+ All Categories
Home > Documents > AM216 Stochastic Differential Equationshongwang/AMS216/Notes/...AM216 Stochastic Differential...

AM216 Stochastic Differential Equationshongwang/AMS216/Notes/...AM216 Stochastic Differential...

Date post: 26-Jan-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
13
- 1 - AM216 Stochastic Differential Equations Lecture 06 Copyright by Hongyun Wang, UCSC List of topics in this lecture Long road to concluding dW/dt is a white noise: Energy spectrum density (ESD), power spectrum density (PSD); Stationary stochastic process, auto-correlation function R(t); Wiener-Khinchin theorem (PSD is Fourier transform of R(t)); dW/dt has a uniform PSD (definition of white noise). Constrained Wiener process, Bayes Theorem Recap The short story of white noise: 1) Z ( t ) dW dt is not a regular function. 2) EZ ( t )Z ( s ) ( ) = δ( t s ) 3) exp(i2πξt ) EZ ( t )Z (0) ( ) dt = 1 4) Z(t) is a white noise (we will clarify what this means). Plan for the long story We will first address the definition of white noise in item 4). We discuss a general stationary stochastic process and in that context define white noise in steps listed below Energy spectrum density (ESD) Power spectrum density (PSD) A general stationary stochastic process and its PSD Relation between PSD and auto-correlation function Definition of white noise based on PSD
Transcript
  • - 1 -

    AM216StochasticDifferentialEquationsLecture06

    CopyrightbyHongyunWang,UCSC

    Listoftopicsinthislecture

    • LongroadtoconcludingdW/dtisawhitenoise:Energyspectrumdensity(ESD),powerspectrumdensity(PSD);

    Stationarystochasticprocess,auto-correlationfunctionR(t);Wiener-Khinchintheorem(PSDisFouriertransformofR(t));

    dW/dthasauniformPSD(definitionofwhitenoise).

    • ConstrainedWienerprocess,BayesTheorem

    RecapTheshortstoryofwhitenoise:

    1)Z(t)≡ dW

    dtisnotaregularfunction.

    2) E Z(t)Z(s)( ) = δ(t − s) 3) exp(−i2πξt)E Z(t)Z(0)( )dt∫ =1 4) Z(t)isawhitenoise(wewillclarifywhatthismeans).

    Planforthelongstory

    Wewillfirstaddressthedefinitionofwhitenoiseinitem4).Wediscussageneralstationarystochasticprocessandinthatcontextdefinewhitenoiseinstepslistedbelow

    • Energyspectrumdensity(ESD)

    • Powerspectrumdensity(PSD)

    • AgeneralstationarystochasticprocessanditsPSD

    • RelationbetweenPSDandauto-correlationfunction

    • DefinitionofwhitenoisebasedonPSD

  • AM216StochasticDifferentialEquations

    - 2 -

    Beforeweproceedwiththeplan,wefinishthepropertiesofFouriertransform.

    PropertiesofFouriertransform

    1)F ρ

    N(0,σ2 )(t)⎡⎣⎤⎦ = F

    12πσ2

    exp −t2

    2σ2⎛

    ⎝⎜⎞

    ⎠⎟⎡

    ⎣⎢⎢

    ⎦⎥⎥= exp −2π2σ2ξ2( )

    2) F[δ(x)]=1

    3) F[1]=δ(ξ)4) Parseval’stheorem

    y(t)2dt∫ = ŷ(ξ)

    2dξ∫

    Proof:

    ŷ(ξ)2dξ∫ = ŷ(ξ) ŷ(ξ)dξ∫

    = exp(−i2πξt)y(t)dt∫ exp(i2πξ s)y(s)ds∫

    ⎝⎜

    ⎠⎟ dξ∫

    = exp −i2πξ(t − s)( ) y(t)y(s)dtds∫∫

    ⎝⎜

    ⎠⎟ dξ∫

    Changetheorderofintegration

    = y(t)y(s) exp −i2πξ(t − s)( )dξ∫

    F[1]=δ(t−s)! "#### $####

    ⎝⎜

    ⎠⎟dtds∫∫

    = y(t)y(s)δ(t − s)dtds∫∫

    = y(s)y(s)ds∫ = y(s)

    2ds∫

    Thelongstoryofwhitenoise

    Energyspectrumdensity(ESD)

    Inphysicsproblems,

    Energy∝ y(t)2dt∫ = ŷ(ξ)

    2dξ∫

  • AM216StochasticDifferentialEquations

    - 3 -

    Note: Here“energy”referstotheenergydissipated.

    Examples:y(t)=electriccurrent

    Energy = R ⋅ y(t)2dt∫ , R=electricalresistance

    y(t)=velocity

    Energy = b ⋅ y(t)2dt∫ , b=viscousdragcoefficient

    Formathematicalconvenience,wescaletheenergytodefine

    Energy = y(t)2dt∫ = ŷ(ξ)

    2dξ∫

    Weliketoknowhowtheenergyisdistributedinthefrequencydimension.

    Definitionofenergyspectrumdensity(ESD)

    ESD≡ ŷ(ξ)2 = exp(−i2πξt)y(t)dt∫

    2

    Caution: ŷ(ξ)2isanunnormalizeddensity.

    ŷ(ξ)2dξ∫ = y(t)

    2dt∫ =Energy ≠1

    Otherexamplesofunnormalizeddensity:

    Populationdensity: Xnumberofpersonspersquaremile

    Pollutiondensity: XamountofchemicalsperunitvolumeofairorwaterCardensity: Xnumberofcarsperthousandpersons

    Xnumberofcarspersquaremile

    Caution: (differentdefinitionsofenergyspectrumdensity)

    Inelectricalengineering(EE),energyspectrumdensityisdefinedas

    ESD≡Φ(ω)= 1

    2πexp(−iωt)y(t)dt∫

    2

    Φ(ω)and ŷ(ξ)2arerelatedby

  • AM216StochasticDifferentialEquations

    - 4 -

    Φ(ω)= 12π ŷ(ξ)

    2 , ξ = ω2π

    PowerspectrumdensityEnergyspectrumdensityismeaningfulonlywhen

    Energy = y(t)2dt∫ = finite

    Example:

    y(t)=electriccurrent=y0, constantintime

    Energydissipated = R ⋅ y02dt∫ =∞

    Whenthetotalenergyisnotfinite,welookattheenergyperunittime.

    Power = Energytime = finite

    Definitionofpowerspectrumdensity(PSD)

    PSD≡ lim

    T→∞

    exp(−i2πξt)y(t)dt−T

    T

    ∫2

    2T

    Expressionofpowerspectrumdensity(PSD)

    WewritePSDintoamoreworkableexpression.

    PSD= lim

    T→∞

    exp(−i2πξt)y(t)dt−T

    T

    ∫ exp(i2πξ s)y(s)ds−TT

    ∫2T

    = limT→∞

    exp(−i2πξ(t − s))y(t)y(s)dt−T

    T

    ∫ ds−TT

    ∫2T

    changeofvariableτ=t–s

    = limT→∞

    exp(−i2πξτ)y(τ+ s)y(s)dτ−T−s

    T−s

    ∫ ds−TT

    ∫2T

    Drawtheintegrationregionins-τplane.Foreachs,therangeforτis[–T–s,T–s].

    Foreachτ,therangeforsis[a(τ),b(τ)]

  • AM216StochasticDifferentialEquations

    - 5 -

    where

    a(τ)= −T − τ, τ∈[−2T , 0]

    −T , τ∈[0, 2T ]⎧⎨⎪

    ⎩⎪

    b(τ)= T , τ∈[−2T , 0]

    T − τ, τ∈[0, 2T ]⎧⎨⎪

    ⎩⎪

    Changetheorderofintegration

    PSD= lim

    T→∞

    exp(−i2πξτ) y(τ+ s)y(s)dsa(τ)

    b(τ)∫ dτ−2T

    2T∫

    2T (PSD01)

    Sofar,weworkedwithdeterministicprocessy(t).Nextweintroducestochasticprocessandstationarystochasticprocess.

    StationarystochasticprocessDefinitionofstochasticprocess

    Astochasticprocessisafunctionoftimethatvarieswiththerandomoutcomeofanexperiment.

    y(t)

    Shortnotation! = y(t ,ω)

    Fullnotation"#$ %$ ω=randomoutcomeofanexperiment

    DefinitionofstationarystochasticprocessLety(t)beastochasticprocess.Wesayy(t)isstationaryifforanysetoftimeinstances(t1,t2,…,tk),thejointdistributionof(y(t+t1),y(t+t2),…,y(t+tk))isindependentoft.

    Example:

    • W(t)isastochasticprocesses.

    • Z(t)= dW(t)

    dtisastochasticprocess.

    Note: Forfinitedt,dW/dtiswelldefined,withnocomplicationatall.

    Example:

    • W(t)isnotstationary.E W(t)2( ) = t varieswitht.

    • Z(t)= dW(t)

    dtisstationary

    Note: Thejointdistributionisinvariantunderashift.

  • AM216StochasticDifferentialEquations

    - 6 -

    PropertiesofstationarystochasticprocessForastationarystochasticprocess,wehave

    • E(y(t))=E(y(0))• E y(s + τ)y(s)( ) = E y(τ)y(0)( )

    Caution:

    Thesearenecessaryconditionsforastationarystochasticprocess.Theyarenotsufficientconditions.

    Auto-correlationfunctionDefinitionofauto-correlationfunction

    Forastationarystochasticprocess,

    R(τ)≡ E y(s + τ)y(s)( ) = E y(τ)y(0)( ) iscalledtheauto-correlationfunction.

    Note: R(τ)isafunctionofτonly,independentofs.Caution: becarefulwiththeterm“auto-correlation”

    Auto-correlationcoefficientisdefinedas

    ρ(τ)≡

    E y(τ)−E( y(0))⎡⎣ ⎤⎦ y(0)−E( y(0))⎡⎣ ⎤⎦( )var( y(0))

    Auto-correlationfunctionisdefinedas

    R(τ)≡ E y(τ)y(0)( )

    Wiener-Khinchintheorem(relationbetweenPSDandauto-correlationfunction)

    Forastationarystochasticprocess,thepowerspectrumdensity(PSD)is

    PSD≡ s(ξ)NewnotationforPSD

    !"# = limT→∞E exp(−i2πξt)y(t)dt

    −T

    T

    ∫2⎛

    ⎝⎜⎞⎠⎟

    2T

    Weuse(PSD01)obtainedabovetorewrites(ξ)as

  • AM216StochasticDifferentialEquations

    - 7 -

    s(ξ)= lim

    T→∞

    E exp(−i2πξτ) y(τ+ s)y(s)dsa(τ)

    b(τ)∫ dτ−2T

    2T∫⎛⎝

    ⎞⎠

    2T

    Changetheorderofintegrationandtakingaverage

    = limT→∞

    exp(−i2πξτ) E y(τ+ s)y(s)( )dsa(τ)b(τ)∫ dτ−2T2T∫2T

    = limT→∞

    exp(−i2πξτ)R(τ)(b(τ)−a(τ))dτ−2T

    2T∫

    2T

    Theterm(b(τ)–a(τ))hastheexpression:

    b(τ)−a(τ)= 2T + τ , τ∈[−2T , 0]2T − τ , τ∈[0, 2T ]

    ⎧⎨⎪

    ⎩⎪=2T − τ

    Substitutingitintotheexpressionofs(ξ)yields

    s(ξ)= lim

    T→∞exp(−i2πξτ)R(τ) 1− τ2T

    ⎛⎝⎜

    ⎞⎠⎟dτ

    −2T

    2T∫

    TakingthelimitasT→∞,wearriveat

    s(ξ)= exp(−i2πξτ)R(τ)dτ−∞+∞

    ∫ WejustderivedtheWiener-Khinchintheorem.

    Wiener-Khinchintheorem:Forastationarystochasticprocessy(t),thepowerspectrumdensity,s(ξ),andtheauto-correlationfunction,R(t),arerelatedby

    s(ξ)= exp(−i2πξt)R(t)dt−∞+∞

    ∫ Inotherwords,thePSDisFouriertransformoftheauto-correlationfunction.

    DefinitionofwhitenoiseLety(t)beastationarystochasticprocess.Wesayy(t)isawhitenoiseif

    s(ξ)= const Inotherwords,thepowerofawhitenoiseisuniformlydistributedinthefrequencydimension.

  • AM216StochasticDifferentialEquations

    - 8 -

    TheWiener-Khinchintheoremestablishedabovetellsusthatawhitenoisehastwoequivalentdefiningcharacters.

    s(ξ)= const ⇐⇒ R(t)= E y(t)y(0)( )∝δ(t)

    WorkingoutitemsintheshortstoryWere-writetheshortstoryintermsoftheauto-correlationfunvtionR(τ)andpowerspectrumdensitys(ξ).

    1)Z(t)≡ dW

    dtisnotaregularfunction.

    2) R(τ)= E Z(s + τ)Z(s)( ) = δ(τ) 3) s(ξ)= exp(−i2πξt)R(t)dt∫ =1 4) Z(t)isawhitenoise.

    • ToshowZ(t)isawhitenoise(item4),weonlyneedtoshows(ξ)=const(item3).• Toshows(ξ)=1(item3),weonlyneedtoshowR(t)=δ(t)(item2)

    Thus,theremainingtaskistoshowitem2,whichwedonow.

    DerivationofR(t)=δ(t) (a“formal”derivation”)

    WefirstcalculateE(W(t)W(s))fort≥s.

    E W(t)W(s)( ) = E (W(t)−W(s)+W(s))W(s)( )

    = E (W(t)−W(s))W(s)( )+E W(s)2( ) =0+ s = s

    SinceE(W(t)W(s))=E(W(s)W(t)),weobtain

    E W(t)W(s)( ) =min(t ,s) Next,inthecalculationofE(Z(t)Z(s)),we“formally”exchangetheorderoftakingderivativesandtakingaverage.

    E Z(t)Z(s)( ) = E ∂∂s

    ∂∂t

    W(t)W(s)( )⎛⎝⎜

    ⎞⎠⎟

    = ∂∂s

    ∂∂tE W(t)W(s)( ) = ∂∂s

    ∂∂tmin(t ,s)

    Asafunctionoft,wehave

  • AM216StochasticDifferentialEquations

    - 9 -

    min(t ,s)= t , t < s

    s , t > s⎧⎨⎪

    ⎩⎪

    Differentiatingwithrespecttot,andthenwritingitasafunctionofs,weget

    ∂∂tmin(t ,s)= 1, t < s

    0, t > s⎧⎨⎪

    ⎩⎪ (asafunctionoft)

    =

    0, s < t1, s > t

    ⎧⎨⎪

    ⎩⎪ (asafunctionofs)

    Differentiatingwithrespecttos,wearriveat

    ∂∂s

    ∂∂tmin(t ,s)= δ(s −t)

    Therefore,weconclude

    E Z(t)Z(s)( ) = δ(t − s) ==> R(τ)= E Z(s + τ)Z(s)( ) = δ(τ)

    ExpressionsofR(t)ands(ξ)forfinitedt

    (Justificationofthe“formal”derivationsabove)

    Toemphasizethefinitetimestep,letΔt≡dt.Wehave

    Z(t)=W(t +Δt)−W(t)

    Δt awelldefinedstationarystochasticprocess

    E Z(t)Z(s)( ) = E W(t +Δt)−W(t)Δt ⋅

    W(s +Δt)−W(s)Δt

    ⎛⎝⎜

    ⎞⎠⎟

    =0 , |t − s |> ΔtΔt−|t − s |(Δt)2 , |t − s |≤ Δt

    ⎨⎪

    ⎩⎪

    (derivationnotincluded)

    R(τ)= E Z(s + τ)Z(s)( ) =0 , |τ|> ΔtΔt−|τ|(Δt)2 , |τ|≤ Δt

    ⎨⎪

    ⎩⎪

    TakingtheFouriertransformofR(t),weobtain

  • AM216StochasticDifferentialEquations

    - 10 -

    s(ξ)= exp(−i2πξt)R(t)dt∫ = exp(−i2πξt)

    Δt−|t |(Δt)2 dt−Δt

    Δt

    =2cosh(i2πξΔt)−1(i2πξΔt)2

    (derivationnotincluded)

    Now,afterweobtains(ξ)forfiniteΔt,wetakethelimitasΔt→0.

    Atanyfixedξ,asΔt→0,wehave

    limΔt→0

    s(ξ)= limΔt→0

    2cosh(i2πξΔt)−1(i2πξΔt)2 =1

    Observation:

    • Mathematically,workingwithfinitedtuntiltakingthelimitattheendisarigorousapproachinwhicheverystepisproperlyjustified.Butderivingexpressionswithfinitedtisalsomathematicallymuchmoreelaborated.

    • “Formal”derivationsaremuchsimpler.Buttheyarenotrigorous.

    Aclassofcolorednoise:InthesubsequentdiscussionofOrnstein-Uhlenbeckprocess(OU),wewillseethatitsauto-correlationhastheform:

    R(t)= E y(t)y(0)( )∝exp(−β|t |) Thecorrespondingpowerspectrumdensityis

    s(ξ)= exp(−i2πξt)R(t)dt∫ ∝ exp(−i2πξt)exp(−β|t |)dt∫= 2ββ2 +4π2ξ2

    Endofdiscussionofwhitenoise

    ConstrainedWienerprocess

    ForanunconstrainedWienerprocess,wehave

    W(0)=0 and W(t1)~N(0,t1)

    WhathappensifitisconstrainedbyW(t1+t2)=y?

    W(t1)isstillrandom.

    Weliketoknowtheconditionaldistribution(W(t1)|W(t1+t2)=y).

    Forthatdiscussion,weneedtointroduceBayestheorem.

  • AM216StochasticDifferentialEquations

    - 11 -

    BayesTheorem

    ConsidertwoeventsAandB.WewritePr(AandB)intwoways.Pr(AandB)=Pr(A|B)Pr(B)

    Pr(AandB)=Pr(B|A)Pr(A)Equatingthetwo,weget

    Pr(A|B)Pr(B)=Pr(B|A)Pr(A)

    ExpressPr(A|B)intermsofPr(B|A),wearriveatBayesTheoremforevents:

    Pr(A B)=

    Pr(B A)Pr(A)Pr(B)

    ThisisBayestheoremforevents.

    ToderiveBayestheoremfordensities,weconsider

    A=“x≤X<x+ΔxB=“y≤Y<y+Δy

    Wewriteprobabilitiesintermsofdensities

    Pr(A B) ≈ ρ(X = x Y = y)Δx

    Pr(B A) ≈ ρ(Y = y X = x)Δy

    Pr(A) ≈ ρ(X = x)Δx

    Pr(B) ≈ ρ(Y = y)Δy SubstitutingthesetermsintoBayestheorem,weobtainBayestheoremfordensities.

    Bayestheoremfordensities

    ρ(X = x Y = y) =

    ρ(Y = y X = x)⋅ρ(X = x)ρ(Y = y)

    Ausefultrick:

    Indensityρ(X=x|Y=y),xistheindependentvariableandyisaparameter.ρ(Y=y)ontheRHSisafunctionofyonly,independentofx.ItsimplyservesasanormalizingfactortomaketheRHSintegrateto1.Thus,wedon’tneedtoexplicitlykeeptrackofρ(Y=y).WecanwriteBayestheoremconvenientlyas

    ρ(X = x Y = y) ∝ ρ(Y = y X = x)⋅ρ(X = x)

  • AM216StochasticDifferentialEquations

    - 12 -

    wheretheRHSneedsapropernormalizingfactortomakeitintegrateto1.

    Thistrickisespeciallyconvenientfornormaldistributions.Oncewefind

    ρ(X = x) ∝ exp −(x −µ)

    2

    2σ2⎛

    ⎝⎜⎞

    ⎠⎟,

    wecanconcludeX~N(μ,σ2).

    Conditionaldistribution(W(t1)|W(t1+t2)=y)

    ThetargetisaprobabilityconditionedonWatalatertime.WeuseBayestheoremtowriteitintermsofaprobabilityconditionedonWatanearliertime.

    LetX=W(t1)andY=W(t1+t2).Wehave

    W(t1)~N(0,t1)

    ==>ρ W(t1)= x( )~N(0,t1)∝exp −x

    2

    2t1⎛

    ⎝⎜⎞

    ⎠⎟

    W(t1 +t2) = W(t1)+ W(t1 +t2)−W(t1)( )

    ~N(0,t2)! "### $###

    ==> W(t1 +t2)W(t1)= x( ) ~ x +N(0,t2)

    ==>ρ W(t1 +t2)= y W(t1)= x( ) ∝ exp −( y − x)

    2

    2t2⎛

    ⎝⎜⎞

    ⎠⎟

    TheBayestheoremgivesus

    ρ W(t1)= x W(t1 +t2)= y( ) ∝ ρ W(t1 +t2)= y W(t1)= x( )⋅ρ W(t1)= x( )

    ∝exp −( y − x)

    2

    2t2⎛

    ⎝⎜⎞

    ⎠⎟exp −x

    2

    2t1⎛

    ⎝⎜⎞

    ⎠⎟

    (Wedon’tneedtokeeptrackoffactorsthatareindependentofx!)

    ∝exp − 12t1

    + 12t2⎛

    ⎝⎜⎞

    ⎠⎟x2 −2 y2t2

    x⎛

    ⎝⎜

    ⎠⎟

    ⎝⎜

    ⎠⎟

    (Completingthesquare)

  • AM216StochasticDifferentialEquations

    - 13 -

    ∝exp− x −

    t1 yt1 +t2

    ⎝⎜⎞

    ⎠⎟

    2

    2 t1t2t1 +t2

    ⎜⎜⎜⎜⎜

    ⎟⎟⎟⎟⎟

    ~ N t1 yt1 +t2

    , t1t2t1 +t2

    ⎝⎜⎞

    ⎠⎟

    Weconclude

    ρ W(t1)= x W(t1 +t2)= y( ) ~ N t1 yt1 +t2 ,

    t1t2t1 +t2

    ⎝⎜⎞

    ⎠⎟

    Forthegeneralcase,wehave

    ρ W(a+t1)= x W(a)= ya andW(a+t1 +t2)= yb( ) ~ N t1 yb +t2 yat1 +t2 ,

    t1t2t1 +t2

    ⎝⎜⎞

    ⎠⎟

    Aspecialcase: t1=t2=h

    ρ W(a+h)= x W(a)= ya andW(a+2h)= yb( ) ~ N ya + yb2 ,

    h2

    ⎝⎜⎞

    ⎠⎟


Recommended