-termforreliability/mutualsupportreasons.

    • ElectricvehicleuptakeaspertheBAU.

    committedhydrodevelopments17.

    • SupplyisthendevelopedbyaleastcostcombinationofrenewablegenerationsourceslimitedbyestimatesofpotentialratesofdeploymentandjudgmentsonwhentechnologieswouldbefeasibleforimplementationtodeliverapowersystemwiththesamelevelofreliabilityastheBAU.

    • Technologiesusedinclude:solarphotovoltaics,biomass,biogasandmunicipalwasteplants,CSPwithstorage,onshoreandoffshorewind,utilityscalebatteries,geothermalandoceanenergy.

    • TransmissionlimitsbetweenregionsareupgradedasrequiredtosupportpowersectordevelopmentintheGMSasanintegratedwhole,andthetransmissionplanallowedtobedifferentcomparedtothetransmissionplanoftheBAU.

    ASES TheASESdemandassumptionsareessentiallyasensitivitytotheSES:• Anadditional10%energyefficiencyappliedtotheSESdemands(excludingtransport).

    • Flexibledemandassumedtoreach25%by2050.

    • Uptakeofelectricvehiclesdoubledby2050.

    ASESsupplyassumptionsarealsoimplementedasasensitivitytotheSES,withthefollowingthemaindifferences:• AllowratesofrenewableenergydeploymenttobemorerapidascomparedtotheBAUandSES.

    • Technologycostreductionsareacceleratedforrenewableenergytechnologies.

    • Implementamorerapid

    16Flexible demand is demand that can be rescheduled at short notice andwould be implemented by a variety ofsmartgridanddemandresponsetechnologies.17This is important to all countries because the GMS is modelled as an interconnected region with significantconventionalbaseloadcapacityretiringaround2030.

  • FINAL

    IntelligentEnergySystems IESREF:5973 34

    Scenario Demand Supply• ElectrificationratesinCambodiaandMyanmarremainconstantaftersolarPVandbatterystoragereachparitywithgridextensioncosts.

    programmeofretirementsforfossilfuelbasedpowerstations.

    • Energypolicytargetsof70%renewablegenerationby2030,90%by2040and100%by2050acrosstheregionareinplace.

    • Assumethattechnical/operationalissueswithpowersystemoperationandcontrolforaveryhighlevelofrenewableenergyareaddressed18.

    4.2 TechnologyCostAssumptionsTechnology capital cost estimates from a variety of sources were collected andnormalised tobeonaconsistentanduniformbasis19. Mid-pointswere taken foreachtechnologythatisrelevanttotheGMSregion.Thedatapointscollatedreflectovernight, turnkey engineering procurement construction capital costs and areexclusive of fixed operating and maintenance costs, variable operating andmaintenancecostsandfuelcosts. Thecapitalcostsbytechnologyassumedinthestudy are presented in Figure 24 for the BAU and SES scenarios. For the ASESscenario,weassumedthatthetechnologycostsofrenewabletechnologiesdeclinesmorerapidly.ThesetechnologycostassumptionsarelistedinFigure25.Notethatthetechnologycapitalcostspresentedheredonotincludelandcosts,transmissionequipment costs,nordecommissioning costsandarequotedonaRealUSD2014basis.

    CommentsonthevarioustechnologiesarediscussedbelowinrelationtotheBAUandSEStechnologycosts:

    • Conventional thermal technology costs areassumed todecreaseat a rateof0.05%pa citingmaturation of the technologieswith no significant scope forcostimprovement.CoalCarbonCaptureandStorage(CCS)costsarebasedonSupercriticalPulverisedblackcoaltechnologywithdecreasesovertimebasedontheAustralianEnergyTechnologyAssessment2013ModelUpdatereport.

    • Onshorewindcostswerebasedon thecurrent installedpricesseen inChinaand Indiawith future costs decreasing at a rate of 0.6% pa. Future offshorewind costs are also assumed to decrease at a rate of 0.6% pa starting at$2,900/kW.

    18Inparticular:(1)sufficientreal-timemonitoringforbothsupplyanddemandsideoftheindustry,(2)appropriateforecasting for solar and wind and centralised real-time control systems in place to manage a more distributedsupplyside,storagesandflexibledemandresources,and(3)powersystemsdesignedtobeabletomanagevoltage,frequency and stability issues that may arise from having a power system that is dominated by asynchronoustechnologies.19WestandardisedonReal2014USDwithalltechnologiescostsnormalisedtoreflectturnkeycapitalcosts.

  • FINAL

    IntelligentEnergySystems IESREF:5973 35

    • Largeandsmall-scalehydrocostsareassumedtoincreaseovertimereflectingeasyandmorecost-efficienthydroopportunitiesbeingdeveloped inthefirstinstance. IRENA reported no cost improvements for hydro over the periodfrom 2010 to 2014. Adjustments are made in the case of Lao PDR andMyanmarwheresignificanthydroresourcesaredevelopedintheBAUcase20.

    • Solar PV costs are based on the more mature crystalline silicon technologywhich accounts for up to 90% of solar PV installations (IRENA, 2015), andforecasttocontinuetodrop(2.3%pa)albeitataslowerpacethaninpreviousyears.

    • Utility scalebattery costsarequotedona$/kWhbasis, andcostprojectionsbasedon a report byDeutscheBank (2015)which took into account severalforecasts from Bloomberg New Energy Finance (BNEF), Energy InformationAdministration(EIA)andNavigant.

    • Solarthermal(CSP)capitalcostsareprojectedtofallat2.8%paonthebasisoftheIRENA2015CSPoveralllevelisedcostofelectricityLCOEprojections.Whileglobally there are many CSP installations in place, the technology has nottakenoffand thecostofCSP technologyover thepast5yearshasnotbeenobservedtohavefallenasrapidlyassolarPV.

    • BiomasscapitalcostsarebasedoncostsobservedintheAsiaregionwhicharesignificantly less than those observed in OECD countries. Capital costs wereassumed to fall at 0.1% pa. Biogas capital costs were based on anaerobicdigestion(AD)andassumedtodeclineatthesamerateasbiomass.

    • Ocean energy (wave and tidal) technologieswere based on learning rates inthe ‘Ocean Energy: Cost of Energy and Cost Reduction Opportunities’ (SIOcean,2013)reportassumingglobalinstallationcapacitiesincreaseto20GWby205021.

    • Capital costs are all discounted at 8% pa across all technologies over theprojectlifetimes.Decommissioningcostswerenotfactoredintothestudy.

    • Fortechnologiesthatrunonimportedcoalandnaturalgas,wehavefactoredin the additional capital cost of developing import / fuel managementinfrastructureinthemodelling.

    For reference,AppendixA tabulatesall technologycostassumptionsused in themodelling.

    20Capitalcostsforlargescalehydroprojectsareassumedtoincreaseto$3,000/kWby2050consistentwithhavingthemosteconomicallyfeasiblehydroresourcesdevelopedaheadoflesseconomicallyfeasibleresources.21Waveandtidalcostsareaveraged.

  • FINAL

    IntelligentEnergySystems IESREF:5973 36

    Figure24 ProjectedCapitalCostsbyTechnologyforBAUandSES

    *BatterycostsarequotedonaReal2014USD$/kWhbasis.

    Figure25 ProjectedCapitalCostsbyTechnologyforASES

    *BatterycostsarequotedonaReal2014USD$/kWhbasis.

    4.3 FuelPricingOutlookIES has developed a global fuel price outlook which was based on short-termcontracts traded on global commodity exchanges before reverting towards long-term global fuel price forecasts based on the IEA’s 2015 World Energy Outlook

  • FINAL

    IntelligentEnergySystems IESREF:5973 37

    (WEO)450 scenario22anda setof relationshipsbetweendifferent fuels thathavebeeninferredfromhistoricalrelationsbetweendifferenttypesoffuels.Asummaryof the fuel prices expressed on an energy-equivalent and free on board (FOB)basis23($US/MMBtuHHV)ispresentedinFigure26.

    The30%fallfrom2014to2015forthevariousfuelswastheresultofacontinuedweakening of global energy demand combined with increased stockpiling ofreserves. Brent crude prices fell from $155/bbl in mid-2014 to $50/bbl in early2015. The Organisation of the Petroleum Exporting Countries (OPEC) at theNovember 2014 meeting did not reduce production causing oil prices to slump.However, fuel prices are then assumed to return from the current low levels toformerlyobservedlevelswithina10yeartimeframebasedonthetimerequiredforthere to be a correction in present oversupply conditions to satisfy softeneddemandforoilandgas24.

    To understand the implications of a lower and higher global fuel prices we alsoperformfuelpricesensitivityanalysis.Oneofthescenariosisbasedona50%fuelcost increase25to put the study’s fuel prices in the range of the IEA’s CurrentPolicies scenario26which could be argued to be closer to the fuel pricing outlookthatcouldbeanticipatedinaBAUoutlook,whiletheSESandASESscenarioscouldbe argued to have fuel prices more consistent with the IEA’s 450 scenario. Wediscuss the implications of fuel pricing on theBAU and SESwithin the context ofelectricitypricinginsection9.

    For reference, we provide the base fuel pricing outlook for each year that wasusedinthefuelpricemodellinginAppendixB.

    22TheIEA’s450scenarioisanenergypathwayconsistentwiththegoaloflimitingglobalincreaseintemperatureto2°C by limiting the concentration of greenhouse gases in the atmosphere to 450 parts per million CO2; furtherinformationavailablehere:https://www.iea.org/media/weowebsite/energymodel/Methodology_450_Scenario.pdf.23For coal that is assumed tobe imported to the region (mostof it)wehave included shippingandporthandlingcosts.24Reference:FactsGlobalEnergy/AustralianInstituteofEnergy,F.Fesharaki,“ANewWorldOilOrderEmergingin2016 and Beyond?”, February 2016, suggest a rebound in prices levels over a 5 to 7 year period as the most“probable”scenario.25Includingbiomassprices.26TheIEA’scurrentpoliciesscenarioassumesnochangesinpolicyfromtheyearofWEOpublication.

  • FINAL

    IntelligentEnergySystems IESREF:5973 38

    Figure26 IESBaseCaseFuelPriceProjectionsto2050(FOB)

    4.4 CambodiaRealGDPGrowthOutlookRealGrossDomesticProduct(GDP)growthisassumedtomaintaina7%pato2035which is roughly in line with its 10-year historical average growth as Cambodiarepositionsitseconomytowardsindustrialactivitywiththeaimofgraduatingfromits developing country status. It is also consistent with the country’s presentoutlook. Post-2035towards2050,GDPgrowth isassumedtodeclinetowardstheworld average of 1.96%27pa seen in Figure 27. The trend down is assumed toreflect the economic development cycle converging towards those seen indevelopedcountries today. Thisassumption isheldconstantacross theBAU,SESandASESscenarios.

    271.96% reflects theprevious5 yearGDPgrowthof the top10GDPcountries in theworldexcludingBrazil, ChinaandRussia.

    0

    5

    10

    15

    20

    252012

    2014

    2016

    2018

    2020

    2022

    2024

    2026

    2028

    2030

    2032

    2034

    2036

    2038

    2040

    2042

    2044

    2046

    2048

    2050

    Price

    ($Re

    al201

    4US

    D/MMBtu)

    CrudeOil DatedBrent FuelOil DieselOil ImportedCoal AsianLNG Uranium

  • FINAL

    IntelligentEnergySystems IESREF:5973 39

    Figure27 CambodiaGDPProjection

    The GDP composition in Cambodia is weighted towards industry in line with thecountry’seconomicdirection.TheindustryshareofGDPinCambodiaisassumedtoincrease from 26% in 2014 to 60% in 2035 and maintain that share to 2050.Agriculture,whichinCambodiaishighlylabourintensivebutwithlowGDPyields,isforecasttoshrinkto15%by2050.TheGDPcompositionispresentedinFigure28.ThisassumptionisheldconstantacrosstheBAU,SESandASESscenarios.

    Figure28 CambodiaGDPComposition

    0.0%

    1.0%

    2.0%

    3.0%

    4.0%

    5.0%

    6.0%

    7.0%

    8.0%

    2015

    2017

    2019

    2021

    2023

    2025

    2027

    2029

    2031

    2033

    2035

    2037

    2039

    2041

    2043

    2045

    2047

    2049

    GDPGrow

    th(real)

    33.5%

    20.0%

    15.0%

    25.6%

    60.0%

    60.0%

    40.8% 20.0%

    25.0%

    0%10%20%30%40%50%60%70%80%90%100%

    2014 2035 2050

    Agriculture Industry Services

  • FINAL

    IntelligentEnergySystems IESREF:5973 40

    4.5 PopulationGrowthPopulationwasassumedtogrowinlinewiththeUNMediumFertilityscenarioandisheldconstantacrossallscenarios28.

    4.6 CommittedGenerationProjectsinBAU,SESandASESScenariosCommitted generation projects are the ones that are under construction or at astage of development that is sufficiently advanced for decision for the project tocome online to not be reversed. Table 3 lists the set of committed generationprojectsweunderstandforCambodia.Thisisbasedoninformationfromthemostrecent published Power Development Plan for Cambodia combined with IESresearchon the current statusof variousprojects. The table shows theproject’sname,itsunderstoodcapacityandthedateitisexpectedtobecommissionedby.

    • RusseiChrum,StungTatayandStungAtayareallhydrounitscommissionedinthelast12months;

    • C.I.I.D.GErdosHongjunElectricPowerCounits2-4refertothecommittedcoalunitsinSihanoukvilletobecommissionedbythestartof2018andsuppliedbycoalinthearea;and

    • Sihanoukville Imported Coal is the 1,200MW project between the RGC andCheungShengGlobalHoldingsandrunoffimportedcoal.Constructiononunit1 is expected to be complete by 2018 and the unit 4 by 2024. We haveassumed this is a committed project and only units 1 and 2 (600 MWcombined)arecommittedintheSESandASESscenarios.

    Table3 Cambodia’sCommittedGenerationProjects

    No. Country Capacity(MW)29 Type COD301 RusseiChrumHydroelectric 338 Hydro 2015

    2 StungTatayHydroelectric 246 Hydro 2015

    3 StungAtayHydroplant 120 Hydro 2015

    4 C.I.I.D.GErdosHongjunElectricPowerCo.,Ltd#2&3 240 Coal 2016

    5 C.I.I.D.GErdosHongjunElectricPowerCo.,Ltd#4 135 Coal 2018

    6 SihanoukvilleImportedCoal#1 300 Coal 2018

    7 SihanoukvilleImportedCoal#2 300 Coal 2020

    8 SihanoukvilleImportedCoal#3 300 Coal 2022

    9 SihanoukvilleImportedCoal#4 300 Coal 2024

    28UNDepartmentofEconomicandSocialAffairs,WorldPopulationProspects:The2012Revision.29Capacity figures presented here are pro-rated based on the intended power flows between the countries as oftheyearofcommissioning.30CommercialOperationDate.

  • FINAL

    IntelligentEnergySystems IESREF:5973 41

    4.7 ImportsandExportsA simplified representation of Cambodia within the GMS and potentialinterconnectionstoothercountries ispresented inFigure2931.Thefigureshowsthe assumed topology of the GMS as well as to countries outside the region,People’s Republic of China (PRC) and Malaysia. Initially, not all transmissionconnections shown in the diagram are in place. However, over the modellingperiod the transmission connections are expanded as required to allow powerexchange between regions tominimise costs and take advantage of diversity indemand and resource availabilities. Each scenario therefore effectively has adifferenttransmissiondevelopmentplan32.

    Figure29 RegionalTransmissionSystemModelofGMS

    Apart from generation plants in Cambodia, the National Grid gets electricitysupplyfromVietnamat230kV,Thailandat115kVandLaosat22kV33. In2013,

    31Currently,there isminimalphysical interconnectionbetweeneachGMScountry. Themodelshowsthetopologythatwehaveusedinthemodellinginordertogainanunderstandingofinterregionalpowerflowsandtodevelopaverysimplehigh-leveltransmissiondevelopmentplan.32Weonlyconsiderahigh-leveltransmissiondevelopmentplanbasedontheregionalmodelshowninordertogaininsightoninterregionalpowerflows.

    33SeveralconnectionsfromVietnamandThailandareat22kV.

    THAILAND

    MYANMAR

    CAMBODIA

    VIETNAM

    LAOPDR

    HanoiLuangPrabang

    Vientiane

    Mandalay

    Yangon

    HoChiMinhCity

    PhnomPenh

    Bangkok Angkor

    SiemReap

    Vientiane

    ChiangMaiMM

    TH

    LAO

    CAM

    VN-S

    VN-C

    VN-N

    PRC

    MAL

  • FINAL

    IntelligentEnergySystems IESREF:5973 42

    56% of Cambodia’s total electricity demand was met by power transfers fromThailand, LaoPDRandVietnam.Table4 shows the imports splitbyhighvoltage(HV) and medium voltage (MV) transmission lines. The interconnectors are forimportsintoCambodia.TheMMEhasinplaceanagreementwiththeMinistryofIndustry of Vietnam for power purchases from Viet Nam into Cambodia acrossseveral transmission points. Supply from Thailand via the Provincial ElectricityAuthorityofThailand is sold to someof thePECs inareasaround theCambodiaand Thailand border. Imports from Laos are through EDC and supplied to theSteung Treng area. Imports have been reduced substantially since then due tonewhydroplantscomingonlineinCambodia.

    Table4 CambodiaElectricityGenerationandImports(2012-13)

    SourceofElectricity

    EnergyinMillionkWh

    Proportionofenergyin%

    for20132012 2013

    GenerationinCambodia 1,423 1,770 44.7%

    ImportfromVietnamatHV 1,220 1,329 32.8%

    ImportfromVietnamatMV 341 362 8.9%

    ImportfromThailandatHV 392 417 10.3%

    ImportfromThailandatMV 143 163 4.0%

    ImportfromLaosatMV 9 11 0.3%

    Total 3,527 4,052 100.0%

    Source:ReportonPowerSectorfortheYear2013,ElectricityAuthorityofCambodia(2014)

    4.8 Technical-EconomicPowerSystemModellingTechnicalandeconomicmodellingoftheGMSwasdoneinthePROPHETelectricityplanningandsimulationmodels.Itdevelopsaleastcostgenerationbasedplanandwas used to simulate the operation of the GMS region as an integrated powersystem.

    Abriefoverviewofthevariousaspectsisprovidedbelow:

    • PlanningModule: The PlanningModule of Prophet allows for intertemporalconstraintssuchasenergy limits tobepreservedwhensimulatingthepowersystemanddevelopments.Italsodevelopsaleastcostsetofnewentrantstosatisfydemandoverthe35yearmodellinghorizon.

    • Transmission:ThepowersystemwasmodelledbasedontheconfigurationasperFigure29withfixed/scheduledflows(redlines)topowersystemsoutsidetheGMSnotbeingexplicitlymodelledwhilepowertransferswithintheGMScountrieswereoptimisedasneededtoallowsupplyanddemandtobalance.Thisisimportantwithrespecttomodellingdiversityindemandinthedifferent

  • FINAL

    IntelligentEnergySystems IESREF:5973 43

    regionsandgeographical variation ingenerationpatterns fromsupply-drivenrenewableenergy (solarandwind)andseasonalvariationof inflows into thehydrostorages(seeFigure29).

    • Economics:Capitalandoperatingcostsrelatingtogenerationplantsaspertheassumptions covered in this report allow the Planning Module to modelgenerationand transmissiondevelopment ina leastcostmanner. On topofthis,resourceconstraintshadtobeformulatedtoreflectactuallimitssuchasthemaximum renewable resource and development rates available to eachcountry.

    • Demand:Demand profiles were constructed from energy and peak demandforecasts for electricitybasedon regressionmodels thatweredeveloped foreach sector of the electricity industry (commercial, industrial, residential,agricultural and transport). The monthly and intraday construction of theprofileswereperformed in Prophet basedonhistorical data and/or externaldatasourcesindicatingtheseasonalprofileofdemandforeachcountry.

    • Flexibledemand:wasmodelledasaMWandGWh/monthquantitiesthatcanbe scheduled as necessary to reduce system costs. Thismeans that demandtendstobeshiftedfromperiodswhensupplyanddemandwouldotherwisebetighttoothertimes.Thetechnologyforreschedulingdemandwasassumedtobeinplacefrom2020intheSESandASESscenarios.

    • Supply: The approach taken for modelling generation supply technologiesvariedaccordingtothetechnologytype.Thisisdiscussedfurtherbelow:- Conventional thermal plant: is modelled as capacity limited plants, with

    fueltakeorpaycontractsappliedtogeneratorswhererelevantandotherfuel supply constraints in place also where relevant – for example, gassupply limitsapplied toLNG facilitiesoroffshoregas fields. Examplesofsuchplantsincludecoal,biomass,gas,anddieselgenerators.

    - Energylimitedplants:suchaslarge-scalehydroswithreservoirs/storagesandCSPhavemonthlyenergy limitscorresponding toseasonalvariationsin energy inflows. The equivalent capacity factors are based on externalreportsforhydroandresourcedataforCSP(seenextpoint).

    - Supply-drivengeneration forms: Seasonalprofiles forwind, solarand runofriverhydroswithoutreservoirsweredevelopedonanhourlybasis.Forwind and solar theywere derived frommonthly resource data collectedfrom a variety of sources including National Aeronautics and SpaceAdministration(NASA),NationalRenewableEnergyLaboratory(NREL)andaccessed via the Solar andWind Energy Resource Atlas (SWERA) Toolkitand International Renewable Energy Agency (IRENA) Global Atlas.Resource amounts were matched against actual generation data forknown plants to develop equivalent monthly capacity factors at varioushigh resource pockets in each country. Several traces were built fromknowngenerationtracestoprovidediversificationbenefits.

  • FINAL

    IntelligentEnergySystems IESREF:5973 44

    - PumpStorageandbatterystorage:thesearemodelledinasimilarwaytoflexibledemandinthatdemandcanbeshiftedwithacapacityandenergylimit but the scheduled demand is stored for generation later with anappropriateenergyconversionefficiency(pumpedstoragesassumedtobe70%andbatterystoragesystemsat85%).

  • FINAL

    IntelligentEnergySystems IESREF:5973 45

    5 BusinessasUsualScenario5.1 BusinessasUsualScenario

    TheBAUscenarioassumesindustrydevelopmentsconsistentwiththecurrentstateof planning in Cambodia and reflective of growth rates in electricity demandconsistent with an IES view of base development, existing renewable energytargets, where relevant, aspirational targets for electrification rates, and energyefficiencygainsthatarelargelyconsistentwiththepoliciesseenintheregion.

    5.2 DemandGrowthCambodia’s on-grid electricity demand (including transmission and distributionlosses34) is plotted in Figure 30. Cambodia’s electricity demand is forecast toincreaseata rateof8.7%paover the35-yearperiod to2050withhighergrowthrates in the earlier years relating to industrial sector growth followed by aslowdownpost-2040astheeconomytrendstowardslong-termglobalGDPgrowthrates.

    The industrial sector is forecast to grow the fastest at 11.9% followed by theresidential sector at 6.5%, commercial sector at 5.6%andagriculture at 3.2%perannumastheGDPcompositionshiftstowardscommerce/servicesandindustrywithincreases inresidentialelectricitypercapitaconsumption. Thetransportsector isforecasttohit2.8TWhby2050asthenumberofcarsanduptakeofelectriccarsandmotorbikesincreaseto15%uptake.Cambodiaelectricitydemandisforecasttoreach almost 88 TWh by 2050. Peak demand is plotted below in Figure 31 andshowspeakdemandgrowingat8.5%pareaching13.4GWby2050.Theloadfactoris assumed to trend towards 75% by 2040mainly driven by additional industrialloadsimpactingthedemandbase.

    Key drivers for demand growth and the demand projections are summarised inTable5.

    34Note that unless otherwise stated, all other demand charts and statistics include transmission and distributionlosses.

  • FINAL

    IntelligentEnergySystems IESREF:5973 46

    Figure30 CambodiaProjectedElectricityDemand(2015-50,BAU)

    Figure31 CambodiaProjectedpeakDemand(BAU)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    1002010

    2012

    2014

    2016

    2018

    2020

    2022

    2024

    2026

    2028

    2030

    2032

    2034

    2036

    2038

    2040

    2042

    2044

    2046

    2048

    2050

    Energy(inclosses,TWh)

    Agriculture Industry Commercial Residenjal Transport

    0

    2,000

    4,000

    6,000

    8,000

    10,000

    12,000

    14,000

    16,000

    2010

    2012

    2014

    2016

    2018

    2020

    2022

    2024

    2026

    2028

    2030

    2032

    2034

    2036

    2038

    2040

    2042

    2044

    2046

    2048

    2050

    PeakDem

    and(M

    W)

    ProjectedBAU

    ProjectedBAU

  • FINAL

    IntelligentEnergySystems IESREF:5973 47

    Table5 CambodiaDemandandDemandDrivers(BAU)

    No. Aspect 2015-30 2030-40 2040-501 DemandGrowth(pa) 14.3% 6.4% 2.3%2 GDPGrowth(Real,pa) 7.0% 6.5% 3.5%3 CentralGridElectrificationRate

    (population)68.5% 97.1% 98.7%

    4 PopulationGrowth 1.37% 0.94% 0.71%5 PerCapitaConsumption(kWh) 710 1,768 3,1286 ElectricityElasticity* 11.96 2.49 1.777 ElectricityIntensity(kWh/USD) 0.264 0.385 0.520

    *Electricityelasticityiscalculatedaselectricitydemandgrowthdividedbythepopulationgrowthoverthesame

    period

    5.3 InstalledCapacityDevelopmentTheBAUinstalledcapacity(MW)forCambodiaisplottedinFigure32andFigure33bycapacitysharesforselectedyears:2010,2015,2020,2030,2040and2050.Theformershowsinstalledgenerationcapacitybythemaingenerationtypecategories.WeprovidecorrespondingstatisticsinTable6andTable7.Notethattheinstalledcapacitynumbersexcludeprojectsthathavebeendevelopedbutarededicatedtosupplyingpowertoneighbouringcountriesandwhereappropriatethecapacityhasbeende-ratedtoreflectsupplyagreements35.

    Installedcapacityin2015increasesfrom2,216MWto18,605MWwithlarge-scalehydrogenerationaccountingfor40%oftotal installedcapacity in2050.Coal-firedcapacityincreasesfrom268MWin2015to5,843MWby2050.Fromaround2020,additional renewable capacity is developed to achieve a 9% generation share(excluding large hydro) by 2050 comprised mostly of solar PV, which has a 17%capacitysharein2050.

    35Thisonlyappliestoasmallnumberofexistingandcommittedprojects.

  • FINAL

    IntelligentEnergySystems IESREF:5973 48

    Figure32 CambodiaInstalledCapacity(BAU,MW)

    Figure33 CambodiaInstalledCapacityMixPercentages(BAU,%)

    0

    2,000

    4,000

    6,000

    8,000

    10,000

    12,000

    14,000

    16,000

    18,000

    20,000

    2010

    2012

    2014

    2016

    2018

    2020

    2022

    2024

    2026

    2028

    2030

    2032

    2034

    2036

    2038

    2040

    2042

    2044

    2046

    2048

    2050

    CapacityM

    W

    Coal Hydro Gas Wind Diesel/FO Bio Solar

    ProjectedBAU

    4%12%

    35%26% 28%

    31%

    4%

    74%

    46%

    47% 43% 40%

    5% 10% 8%

    91%

    13%

    8%4%

    11%17% 15% 17%

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    2010 2015 2020 2030 2040 2050

    Capa

    cityM

    ix

    Coal Hydro Gas Wind Diesel/FO Bio Solar

  • FINAL

    IntelligentEnergySystems IESREF:5973 49

    Table6 CambodiaCapacitybyType(BAU,MW)

    Resource 2010 2015 2020 2030 2040 2050Coal 13 268 1,243 2,093 4,093 5,843

    CCS 0 0 0 0 0 0

    Diesel 327 291 291 291 291 291

    FuelOil 0 0 0 0 0 0

    Gas 0 0 0 375 1,500 1,500

    Nuclear 0 0 0 0 0 0

    Hydro 13 1,634 1,634 3,738 6,268 7,518

    OnshoreWind 0 0 0 50 100 150

    OffshoreWind 0 0 0 0 0 0

    Biomass 0 23 23 73 123 123

    Biogas 0 0 0 0 0 0

    Solar 0 0 380 1,380 2,180 3,180

    CSP 0 0 0 0 0 0

    Battery 0 0 0 0 0 0

    HydroROR 0 0 0 0 0 0

    Geothermal 0 0 0 0 0 0

    PumpStorage 0 0 0 0 0 0

    Ocean 0 0 0 0 0 0

    Offgrid 0 0 0 0 0 0

    Table7 CambodiaCapacitySharebyType(BAU,%)

    Resource 2010 2015 2020 2030 2040 2050Coal 4% 12% 35% 26% 28% 31%CCS 0% 0% 0% 0% 0% 0%Diesel 91% 13% 8% 4% 2% 2%FuelOil 0% 0% 0% 0% 0% 0%Gas 0% 0% 0% 5% 10% 8%Nuclear 0% 0% 0% 0% 0% 0%Hydro 4% 74% 46% 47% 43% 40%OnshoreWind 0% 0% 0% 1% 1% 1%OffshoreWind 0% 0% 0% 0% 0% 0%Biomass 0% 1% 1% 1% 1% 1%Biogas 0% 0% 0% 0% 0% 0%Solar 0% 0% 11% 17% 15% 17%CSP 0% 0% 0% 0% 0% 0%Battery 0% 0% 0% 0% 0% 0%HydroROR 0% 0% 0% 0% 0% 0%Geothermal 0% 0% 0% 0% 0% 0%PumpStorage 0% 0% 0% 0% 0% 0%Ocean 0% 0% 0% 0% 0% 0%Offgrid 0% 0% 0% 0% 0% 0%

  • FINAL

    IntelligentEnergySystems IESREF:5973 50

    5.4 ProjectedGenerationMixFigure34plotsthegenerationmix(onanasgeneratedbasis36)overtimeintheBAUcase and Figure 35 plots the corresponding percentage shares. Coal-firedgenerationinitiallystartsat587GWhandgrowsto43.6TWhby2050.Large-scalehydro initially supplied themajority of Cambodia’s on-grid demand requirementsbutwiththeadditionalcoalandrenewabledevelopments,declinesto35%by2050.Renewabletechnologiesaccountfor9%ofgenerationby2050.

    36Unless otherwise stated, all generation charts and statistics in this report are presented on an “as generated”basis,meaningthatgenerationtocovergenerator’sauxiliaryconsumptionaccountedfor.

  • FINAL

    IntelligentEnergySystems IESREF:5973 51

    Figure34 CambodiaGenerationMix(BAU,GWh)

    Figure35 CambodiaGenerationMixPercentages(BAU,%)

    0

    10,000

    20,000

    30,000

    40,000

    50,000

    60,000

    70,000

    80,000

    90,0002010

    2012

    2014

    2016

    2018

    2020

    2022

    2024

    2026

    2028

    2030

    2032

    2034

    2036

    2038

    2040

    2042

    2044

    2046

    2048

    2050

    Gen

    eraj

    on(G

    Wh)

    Coal Hydro Gas Wind Diesel/FO Bio Solar

    Projected

    3%13%

    47% 46% 48%53%

    3%

    87%

    48%42% 39%

    35%

    4% 3%

    93%

    5% 8% 7% 7%

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    2010 2015 2020 2030 2040 2050

    Gene

    raco

    nMix

    Coal Hydro Gas Wind Diesel/FO Bio Solar

  • FINAL

    IntelligentEnergySystems IESREF:5973 52

    Table8 CambodiaGenerationbyType(BAU,GWh)

    Resource 2010 2015 2020 2030 2040 2050Coal 32 587 6,158 15,642 30,056 43,551CCS 0 0 0 0 0 0Diesel 898 0 0 0 0 0FuelOil 0 0 0 0 0 0Gas 0 0 0 657 2,628 2,628Nuclear 0 0 0 0 0 0Hydro 31 4,038 6,295 14,404 24,152 28,968OnshoreWind 0 0 0 137 276 411OffshoreWind 0 0 0 0 0 0Biomass 0 0 0 473 808 806Biogas 0 0 0 0 0 0Solar 0 0 724 2,623 4,157 6,043CSP 0 0 0 0 0 0Battery 0 0 0 0 0 0HydroROR 0 0 0 0 0 0Geothermal 0 0 0 0 0 0PumpStorage 0 0 0 0 0 0Ocean 0 0 0 0 0 0Offgrid 0 0 0 0 0 0

    Table9 CambodiaGenerationsharebyType(BAU,%)

    Resource 2010 2015 2020 2030 2040 2050Coal 3% 13% 47% 46% 48% 53%CCS 0% 0% 0% 0% 0% 0%Diesel 93% 0% 0% 0% 0% 0%FuelOil 0% 0% 0% 0% 0% 0%Gas 0% 0% 0% 2% 4% 3%Nuclear 0% 0% 0% 0% 0% 0%Hydro 3% 87% 48% 42% 39% 35%OnshoreWind 0% 0% 0% 0% 0% 0%OffshoreWind 0% 0% 0% 0% 0% 0%Biomass 0% 0% 0% 1% 1% 1%Biogas 0% 0% 0% 0% 0% 0%Solar 0% 0% 5% 8% 7% 7%CSP 0% 0% 0% 0% 0% 0%Battery 0% 0% 0% 0% 0% 0%HydroROR 0% 0% 0% 0% 0% 0%Geothermal 0% 0% 0% 0% 0% 0%PumpStorage 0% 0% 0% 0% 0% 0%Ocean 0% 0% 0% 0% 0% 0%Offgrid 0% 0% 0% 0% 0% 0%

  • FINAL

    IntelligentEnergySystems IESREF:5973 53

    5.5 GridtoGridPowerFlowsFigure 36 plots the imports and exports in the BAU with the dotted linerepresenting the net interchange. Overall, power exchanges between CambodiaandneighbouringcountriesintheBAUarerelativelylowtoabout2030.From2030Cambodiabeginstoimportincreasinglyfromneighbouringcountriesuptoaround8,000GWhayear.ThisislargelyaconsequenceofCambodiahavingahighshareofhydro in its power system and power flows from neighbouring countries tend tooccurtocomplementseasonalityinhydrologicalinflows.

    Figure36 CambodiaImportsandExports(BAU)

    5.6 GenerationFleetStructureFigure 37 shows the installed generation capacity by the main categories ofgeneration:thermal,renewableandlarge-scalehydro.Thisprovidesgreaterinsightinto the basic structure of installed capacity under the BAU, highlighting thatCambodia’s BAU projection is heavily dominated by hydro followed by coal-firedgeneration. Figure 38 shows the on-grid composition of generation by majorcategories: thermal, large hydro and renewable. As could be anticipated,generationcloselyreflectstheBAU’sinstalledcapacitymix.

    -2,000

    -1,000

    0

    1,000

    2,000

    3,000

    4,000

    5,000

    6,000

    7,000

    8,000

    9,000

    2015

    2017

    2019

    2021

    2023

    2025

    2027

    2029

    2031

    2033

    2035

    2037

    2039

    2041

    2043

    2045

    2047

    2049

    Flow

    s(GWh)

    Imports Exports Net

  • FINAL

    IntelligentEnergySystems IESREF:5973 54

    Figure37 CambodiaInstalledCapacitybyGenerationType(BAU)

    Figure38 CambodiaGenerationMixbyGenerationType(BAU)

    0

    2,000

    4,000

    6,000

    8,000

    10,000

    12,000

    14,000

    16,000

    18,000

    20,000

    201520172019202120232025202720292031203320352037203920412043204520472049

    Capacity,M

    W

    FossilFuel LargeHydro Renewable

    0

    10,000

    20,000

    30,000

    40,000

    50,000

    60,000

    70,000

    80,000

    90,000

    Gen

    eraj

    on,G

    Wh

    FossilFuel LargeHydro Renewable

  • FINAL

    IntelligentEnergySystems IESREF:5973 55

    To facilitate comparisonwith the SES andASES, Figure 39plots installed capacitywith capacity being distinguished between the following basic categories: (1)dispatchable capacity, (2) non-dispatchable capacity; and (3) semi-dispatchablecapacity 37 . This provides some insight into the operational flexibility of thegeneration fleet tomatchdemanduncertainty. Thedispatchablecategoryrelatestogenerationthatcanbecontrolledanddispatchedatshortnoticetorampupordown,non-dispatchablemeansthatthegenerationisnotabletorespondreadilytodispatchinstructionswhilethesemi-dispatchablecategorymeansthattheresourcecanrespondwithinlimits,andinparticulariscapableofbeingbackedoffshouldtheneedarise to forexample, avoidoverloading thenetworkor “spill” energy in theeventthatanovergenerationsituationemerges;solarphotovoltaicsandwindfarmswithappropriatelyinstalledcontrolsystemscanbeclassifiedinthiscategory.IntheBAU,thedispatchablepercentagestartsat100%withonlycoalandhydro;then,asrenewablesareaddedtothesystem,itstillremainsabove82%by2050.

    Figure39 CambodiaInstalledCapacitybyDispatchStatus(BAU)

    5.7 ReserveMarginandGenerationTrendsFigure40plots the reservemarginbasedonnameplatecapacityandannualpeakdemand.TheCambodiareservemarginintheBAUhoversaround40%.

    37 Wind and solar are classified as semi-dispatchable, geothermal and hydro run-of-river is classified as non-dispatchableandallothertechnologiesareclassifiedasdispatchable.

    0

    2,000

    4,000

    6,000

    8,000

    10,000

    12,000

    14,000

    16,000

    18,000

    20,000

    2015

    2017

    2019

    2021

    2023

    2025

    2027

    2029

    2031

    2033

    2035

    2037

    2039

    2041

    2043

    2045

    2047

    2049

    Capa

    city,M

    W

    Dispatchable Non-Dispatchable Semi-Dispatchable

  • FINAL

    IntelligentEnergySystems IESREF:5973 56

    Figure40 CambodiaReserveMargin(BAU)

    To obtain a better understanding of the broad mix of generation capacity andgenerationmix, Figure 41 and Figure 42 show shares in installed capacity and ingenerationgroupedbythemaincategories:thermal,largehydro,renewableenergy(RE)andlargehydroplusrenewableenergy.

    Figure41 CambodiaCapacitySharesbyGenerationType(BAU)

    0%

    20%

    40%

    60%

    80%

    100%

    120%

    140%

    160%

    180%

    200%2015

    2017

    2019

    2021

    2023

    2025

    2027

    2029

    2031

    2033

    2035

    2037

    2039

    2041

    2043

    2045

    2047

    2049

    ReserveMargin RenewableCapacity

    HydroCapacity FossilFuelCapacity

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    2015

    2017

    2019

    2021

    2023

    2025

    2027

    2029

    2031

    2033

    2035

    2037

    2039

    2041

    2043

    2045

    2047

    2049

    CapacityShare

    FossilFuel LargeHydro Renewable Renewable+LargeHydro

  • FINAL

    IntelligentEnergySystems IESREF:5973 57

    Figure42plotsthegenerationsharesbyseveraldifferentcategoriesofgeneration.The thermal generation share increases to over 50% and renewable energyincluding large-scale hydro gradually declines to 35% andmaintains that level asmorerenewableplantsenterthesystem.

    Figure42 CambodiaGenerationSharesbyGenerationType(BAU)

    5.8 ElectrificationandOffGridCambodia’s grid-based electrification rate for its urban and rural population isassumedtoreachcloseto100%by2030intheBAU.

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    2015

    2017

    2019

    2021

    2023

    2025

    2027

    2029

    2031

    2033

    2035

    2037

    2039

    2041

    2043

    2045

    2047

    2049

    Gen

    eraj

    onShare

    FossilFuel LargeHydro Renewable Renewable+LargeHydro

  • FINAL

    IntelligentEnergySystems IESREF:5973 58

    6 SustainableEnergySectorScenario6.1 SustainableEnergySectorScenario

    The SES seeks to transition electricity demand towards the best practicebenchmarksofotherdevelopedcountriesintermsofenergyefficiency,maximisethe renewable energy development, cease the development of fossil fuelresources, andmake sustainable and prudent use of undeveloped conventionalhydroresources.Whererelevant,itleveragesadvancesinoff-gridtechnologiestoprovideaccesstoelectricitytoremotecommunities.TheSEStakesadvantageofexisting, technically proven and commercially viable renewable energytechnologies.

    6.2 DemandGrowthFigure43plotsCambodia’sforecastenergyconsumptionfrom2015to2050withthe BAU energy trajectory charted as a comparison. The significant savings aredue to additional energy efficiency assumptions that the various sectors wouldachieveenergyintensitybenchmarksofcomparabledevelopedcountriesinAsia38.TheSESdemandgrowsataslowerrateof7.8%paovertheperiodto2050withthecommercialsectorgrowingat4.5%pa,industrygrowingat11.3%paandtheresidentialsectorgrowingat4.8%pa. Theagriculturalsectorgrowsat2.3%andtheuptakeof electric transport optionsoccur from2025onwards and grows to2,772GWhaccountingfor4.4%oftotaldemandby2050or15%ofallvehiclesandmotorcycles. Anoff-griddemandgrowingupto420GWhin2030thendroppingto 255 GWh by 2050 is driven by granting off-grid electricity access to non-electrified households in the interim as grid-electrification follows. Off griddemand is relatively small as it reflects off-grid per capita demand beingsignificantly lower than grid connected demands and only reflects a portion ofdemandthat issupportedbyoff-gridgenerationasopposedtofullpotentialoff-griddemand.

    Figure44plotsthepeakdemandofCambodia.Thefirmbluelinerepresentspeakdemand in Cambodia before any flexible demand side resources have beenscheduled39. Flexibledemand response is “dispatched” in themodel in linewiththe least cost dispatch of all resources in the power system. The dashed linerepresents what peak demand became as a consequence of scheduling (“time-shifting”) commercial, industrial and residential loads tominimise system costs.From2020,theamountofflexibledemandwasassumedtogrowto10%oftotal

    38Cambodia’s industrial intensitywastrendedtowardslevelscommensuratewithHongKong(2014)by2050.HongKonghadthelowestintensitybasedontheintensitymetricofabasketofcomparablecountries.39Flexibledemandresponse is “dispatched” in themodel in linewith the leastcostdispatchofall resources. Thesolidlinerepresentspeakdemandasputinthemodel,whilethedashedlinerepresentswhatpeakdemandendedup being as a consequence of shifting demand from one period of time to another. This includes scheduling ofloads associated with battery storage devices and rescheduling (time-shifting) commercial, industrial andresidentialloads.

  • FINAL

    IntelligentEnergySystems IESREF:5973 59

    demandacross all sectors by 2050. The load factor associatedwith the SESwasalsoassumedtoreach80%(comparedto75%undertheBAUcase)by2030asafurtherconsequenceofenhanceddemandsidemanagementmeasuresrelativetotheBAU.

    Key drivers for demand growth and the demand projections are summarised inTable12.

    Figure43 CambodiaProjectedElectricityDemand(2015-50,SES)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    2010

    2012

    2014

    2016

    2018

    2020

    2022

    2024

    2026

    2028

    2030

    2032

    2034

    2036

    2038

    2040

    2042

    2044

    2046

    2048

    2050

    Energy(inclosses,TWh)

    Agriculture Industry Commercial

    Residenjal Transport OffgridDemand

    BAU

    Projected

  • FINAL

    IntelligentEnergySystems IESREF:5973 60

    Figure44 CambodiaProjectedElectricityDemand(SES,GridConnected)

    Table10 CambodiaDemandandDemandDrivers(SES)

    No. Aspect 2015-30 2030-40 2040-501 DemandGrowth(pa) 12.0% 6.2% 1.8%2 GDPGrowth(Real,pa) 7.0% 6.5% 3.5%3 CentralGridElectrificationRate

    (population)54.6% 78.6% 85.6%

    4 PopulationGrowth 1.37% 0.94% 0.71%5 PerCapitaConsumption(kWh) 578 1,401 2,3886 ElectricityElasticity* 9.74 2.42 1.707 ElectricityIntensity(kWh/USD) 0.215 0.305 0.397

    *Electricityelasticityiscalculatedaselectricitydemandgrowthdividedbythepopulationgrowthoverthesame

    period

    6.3 InstalledCapacityDevelopmentFigure 45 plots the installed capacity developments under the SES and Figure 46plots the corresponding percentage shares. Table 11 and Table 12 provide thestatisticaldetailsoftheinstalledcapacityandcapacitysharesbytypeincludingtheestimated2010levels.

    Committed and existing plants are assumed to come online as per the BAU butaren’treplacedwhenretired.Plannedandproposedthermalandlarge-scalehydrodevelopmentsareassumedtonotoccurandallothergenerationrequirementsareinsteadmetbyrenewabletechnologies.Coalandgasfired-generationintheearlier

    0

    1,000

    2,000

    3,000

    4,000

    5,000

    6,000

    7,000

    8,000

    9,000

    10,000

    2010

    2012

    2014

    2016

    2018

    2020

    2022

    2024

    2026

    2028

    2030

    2032

    2034

    2036

    2038

    2040

    2042

    2044

    2046

    2048

    2050

    PeakDem

    and(M

    W)

    Demand

    Demand(postDSM)

    Projected

  • FINAL

    IntelligentEnergySystems IESREF:5973 61

    years isverysimilar to theBAUduetocommittedprojects.Over time,hydroandcoal capacity shares drop from 86% in 2015 to 13% in 2050 as more and morerenewablegeneration,predominantlysolarPV,comesonline.

    Timing of renewable energy developments are based on the maturity of thetechnology and judgments of when it could be readily deployed in Cambodia.Additionaldemand in the SES ispredominantlymetby renewableswith18.7GWrequired to meet 2050 electricity demand from a current capacity base around1,656 MW (large-scale and grid connected). Solar PV is to account for 9 GW,biomass2GW,CSP1.5GW,andwindcapacityof650MWby2050.Batterystoragewith an equivalent capability of 3 GW is developed to support the significantamountofsolarPVandoff-peakload.Smallamountsofrun-of-riverhydroarealsodevelopedinthelaterstages.Thereis340MWofoff-gridcapacityinstalledintheSES.

  • FINAL

    IntelligentEnergySystems IESREF:5973 62

    Figure45 CambodiaInstalledCapacitybyType(SES,MW)

    Figure46 CambodiaCapacityShares(SES,%)

    0

    5,000

    10,000

    15,000

    20,000

    25,000

    2010

    2012

    2014

    2016

    2018

    2020

    2022

    2024

    2026

    2028

    2030

    2032

    2034

    2036

    2038

    2040

    2042

    2044

    2046

    2048

    2050

    CapacityM

    W

    Offgrid Coal Hydro Wind Diesel/FO

    Bio Solar CSP Bavery HydroROR

    4% 2%4%12%

    32%17%

    9%5%4%

    74%42%

    22%

    12%

    8%

    2%

    3%

    3%

    91%

    13%

    7%

    4%

    0%

    6%

    7%

    9%

    17%

    39%

    46%

    46%

    6%

    9%

    8%3%

    9%16%

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    2010 2015 2020 2030 2040 2050

    Capa

    cityM

    ix

    Offgrid Coal Hydro Wind Diesel/FO

    Bio Solar CSP HydroROR Bavery

  • FINAL

    IntelligentEnergySystems IESREF:5973 63

    Table11 CambodiaCapacitybyType(SES,MW)

    Resource 2010 2015 2020 2030 2040 2050Coal 13 268 1,243 1,243 1,243 975CCS 0 0 0 0 0 0Diesel 327 291 291 291 0 0FuelOil 0 0 0 0 0 0Gas 0 0 0 0 0 0Nuclear 0 0 0 0 0 0Hydro 13 1,634 1,634 1,634 1,634 1,634OnshoreWind 0 0 0 150 450 650OffshoreWind 0 0 0 0 0 0Biomass 0 23 73 423 1,023 1,823Biogas 0 0 0 0 0 0Solar 0 0 656 2,856 6,256 9,256CSP 0 0 0 450 1,200 1,500Battery 0 0 0 0 1,300 3,191HydroROR 0 0 0 0 300 600Geothermal 0 0 0 0 0 0PumpStorage 0 0 0 0 0 0Ocean 0 0 0 0 0 0Offgrid 0 0 20 323 327 340

    Table12 CambodiaCapacitySharebyType(SES,%)

    Resource 2010 2015 2020 2030 2040 2050Coal 4% 12% 32% 17% 9% 5%CCS 0% 0% 0% 0% 0% 0%Diesel 91% 13% 7% 4% 0% 0%FuelOil 0% 0% 0% 0% 0% 0%Gas 0% 0% 0% 0% 0% 0%Nuclear 0% 0% 0% 0% 0% 0%Hydro 4% 74% 42% 22% 12% 8%OnshoreWind 0% 0% 0% 2% 3% 3%OffshoreWind 0% 0% 0% 0% 0% 0%Biomass 0% 1% 2% 6% 7% 9%Biogas 0% 0% 0% 0% 0% 0%Solar 0% 0% 17% 39% 46% 46%CSP 0% 0% 0% 6% 9% 8%Battery 0% 0% 0% 0% 9% 16%HydroROR 0% 0% 0% 0% 2% 3%Geothermal 0% 0% 0% 0% 0% 0%PumpStorage 0% 0% 0% 0% 0% 0%Ocean 0% 0% 0% 0% 0% 0%Offgrid 0% 0% 1% 4% 2% 2%

  • FINAL

    IntelligentEnergySystems IESREF:5973 64

    6.4 ProjectedGenerationMixGridgenerationisplottedinFigure47andFigure4840.ThecorrespondingstatisticsforsnapshotyearsareprovidedinTable14andTable15.

    Cambodia’sgenerationmixintheearlieryearsto2020issimilartotheBAUcaseascommittednewentry is commissioned. Thermal and largehydroprojects outsidewhat is deemedexistingor committed (with theexceptionof somehydro) is notdeveloped and renewable technology is used tomeet the remaining incrementaldemand.

    Coal and large scale hydro decline to a 13% and 12% generation share by 2050whereas solar PVaccounts for thehighest generation shareof 17.6 TWhor 33%,followed by biomass and biogas at 21% then CSP at a combined 13%. In total,Cambodia generatesmore than 53 TWh against a demand base of 62.5 TWh by2050 with the deficit power being imported from neighbouring countries.Cambodia’snet importer status is drivenby the limitedamountofnon-fossil fueland large hydro based generation resources available to the country, relative toother neighbouring countries. Off grid solutions are deployed, but serve only asmallfractionofthetotaldemand.

    40Batterystorageisnotincludedasstoragetechnologiesaregenerationneutral.

  • FINAL

    IntelligentEnergySystems IESREF:5973 65

    Figure47 CambodiaGenerationMix(SES,GWh)

    Figure48 CambodiaGenerationShare(SES,%)

    0

    10,000

    20,000

    30,000

    40,000

    50,000

    60,0002010

    2012

    2014

    2016

    2018

    2020

    2022

    2024

    2026

    2028

    2030

    2032

    2034

    2036

    2038

    2040

    2042

    2044

    2046

    2048

    2050

    Gen

    eraj

    on(G

    Wh)

    Offgrid Coal Hydro Wind Diesel/FO Bio Solar CSP HydroROR

    3%13%

    32%37%

    22%13%3%

    87%56%

    24%

    15%

    12%

    3%

    3%

    93%

    11%

    17%

    21%

    11%

    20%

    27%33%

    6%13% 13%

    4%

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    2010 2015 2020 2030 2040 2050

    Gene

    raco

    nMix

    Offgrid Coal Hydro Wind Diesel/FO Bio Solar CSP HydroROR

  • FINAL

    IntelligentEnergySystems IESREF:5973 66

    Table13 CambodiaGenerationbyFuel(SES,GWh)

    Resource 2010 2015 2020 2030 2040 2050Coal 32 587 3,686 10,182 9,510 6,847CCS 0 0 0 0 0 0Diesel 898 0 0 0 0 0FuelOil 0 0 0 0 0 0Gas 0 0 0 0 0 0Nuclear 0 0 0 0 0 0Hydro 31 4,038 6,413 6,633 6,727 6,295OnshoreWind 0 0 0 412 1,242 1,780OffshoreWind 0 0 0 0 0 0Biomass 0 0 0 2,961 7,185 11,250Biogas 0 0 0 0 0 0Solar 0 0 1,250 5,427 11,930 17,590CSP 0 0 0 1,634 5,544 7,067Battery 0 0 0 0 0 0HydroROR 0 0 0 0 1,163 2,312Geothermal 0 0 0 0 0 0PumpStorage 0 0 0 0 0 0Ocean 0 0 0 0 0 0Offgrid 0 0 26 417 238 255

    Table14 CambodiaGenerationSharebyFuel(SES,%)

    Resource 2010 2015 2020 2030 2040 2050Coal 3% 13% 32% 37% 22% 13%CCS 0% 0% 0% 0% 0% 0%Diesel 93% 0% 0% 0% 0% 0%FuelOil 0% 0% 0% 0% 0% 0%Gas 0% 0% 0% 0% 0% 0%Nuclear 0% 0% 0% 0% 0% 0%Hydro 3% 87% 56% 24% 15% 12%OnshoreWind 0% 0% 0% 1% 3% 3%OffshoreWind 0% 0% 0% 0% 0% 0%Biomass 0% 0% 0% 11% 17% 21%Biogas 0% 0% 0% 0% 0% 0%Solar 0% 0% 11% 20% 27% 33%CSP 0% 0% 0% 6% 13% 13%Battery 0% 0% 0% 0% 0% 0%HydroROR 0% 0% 0% 0% 3% 4%Geothermal 0% 0% 0% 0% 0% 0%PumpStorage 0% 0% 0% 0% 0% 0%Ocean 0% 0% 0% 0% 0% 0%Offgrid 0% 0% 0% 2% 1% 0%

  • FINAL

    IntelligentEnergySystems IESREF:5973 67

    6.5 GridtoGridPowerFlowsFigure49plotstheimportsandexportsintheSESwiththedottedlinerepresentingthenetinterchange.CambodiaimportsandexportsmoreintheSESthantheBAUduetooptimisinggenerationacrosstheregionratherthanonacountrybycountrybasis.CambodiamainlyexportsandimportsintosouthernVietNam.Cambodiaisanet importer of power of up to 10 TWh in order to exploit the diversity in theavailabilityofrenewableenergypotentialthroughouttheregionasawhole.

    Figure49 CambodiaImportsandExports(SES)

    6.6 GenerationFleetStructureAsfortheBAU,togaininsightintothenatureofthemixofgenerationtechnologiesdeployedintheSES,wepresentanumberofadditionalcharts.Figure50andFigure51showCambodia’sinstalledcapacityandgenerationbytypefortheSES–thisisheavilybiasedtowardsrenewablegenerationforms.

    -30,000

    -20,000

    -10,000

    0

    10,000

    20,000

    30,000

    2015

    2017

    2019

    2021

    2023

    2025

    2027

    2029

    2031

    2033

    2035

    2037

    2039

    2041

    2043

    2045

    2047

    2049

    Flow

    s(GWh)

    Imports Exports Net

  • FINAL

    IntelligentEnergySystems IESREF:5973 68

    Figure50 CambodiaInstalledCapacitybyGenerationType(SES)

    Figure51 CambodiaGenerationMixbyGenerationType(SES)

    0

    5,000

    10,000

    15,000

    20,000

    25,000

    201520172019202120232025202720292031203320352037203920412043204520472049

    Capacity,M

    W

    FossilFuel LargeHydro Renewable

    0

    10,000

    20,000

    30,000

    40,000

    50,000

    60,000

    Gen

    eraj

    on,G

    Wh

    FossilFuel LargeHydro Renewable

  • FINAL

    IntelligentEnergySystems IESREF:5973 69

    Figure 52, shows the dispatchable, semi-dispatchable and non-dispatchablecomponents of installed capacity and it can be seen that semi-dispatchableincreases toaround59%of thetotalsystemcapacitycomparedtoaround18% inthe BAU by 2050. Based on operational simulations with this resource mix, itappearstobeoperationallyfeasible,andgenerationformsthatprovidestorageandflexibility in the demand side play important roles. It is clear that short-termrenewableenergysolarandwindforecastingsystemswillbeimportant,aswillreal-timeupdatesondemandthatcanbecontrolled.Furthermore,controlsystemsthatcanallowthedispatchofflexibleresourcesonbothsupplyanddemandsidesoftheindustryandacrosstheregionwillberequired.

    Figure52 CambodiaInstalledCapacitybyDispatchStatus(SES)

    6.7 ReserveMarginandGenerationTrendsFigure 53 plots the reserve margin under the SES. Figure 54 and Figure 55,respectively, show the installed capacity mix and generation mix for differentcategoriesofgenerationinthepowersystem.ThereservemarginisrelativehighinthebeginningduetothesizeofcommittedprojectsrelativetoCambodia’senergydemand, and declines as the projects are scheduled onlywhen demand calls foradditionalgenerationcapacity.ThereservemarginisnaturallyhigherintheSESduetothelowercapacityfactorofrenewableenergytechnologieslikesolarPVorwindcompared to conventional technologies. Renewable technologies generally have

    0

    2,000

    4,000

    6,000

    8,000

    10,000

    12,000

    14,000

    16,000

    18,000

    2015

    2017

    2019

    2021

    2023

    2025

    2027

    2029

    2031

    2033

    2035

    2037

    2039

    2041

    2043

    2045

    2047

    2049

    Capa

    city,M

    W

    Dispatchable Non-Dispatchable Semi-Dispatchable

  • FINAL

    IntelligentEnergySystems IESREF:5973 70

    muchlowercapacityfactorsandrequiremorecapacitytomeetthesameamountofenergyproducedfromthermal-basedtechnologies41.

    Renewable generation including large-scale hydro reaches 87% or 75% withoutlarge-scalehydro.

    Figure53 CambodiaReserveMargin(SES)

    41Conventional reserve margin measures, based on peak demand and capacity alone are generally not a usefulmeasures for systems with energy limited resources, high levels of renewable energy, battery storages and highlevels of controllable demand side resources, as compared to power systems that are dominated by thermalgeneratorsandinelasticdemand.

    0%

    50%

    100%

    150%

    200%

    250%

    2015

    2017

    2019

    2


Recommended