+ All Categories
Home > Documents > [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A....

[American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A....

Date post: 11-Dec-2016
Category:
Upload: harris
View: 222 times
Download: 8 times
Share this document with a friend
18
I AI A A-88-0365 EXPERIMENTAL INVESTIGATION OF LOAD EFFECTS ON SIMULATED COMPRESSOR AIRFOIL TRAILING-EDGE FLOWFIELDS NG D.C. McCormick and R.W. Paterson United Technologies Research Center East Hartford, CT H.D. Weingold Pratt & Whitney Aircraft East Hartford, CT AIM 26th Aerospace Sciences Meeting January 11-14, 1988/Reno, Nevada For permission to cop or republish, contact the American Institute of Aeronautics and Astronautics !XI L'Enfant Promenade, S.W., Washington, D.C. 20024
Transcript
Page 1: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

I AI A A-88-0365 EXPERIMENTAL INVESTIGATION OF LOAD EFFECTS ON SIMULATED COMPRESSOR AIRFOIL TRAILING-EDGE FLOWFIELDS

NG

D.C. McCormick and R.W. Paterson United Technologies Research Center East Hartford, CT

H.D. Weingold Pratt & Whitney Aircraft East Hartford, CT

AIM 26th Aerospace Sciences Meeting January 11-14, 1988/Reno, Nevada

For permission to cop or republish, contact the American Institute of Aeronautics and Astronautics !XI L'Enfant Promenade, S.W., Washington, D.C. 20024

Page 2: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

BXPERIHENTAL INVESTIGATION OF LOADIRG EFFECTS ON SIMlLATED COHPBESSOR AIRFOIL TRAILING-EDGE PLOWFIELDS

Duane C . McCormick* and Rober t W . Pa t e r son** U n i t e d T e c h n o l o g i e s Resea rch C e n t e r

E a s t H a r t f o r d , C o n n e c t i c u t

H a r r i s D. Weingold I*

P r a t t 6 wh i tney A i r c r a f t E a s t H a r t f o r d , C o n n e c t i c u t

*.. ,

w

Abs t * a c t

T h i s report. d e s c r i b e s an e x p e r i m e n t a l i n v e s t i - g a t i o n o f t h e f l o w f i e l d d e v e l o p m e n t i n t h e t r a i l i n g - e d g e r e g i o n of a s i m u l a t e d compresso r a i r f o i l h a v i n g p r e s s u r e - t o - s u c t i o n s u r f a c e l o a d i n g . The Study r e p r e s e n t s a c o n t i n u a t i o n o f an e f f o r t t o s t u d y t u r b u l e n t , s e p a r a t e d a i r f o i l t r a i l i n g - e d g e f l o w s . P r e v i o u s e x p e r i m e n t a t i o n had a d d r e s s e d a i r f o i l t r a i l i n g - e d g e s e p z r e t i o n phenomena i n the: a b s e n c e o f p r e s s u r e l o a d i n g . T"r o b j e c t i v e o f t h e c u r r e n t s t u d y w a s t o e x p l o r e t h e e f f e c t s o f l o a d i n g and t h e r e b y p r o v i d e a more r e a l i s t i c s i m u l a t i o n o f t h e compressor a i r f o i l f l ow e n v i r o n m e n t . The p r e s - e n t a p p r o a c h was t o conduc t a l a r g e - s c a l e c a s c a d e s i m u l a t i o n o f t h e a i r f o i l t r a i l i n g - e d g e f l o w f i e i d f o r b o t h a nominal d e s i g n c o n d i t i o n and a h i g h e r l o a d i n g o f f - d e s i g n c o n d i t i o n . For t h e d e s i g n con- d i t i o n , t h e a i r f o i l boundary l a y e r s e p a r a t e d a t t h e t r a i l i n g e d g e . For t h e o f f - d e s i g n c o n d i t i o n , s e p a - r a t i o n o c c u r r e d on t h e s u c t i o n s u r f a c e u p s t r e a m o f Lhe t r a i l i n g e d g e . A p r i n c i p a l r e s u l t o f t h e s t u d y - w a s t h a t p r e s s u r e l o a d i n g was found t o a l t e r t h e t r a i l i n g - e d g e t i m e mean v e l o c i t y f i e l d from t h a t o b s e r v e d i n p r e v i o u s un loaded a i r f o i l e x p e r i m e n t . The r e l a t i v e b a s e p r e s s u r e f o r t h e nominal d e s i g n c o n d i t i o n was u n a l t e r e d from t h e un loaded e x p e r i - ment b u i s i g n i f i c a n t l y lower f o r t h e o f f - d e s i g n c o n d i t i o n . I n c r e a s e d l o a d i n g was found t o i n d u c e g r e a t e r c a s c a d e e x i t f l ow d e v i a t i o n from t h e e x i t m e t a l angle, t h u s r e d u c i n g t h e r e l a t i v e c a s c a d e f l o w t u r n i n g .

I n t r o d u c t i o n

The overall r e s e a r c h p rob lem a d d r e s s e d i n t h i s s t u d y was t u r b u l e n t boundary l a y e r s e p a r a t i o n i n t h e t r a i l i n g - e d g e r e g i o n o f compresso r a i r f o i l s . Because of t h e t h i c k , b l u n t t r a i l i n g - e d g e geome- t r i e s r e q u i r e d f o r s t r u c t u r a l and d u r a b i l i t y rea- sons, s u r f a c e c u r v a t u r e - i n d u c e d s e p a r a t i o n i n v a r i - a b l y o c c u r s i n t h i s r e g i o n a t d e s i g n c o n d i t i o n s . Under h i g h e r l o a d i n g c o n d i t i o n s a s s o c i a t e d w i t h o f f - d e s i g n o p e r a t i o n , t h e s u c t i o n s u r f a c e s e p a r a - t i o n l o c a t i o n moves fo rward r e s u l t i n g i n a larger s p a t i a l e x t e n t o f t h e s e p a r a t e d f low r e g i o n .

* A s s o c i a t e R e s e a r c h E n g i n e e r , Member AIM. ** Manager Cas Dynamics and l b e r m o p h y s i c s ,

***Senior R e s e a r c h S c i e n t i s t , A s s o c i a t e F e l l o w v A s s o c i a t e F e l l o w A I M .

A I M .

One u n d e s i r a b l e consequence of t r a i l i n g - e d g e s e p a r a t i o n i s f a i l u r e t o recover t o t a l p r e s s u r e a t t h e r e a r w a r d s t a g n a t i o n p o i n t . T h i s r e s u l t s i n a d e p r e s s e d b a s e p r e s s u r e and a d r a g c o n t r i b u t i o n wh ich can b e an a p p r e c i a b l e p o r t i o n of t h e o v e r a l l d r a g f o r an o t h e r w i s e w e l l d e s i g n e d a i r f o i l . A s econd u n d e s i r a b l e Consequence i s t h a t SepBrat i o n c o n t r i b u t e s t o a r educed l i f t , t h e r e b y d e c r e a s i n g f l o w t u r n i n g . I n more e x t r e m e l o a d i n g s i t u a t i o n s , t h e s u c t i o n surface s e p a r a t i o n c a n m o w f o r w a r J f rom t h e t r a i l i n g e d g e , r e s u l t i n g i n s t a l l and a

c a t a s t r o p h i c loss o f l i f t . The c a s c a d e s t u d y o f Hobbs e t a l . ' and t h e

un loaded b l u n t - b a s e d a i r f o i l s t u d y o f P a t e r s o n and Weingo ld2 a r e examples of p r e v i o u s e x p e r i m e n t a l programs d i r e c t e d toward improv ing u n d e r s t a n d i n g o f t h e compressor a i r f o i l t r a i l i n g - e d g e s e p a r a t i o n p r o c e s s . Complementary t r a i l i n g - e d g e f l o w f i e l d a n a l y t i c a l s t u d i e s a r e a l s o b e i n g c o n d u c t e d . 3-5 R e l a t i v e t o f u n d a m e n t a l s e p a r a t e d f l a w s t u d i e s , an e x p e r i m e n t a l i n v e s t i g a t i o n o f t u r b u l e n t s e p a r a t i o n and r e a t t a c h m e n t on a f l a t - p l a t e t e s t s u r f a c e , r e p o r t e d by P a t r i c k , 6 h a s been found t o b e r e l e v a n t t o t h e p r e s e n t p rob lem.

P r e v i o u s compresso r c a s c a d e s t u d i e s such as t h a t o f Hobbs e t a i . ' h a v e p r o v i d e d i n f o r m a t i o n on o v e r a l l t r a i l i n g - e d g e f l o w c h a r a c t e r i s t i c s . Because o f t h e s m a l l s c a l e o f such e x p e r i m e n t s , t h e d e t a i l e d d e f i n i t i o n of t h e s e p a r a t e d f low r e g i o n r e q u i r e d f o r code a s s e s s m e n t and deve lopmen t e f f o r t s was no t p r o v i d e d . T h i s l e d t o a p r e v i o u s l y r e p o r t e d e x p e r i m e n t i n which B large-scale a i r f o i l model was used t o p r o v i d e d e t a i l e d i n f o r m a t i o n r e g a r d i n g t r a i l i n g - e d g e pressure d i s t r i b u t i o n s , v e l o c i t y f i e l d s and u n s t e a d y f low ( v o r t e x s h e d d i n g ) c h a r a c t e r i s t i c s . The f o c u s o f t h a t s t u d y was a t es t c o n d i t i o n where t h e e f f e c t o f t u r b u l e n t bound- a r y l a y e r t o t r a i l i n g - e d g e t h i c k n e s s r a t i o c o u l d be e x p l o r e d w i t h o u t t h e p r e s e n c e o f p r e s s u r e l o a d i n g e f f e c t s . The t e s t c o n d i t i o n s were near e q u i l i b r i u m b o u n d a r y l a y e r s i n t h e one t o two t r a i l i n g - e d g e t h i c k n e s s range, t y p i c a l o f s u p e r c r i t i c a l compres- sor a i r f o i l s , w i t h a zero p r e s s u r e g r a d i e n t f r e e - stream boundary c o n d i t i o n . The s t u d y p roduced t h e d e s i r e d d e t a i l e d f l o w f i e l d i n f o r m a t i o n and i d e n t i - f i e d vortex s h e d d i n g a6 an i m p o r t a n t f l o w f e a t u r e . It vas f u r t h e r found t h a t unsymmet r i c b o u n d a r y layers w i t h a t h i c k n e s s r a t i o o f 1.8 ( i n d i s p l a c e - m e n t , wmen tum, and boundary l a y e r t h i c k n e s s ) , b u t s i m i l a r s h a p e f a c t o r s , had a n e g l i g i b l e i n f l u e n c e on t h e f l o w f i e l d .

"Copyright < 1988 by Uoitcd T&nologies Corporation. PubBshed by thr ~ ~ ~ r i ~ ~ ~ ~ ~ t i t ~ t ~ m ti^^ and ~ ~ t ~ ~ n ~ ~ t i c r . In<. a i th penni~rion."

1

Page 3: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

The overall goal of t h e p r e s e n t e f f o r t w a s t o e x t e n d t h e p r e v i o u s r e s e a r c h t o i n c l u d e r e a l i s t i c t r a i l i n g - e d g e l o a d i n g c o n d i t i o n s , t h e r e b y i n c l u d i n g t h e r e m a i n i n g m a j o r e f f e c t e x p e c t e d t o i n f l u e n c e s e p a r a t i o n c h a r a c t e r i s t i c s . The a p p r o a c h was t o c o n d u c t a l a r g e - s c a l e c a s c a d e s i m u l a t i o n u s i n g c o n t o u r e d wind t u n n e l walls t o s i m u l a t e midgap s t r e a m l i n e s . The p r e s s u r e d i s t r i b u t i o n w a s d e s i g n e d t o d u p l i c a t e t h a t which would be o b t a i n e d i n a C o n t r o l l e d D i f f u s i o n A i r f o i l c a s c a d e . C o n t r o l l e d D i f f u s i o n A i r f a i l r e f e r s t o a s u p e r - c r i t i c a l c o m p r e s s o r a i r f o i l d e s i g n d e s c r i b e d by Hobbs and Weingold . ' Two c o m p r e s s o r o p e r a t i n g c o n d i t i o n s w e r e i n v e s t i g a t e d . The f i r s t , t e rmed t h e low l o a d i n g c a s e , a d d r e s s e d o n - d e s i g n o p e r a t i o n v h r r e s e p a r a t i o n occurs on t h e t r a i l i n g - e d g e c i r c l e . T h e s e c o n d , h i g h l o a d i n g c a s e was c o n c e r n e d w i t h o f f - d e s i g n o p e r a t i o n , where t h e s e p a r a t i o n r e g i o n e x p a n d s t o i n c l u d e a p o r t i o n of t h e s u c t i o n s u r f a c e j u s t u p s t r e a m of t h e t r a i l i n g e d g e . T h i s i s an i n t e r m e d i a t e c o n d i t i o n i n t h e a p p r o a c h t o a i r f o i l t r a i l i n g - e d g e s t a l l .

Approach

AS i n t h e p r e v i o u s s t u d y Z a l a r g e - s c a l e p l a t e o f C o n s t a n t t h i c k n e s s was used t o s i m u l a t e t h e c o m p r e s s o r a i r f o i l . The s c a l e of t h e e x p e r i m e n t ( c i r c u l a r t r a i l i n g - e d g e d i a m e t e r o f 2 . 5 4 cm) was s e t by t h e need t o a c q u i r e a d e t a i l e d d e f i n i t i o n of t h e v e l o c i t y and p r e s s u r e f i e l d s i n t h e v i c i n i t y o f t h e t r a i l i n g e d g e . The l e n g t h of t h e p l a t e w a s s e l e c t e d t o p r o v i d e r a t i o s of t r a i l i n g - e d g e t u r b u - l e n t b o u n d a r y l a y e r t h i c k n e s s t o t r a i l i n g - e d g e t h i c k n e s s r e p r e s e n t a t i v e o f a c t u a l s c a l e a p p l i c a - t i o n s . T y p i c a l b o u n d a r y l a y e r c h a r a c t e r i s t i c s f o r s u p e r c r i t i c a l a i r f o i l s are g i v e n by t h e B u i l d I c a s c a d e d a t a r e p o r t e d by Hobbs e t a l , ' A t a p o s i - t i o n 0.032 chord u p s t r e a m of t h e t r a i l i n g - e d g e , r a t i o s of p r e s s u r e s u r f a c e and s u c t i o n s u r f a c e momentum t h i c k n e s s t o t r a i l i n g - e d g e d i a m e t e r were 0.09 and 0 . 2 6 r e s p e c t i v e l y . TO a c h i e v e r e l a t i v e t h i c k n e s s i n t h i s r ange , a p l a t e l e n g t h on t h e o r d e r of 2 m e t e r s was r e q u i r e d . A c u r v e d p l a t e c o n t a i n e d w i t h i n a c o n t o u r e d wind t u n n e l d u c t was u s e d t o g e n e r a t e p r e s s u r e g r a d i e n t h i s t o r i e s t y p i c a l o f a CDA ( C o n t r o l l e d D i f f u s i o n A i r f o i l ) c a s c a d e . R e l a t i v e t o f l o w c o n d i t i o n s , t h e 8 p p r o a c h w a s t o c o n d u c t t h e e x p e r i m e n t a t low s u b s o n i c Mach number i n a two-dimens iona l f l o w e n v i r o n m e n t . M o d e l i n g o f c o m p r e s s i b i l i t y e f f e c t s w a s n o t c o n s i d e r e d t o be o f f i r s t o r d e r i m p o r t a n c e .

The p r e s s u r e d i s t r i b u t i o n of t h e CDA c a s c a d e "B", one of e i g h t CDA c a s c a d e s d e s c r i b e d by Hobbs and Weingold , ' w a s s e l e c t e d f o r use i n t h e p r e s e n t s t u d y . T h i s d e s i g n i s t y p i c a l o f t h a t employed i n t h e r o t o r t i p r e g i o n of a c o m p r e s s o r m i d d l e s t a g e .

T r a n s l a t i o n of t h i s d e s i g n i n t o a wind t u n n e l c o n f i g u r a t i o n p r o c e e d s as f o l l o w s : The t h i c k n e s s of the p l a t e was s e l e c t e d as 2 . 5 4 cm. c a s c a d e "B" v a s t h e n s c a l e d t o t h i s s i z e and t h e f l o w f i e l d c a l c u l a t e d a t Uach 0 . 1 , u s i n g t h e i n v i s c i d , two- d i m e n s i o n a l p o t e n t i a l f l o w c a s c a d e a n a l y s i s of C a s p a r , Hobbs, and D a v i s . * A P r a t t 6 W h i t n e y ,

s e m i e m p i r i c a l d e v i a t i o n s y s t e m f o r CDA c a s c a d e s was used t o d e t e r m i n e t h e downstream f l o w a n g l e f o r t h e p o t e n t i a l f l o w c a s c a d e a n a l y s i s . The same a n a l y s i s was used t o d e t e r m i n e t h e f l o w f i e l d f o r t h e c u r v e d p l a t e . The p l a t e c u r v a t u r e was v a r i e d t o f i n d a -' g e o m e t r y h a v i n g s i m i l a r p r e s s u r e g r a d i e n t s b o t h along t h e s u r f a c e s and normal t o t h e a i r f o i l i n t h e t r a i l i n g - e d g e r e g i o n . An u p s t r e a m e x t e n s i o n l e n g t h o f t h e p l a t e ( f o r boundary l a y e r g r o w t h ) was s e l e c t e d t o s i m u l a t e the r a t i o s of t h e boundary l a y e r p a r a m e t e r s t o t r a i l i n g - e d g e t h i c k n e s s c a l c u - l a t e d f o r t h e u n s c a l e d c a s e a d e "8". A boundary l a y e r a n a l y s i s was t h e n a p p l i e d t o t h e midgap s t r e a m l i n e s ( f r o m t h e p o t e n t i a l f l o w c a s c a d e a n a l y s i s ) t o c a l c u l a t e boundary l a y e r deve lopment a s i f t h e midgap s t r e a m l i n e s were s o l i d v a l l s . The wind t u n n e l d u c t was t h e n d e s i g n e d t o b e d i s p l a c e d from t h e c a l c u l a t e d midgap s t r e a m l i n e s by an amount e q u a l t o t h e b o u n d a r y l a y e r d i s p l a c e m e n t t h i c k n e s s . The s y s t e m was t h e n r o t a t e d t o a h o r i z o n t a l i n l e t o r i e n t a t i o n c o r r e s p o n d i n g t o t h e wind t u n n e l i n l e t d u c t . T h i s o v e r a l l c a l c u l a t i o n was r e p e a t e d far a model w i t h i n c r e a s e d t u r n i n g ( h i g h e r l o a d i n g ) t o p r o v i d e a c o n f i g u r a t i o n p r e d i c t e d t o produce suc-

t i o n s u r f a c e s e p a r a t i o n u p s t r e a m of t h e t r a i l i n g e d g e . F i g . 1 shows t h e r e l a t i o n s h i p of t h e o r i g i n - a l a i r f o i l and c a s c a d e a r r a n g e m e n t ( d a s h e d l i n e s ) t o t h e c u r v e d - p l a t e s i m u l a t i o n .

\ \

STREAMLINES

flg. I Schemaflc of CurVCd~pI~Ie cascade sirnulalion

Experimental Description

Wind T u n n e l Arranscacnt

The e x p e r i m e n t vas c o n d u c t e d i n t h e r e c e n t l y c o n s t r u c t e d , second UTRC Boundary L a y e r Wind Tunnel w i t h a c a s c a d e s i m u l a t i o n t e s t s e c t i o n . The wind t u n n e l is a l o v - s p e e d , c l o s e d - l o o p e d , low t u r b u - lence ( 0 . 2 5 p e r c e n t ) d e s i g n . A s i d e v i e w s c h e m a t i c of t h e f a c i l i t y w i t h t h e c a s c a d e s i m u l a t i o n t e s t - s e c t i o n is shown in Fig. 2 .

Page 4: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

w

HONEYCOMB - 0 1 2

METERS

Fig. 2 Wind tunnel arrangement.

The wind t u n n e l b lower is l o c a t e d u p s t r e a m o f t h e s e t t l i n g chamber . C o n v e n t i o n a l , h i g h q u a l i t y f l o w c o n d i t i o n i n g i s p r o v i d e d i n t h e s e t t l i n g cham- b e r . The c o n d i t i o n i n g c o n s i s t s o f p e r f o r a t e d p l a t e , honeycomb, coarse s c r e e a s , and f i n e screens t o p r o v i d e u n i f o r m , low t u r b u l e n c e f l o w . The con- t r a c t i o n from t h e s e t t l i n g chamber t o t h e t e s t - s e c t i o n i s p r o v i d e d i n two s t a g e s , t h e f i r s t i n t h e s p a n w i s e d i r e c t i o n and t h e second i n t h e t r a n s v e r s e d i r e c t i o n . The wall s h a p e f o r each c o n t r a c t i o n w a s

For t h e h i g h l o a d i n g c a s e , t h e l a r g e t r a n s - verse p r e s s u r e g r a d i e n t ( c a u s e d by t u r n i n g ) i n t e r - a c t e d s t r o n g l y w i t h t h e co rne r boundary l a y e r , g i v i n g r i s e t o corner v o r t e x s t r u c t u r e 8 t h a t d e t e r - i o r a t e d t h e t w o - d i m e n s i o n a l i t y o f t h e wind t u n n e l . T h i s problem is t y p i c a l o f c a s c a d e f a c i l i t i e s and i s u s u a l l y s o l v e d by c o r n e r b l e e d on t h e s u c t i o n s u r f a c e . l o The same method w a s used h e r e t o cor- r e c t t h e p rob lem.

d e f i n e d by m a t c h i n g two c u b i c a r c s by t h e merhod of Model D e s c r i p t i o n Rouse and H a ~ s a n . ~ The method n i v e s d e s i g n s which - - a v o i d l o c a l w a l l a d v e r s e p r e s s u r e g r a d i e n t s (and t h u s boundary l a y e r s e p a r a t i o n ) a s deduced from t h e p o t e n t i a l f l o w s o l u t i o n . The o v e r a l l a r ea c o n t r a c - t i o n r a t i o t h r o u g h t h e t w o s t a g e s is 2 . 1 .

Downstream of t h e c o n t r a c t i o n i s a 30.5 cm s t r a i g h t f l o w s e c t i o n w i t h a 78 .7 em span and B

41 .7 cm t r a n s v e r s e d i m e n s i o n . I n t h i s s e c t i o n t h e wall boundary l a y e r s a r e t r i p p e d on a l l f o u r w a l l s w i t h a 6 nm square b a r . T u r b u l e n t wall boundary l a y e r s were d e s i r e d t o min imize end wall i n t e r - a c t i o n s w i t h t h e tes t s e c t i o n ' s pressure g r a d i e n t s ( c a u s e d by t u r n i n g ) . The t e s t s e c t i o n i n l e t refer- ence c o n d i t i o n s were a l s o measured i n t h i s s e c t i o n . The s t r a i g h t flow s e c t i o n i s f o l l o w e d by t h e tes t s e c t i o n i n which t h e i n i t i a l p o r t i o n of t h e model is mounted.

The model c o n s i s t s o f a f l a t p l a t e r e g i o n and a c i r c u l a r arc, t u r n i n g r e g i o n ( d e s c r i b e d in more d e t a i l b e l o w ) . The u p s t r e a m p o r t i o n of t h e f l a t p l a t e was n o m i n a l l y c e n t e r e d i n t h e s t r a i g h t d u c t wh ich i s 55 cm l o n g i n t h e downstream d i r e c t i o n . The s t r a i g h t d u c t is f o l l o w e d by t h e f l e x i b l e po ly - p r o p y l e n e w a l l s , s h o r n i n Fig. 2 , which r e p r e s e n t t h e d i s p l a c e d (boundary l a y e r c o r r e c t e d ) midgap e r r e a r n l i n e s . The midgap s t r e a m l i n e s t e r m i n a t e a t t h e downstream dump r e g i o n . The f low is t h e n d u c t e d i n t o t h e submic ron f i l t e r sys t em and h e a t e x c h a n g e r s e c t i o n o f t h e r e t u r n l o o p .

v

3

The model c o n s i s t s o f two b a s i c s e c t i o n s , t h e u p s t r e a m f l a t p l a t e s e c t i o n and t h e downstream t u r n i n g s e c t i o n a s shown i n F i g . 3. Both s e c t i o n s are o f aluminum r i b c o n s t r u c t i o n w i t h aluminum s k i n . The t h i c k n e s s i s c o n s t a n t a t 2.54 Cm. The l e a d i n g edge s h a p e o f t h e f l a t p l a t e s e c t i o n i s a 3 t o 1 e l l i p s e . The d i s t a n c e from t h e l e a d i n g edge t o t h e end o f t h e f l a t p l a t e s e c t i o n i s 119 cm f o r b o t h l o a d i n g cases.

REFERENCE CONDITIONS

SUICTION SURFACE

Fig. 3 Cascade simulation geometry

Page 5: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

The t u r n i n g o r l o a d i n g s e c t i o n o f t h e model is a c i r c u l a r a r c o f 175 cm mean r a d i u s . The low l o a d i n g c n s e h a s a 1 9 . 6 d e g r e e a r c and t h e h i g h l o a d i n g c a s e h a s a 2 9 . 6 d e g r e e a r c . The shape o f t h e t r a i l i n g edge i s a h a l f c i r c l e of r a d i u s 1.27 cm and i s t a n g e n t t o t h e end of t h e t u r n i n g see- t i o n . The t r a i l i n g edge a d d s a n o t h e r 0 . 4 d e g r e e s o f arc t o t h e model t h u s g i v i n g t h e two l o a d i n g c a s e s t o t a l t u r n i n g a n g l e s of 20 and 30 d e g r e e s (low and h i g h l o a d i n g cases r e s p e c t i v e l y ) .

To a v o i d t h r e e - d i m e n s i o n a l t r a n s i t i o n , t h e model b o u n d a r y l a y e r s were t r i p p e d on t h e f l a t p l a t e s e c t i o n 1 5 . 2 cm downst ream of t h e l e a d i n g e d g e . The t r i p was 0 . 3 8 nm t h i c k and o f t h e Hama- t y p e . " T h i s t h i c k n e s s was d e s i g n e d t o be 80 p e r - Cent o f t h e e s t i m a t e d d i s p l a c e m e n t t h i c k n e s s t o p r o v i d e an e f f i c i e n t t r i p .

The model c o o r d i n a t e s y s t e m (n, y ) h a s i t s o r i g i n l o c a t e d a t t h e t r a i l i n g e d g e w i t h t h e x a x i s p a r a l l e l t o t h e e x i t mean camber l i n e as shown i n F i g s . 3 and 4 . T h i s c o o r d i n a t e s y s t e m i s used t o r e p o r t most of t h e measured r e s u l t s . In a d d i t i o n , t h e s u r f a c e c o o r d i n a t e , s , i s measured from t h e t r a i l i n g - e d g e c e n t e r l i n e and i s used t o r e p o r t t h e s u r f a c e p r e s ~ u r e d a t a .

DIMENSIONS IN cm

, ,

CIRCULAR PRESSURE SURFACE -TRAILING EDGE

-r

SUCT~ON SURFACE 19 ~ T A T I C PRESSURE ? N E E "' TAPS AT ' loo (NOMINAL)

STATIC PRESSURE TAPS INTERVALS

Fig. 4 Detail of trailing edge geometry.

C a s c a d e Descr ipt ion

The s i m u l a t e d c a s c a d e geometry f a r t h e low and h i g h l o a d i n g cases a r e l i s t e d below (angles are measured f rom t h e c a s c a d e t a n g e n t d i r e c t i o n )

LOW L o a d i n g - C h o r d f s p a e i n g 2 . 5 3 2.94 I n l e t f l a w a n g l e 38' 38" E x i t f l o w angle 52' 53" Leading-edge m e t a l a n g l e 38" 38' T r a i l ing-edge m e t a l angle 58" 68'

N o t e , t h e e x i t flow a n g l e i s t h e e x p e r i m e n t a l l y d e t e r m i n e d v a l u e .

O p e r a t i n g and R e f e r e n c e C o n d i t i o n s

The e x p e r i m e n t was performed a t a c o n s t a n t R e y n o l d s numbers of 2.64 x 106 s n d 3.08 x IO6 f o r t h e low and h i g h l o a d i n g c a s e s , r e s p e c t i v e l y . T h i s v R e y n o l d s number i s b a s e d on t h e i n l e t v e l o c i t y and t h e camber l i n e l e n g t h . The o p e r a t i n g c o n d i t i o n s o f t h e wind t u n n e l were m o n i t o r e d u p s t r e a m (9 model t h i c k n e s s e s ) of t h e l e a d i n g edge i n t h e s t r a i g h t d u c t a s shown i n Fig. 3 ( l a b e l e d r e f e r e n c e c o n d i - t i o n s ) . I n l e t dynamic head and t o t a l p r e s s u r e were measured w i t h a p i t o t s t a t i c p r o b e . A l s o , t h e i n l e t t o t a l t e m p e r a t u r e was measured . The nominal o p e r a t i n g c o n d i t i o n s a r e t a b u l a t e d be low:

I n l e t dynamic head 3.43 cm w a t e r T o t a l p r e s s u r e 1 0 cm w a t e r gauge T o t a l t e m p e r a t u r e 32" C I n l e t v e l o c i t y 2 4 . 0 m/s E x i t v e l o c i t y 20.8 m / s - low l o a d i n g

18.1 m / s - h i g h l o a d i n g

For t h e most p a r t , t h e c o n d i t i o n s measured a t t h i s l o c a t i o n are used as t h e r e f e r e n c e q u a n t i t i e s f o r n o r m a l i z i n g d a t a a c q u i r e d i n t h e t r a i l i n g - e d g e v i c i n i t y . T h e i n l e t v e l o c i t y i s d e s i g n a t e d U r e f and is used t o n o r m a l i z e t h e v e l o c i t i e s f o r t h e h o t f i l m and LDV s u r v e y s . The i n l e t p r e s s u r e 5 a r e d e s i g n a t e d p r e f ( r e f e r e n c e s t a t i c ) and Q r e f ( r e f e r - ence dynamic h e a d ) and a re u s e d ( e x c e p t where n o t e d ) t o compute t h e s u r f a c e p r e s s u r e c o e f f i c - i e n t s .

I n s t r u m e n t a t i o n V'

L a s e r Doppler V e l o c i m e t r y (LDV) i s t h e p r i m a r y v e l o c i t y measurement t e c h n i q u e u s e d i n t h i s s t u d y . A n o n i n t r u s i v e method was r e q u i r e d t o document t h e s e p s r a t e d f low r e g i o n downst ream o f t h e t r a i l i n g e d g e . The LDV equipment was a TSI (Thermal System3 1°C.) 9100-7, f o u r beam, two c o l o r s y s t e m . T h i s Sys tem m e a s u r e s two m u t u a l l y p e r p e n d i c u l a r compo- n e n t s of v e l o c i t y s i m u l t a n e o u s l y . The two colors are p r o v i d e d by a two w a t t Argon-Ion Laser w i t h a

To o b t a i n a h i g h s i g n a l t o n o i s e r a t i o , a 3 . 7 5 ~ beam e x p a n d e r was Used w i t h a beam s e p a r a t i o n o f 22 m e n t e r i n g the e x p a n d e r . The t r a n s m i t t i n g l e n s was 152 m i n d i a m e t e r w i t h 8 f o c a l l e n g t h of 762 m. The r e s u l t i n g measurement volume dimen- s i o n s ( e l l i p s o i d ) were 2.5 t o 0.133 mm m a j o r t o m i n o r a x i s . The major a x i s o f t h e volume was b a s i c a l l y a l i g n e d w i t h t h e spanwise d i r e c t i o n , t h u s p r o v i d i n g t h e maximum t r a n s v e r s e r e s o l u t i o n of 0 . 5 p e r c e n t o f t h e p l a t e t h i c k n e s s . The f r i n g e e p a c i n g was 4.16 p and 28 f r i n g e s were p r e s e n t in the measurement volume ( w i t h no Bragg s h i f t ) . T h e i n c l u d e d h a l f angle o f t h e laser beams was 3.141 d e g . f o r b o t h components . The s c a t t e r e d l i g h t was c o l l e c t e d i n t h e b a c k s c a t t e r mode. In o r d e r t o d e t e c t r e v e r s e f l o w t h r o u g h t h e measurement volume, b o t h components were Bragg s h i f t e d . Based on t h e o p t i c a l c o n f i g u r a t i o n and t h e f l o w f i e l d c h a r a c t e r - i e t i c s , the p o l a r r e s p o n s e o f t h e measurement "01- - "me was c a l c u l a t e d t o b e a f u l l 360 dewees.'*

c o l o r s e p a r a t o r .

4

Page 6: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

A c o u n t e r - t y p e p r o c e s s o r , TSI 1990C, was used t o i n t e r p r e t t h e Dopp le r s i g n a l . For t h e C u r r e n t e x p e r i m e n t , 16 f r i n g e c r o s s i n g s w e r e r e q u i r e d f o r - e a c h r e a l i z a t i o n and 1024 r e a l i z a t i o n s ( f o r each component) were t a k e n f o r e a c h d a t a p o i n t . The p r o c e s s o r was o p e r a t e d i n t h e c o n t i n u o u s mode i n o r d e r t o compensa te f o r some o f t h e i n d i v i d u a l r e a l i z a t i o n b i a s . 1 3

The mean v e l o c i t i e s were c a l c u l a t e d u s i n g t h e s t a t i s t i c a l e d i t i n g c r i t e r i a of ADEC ( d e s c r i b e d i n R e f . 1 3 ) . For t h e g i v e n sample s i z e of 1024, t h e c r i t e r i a r e j e c t s any d a t a o u t s i d e o f a t h r e e s t a n d - a r d d e v i a t i o n ( c a l c u l a t e d from t h e e n t i r e sample p o p u l a t i o n ) a c c e p t a n c e b a n d . The mean v a l u e was t h e n c a l c u l a t e d b y t h e n u m e r i c a l average o f t h e r e m a i n i n g sample p o p u l a t i o n . T y p i c a l l y no or v e r y few d a t a p o i n t s were r e j e c t e d due t o t h e h i g h s i g - n a l t o n o i s e r a t i o .

The d a t a r a t e o f v e l o c i t y r e a l i z a t i o n s was m o d e r a t e l y low ( 1 0 - 50 p e r s e c o n d ) , t h u s s a m p l i n g was done over r e l a t i v e l y l o n g p e r i o d s . T h i s r e s u l t s i n n e a r i n d e p e n d e n t s a m p l i n g w i t h v e r y r e p e a t a b l e mean values. The w o r s t case u n c e r t a i n t y i n t h e mean v a l u e due t o b i a s and random errors ( u s i n g t h e methodology of R e f . 13) was c a l c u l a t e d t o be ?Z p e r c e n t ( i n e a c h component) o f t h e r e f e r - ence ( c a s c a d e i n l e t ) v e l o c i t y . T h i s occur 's where t h e v e l o c i t y g r a d i e n t s a r e h i g h j u t downstream of t h e t r a i l i n g edge on t h e p r e s s u r e s i d e . T y p i c a l l y , however , t h e measu remen t s are b e t t e r t h a n +1 p e r c e n t .

The Seed m a t e r i a l used f o r t h i s e x p e r i m e n t was

Duke S c i e n t i f i c polymer m i c r o s p h e r e s w i t h a q u o t e d '-~ mean d i a m p t e r o f 1.07 p and d e n s i t y of 1.05 gJml

( S . G . r e l a t i v e t o w a t e r o f nearly one). The micro - s p h e r e s a r e quo ted t o have a low v a r i a n c e i n dism- e t e r . T h i s was c o n f i r m e d w i t h a Ryco LAC 226 l a s e r - i l l u m i n a t e d a e r o s o l p a r t i c l e c o u n t i n g and s i z i n g s y s t e m . The s i z e a n a l y s i s w a s per fo rmed u n d e r normal r u n n i n g c o n d i t i o n s , t h u s a l s o conf im- i n g t h e i n j e c t i o n t e c h n i q u e d i d n o t p roduce s i g n i f - i c a n t a l g o m e r a t i o n s .

The seed w a s d i l u t e d w i t h e t h y l a l c o h o l and

i n j e c t e d i n t o t h e wind t u n n e l w i t h e TSI 9302 Model a t o m i z e r . The a t o m i z e r is a Wrigh t j e t b a f f l e t y p e which g e n e r a t e d 2 pm s i z e d r o p l e r s o f t h e s o l u t i o n . Due t o t h e low v a p o r p r e s s u r e o f a l c o h o l , t h e alco- h o l r a p i d l y e v a p o r a t e s l e a v i n g t h e polymer mic ro - s p h e r e s . The r ake t y p e i n j e c t i o n p robe was i n s t a l l e d i n t h e l o w v e l o c i t y , f i r s t s t a g e c o n t r a c - t i o n , i n o r d e r t o min imize t h e f low d i s t u r b a n c e . I t s l e n g t h was i n t h e t r a n s v e r s e d i r e c t i o n and was c e n t e r e d s p a n w i s e . The probe was a d j u s t e d up and down i n t h e t r a n s v e r s e d i r e c t i o n u n t i l equal d a t a r a t e s were a c h i e v e d above and be low t h e t r a i l i n g e d g e . T h i s c o n f i r m e d t h a t t h e f low was e q u a l l y s e e d e d on b o t h s i d e s o f t h e m o d e l .

~

5

R e s u l t s and D i e c u s s i o n

O v e r a l l S t a t i c P r e s s u r e D i s t r i b u t i o n s

Model s u r f a c e p r e s s u r e d i s t r i b u t i o n s , p r e s e n t - e d i n t e r m s o f t h e p r e s s u r e c o e f f i c i e n t , f o r t h e low and h i g h l o a d i n g cases are shown i n F i g . 5 . T h e p r e s s u r e c o e f f i c i e n t , C i s b a s e d on t h e r e f - e r ence ( i n l e t ) c o n d i t i o n s a n g ' i s p l o t t e d versus t h e u p s t r e a m s u r f a c e c o o r d i n a t e , s i t , measu red from t h e t r a i l i n g edge (where t i s t h e t r a i l i n g - e d g e t h i c k - ness). The s q u a r e symbols a re f o r t h e p r e s s u r e s u r f a c e and t h e c i r c l e s a re f o r t h e s u c t i o n sur- f a c e . The open symbols a r e f o r low l o a d i n g and t h e c l o s e d a r e f o r h i g h l o a d i n g . For r e f e r e n c e p u r p o s e s , s k e t c h e s o f t h e low and h i g h l o a d i n g model g e o m e t r i e s are g i v e n below t h e f i g u r e . N o t e , t h e o v e r a l l l e n g t h of t h e h i g h l o a d i n g case i s l o n g e r d u e t o t h e l a r g e r t u r n i n g a r c .

OPEN SYMBOLS - LOW LOADiNG CLOSED SYMBOLS - HIGH LOADING

0.5 I !

CP

" , j PRE "" i

I

.03 - O '&= 0 5 I-

80

LOW LOADING

HIGH LOADING

Fig. 5 Overall surface Static pressure distributions.

Low loading - For t h e low l o a d i n g case t h e f l o w over t h e p r e s s u r e s u r f a c e h a s e x p e r i e n c e d a n e t a c c e l e r a t i o n from t h e l e a d i n g edge s t a g n a t i o n p o i n t (C = 1) t o t h e f i r s t p r e s s u r e t a p ( c - -0 .3) . ?he f i r s t t a p i s a p p r o x i m a t e l y 4 t down- stream of t h e l e a d i n g e d g e . The p r e s s u r e t h e n b e g i n s t o rise r a p i d l y , well u p s t r e a m o f t h e a c t u a l model t u r n i n g . The i n c r e a s i n g p r e s s u r e i s d u e t o t h i s s u r f a c e b e i n g on t h e c o m p r e s s i o n s i d e o f t h e t u r n i n g . About h a l f w a y t h r o u g h t h e t u r n i n g s e c t i o n t h e p r e s s u r e r e a c h e s a maximum and t h e n b e g i n s t o d rop as t h e flow accelerates to match t h e t r a i l i n g - edge p r e s s u r e .

On t h e s u c t i o n surface t h e flow e x p e r i e n c e s a

n e t a c c e l e r a t i o n from t h e l e a d i n g edge t o t h e f i r s t t a p ( c p - - 0 . 2 ) . The p r e s s u r e t h e n r ises s l i g h t l y b e f o r e d r o p p i n g i n r e s p o n s e t o t h i s s u r f a c e b e i n g on t h e e x p a n s i o n s i d e of t h e t u r n i n g . J u s t dawn- stream o f t h e f l a t p l a t e l t u r n i n g l i n e t h e pressure b e g i n s t o rise as t h e f l o w d e c e l e r a t e s t o ma tch t h e t r a i l i n g - e d g e p r e s s u r e .

P

Page 7: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

Righ L o a d i n g - The b e h a v i o r of t h e h i g h l n a d i n g p r e s s u r e d i s t r i b u t i o n i s n e a r l y i d e n t i c a l e x c e p t f o r t h e a b s o l u t e l e v e l and t h e manner i n which t h e s u c t i o n s u r f a c e p r e s s u r e d i s t r i b u t i o n a p p r o a c h e s t h e t r a i l i n g e d g e . A s i s e v i d e n t by t h e a r e a between t h e s u r f a c e p r e s s u r e d i s t r i b u t i o n s , t h e l i f t i s larger f o r t h e h i g h l o a d i n g c a s e . Upstream o f t h e t r a i l i n g - e d g e t h e s u c t i o n s u r f a c e p r e s s u r e d i s t r i b u t i o n becomes f l a t over t h e l a s t 4 t o 5 t r a i l i n g - e d g e t h i c k n e s s e s . T h i s c o n s t a n t p r e s s u r e is i n d i c a t i v e of boundary l a y e r s e p a r a - t i o n . Flow v i s u a l i z a t i o n a l s o conf i rmed t h i s o b s e r v a t i o n ( and t h e l o c a t i o n i s shown w i t h an a r r o w i n t h e f i g u r e ) . Thus t h e a d v e r s e p r e s s u r e g r a d i e n t on t h e s u c t i o n s u r f a c e i s s u f f i c i e n t t o s e p a r a t e t h e boundary l a y e r .

The b a s e p r e s s u r e a t t h e t r a i l i n g edge f o r t h e l o w l o a d i n g i s C = 0 . 1 0 4 . The e x i t p r e s s u r e of t h e c a s c a d e ( b a d o n t h e a s y m p o t i c p r e s s u r e on t h e midgap s t r e a m l i n e s l w i n d t u n n e l w a i l s ) i s 0.250. Thus t h e p r e s s u r e from t h e t r a i l i n g edge h a s t o e v e n t u a l l y r i s e t o t h e f i n a l c a s c a d e p r e s s u r e v a l u e a t some d i s t a n c e downstream. For t h e h i g h l o a d i n g

P c a s e , t h e b a s e p r e s s u r e a t t h e t r a i l i n g edge i s C

0.245. The e x i t p r e s s u r e v a l u e , which t h e t r a i l i n g - e d g e p r e s s u r e m u s t r i s e t o , i s C = 0.430. P

The l oca l d i f f u s i o n f a c t o r is d e f i n e d a s

w h e r e U m a x i s t h e maximum v e l o c i t y on t h e s u c t i o n s u r f a c e and Ue i s t h e c a s c a d e e x i t v e l o c i t y . It i s a measure of t h e s u c t i o n s u r f a c e d i f f u s i o n and r e s u l t i n g wake momentum t h i c k n e s s . Us ing t h e sur- f a c e p r e s s u r e d a t a and c a s c a d e e x i t v e l o c i t i e s , t h e l o c a l d i f f u s i o n f a c t o r was c a l c u l a t e d t o be 0 . 2 6 1 and 0 .369 f o r t h e low and h i g h l o a d i n g cases r e s p e c t i v e l y . A s e x p e c t e d , t h e h i g h l o a d i n g v a l u e i s h i g h e r and t h e f l o w e x p e r i e n c e s s u c t i o n s u r f a c e s e p a r a t i o n due t o t h e i n c r e a s e d d i f f u s i o n .

Boundary L a y e r s Upstream o f T r a i l i n g Edge

The boundary l a y e r s a p p r o a c h i n g t h e t r a i l i n g e d g e on t h e s u c t i o n and p r e s s u r e s u r f a c e were d e f i n e d i n d e t a i l w i t h h o t f i l m anemometry. Bound- a r y l a y e r c h a r a c t e r i s t i c s were measured 8 to 9 t r a i l i n g - e d g e t h i c k n e s s e s u p s t r e a m o f t h e t r a i l i n g e d g e where s u r f a c e s t a t i c p r e s s u r e s i n d i c a t e d t r a i l i n g - e d g e e f f e c t s were small. T h e s e p r o f i l e s a r e i n t e n d e d t o p r o v i d e a s t a r t i n g c o n d i t i o n or c h e c k p o i n t f o r c o m p u t a t i o n a l a n a l y s i s . Also, p r o f i l e s were d e f i n e d j u s t u p s t r e a m o f t h e t r a i l i n g e d g e t o p r o v i d e i n f o r m a t i o n on boundary l a y e r deve lopmen t u n d e r t h e i n f l u e n c e o f t h e f r e e s t r e a m p r e s s u r e g r a d i e n t s and t o d e f i n e t h e boundary l a y e r C h a r a c t e r i s t i c s j u s t u p s t r e a m o f t h e t r a i l i n g edge. T h i s also p r o v i d e s a second c o m p u t a t i o n a l check p o i n t .

A t a b u l a r l i s t i n g o f t h e boundary l a y e r Char- a c t e r i s t i c s i n t e r m s o f d i s p l a c e m e n t and momentum t h i c k n e s s and s h a p e f a c t o r a re g i v e n below ( n o t e

t h e a p p r o x i m a t e s u r f a c e c o o r d i n a t e , s i t , c a n he found by a d d i n g 0 .29 t o t h e a b s o l u t e v a l u e of x i t ) .

l o w Load ing S u c t i o n S u r f a c e pressure S u r f a c e

x i t $It e l t H X i t 6 * i t e i t 11 ~ __-- -8.75 0.656 0 .394 1 .67 17 9 . 1 0 0 . 1 0 8 0.0683 1 .58 -0 .90 0 .216 0.166 1 . 3 1 1 - 1 . 0 0 0 .344 0 , 1 9 4 1 77

High Load ing pressure S u r f a c e S u c t i o n S u r f a c e

x . t 6* i t e i t H x i t 6*/ t e l l H - 8 . 1 5 0 . 4 9 3 0.330 1.50 17 9.40 0 .443 0 .225 1 .97

~ ~~- -1.00 0 . 2 5 3 0 .204 1 . 2 4 -4.85 0.183 0 .296 2 .75

- 0 . 7 5 1.20 0,327 3 .24

The r e s p e c t i v e boundary l a y e r p r o f i l e s , b o t h i n p h y s i c a l and l aw-of - the -wa l l c o o r d i n a t e s , a r e g i v e n i n R e f . 12 .

Low Load ing - The p r e s s u r e s u r f a c e boundary l a y e r s a re n o m i n a l l y 1 . 8 t t h i c k f o r t h e low l o a d i n g c a s e . The u p s t r e a m survey h a s a r e l a t i v e l y l a r g e s h a p e f a c t o r ( 1 . 7 ) due t o t h e a d v e r s e p r e s s u r e g r a d i e n t h i s t o r y (see F i g . 5 , SIC > 10). From t h e u p s t r e a m s u r v e y l o c a t i o n t o t h e t r a i l i n g edge t h e f l o w a c c e l e r a t e s t o meet t h e t r a i l i n g - e d g e c o n d i - t i o n . I" response t o t h e f a v o r a b l e p r e s s u r e g r a - d i e n t , t h e shape f a c t o r d e c r e a s e s t o 1 . 3 , i n d i c a t - i n g a h e a l t h i e r boundary l a y e r . The boundary l a y - e r s on t h e s u c t i o n s u r f a c e were somewhat t h i n n e r in boundary l a y e r t h i c k n e s s a t 1 . 3 t - l . 5 t . Note t h a t b o t h e u r v e y s are i n t h e d e c e l e r a t i n g ( a d v e r s e pres- sure g r a d i e n t ) p o r t i o n of t h e s u c t i o n s u r f a c e ( F i g . 5 , s / t < 10) . h e r t h i s r e g i o n t h e s h a p e f a c t o r i n c r e a s e s from a r e l a t i v e l y h i g h v a l u e of 1 .6 t o a h i g h e r v a l u e of 1.8, i n d i c a t i v e of a boundary l a y e r a p p r o a c h i n g s e p a r a t i o n .

F o r t h e low l o a d i n g , b o t h f a r u p s t r e a m pro- f i l e s on t h e p r e s s u r e and s u c t i o n s u r f a c e s d i s - p l a y e d a s u b l a y e r , l o g - l i n e a r ( i n t e r i a l s u b l a y e r ) , and wake b e h a v i o r i n l aw-of - the -wa l l c o o r d i n a t e s .

The n e a r t r a i l i n g - e d g e p r o f i l e s m a i n t a i n e d s i m i - l a r i t y i n t h e s u b l a y e r and p a r t o f t h e l o g - l i n e a r r e g i o n b u t v a r i e d c o n s i d e r a b l y i n t h e wake r e g i o n . For t h e a u c t i o n s ide p r o f i l e , t h e wake roe= f a r above t h e l o g - l i n e a r curve f i t , t y p i c a l o f a t u r b u - l e n t boundary s u b j e c t e d t o an a d v e r s e g r a d i e n t . For t h e p r e s s u r e s i d e p r o f i l e t h e wake r e g i o n was

' s u p p r e s s e d be low t h e l o g - l i n e a r curve f i t . presum- a b l y t h e wake h a s not r e s p o n d e d t o t h e r a p i d i n c r e a s e in t h e f r i c t i o n v e l o c i t y d u e t o t h e accel- e r a t i o n .

I n terms o f t h e r a t i o o f momentum t h i c k n e s s t o t r a i l i n g - e d g e t h i c k n e s s , t h e p r e s s u r e and s u e t i o n s u r f a c e v a l u e s a t X / t - -1.0 were 0.166 and 0.194 r e s p e c t i v e l y . These v a l u e s are close t o t h e R e f . 2 u n l o a d e d case v a l u e s (0.1 t o 0 .17) and w i t h i n t h e R e f . 1 b u i l d I c a s c a d e (CDA c a s c a d e ) range (0 .09 t o 0 .26 ) .

W

Page 8: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

sigh Load ing - The h i g h l o a d i n g p r o f i l e s on t h e p r e s s u r e s u r f a c e werd q u a l i t a t i v e l y v e r y s i m i l - BT t o t h e low l o a d i n g p r o f i l e s , b u t somewhat t h i c k - e r a t 2 . l t . A s seen i n t h e t a b l e , t h e p r e s s u r e s u r f a c e d a t a a r e c o n s i s t e n t w i t h t h e low l o a d i n g r e s u l t s . For t h e s u c t i o n s u r f a c e boundary l a y e r s , an i n t e r m e d i a t e p r o f i l e was t a k e n a t x f t = - 4 . 9 t o d e t a i l t h e r a p i d g rowth of t h e boundary l a y e r . The c o r r e s p o n d i n g p r e s s u r e g r a d i e n t , shown i n F i g . 5 ( s l t < IO), d i s p l a y s d e c e l e r a t i n g f low f o l l o w e d by a f l a t r e g i o n i n d i c a t i v e of boundary l a y e r s e p a r a - t i o n . The g rowth o f t h e boundary l a y e r t h i c k n e s s o v e r t h e l a s t n i n e t r a i l i n g - e d g e t h i c k n e s s e s is

t o t h e p r e m a t u r e boundary l a y e r s e p a r a t i o n . I n t e r m s o f t h e r a t i o of momentum t h i c k n e s s t o t r a i l i n g - e d g e t h i c k n e s s , t h e p r e s s u r e s u r f a c e v a l u e a t x l t = -1 was 0 . 2 0 4 . Ups t ream of s e p a r a t i o n on t h e s u e t i o n s u r f a c e ( x / t = - 9 . 4 ) t h e r a t i o was 0 .225 . These values, a s i n t h e case o f low load - i n g , a r e w i t h i n t h e R e f . 1 C D A c a s c a d e range.

I n summary, h o t f i l m measuremen t s t a k e n up- s t r e a m o f t h e t r a i l i n g edge showed boundary layer c h a r a c t e r i s t i c s c o n s i s t e n t w i t h t h e imposed p r e s - sure g r a d i e n t h i s t o r i e s . Momentum t o t r a i l i n g - e d g e t h i c k n e s s r a t i o h e r e i n t h e range t y p i c a l o f C D A c a s c a d e s used i n f u l l scale a p p l i c a t i o n s .

f rom a p p r o x i m a t e l y 1 . 5 t t o 2 . 7 t . T h i s i s f i v e times t h e r a t e f o r t h e low l o a d i n g c 8 5 e . The s h a p e f a c t o r s t a r t s a t a v e r y h i g h v a l u e o f 2 . 0 and i n - creases t o 3 . 2 , i n d i c a t i v e of boundary l a y e r s e p a r - a t i o n . T h i s is c o n s i s t e n t w i t h f low v i s u a l i z a t i o n which showed an u n s t e a d y ( i n t e r m i t t e n t ) f low s e p a r - a t i o n e x i s t e d over t h e l a s t 5 - 6 t r a i l i n g - e d g e

V o r t e x s h e d d i n g from t h e model t r a i l i n g edge was p r e s e n t f o r b o t h t h e low and h i g h l o a d i n g cases a s i n d i c a t e d by h o t f i l m a u t o s p e c t r a l d e n s i t y func- t i o n s t a k e n i n t h e wake. R e s u l t s a r e g e n e r a l l y s i m i l a r t o t h e p r e v i o u s un loaded e x p e r i m e n t ( f l a t

~r~~~ ~~

~~~~ ~~ - - ~ ~ I~

~uremenfs occur i n t h e x / t = - 4 . 9 and x / t = -0.8 peaked cha rac t e r i s t i c s '

p r o f i l e s . T h e r e f o r e , t h e i n t e g r a l q u a n t i t i e s a r e Low Loading - The c e n t e r o f F i g . 6 d i s p l a y s somevhar a f f e c t e d by t h e s e errors, b u t n o t s i g n i f i - L D V and h o t f i l m mean v e l o c i t y wake p r o f i l e s t a k e n c a n t l y , s i n c e t h e d i f f e r e n c e between t h e measured a t x l t = 6.0 f o r t h e low l o a d i n g case (where and c o r r e c t v e l o c i t y i s sma l l r e l a t i v e t o t h e f r e e - in the s t r e a m v e l o c i t y . p r o f i lcs i l ? u u s t r a t e where t h e c o r r e s p o n d i n g L D V

In law-of-the-wal' coo rd ina te s , the p re s su re h i s t o g r a m s and h o t f i l m s p e c t r a ! d i s t r i b u t i o n s were s u r f a c e boundary l a y e r s were Very t o the t a k e n (shown On t h e l e f t and r i g h t o f t h e f i g u r e ) . low l o a d i n g p r o f i l e s . However, none o f t h e s u c t i o n s u r f a c e p r o f i l e s d i s p l a y e d l o g - l i n e a r b e h a v i o r due

=ds2 + u 2 1. The l o c a t i o n s ( a )

i,

U - a Uy Uy+o

o - LDV 0 - HOT FILM

10

Yl f 0 b- z W

W Q

Y2 D

0

10 0

-5

0 -0 5 05

250 500 UyJ'JreI

0 FREQUENCY (Hr)

Fig. 6 Spectrallhistogram distributions at x / t =6.0

7

Page 9: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

The agreemen t be tween LDV and h o t f i l m mean v e l o c - i t y i s r e a s o n a b l e d e s p i t e a h i g h l o c a l t u r b u l e n c e i n t e n s i t i e s o f 40 p e r c e n t . On t h e l e f t - h a n d s i d e o f F i g . 6 are t h r e e s p e c t r a l d i s t r i b u t i o n s ( h o t f i l m ) c o r r e s p o n d i n g t o l o c a t i o n s ( a ) - ( c ) . The a n a l y z e r bandwid th i s 1 . 8 Hz. Eacep t f o r t h e spec - t r a l d i s t r 4 b u t i o n s n e a r t h e maximum wake d e f e c t , a l l t h e S p e c t r a showed a 130 Hz d i s c r e t e f r e q u e n c y s i g n a l r e l a t i v e t o a broadband ( r a n d o m ) , t u r b u l e n t wake s i g n a l . T h i s d i s c r e r e f r e q u e n c y i s a s s o c i a t e d w i t h t h e fundamen ta l p e r i o d o f t h e s h e d d i n g c y c l e f rom one s i d e o f t h e t r a i l i n g e d g e . A t t h e wake e d g e ( n o s p e c t r a shown) , where t h e b roadband random s i g n a l i s small and t h e e n t i r e v o r t e x s h e d d i n g s p i k e can be seen, i t i s e v i d e n t t h a t t h e " d i s c r e t e " f r e q u e n c y i s q u i t e v i d e and i s t h u s a c t u a l l y a narrow band random s i g n a l . T h i s sug- g e s t s t h e s h e d d i n g f r rq i l ency m o d u l a t e s , p re sumab ly d u e t o random v a r i a t i o n s o f t h e i n l e t boundary

.At t h e manimun d e f s c t l o c a t i o n ( b ) , t h e spec - t r a l d i s t r i b u t i o n c o n t a i n s an a d d i t i o n a l d i s c r e t e f r e q u e n c y o f t w i c e t h e f u n d a m e n t a l . T h i s i s due t o t h e h o t f i l m s e n s i n g s h e d d i n g f r m b o t h s i d e s . The r e l a t i v e b roadband random s i g n a l i s g r e a t e r a t t h i s l o c a t i o n . These o b s e r v a t i o n s a r e c o n s i s t e n t w i t h t h e un loaded c a s e o f R e f . 2 .

T h e c o r r e s p o n d i n g t r a n s v e r s e (E ) v e l o c i t y component h i s t o g r a m s (LOV) a t l o c a t i o n s ( a ) - ( c ) a r e shown on t h e r i g h t - h a n d s i d e o f F i g . 6 . Each h i s t o g r a m p l o t s t h e p e r c e n t a g e o f r e a l i z a t i o n s w i t h i n a b i n v e r s u s v e l o c i t y . A t t h e edge of t h e wake ( n o t shown) t h e t r a n s v e r s e component i s c h a r - a c t e r i z e d by a m a l l m s v a l u e w i t h a s l i g h t l y n e g a t i v e mean v a l u e . The n e g a t i v e mean v a l u e i s due t o t h e f l o w d e v i a t i o n from t h e e x i t m e t a l a n g l e ( x a x i s ) a s d i s c u s s e d l a t e r . Ha l fway t h r o u g h one s i d e o f t h e wake , ( a ) and ( c ) , t h e e f f e c t o f t h e v o r t e x s h e d d i n g i s a p p a r e n t . Examining t h e ( a ) l o c a t i o n , t h e h i s t o g r a m i s skewed , c h a r a c t e r i z e d by a s h a r p peak on t h e l e f t s i d e o f t h e mean v a l u e and a l o n g t a i l on t h e r i g h t s i d e o f t h e mean. The ( c ) l o c a t i o n i s s i m i l a r t o t h e ( a ) l o c a t i o n e x c e p t t h a t t h e o r i e n t a t i o n o f t h e peak and t a i l r e l a t i v e t o t h e mean v a l u e a re r e v e r s e d . These o b s e r v a t i o n s a r e c o n s i s t e n t w i t h t h e u n l o a d e d c a s e of R e f . 2 .

l a y e r s .

Y

A t t h e c e n t e r o f t h e wake, ( b ) , t h e h i s t o g r a m is n e a r l y f l a t . T h i s i s i n c o n t r a s t t o t h e un load- e d ease which showed a d e f i n i t e d o u b l e peaked h i s - t o g r a m w i t h v e r y few near-mean r e a l i z a t i o n s . The s o l i d l i n e in t h e ( b ) h i s t o g r a m i s t h e a p p r o x i m a t e d i s t r i b u t i o n o f t h e un loaded c a s e . P e r h a p s t h e d i f f e r e n c e i s due t o more t u r b u l e n t mix ing o f t h e v o r t e x s t r u c t u r e f o r t h e l o a d e d c a s e .

High L o a d i n g - The c o r r e s p o n d i n g s p e c t r a l d i s t r i b u t i o n s and h i s t o g r a m s f o r t h e h i g h l o a d i n g case ( n o t shown) a r e s i m i l a r t o t h e low l o a d i n g c a s e e x c e p t f o r one n o t a b l e change . The fundament - al s h e d d i n g f r e q u e n c y i s less t h a n h a l f t h e low l o a d i n g v a l u e . I t a p p e a r s t h a t t h i s change i s r e l a t e d t o t h e boundary l a y e r d i s p l a c e m e n t t h i c k - ness o f t h e a p p r o a c h i n g boundary l a y e r s .

To c o r r e l a t e t h e shedd ing f r e q u e n c i e s o f t h e d i f f e r e n t c a s e s , t h e S t r o u h a l number , S t = f l / U , was c a l c u l a t e d . Here f is t h e v o r t e x s h e d d i n g

t h e a v e r a g e f r e e s t r e a m v e l o c i t y i n t h e t r a i l i n g - e d g e r e g i o n . Us ing t h e t r a i l i n g - e d g e t h i c k n e s s as t h e c h a r a c t e r i s t i c l e n g t h g i v e s values of 0 . 1 6 and 0 . 0 8 f o r t h e l o w and h i g h l o a d i n g c a s e s , r e s p e c t - i v e l y . However, u s i n g a c h a r a c t e r i s t i c l e n g t h b a s e d on t h e t r a i l i n g - e d g e t h i c k n e s s p l u s t h e b o u n d a r y l a y e r d i s p l a c e m e n t t h i c k n e s s e s ( p r e s s u r e and s u c t i o n ) , c a l c u l a t e d j u s t u p s t r e a m o f t h e t r a i l i n g e d g e , y i e l d s S t r o u h a l numbers o f 0 . 2 3 and 0 . 1 9 . These v a l u e s a re more t y p i c a l o f b l u f f body s h e d d i n g . For t h e un loaded c a s e t h e S t r o u h a l number ( w i t h d i s p l a c e m e n t t h i c k n e s s e s a d d e d ) w a s 0 . 2 2 which is i n good ag reemen t w i t h t h e c u r r e n t r e s u l t s . No te , u s i n g t h e momentum t h i c k n e s s t o c a l c u l a t e t h e e f f e c t i v e t h i c k n e s s d i d no t c o l l a p s e t h e d a t a ( t h e v a l u e s were 0 . 2 0 and 0.12 f o r t h e low and h i g h l o a d i n g , c a s e s r e s p e c t i v e l y .

f r e q u e n c y , 1 i s t h e c h a r a c t e r i s t i c l e n g t h , and U i s L,

Plow Visualization

Flow v i s u a l i z a t i o n was used t o d e f i n e t h e two- d i m e n s i o n a l i t y o f the f low and t h e l o c a t i o n O f

s e p a r a t i o n l i n e s . The main t e c h n i q u e u s e d i n t h i s e x p e r i m e n t was a form o f t h e a m n o n i d r e a c t o r met!iod f o r s u r f a c e flow v i s u a l i z a t i o n . Smoke v i s u a l i z a - t i o n was used t o b e t t e r d e f i n e t h e s e p a r a t i o n on t h e s u c t i o n s u r f a c e o f t h e h i g h l o a d i n g c a s e .

D e t a i l e d r e s u l t s a r e shown i n Ref . 12 and a r e b r i e f l y d i s c u s s e d h e r e . ,d

Low L o a a i n g - The f low on t h e p r e s s u r e s u r - f a c e w a s o b s e r v e d t o b e two-d imens iona l over n e a r l y t h e e n t i r e s p a n o f t h e model . On t h e s u c t i o n s u r - f a c e t h e r e was a n o t i c a b l e m i g r a t i o n of t h e f low t o w a r d s t h e c e n t e r o f t h e s p a n d u e t o c o m e r bound- a r y l a y e r i n t e r a c t i o n w i t h c a s c a d e p r e s s u r e g r a d i - e n t s . Such m i g r a t i o n i t t y p i c a l of e x p e r i m e n t a l c a s c a d e s where corner s u c t i o n i s u s u a l l y a p p l i e d t o r e d u c e t h e i n t e r a c t i o n . 1 u For t h i s c a s e , no c o r n e r s u c t i o n was a p p l i e d s i n c e t h e f low w a s two- d i m e n s i o n a l over 65 p e r c e n t o f t h e s p a n . For b o t h s u r f a c e s , t h e f l o w was found t o s e p a r a t e on t h e t r a i l i n g - e d g e c i r c l e . a t a p p r o x i m a t e l y a n 1 R d e g r e e a n g u l a r l o c a t i o n (measu red f rom t h e p r e s s u r e s u r f a c e l t r a i l i n g - e d g e i n t e r f a c e ) . It i s presumed t h a t s e p a r a t i o n p o i n t s are u n s t e a d y due t o t h e v o r t e x s h e d d i n g and l a c k o f a s a l i e n t edge . The p r e s s u r e s u r f a c e s e p a r a t i o n l i n e was n o t i c e a b l y more d e f i n e d t h a n t h e s u c t i o n s u r f a c e ( i . e . , t h e p r e s s u r e s u r f a c e t r a c e ended more a b r u p t l y ) . T h e r e f o r e , t h e s u c t i o n s u r f a c e s e p a r a t i o n l i n e a p p e a r s t o be more u n s t e a d y r e l a t i v e t o t h e p r e s - sure s u r f a c e s e p a r a t i o n .

It was o b s e r v e d t h a t t h e s u c t i o n s u r f a c e f low t u r n s o n t o t h e t r a i l i n g edge a p p r o x i m a t e l y one d e g r e e f u r t h e r t h a n t h e p r e s s u r e s u r f a c e f l o w . The b o u n d a r y l a y e r measurements from t h e h o t f i l m and LDV d a t a c l e a r l y show t h e pressure s u r f a c e boundary

f a c t o r d i s t r i b u t i o n t h a n t h e s u c t i o n boundary l a y e r ( d u e t o t h e f a v o r a b l e and a d v e r s e p r s s s u r z g r a d i e n t

l a y e r t o b e c h a r a c t e r i z e d by a much h e a l t h i e r s h a p e ..-

Page 10: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

h i s t o r i e s a c t i n g on t h e p r e s s u r e and s u c t i o n sur- f a c e s , r e s p e c t i v e l y ) . Thus b a s e d on t h e boundary l a y e r d a t a , t h e p r e s s u r e s u r f a c e boundary l a y e r

-' v o u l d be e x p e c t e d t o t u r n more t h a n t h e s u c t i o n s u r f a c e boundary l a y e r (which i s n o t t h e ease) . T h i s s u g g e s t s t h a t h i g h s u r f a c e C u r v a t u r e on t h e t r a i l i n g - e d g e c i r c l e overcomes t h e e f f e c t o f a h e a l t h i e r b o u n d a r y l a y e r .

a L o a d i n g - L i k e t h e low l o a d i n g c a s e ,

t h e f l o w on t h e p r e s s u r e s u r f a c e was o b s e r v e d t o b e t w o - d i m e n s i o n a l ove r n e a r l y t h e e n t i r e s p a n . For t h e ' s u c t i o n surface i t wes n e c e s s a r y t o a p p l y corn- er s u c t i o n t o a c h i e v e any semblance o f a two- d i m e n s i o n a l r e g i o n . W i t h corner s u c t i o n i t was p o s s i b l e t o a c h i e v e a two-dimens iona l r e g i o n over 35 p e r c e n t o f t h e s p a n .

The p r e s s u r e s u r f a c e s e p a r a t i o n w a s v e r y s i m - i l a r t o t h e low l o a d i n g case. The f l o w a P p e a r e d t o n e g o t i a t e t h e t r a i l i n g - e d g e c i r c l e s l i g h t l y f u r t h e r t o a 19 - 20 d e g r e e ailgular l o c a t i o n . On t h e suc- t i o n s u r f a c e , t h e f l o w was o b s e r v e d t o S e D a r a t e 5 - 6 t r a i l i n g - e d g e t h i c k n e s s e s u p s t r e a m o f t h e t r a i l - i n g e d g e . The s e p a r a t i o n l i n e , however, was n o t c l e a r l y d e f i n e d and t h u s i s a p p a r e n t l y i n t e r m i t t e n t i n n a t u r e . I n t e r m i t t e n t s u c t i o n s u r f a c e s e p a r a t i o n h a s a l s o b e e n o b s e r v e d by Deutsch and Z i e r k e . "

The reason f o r t h e o b s e r v e d p r e m a t u r e boundary l a y e r s e p a r a t i o n i s t h e a d v e r s e p r e s s u r e g r a d i e n t on t h e s u c t i o n s u r f a c e . The i n c r e a s e d l o a d i n g ( a n d t h u s a d v e r s e p r e 5 s u r e g r a d i e n t ) f o r t h i s c a s e h a s b e e n s u f f i c i e n t t o cause t h e boundary l a y e r t o s e p a r a t e p r i o r t o t h e t r a i l i n g e d g e .

w Smoke Plow V i s u a l i z a t i o n - A S d i s c u s s e d i n

t h e LDV r e s u l t s , t h e r e i s an a b s e n c e o f t ime mean r e v e r s e d f low i n t h e s u c t i o n s u r f a c e s e p a r a t i o n b u b b l e f o r t h e h i g h l o a d i n g c a s e a s measured w i t h Lnv. S i n c e surface f l o w v i s u a l i z a t i o n c m n o t pro- v i d e i n f o r m a t i o n on i n t e r m i t t e n t s e p a r a t i o n s t a t i s - t i c s , smoke v i s u a l i z a t i o n u s i n g s t r o b o s c o p i c v i d e o

w a s employed . A smoke g e n e r a t i n g probe ( h e a t e d oil, a t o m i z a t i o n t y p e ) was f l u s h mounted t o t h e s u c t i o n s u r f a c e a p p r o x i m a t e l y 0 . 4 t r a i l i n g - e d g e t h i c k n e s s e s u p s t r e a m of t h e t r a i l i n g e d g e . S t r o b e l i g h t s w e r e S e t a t 30 Hz t o match t h e f r a m i n g of t h e v i d e o camera.

I n a r e a l - t i m e mode ( i . e . , normal v i d e o p lay- b a c k ) t h e flow was c l e a r l y r e v e r s e d ( u p s t r e a m ) t h e m a j o r i t y of t h e t i m e ( a p p r o x i m a t e l y 80 p e r c e n t o f t h e t i m e ) . Smoke f l o w v i s u a l i z a t i o n a n a l y z e d f rame-by-f rame showed t h a t t h e f l o w w a s c l e a r l y u p s t r e a m 50 p e r c e n t o f t h e time, i n d e t e r m i n a t e 40 p e r c e n t o f t h e t ime, and downstream 10 p e r c e n t o f t h e t i m e . However, t h e LUV d a t a i n d i c a t e d maximum r e v e r s e d f l o w r e a l i z a t i o n s of o n l y 20 p e r c e n t o f t h e s a m p l e . I n c o n c l u s i o n , t h e LUV d a t a i s c l e a r l y b i a s e d i n t h i s r e g i o n .

The u p s t r e a m e x t e n t o f t h e u n s t e a d y s e p a r a t i o n b u b b l e o b s e r v e d i n smoke f l o w s t u d i e s w a s 5 t o 6 t r a i l i n g - e d g e t h i c k n e s s e s . T h i s is c o n s i s t e n t w i t h t h e s e p a r a t i o n l i n e deduced from t h e s u r f a c e flow

t/ v i s u a l i z a t i o n . A l s o , t h e s t r o b e f r e q u e n c y was v a r i e d close t o t h e f u n d a m e n t a l s h e d d i n g f r e q u e n c y

i n an a t t e m p t t o b e a t w i t h any p e r i o d i c m a t i o n s . S i n c e no p e r i o d i c S t r u c t u r e was o b s e r v e d , it is c o n c l u d e d t h a t t h e i n t e r m i t t e n t s e p a r a t i o n i s ran- dom i n n a t u r e a n d n o t d r i v e n by t h e v o r t e x s h e d d i n g .

I n summary, smoke f l o w v i s u a l i z a t i o n i n d i c a t e d a t i m e mean s e p a r a t i o n l i n e welt u p s t r e a m of t h e t r a i l i n g edge f o r t h e h i g h l o a d i n g c a s e . T r a c k i n g o f u p s t r e a m c o n v e c t e d e d d i e s c o n f i r m e d t h i s s e p a r a - t i o n l o c a t i o n and d e m o n s t r a t e d t h e i n h e r e n t l y u n s t e a d y , random and i n t e r m i t t e n t n a t u r e of t h e s e p a r a t i o n . I n t e r m i t t e n t s u c t i o n s i l r f a c e s e p s r a - t i o n h a s b e e n o b s e r v e d i n t h e d o u b l e c i r c u l a r a rc a i r f o i l c a s c a d e of Ref . 1 4 . I n t e r m i t t e n t s e p a r a - t i o n of t h e t u r b u l e n t boundary l a y e r s on f l a t p l a t e t e s t s u r f a c e s caused by imposed a d v e r s e p r e s s u r e g r a d i e n t s h a s also been s t u d i e d by p a t r i c k 6 among o t h e r s . Such i n t e r m i t t e n c y a p p e a r s t o be a c h a r a c - t e r i s t i c o f s e p a r a t i o n from s u r f a c e s h a v i n g low s u r f a c e c u r v a t u r e . On t h e t r a i l i n g - e d g e circle, t h e h i g h C u r v a t u r e f o s t e r s s e p a r a t i o n a t a p p r o x i - m a t e l y f i x e d l o c a t i o n .

T r a i l i n g - E d g e Region s t a t i c Pressure U i a t r i b u t i o n

I n o r d e r t o compare t h e t r a i l i n g - e d g e p r e s s d r e d i s t r i b u t i o n s among t h e two l o a d i z g cases and t h e u n l o a d e d c a s e o f Paterson and Weingold, ' i t i s n e c e s s a r y t o s c a l e t h e s u r f a c e p r e s s u r e s i n a d i f f e r e n t manner t h a n used p r e v i o u s l y . Casca6e e x i t s t a t i c p r e s s u r e i s a s u i t a b l e p r e s s u r e r e f e r - e n c e f o r t h e c u r r e n t s t u d y and c a n be c o n s i d e r e d t o c o r r e s p o n d t o t h e c o n s t a n t f r e e s t r e a m s t a t i c p r e s - sure r e f e r e n c e u s e d i n t h e p r e v i o u s u n l o a d e d s t u d y . U s i n g e x i t c a s c a d e s t a t i c p r e s s u r e as a r e f e r e n c e , t h e t r a i l i n g - e d g e p r e s s u r e c o e f f i c i e n t , C t e , i s d e f i n e d as a n d r e l a t e d t o C by ( n o t e , tge sub- s c r i p t " t e " r e f e r s t o t h e t r a i l i n g - e d g e s c a l i n g ) . P .

w h e r e Q,, = ( P t - P t e ) , Pt i s t h e i n l e t t o t a l p r e s - s u r $ , a n d P t e i s t h e c a ~ c a d e e x i t p r e s s u r e . The d y n a m i c h e a d r a t i o , Q r e f / Q t , , i s 1.133 and 1 . 7 5 4 f o r t h e low and h i g h l o a d i n g cases , r e s p e c t i v e l y .

S u r f a c e p r e s s u r e d a t a over t h e l a s t e i g h t t h i c k n e s s e s a r e shown i n F i a . l a and l a s t two t h i c k n e s s e s i n F i g . 7b i n t e rm of t h e a b o v e d e s c r i b e d t r a i l i n g - e d g e s c a l i n g . I n a d d i t i o n t o t h e two l o a d i n g c a s e s of t h e current e x p e r i m e n t , t h e u n l o a d e d c a s e of P a t e r s o n and Weingold i s a150

shown. A s i n d i c a t e d , t h e t r a i l i n g - e d g e s u r f a c e e x t e n d s over t h e r e g i o n s i t < n j 4 . A l s o , p r e s s u r e a n d s u c t i o n s u r f a c e s e p a r a t i o n s a r e i n d i c a t e d by arrows l a b e l e d "Press. S e p . " and " S u e t . Sep." r e s p e c t i v e l y as i n d i c a t e d by s u r f a c e f l o w v i s u a l - i z a t i o n .

9

Page 11: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

OPEN SYMBOLS - LOW LOADING CLOSED SYMBOLS - HIGH LOADING

0.2-1,~. 1

TRAILING EDGE -0.6 ,

8.0 6.0 4.0 2.0 0

TRAILING EDGE 0

-0.1 (Y

ci -

0

- 0.2

-0.3

- 0 4 , I ] W k P R E S S SEP

7 0 1 5 1 0 0 5 0 -~ sn

Fig. 7 Trailing edge surface static pressure distribution.

Low L o a d i n g - For t h e low l o a d i n g c a s e , t h e p r e s s u r e s u r f a c e d i s t r i b u t i o n (open s q u a r e s ) over the l a s t 8 t i s c h a r a c t e r i z e d by d e c r e a s i n g p r e s s u r e f r o m a value above t h e c a s c a d e e x i t p r e s s u r e , t h r o u g h t h e e x i t v a l u e a t s / t = 2 . 3 , t o a l o c a l minimum on t h e t r a i l i n g - e d g e c i r c l e . On t h e t r a i l i n g - e d g e c i r c l e t h e p r e s s u r e q u i c k l y r i s e s ( w i t h a s l i g h t o v e r s h o o t ) t o t h e base p r e s s u r e v a l u e ( - 0 . 2 ) . T h e a n g u l a r l o c a t i o n on t h e t r a i l i n g - e d g e c i r c l e of t h e l o c a l minimum p r e s s u r e i s a p p r o x i m a t e l y 8 .5 d e g r e e s measured f rom t h e pressure s u r f a c e i t r a i l i n g - e d g e c i r c l e i n t e r f a c e . Flow v i s u a l i z a t i o n i n d i c a t e d boundary l a y e r s e p a r a - t i o n o c c u r r e d a t a 1 7 d e g r e e l o c a t i o n ( a s shown i n t h e f i g u r e s ) . Based on t h e s e o b s e r v a t i o n s , t h e l o c a l minimum i s d u e t o t h e l o c a l t u r n i n g (expan- s i o n ) on t h e t r a i l i n g - e d g e c i r c l e . When t h e p r e s - sure b e g i n s t o r ise ( t o m a t c h t h e t r a i l i n g - e d g e pressure) t h e a d v e r s e g r a d i e n t q u i c k l y s e p a r a t e s t h e boundary l a y e r . T h i s i s c o n s i s t e n t w i t h t h e u n l o a d e d case 8s d i s c u s s e d s h o r t l y . A s a l i e n t t r a i l i n g e d g e , s u c h 8 s a s q u a r e d o f f c o n f i g u r a t i o n , would n o t e x p e r i e n c e t h i s t y p e of "overspeed" .

The s u c t i o n surface pressure d i s t r i b u t i o n i s : h a r a c t e r i z e d by a r e l a t i v e l y s l o w , m o n o t o n i c p r e s - sure rise t o t h e t r a i l i n g - e d g e v a l u e . It i s n o t e d t h a t f l o w v i s u a l i z a t i o n i n d i c a t e d t h e s u c r i o n sur- face boundary l a y e r s e p a r a t e d a t an a n g u l a r l o c a - t i o n of 1 8 d e g r e e s on t h e t r a i l i n g - e d g e c i r c l e .

Since t h e d i s t r i b u t i o n d i s p l a y s no a p p r e c i a h l e c h a n g e s i n t h e v i c i n i t y o f 1 8 d e g r e e s , i t a p p e a r s t h a t no s i g n i f i c a n t l o c a l t u r n i n g h a s o c c u r r e d .

.-,' Kigh Loading - The h i g h load ing case i s

c h a r a c t e r i z e d by s e v e r a l n o t a b l e d i f f e r e n c e s r e l a - t i v e t o t h e low l o a d i n g c a s e . nos t o b v i o u s i s t h e lower base p r e ~ s u r e value ( -0 .32 ) . The s u c t i o n s u r f a c e d i s t r i b u t i o n ( s o l i d c i r c l e s ) is nearly f l a t over t h e l a s t 5 t r a i l i n g e d g e t h i c k n e s s e s due t o t h e s e p a r a t i o n u p s t r e a m o f t h e t r a i l i n g e d g e , hav- i n g a value e q u a l t o t h e b a s e p r e s s u r e v a l u e . The p r e s s u r e s u r f a c e d i s t r i b u t i o n ( s o l i d squares) , up- s t r e a m 6 t - 8 t , i s t h e same as t h e low l o a d i n g c a s e .

Near t h e t r a i l i n g edge t h e p r e s s u r e b e g i n s t o d r a p more r a g i d l y t o t h e lower base pressure v a l u e . Tne n e a r t r a i l i n g - e d g e d i s t r i b u t i o n d i s p l a y s a more n e g a t i v e l o c a l minimum pressure ( r e l a t i v e t o b a s e p r e s s u r e ) t h a n the l o w l o a d i n g c a s e , a l t h o u e h t h e p r e s s u r e boundary l a y e r s e p a r a t i o n l i n e was n e a r l y t h e same f o r b o t h c a s e s . Thus t h i s h i g h e r "over- s p e e d " i s p r o b a b l y due t o t h e g r e a t e r p r e s s u r e d i f - f e r e n c e be tween t h e u p s t r e a m ( a t s i t = 8 ) p r e s s u r e s u r f a c e and b a s e p r e s s u r e values,

I f t h i s t r a i l i n g - e d g e s c a l i n g is relevant, t h e n presumably d i f f e r e n t l o a d i n g c a s e s (with f i x - same t r a i l i n g e d g e ) f o r w h i c h t h e s u c t i o n boundary l a y e r r e r a i n s a t t a c h e d u p t h e t r a i l i n g e d g e , w m 1 3 c o l l a p s e t o t h e C u r r e n t low l o a d i n g c a s e d i s t r i b u - t i o n . T h u s , i t is s p e c u l a t e d t h a t t h e lower ba!;e p r e s s u r e v a l u e f o r t h e h i g h l o a d i n g c a s e i s due t ? loss i n p r e s s ~ ~ r e r e c o v e r y on t h e s u c r i o n s u r f a c e

s i n p l i f i e d v i e w o f t h i s complex i n t e r a c t i o n p r o c e s s i s t h a t t h e amount of s u c t i o n s u r f a c e pressure r e c o v e r y d e t e r m i n e d t h e b a s e p r ~ s s u r e v a l u e and t h e p r e s s u r e surface f l o w a c c e l e r a r e d t o t h i s v a l u e .

i r o n t h e p r e m a t u r e boundary l a y e r s e j ~ a r a t i o n . 4 W

Unloaded Case - The unloaded case s t u d i a d by Paterson and Weingold' i s compared w i t h t h e c u r r e n t d a t a i n F i g s . 7 . T h e i r e x p e r i m e n t a l model y e s a f l a t p l a t e t e r m i n a t e d w i t h t h e same t r a i l i n g - e d g e g e o m e t r y . Wind t u n n e l s p e e d s and s c a l e s ( t r a i l i n g - e d g e s i r e and r e l a t i v e boundary l a y e r t h i c k n e s s e s ) were similar t o t h e C u r r e n t e x p e r i m e n t . The bound- a r y c o n d i t i o n s on t h e model were c o n s t a n t f r e e - S t r e a m v e l o c i t y u p s t r e a m and downstream o f t h e t r a i l i n g edge . Thus t h i s e x p e r i m e n t i s o l a t e d t h e e f f e c t s of t h e t r a i l i n g e d g e f rom o v e r a l l t u r n i i g e f f e c t s .

The u n l o a d e d c a s e i s shown as t h e d a s h e d l i n e i n t h e f i g u r e s . S i n c e t h i s c a s e was s y m m e t r i c a l , t h e d a s h e d l i n e r e p r e s e n t s b o t h t h e u p p e r and lbwer surfaces. As Shown i n F i g . 7 a , t h e p r e s s u r e a t s / t = 8 i s t h e ( c o n s t a n t ) f r e e s t r e a m va lue . Downstream of t h i s p o i n t t h e e f f e c t s of t h e t r a i l i n g edge b e g i n t o lower t h e p r e s s u r e be low t h i s v a l u e . h a t is , t h e local i n v i s c i d f low b e g i n s t o a c c e l e r a t e . Over t h e l a s t t r a i l i n g - e d g e t h i c k n e s s ( s i t < 1.25) the d i s t r i b u t i o n is r e m a r k a b l y similar t o t h e low l o a d i n g p r e s s u r e surface d i s t r i b u t i o n ( F i g . 7 b ) . The b a s e p r e s s u r e va lues f o r t h e u n l o a d e d and low l o a d i n g c a s e 8 are i d e n t i c a l . -'

Page 12: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

The s t a t i c p r e s s u r e d i s t r i b u t i o n downst ream o f t h e t r a i l i n g e d g e f o r t h e u n l o a d e d case was also r e p o r t e d i n R e f . 2 . The d i s t r i b u t i o n from t h e

‘rJ t r a i l i n g - e d g e v a l u e ( -0 .20) d e c r e a s e d r a p i d l y t o B minimum a t x l t = 0 . 4 ( - 0 . 2 9 ) b e f o r e b e g i n n i n g a m o n o t o n i c r i s e t o t h e ( c o n s t a n t ) f r e e s t r e a m v a l u e a t x / t = 3.5. T n i s minimum v a l u e was a s s o c i a t e d w i t h v o r t e x s h e d d i n g f o r m a t i o n , a r e s u l t and con- c l . u s i o n a l s o found by R o ~ h k o l ~ f a r c y l i n d e r wakes .

In b o t h t h e un loaded f l a t p l a t e s t u d y and t h e c y l i n d e r s t u d y i t was shown t h a t s u p p r e s s i o n of v o r t e x s h e d d i n g by i n s e r t i o n of a wake s p l i t t e r p l a t e l a r g e l y e l i m i n a t e d t h i s n e a r wake minimum and r a i s e d b a s e p r e s s u r e s i g n i f i c a n t l y . T h u s , t r a i l i n g - e d g e s e p a r a t i o n c o n t r i b u t e s t o low b a s e pressure f i r s t by p r e v e n t i n g recovery o f p r e s s u r e a t a r e a r s t a g n a t i o n p o i n t and s e c o n d l y by produc- i n g f r e e s h e a r l a y e r s which r i r l l - u p i n t o a v o r t e x s t r e e t . The good ag reemen t be tween low l o a d i n g and u n l o a d e d c a s e b a s e p r e s s u r e s s u g g e s t 5 s e p a r a t i o n l o c a t i o n s ( R e f . 2 r e p o r t e d a 16’ a n g u l a r l o c a t i o n compared t o 1 7 - 18” f o r t h e low l o a d i n g ) and “ o r - t e x s h e d d i n g c h a r a c t e r i s t i c s were s i m i l a r . The f u r t h e r d e p r e s s i o n i n b a s e p r e s s u r e w i t h t h e h i g h l o a d i n g c o n f i g u r a t i o n , which also d i s p l a y e d v o r t e x s h e d d i n g , a p p e a r s t o be due t o f a i l u r s o f t h e s u c - t i o n s u r f a c e f l o w t o t u r n toward t h e t r a i l i n g - e d g e c e n t e r l i n e (and recover p r e s s u r e ) due t o u p s t r e a m s e p a r a t i o n .

T r a i l i n g - E d g e Hem V e l o c i t y F i e l d

Low L o a d i n g - V e c t o r r c p r e s e n t a t i o n o f t h e LDV v e l a c i t y d a t a i s shown i n F i g . 8 f o r t h e low l o a d i n g c a s e . 4 d e t a i l of t h e n e a r t r a i l i n g - e d g e r e g i o n i s s h o r n i n F i g . 9 . S e p a r a t i o n l o c a t i o n s on t h e mode l , d e r i v e d from s u r f a c e f l o w v i s u a l i z a t i o n , a r r i n d i c a t e d i n t h e s e f i g u r e s by arrows. Each v e c t o r r e p r e s e n t s t h e e s t i m a t e d t i m e mean magn i tude a n d f l o w d i r e c t i o n o f t h e v e l o c i t y . The u n i t l e n g t h o f t h e v e c t o r r e l a t i v e t o t h e r e f e r e n c e v e l o c i t y ( U r e f , i n l e t v e l o c i t y ) is shown i n t h e f i g u r e s . The numbers i n d i c a t e t h e f r e e s t r e a n p r e s - s u r e c o e f f i c i e n t s , C t e ( b a s e d o n c a s c a d e e x i t c o n d i t i o n s as d e s c r i b e $ e a r l i e r ) , e s t i m a t e d by t h e v e l o c i t y d a t a a t t h e edges of t h e s u r v e y s . For t h i s s c a l i n g a v a l u e o f zero c o r r e s p o n d s t o a v a l u e equal t o t h e c a s c a d e e x i t v e l o c i t y .

As i l l u s t r a t e d i n t h e o v e r a l l v i e w , F i g . 8, t h e b o u n d a r y l a y e r s and f r e e s t r e a m f l o w a p p r o a c h i n g the t r a i l i n g edge are c l e a r l y a t t a c h e d and i n t h e general d i r e c t i o n o f t h e s u r f a c e . The p r e s s u r e surface boundary layer is o b s e r v e d t o be more full a n d h e a l t h i e r t h a n t h a t o f t h e s u c t i o n s u r f a c e . T h i s i s due t o t h e a p p o s i t e s u r f a c e p r e s s u r e g r a d i - e n t h i s t o r i e s u p s t r e a m o f t h e t r a i l i n g edge . The d i f f e r e n c e s i n t h e v e l o c i t y p r o f i l e s a r e q u a n t i f i e d by t h e s h a p e f a c t o r s d e s c r i b e d e a r l i e r . The h o t f i l m s s u r v e y s j u s t u p s t r e a m o f t h e t r a i l i n g e d g e g i v e s h a p e f a c t o r values o f 1 . 1 1 for t h e s u c t i o n s u r f a c e and 1.31 f o r t h e p r e s s u r e s u r f a c e . T h i s d i f f e r e n c e i n v e l o c i t y p r o f i l e s ( s h a p e f a c t o r )

W causes a c o r r e s p o n d i n g l a r g e r v e l o c i t y g r a d i e n t t h r o u g h t h e s h e a r l a y e r on t h e p r e s s u r e s i d e o f t h e wake.

4

2

yll 0

- 2

- 4

NUMBERS ARE VALUES OF C,,, W.”

-0.06 -0.02 0.03 0.01 0.03 ! U’Ure1-1 1 --_-.-. I 1- _.._. -..I

I

0 2 4 6 8 xlt

Overall velocity vectors, low loading. Fig. 8

“1 - 0 0 2 -0.04-0.03

1.01

yil -1 .0 I 1 ???, ob;;l - -i 0.02 - 0 1 8 -0.16 -0.10 -2.0 - 1 .o 0 1 .o 2.0

xll

Fig. 9 Near wake velocity vectors, low loading.

AS o b s e r v e d i n F i g . 8, t h e e n t i r e f l o w f i e l d ( e x c l u d i n g the immedia te wake r e g i o n ) shows a gen- e ra l downward v e l o c i t y companen t . O u t s i d e t h e wake, t h e f l o w angle or t h e p r e s s u r e s i d e i s n e a r l y c o n s t a n t a t 6 degrees f rom the t r a i l i n g - e d g e metal a n g l e . For t h e s u c t i o n s i d e , t h e f l o w a n g l e is n e a r l y c o n s t a n t a t 4 d e g r e e s from t h e m e t a l angle. It i s n o t e v i d e n t what amount o f t he f l o w d e v i a t i o n i s due t o v i s c o u s e f f e c t s s i n c e t h e K u t t a c o n d i t i o n f o r B b l u n t - b a s e d a i r f o i l i s n o t well d e f i n e d .

I t s h o u l d b e n o t e d , t h e e x i t a n g l e o f t h e midgap s t r e a m l i n e s w a s n o m i n a l l y 9 d e g r e e s from t h e m e t a l a n g l e . This i s t h e e s t i m a t e o f t h e e x i t flow d e v i a t i o n t h a t was u s e d i n t h e p o t e n t i a l f l o w cas- c a d e a n a l y s i s ( b a s e d on a s e m i e m p i r i c a l d e v i a t i o n s y s t e m ) . A more a c c u r a t e e x p e r i m e n t a l s i m u l a t i o n would use t h e c u r r e n t f l aw d e v i a t i o n i n f o r m a t i o n t o

11

Page 13: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

r e c a l c u l a t e t h e midgap s t r e a m l i n e l o c a t i o n s and t h e n r e p e a t t h e e x p e r i m e n t . T h i s would p resumab ly r e s u l t i n a c l o s e r agreement be tween t h e measu red e x i t f l o w a n g l e and t h e midgap s t r e a m l i n e e x i t a n g l e . However, i t i s b e l i e v e d t h a t t h e e r ror i n t h e midgap s t r e a m l i n e e x i t a n g l e i s o f second o r d e r i n f l u e n c e on t h e near t r a i l i n g - e d g e f l o w f i e l d . The p r i m a r y i n f l u e n c e b e i n g t h e v i s c o u s e f f e c t s on t h e a i r f o i l .

Downstream o f t h e t r a i l i n g edge t h e f low f rom b o t h s i d e s g e n e r a l l y t u r n s i n w a r d s , f i l l i n g i n t h e wake b e h i n d t h e t r a i l i n g edge . From F i g . 9 it i s c l e a r t h a t t h e f l o w from t h e p r e s s u r e s u r f a c e t u r n s more i n t o t h e wake t h a n t h e s u c t i o n s u r f a c e f l o w . T h i s g r e a t e r t u r n i n g i s most l i k e l y due t o t h e l a r g e r v e l o c i t y g r a d i e n t on t h e pressure s i d e s h e a r l a y e r . The p r o b a b l e mechanism i s i n c r e a s e d f l u i d e n t r a i n m e n t (compare t o t h e s u c t i o n s i d e s h e a r l a y e r ) which l o c a l l y r e d u c e s t h e p r e s s u r e on t h e low v e l o c i t y s i d e o f t h e s h e a r l a y e r , t h u s i n d u c i n g t h e p r e s s u r e s i d e s h e a r l a y e r t o t u r n more i n t o t h e wake . T h i s i n c r e a s e d p r r ~ s u r e s i d e t u r n i n g i n d u c e s t h e o u t e r flow on t h e p r e s s u r e s i d e t o d e v i a t e f u r t h e r from t h e m e t a l angle ( 6 d e g r e e s compared t o 4 d e g r e e s f o r t h e s u c t i o n s i d e ) .

Note t h a t a s i g n i f i c a n t normal p r e s s u r e g r a d i - e n t d o e s no t e x i s t i n t h e immedia t e i n v i s c i d r e g i o n downs t r eam of t h e t r a i l i n g e d g e , a 5 shown i n Fig. 9 by t h e f r e e s t r e a m p r e s s u r e c o e f f i c i e n t v a l u e s . Based on t h e s e o b s e r v a t i o n s , i t i s conc luded t h a t t h e i n v i s c i d normal p r e s s u r e g r a d i e n t d o e s not p l a y a r o l e i n t h e i n c r e a s e s p r e s s u r e s i d e t u r n i n g i n t o t h e wake.

I n t h e wake downst ream o f t h e t r a i l i n g e d g e a

s e p a r a t i o n b u b b l e w i t h two r e c i r c u l a t i o n r e g i o n s i s p r e s e n t ( a t l e a s t i n t h e t i m e mean sense) a s shown i n t h e d e t a i l e d v e c t o r p l o t o f F i g . 9. The a x i a l e x t e n t o f t h e s e p a r a t i o n b u b b l e i s a b o u t 1 . 5 c . The two r e c i r c u l a t i o n s a p p e a r t o be asymmetric. T h i s asymmetry i s b r o u g h t o u t i n t h e s t r e a m l i n e a n a l y s i s d i s c u s s e d s u b s e q u e n t l y . The u n l o a d e d case2 i n d i - c a t e d a t i m e mean s e p a r a t i o n b u b b l e w i t h two s p - m e t r i c r e c i r c u l a t i o n s , however , t h e b u b b l e was

s h o r t e r i n t h e a x i a l e x t e n t , c l o s u r e o c c u r r i n g a t 0.Rt . Also n o t e i n t h e f i g u r e , t h e f i r s t s u r v e y s downs t r eam o f t h e s e p a r a t i o n p o i n t s do n o t show r e v e r s e d f low s i n c e t h e s e p a r a t i o n i s v e r y t h i n r e l a t i v e t o t h e LDV s p a t i a l r e s o l u t i o n .

~

12

High L o a d i n g - The v e c t o r r e p r e s e n t a t i o n of t h e overall f l o w f i e l d f o r t h e h i g h l o a d i n g c a s e i s shown i n Fig. 10. A d e t a i l e d p l a t o f t h e n e a r t r a i l i n g - e d g e r e g i o n i s g i v e n i n R e f . 1 2 . I n i t i a l s u r v e y s o f t h e wake showed t h e t r a i l i n g - e d g e i n t e r - a c t i o n r e g i o n t o be l a r g e r t h a n t h a t f o r t h e low l o a d i n g f l o w f i e l d . Thus t h e i n c r e m e n t a l s p a c i n g o f d a t a p o i n t s was r o u g h l y d o u b l e d . C o r r e s p o n d i n g l y , t h e s c a l e an t h i s f i g u r e i s d i f f e r e n t f rom t h e low l o a d i n g case i n o r d e r t o a d e q u a t e l y d i s p l a y t h e f l o w f i e l d . A s c a l e d compar i son o f t h e two c a s e s i s g i v e n s u b s e q u e n t l y i n t e rms of t h e d i s p l a c e m e n t t h i c k n e s $ d i s t r i b u t i o n .

yll 0

- 2

- 4

-6 -6 - 4 4 8 12 O X l t

Fig. 10 Overall velocity vectors, high loading

I n F i g . IO, t h e f l o w over t h e p r e s s u r e s u r f a c e i s c l e a r l y a t t a c h e d , f o l l o w i n g t h e g e n e r a l d i r r c - t i o n o f t h e model . The s u c t i o n s u r f a c e f low d e v i - a t e s s i g n i f i c a n t l y f rom t h e model s u r f a c e d i r e c t i o n d u e t o t h e p r e m a t u r e boundary l a y e r s e p a r a t i o n 5 t t o 6 t u p s t r e a m o f t h e t r a i l i n g edge a s docunei iced b y t h e f l o w v i s u a l i z a t i o n ( and s u r f a c e p r e s s u r e s ) . However, t h e e s t i m a t e d t i m e mean v e l o c i t i e s i n d i - c a t e t h e f low c l o s e t o t h e s u r f a c e t o be i n t h e downst ream d i r e c t i o n . T h i s c o n f l i c t i n g r e su ! t i s d u e t o a l a r g e i n d i v i d u a l r e a l i r a i i o n b i a s c r e a : r d by t h e n a t u r e o f t h e f l o w f i e l d and s e e d d e n s i t y i n t h i s r e g i o n ( a n d t h u s i s r e s t r i c t e d t o t h i s r e d i o n ) .

A s d i s c u s s e d p r e v i o u s l y i n t h e f l o w v i s u n l i r a - t i o n s e c t i o n , t h i s r e g i o n i s c h a r a c t e r i z e d by Q

I a r j r s e p a r a t i o n b u b b l e e x t e n d i n g over t h e l a s t 6 t r a i l i n g - e d g e t h i c k n e s s e s o f t h e s i i c t i o n s u r f a c e f o r a p p r o x i m a t e l y 80 ( o u t no less t h a n 5 0 ) p e r c e n t o f t h e t i m e . The r e m a i n i n g p e r c e n t a g e o f t h e r i m e i s c h a r a c t e r i z e d by " b u r s t s " o f downst ream, c o r * f l o w . The s e p a r a t i o n b u b b l e h a s a low velocity and p resumab ly l o w s e e d d e n s i t y ( a s i s t h e e x p e r i e n c e w i t h s e p a r a t i o n b u b b l e s ) w h i l e t h e core f low i s h i g h i n v e l o c i t y and seed d e n s i t y . The b i a s o c c u r s b e c a u s e a d i s p o r t i o n a t e number o f r e a l i z a t i o n s a r e from t h e downs t r eam, core f l o w . The b i a s i s c l e a r - l y p r e s e n t by t h e o b s e r v a t i o n t h a t a maximum of 20 p e r c e n t o f t h e LDV r e a l i z a t i o n s ( f a r a g i v e n h i s t o - gram i n t h i s r e g i o n ) a r e u p s t r e a m w h i l e t h e smoke v i s u a l i z a t i o n i n d i c a t e d 80 p e r c e n t o f t h e t i m e t h e f l o w vas ups t r eam. This b i a s s h o u l d d e c r e a s e w i t h i n c r e a s i n g d i s t a n c e from t h e s u c t i o n s u r f a c e and d i s t a n c e downst ream o f t h e t r a i l i n g edge s i n c e t h e s e e d d e n s i t y s h o u l d become more u n i f o r m by t h e i n c r e a s e d m i x i n g .

Based on the o u t e r v e l o c i t y v e c t o r s , t h e p r e s - sure s i d e flow h a s a n e a r l y C O n S t m t downward d i r - e c t i o n o f 12 d e g r e e s w h i l e t h e s u c t i o n s i d e f low i s n e a r l y c o n s t a n t a t 6 d e g r e e s (downs t r eam o f t h e t r a i l i n g e d g e ) . Thus t h e p r e s s u r e s i d e f l o w h a s d e v i a t e d s i g n i f i c a n t l y more t h a n i n t h e law l o a d i n g case ( 6 d e g r e e s ) w h i l e t h e s u c t i o n s i d e f low h a s d e v i a t e d o n l y m o d e r a t e l y more t h a n t h e low l o a d i n g case ( 4 d e g r e e s ) . However, u p s t r e a m of t h e t r a i l - i n g e d g e t h e s u c t i o n s u r f a c e f l o w f o r t h e low l oad -

t h e t r a i l i n g e d g e , w h e r e a s , t h e h i g h l o a d i n g ha: d e v i a t e d 10 d e g r e e s f rom t h e s u r f a c e . T h i s i r

v

i n g c a s e i s w i t h i n 2 d e g r e e s of t h e surface n e a r -

Page 14: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

o b v i o u s l y due t o t h e p r e s e n c e of t h e s e p a r a t i o n t w i c e t h e t h i c k n e s s of t h e lower s u r f a c e boundary b u b b l e which c h a n g e s t h e e f f e c t i v e s h a p e of t h e l a y e r . Based on t h e C u r r e n t d a t a i t would be a i r f o i l . e x p e c t e d t h a t some e n t r a i n m e n t i n d u c e d wake d e v i a - v

The p r e s s u r e c o e f f i c i e n t values i n F i g . IO i n d i c a t e t h a t t h e f r e e s t r e a m p r e s s u r e s i d e f l o w e x p e r i e n c e s a m o d e r a t e a c c e l e r a t i o n over t h e t r a i l - i n g edge , t h a t vas n o t p r e s e n t i n t h e low l o a d i n g c a s e , b e f o r e q u i c k l y d i f f u s i n g t o w i t h i n a few p e r c e n t o f t h e e x i t v e l o c i t y . T h i s i s b e l i e v e d r e l a t e d t o t h e l a r g e r p r e s s u r e s u r f a c e t o b a s e p r e s s u r e d i f f e r e n t i a l , d i s c u s s e d e a r l i e r , f o r t h e h i g h l o a d i n g p r e s s u r e s u r f a c e . N o t i c e a b l e i s t h e d i f f u s i o n o f t h e s u c t i o n s u r f a c e f r e e s t r e a m f l o w p a s t t h e t r a i l i n g e d g e t o a b o u t x i t = 3 . The low l o a d i n g c a ~ e a b r u p t l y s t o p p e d d i f f u s i n g j u s : d o w n s t r e a m o f t h e t r a i l i n g edge . Due t o t h e con- t i n u e d d i f f u s i o n , t h e r e i s a n a t m a l p r e s s u r e d i f - f e r e n c e b e t w e e n t h e f r e e s t r e a m f l o w s b o v e and be low t h e wake f o r s e v e r a l t r a i l i n g - e d g e t h i c k n e s s e s . T h i s may a c c o u n t f o r some o f t h e wake Or n e a r wake r e g i o n t u r n i n g .

The t i m e mean v e c t o r r e p r e s e n t a t i o n of t h e d a t a d o e s n o t i n d i c a t e any r d c i r c u l a t i o n downstream o f t h e t r a i l i n g edge as i n t h e c a s e of low l o a d i n g . T h e a x i a l e x t e n t o f r e v e r s e d flow ( n e g a t i v a Ux) i s a p p r o x i m a t e l y 3.3: which i s more t h a n t w i c e t h a t of t h e low l o a d i n g . The p r e s s u r e s u r f a c e f l o w c a n b e seen i n F i g . 10 t o t u r n t o f i l l i n t h e wake w h i l e t h e s u c t i o n s i d e f l o w d o e s v i r t u a l l y no t u r n i n g ( n e g l e c t i n g t h e "dead a i r " f rom t h e s u c t i o n s i d e j u s t downst ream o f t h e t r a i l i n g edge t o a b o u t n / t = 3 . 5 ) . A S i n t h e low l o a d i n g c a s e , e n t r a i n - ment e f f e c t s arr b e l i e v e d t o c o n t r i b u t e t o t h e ' l a r g e p r e s s u r e s i d e t u r n i n g i n t o t h e wake. The i n c r e a s e d p r e s s u r e s i d e t u r n i z g i s also r e l a t e d t o t h e i n c r e a s e d d e v i a t i o n of t h e f r e e s t r r a n f low on t h e p r e s s u r e s i d e , 12 d e g r e e s f o r t h e h i g h l o a d i n g compared t o 6 d e g r e e s f o r t h e low l o a d i n g . case .

I n summary, f o r t h e low l o a d i n g c a s e t h e mean wake and p a t t e r n is u n s y m m e t r i c a l and more compl i - c a t e d t h a n t h e u n l o a d e d c a s e . T h i s i s due t o d i f - ferences i n t h e r e l a t i v e s t r e n g t h s of t h e s u c t i o n and p r e s s u r e s u r f a c e b o u n d a r y layers a s q u a n t i f i e d b y t h e Shape f a c t o r d i f f e r e n c e ( 1 . 7 7 and 1 . 3 r e s p e c t i v e l y ) . The t r a i l i n g - e d g e v i s c o u s i n t e r a c - t i o n r e g i o n f o r h i g h l o a d i n g i s much l a r g e r and h a s s i g n i f i c a n t l y r e d u c e d t h e r e l a t i v e f l o w t u r n i n g compared t o t h e low l o a d i n g c a s e . The r e d u c e d t u r n i n g a p p e a r s t o be due t o two f a c t o r s . F i r s t , t h e s u c t i o n s u r f a c e s e p a r a t i o n c h a n g e s t h e a i r f o i l s h a p e s i g n i f i c a n t l y i n a manner which causes f l o w d e v i a t i o n from t h e metal angle. Second, t h e larger v e l o c i t y g r a d i e n t d i f f e r e n c e i n t h e s u c t i o n and p r e s s u r e s u r f a c e b o u n d a r y l a v e r s ( s h a p e f a c t o r s 3.24 and 1 .24 r e s p e c t i v e l y ) i n d u c e s g r e a t e r p r e s - sure s i d e f l o v d e v i a t i o n by e n t r a i n m e n t . A l s o , t h e l e n g t h o f t h e s e p a r a t e d f low r e g i o n i s o b s e r v e d t o i n c r e a s e m o n o t o n i c a l l y f rom u n l o a d e d t o low and h i g h l o a d e d cases . T h i s i s b e l i e v e d t o be c a u s e d b y t h e m o n o t o n i c a l l y d e c r e a s i n g s t r e n g t h of t h e s u c t i o n s u r f a c e s h e a r l a y e r ( r e l a t i v e t o t h e p r e s - sure s u r f a c e ) o b t a i n e d i n t h e t h r e e cases .

N o t e t h a t t h e u n l o a d e d case' also i n v e s t i g a t e d an u n s y m m e t r i c a l boundary l a y e r c o n f i g u r a t i o n . F o r t h i s case t h e u p p e r s u r f a c e boundary was n o m i n a l l y

t i o n would o c c u r . However, t h i s w a s n o t t h e c a s e , i n f a c t , t h e u n s y m m e t r i c a l b o u n d a r y l a y e r f l o w f i e l d was n e a r l y i n d i s t i n g u i s h a b l e froin t h e s y m n e t r i c a l c a s e . T h i s r e s u l t i s r a t i o n a l i z e d by t h e f a c t t h a t , though t h e boundary layer t h i c k n e s s e s were d i f f e r e n t , t h e s h a p e f a c t o r s w e r e n e a r l y t h e s a w ( 1 . 2 8 and 1 . 3 8 ) . mu$, t h e r e l a t i v e boundary l a y e r s t r e n g t h s a s measured by t h e s h a p e f a c t o r s were t h e same and no f l o w d e v i a t i o n i s a c o n s i s t e n t r e s u l t .

S t r e a m l i n e A n a l y s i s

The mean LDV d a t a was used t o c a l c u l a t e t h e s t reamline p a t t e r n . T h i s p a t t e r n can b e compared t o e i t h e r t h e t i m e mean s o l u t i o n of an u n s t e a d y c o d e c a l c u l a t i o n o r a s o l u t i o n o f t h e t i m e a v e r a g e d e q u a t i o n s of m o t i o n . It i s t h e s i m p l e s t method o f c a t e g o r i z i n g t h e wake s t r u c t u r e , however , a s

p o i n t e d o u t i n t h e R e f . 2 s t u d y , t h e t r a n s v e r s e f l o w i n t h e wake c e n t e r l i n e r e s i d e s a t t h e l o c a l mean va l i le o n l y a s m a l l f r a c t i o n o f t h e t i m e due t o t h e p r e s e n c e o f v o r t e x s h e d d i n g . Thus c a u t i o n s h o u l d be e x e r c i s e d when i n t e r p r e t i n g t h e mean pa t : e m s .

Low L o a d i n g - I n F i g . 1 1 t h e overall ~ t r e a i i - l i n e p a t t e r n f o r t h e low l o a d i n g case i s shown. The s t r e a m l i n e p a t t e r n Shows t h a t t h e t i m e mean f l o w follows t h e p r e s s u r e and s u c t i o n s u r f a c e up t o t h e t r a i l i n g edge where t h e f l a w s e p a r a t e s . Down- s t r e a m o f t h e t r a i l i n g edge t h e f l o w from b o t h s i d e s t u r n s i n toward t h e wake w i t h t h e pres sur^

s i d e f l o w t u r n i n g more . T h i s i s c o n s i s t e n t w i t h t h e v e c t o r p l o t s . The $ = 0 s t r e a m l i n e (body v a l u e ) which o r i g i n a t e s f rom t h e p r e s s u r e s i d e of t h e t r a i l i n g edge r e p r e s e n t s t h e " d i v i d i n g s t r e a m - l i n e " which s e p a r a t e s t h e t i m e mean f l o w o f t h e p r e s s u r e s u r f a c e f rom t h e f l o w o f t h e s u c t i o n sur- f a c e . A second $ = 0 s t r e a m l i n e o r i g i n a t e s on t h e s u c t i o n s i d e and t e r m i n a t e s on t h e t r a i l i n g - e d g e c i r c l e . D i s a g r e e m e n t b e t w e e n t h e o r i g i n s of t h e * = 0 s t r e a m l i n e s and t h e s e p a r a t i o n l o c a t i o n s (arrows) shown i n F i g . I 1 i s due t o l a c k of h i g h r e s o l u t i o n LDV d a t a near t h e t r a i l i n g - e d g e s u r f a c e . From t h e f i g u r e i t i s e v i d e n t t h a t u p s t r e a m of X / t = 2 large s t r e a m l i n e t u r n i n g o f t h e near wake i s P r e s e n t . Downstream a l l t h e s t r e a m l i n e s a re i n t h e d i r e c t i o n o f t h e weer flow.

1

-2 '-0.02

I - 2 0 2 4 6 8

Xl t

Fig. 11 Streamline pattern, low loading.

13

Page 15: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

A d e t a i l e d v i e w o f t h e t r a i l i n g - e d g e wake r e g i o n i s s h o r n i n F i g . 1 2 w i t h an a d d i t i o n a l s t r e a m l i n e value of -0.013, The c a l c u l a t e d $ = 0 s t r e a m l i n e s l i f t o f f t h e t r a i l i n g edge near t h e s e p a r a t i o n l o c a t i o n s shown by t h e arrows. The p r e s s u r e s i d e s t r e a m l i n e c o n t i n u e s downstream t o i n f i n i t y ( d i v i d i n g s t r e a m l i n e ) and t h e s u c t i o n s u r f a c e s t r e a m l i n e t u r n s u p s t r e a m and s t a g n a t e s a t t h e t r a i l i n g e d g e . The lower s t r e a m l i n e t h u s forms a c l o s e d r e c i r c u l a t i o n b u b b l e t h a t i s a t t a c h e d t o t h e t r a i l i n g e d g e . A m o r e n e g a t i v e S t r eam f u n c t i o n v a l u e , s a y -0 .02 , d e f i n e s a c l o s e d r e c i r c u l a t i o n r e g i o n l o c a t e d downst ream o f t h e t r a i l i n g - e d g e and a s u c t i o n s u r f a c e s t r e a m l i n e t h a t e x t e n d s f rom n e g a t i v e t o p l u s i n f i n i t y . The l a t t e r s t r e a m l i n e i s v e r y close t o t h e s u c t i o n s u r f a c e ups t r eam o f t h e t r a i l i n g e d g e and f o l l o w i n g t h e n e a r wake r e g i o n a p p r o a c h e s c l o s e l y t h e d i v i d i n g s t r e a m l i n e . A s t r e a m l i n e h a v i n g an i n t e r m e d i a t e v a l v e of -0 .013 e x t e n d s from n e g a t i v e i n f i n i t y on t h e s u c t i o n s i d e , t u r n s u p s t r e a m be tween t h e $ = 0 and $ = -0 .02 r e c i r c u l a t i o n s and t h e n t u r n s downs t r eam. Thus, i n t h e mean, t h e f l o w from t h e s u c t i o n s i d e f l o w s u p s t r e a m t o t h e p r e s s u r e s i d e o f t h e t r a i l i n g e d e e .

2( NUMBERS GIVE VALUES OF tp/1

Y l t

- - 0 2 d -04- ! -06- I -08- I

Fig. 12 Streamline pattern in near wake, low loading.

To e x p l o r e t h i s u n u s u a l s t r e a m l i n e p a t t e r n , f i r s t c o n s i d e r t h e s t e a d y , symmet r i c c a s e . Here, two w = 0 s t r e a m l i n e s l i f t o f f t h e s u r f a c e a t t h e b o u n d a r y l a y e r s e p a r a t i o n l o c a t i o n s , enclose two s y m m e t r i c a l r e c i r c u l a t i o n r e g i o n s , j o i n downet ream a t a closure p o i n t a n d t h e r e s u l t a n t s i n g l e s t r eam- l i n e t h e n e x t e n d s t o downst ream i n f i n i t y . A l s o f rom the closure p o i n t , a n o t h e r $ = 0 s t r e a m l i n e e x t e n d s u p s t r e a m and s t a g n a t e s a t t h e t r a i l i n g e d g e . For t h i s s i t u a t i o n t h e two r e c i r c u l a t i o n s a r e c l o s e d a n d a t t a c h e d t o t h e t r a i l i n g e d g e , w i t h n o f l o w f rom t h e p r e s s u r e and s u c t i o n s i d e s e n t e r - i n g t h e r e g i o n . It i s b e l i e v e d (by t h e n a t u r e o f t h e v e c t o r r e p r e s e n t a t i o n ) t h e u n l o a d e d case ' would also g i v e t h i s r e s u l t .

One i n t e r p r e t a t i o n o f t h e f l o w p a t t e r n of F i g . 12 i s t h a t t h e s t r o n g p r e s s u r e s u r f a c e s e p a r a t e d s h e a r l a y e r S e t s u p B c o r r e s p o n d i n g l y s t r o n g c l o c k - w i s e r e c i r c u l a t i o n r e g i o n (+ = - 0 . 0 2 ) w h i c h e n t r a i n s near s t a g n a n t s u c t i o n s i d e F l u i d . T h i s c o u l d c a u s e t h e 0 = -0.013 s t r e a m l i n e t o reverse a n d t h e n p r o c e e d d o w n s t r e a n be tween t h e d i v i d i n g s t r e a m l i n e and t h e + = -0 .02 b u b b l e .

It i s n o t e d t h a t t h i s s t r e a m l i n e p a t t e r n b e a r s a r m a r k a h l e r e s e m b l a n c e t o t h e t r a i l i n g edge f l o w f i e l d p r e d i c t e d by Smith" f o r l a m i n a r , s t e a d y s e p a r a t i o n s f rom s h a r p t r a i l i n g - e d g e a i r f o i l geone- t r i e s . S m i t h ' s "modera t e asymmetry" c a s e showed one a t t a c h e d ( s u c t i o n s i d e ) and one of f -body r e c i r - c u l a t i o n ( p r e s s u r e s i d e ) w i t h s u c t i o n s u r f a c e f low moving u p s t r e a m h e f o r e t u r n i n g downst ream and pass - i n g over t h e t o p o f t h e of f -body r e c i r c u l a t i o n . R e c e n t Nav ie r -S tokes a n a l y s i s by D a v i s , Hobbs , and Weingold'' ' o f t h e CDA c a s c a d e geomet ry r e p o r t e d i n R e f . 1 h a s a l s o d i s p l a y e d t h i s flow p a t t e r n f o r a

n e g a t i v e i n c i d e n c e a n g l e w i t h s u c t i o n s u r f a c e s e p a r a t i o n . C l o s e i n s p e c t i o n o f t h e t r a i l i n g - e d g e r e g i o n ( n o t shown i n R e f . 17 ) h a s r e v e a l e d t h a t t h e s u c t i o n s u r f a c e r e c i r c u l a t i o n i s a t t a c h e d , bounded by t h e body s t r e a m f u n c t i o n v a l u e and t h e p r e s s u r e s i d e r e c i r c u l a r i o n i s o f f - b o d y , e n t r a i n i n g suction s i d e f l u i d . The case i s more r e l e v a n t tha i i

R e f . 1 6 , s i n c e t h e t r a i l i n g edge i s b l u n t and t h e f l o w t u r b u l e n t .

-,

High L o a d i n g - The h i g h l o a d i n g s t r e a m l i n e p a t t e r n i s shown i n F i g . 13. Dashed l i n e s a r e u s e d t o d e p i c t e s t i m a t e d ly = 0 , -0 .02 and -3.05 s u c t i o n s u r f a c e s t r e a m l i n e s i n t h e r e g i o n -6 < x l t < 1 because of u n c e r t a i n i t i e s i n t r o d u c e d by t h e p r e v i - o v s l y d i s c u s s e d LDB b i a s e r r o r i n t h i s r e g i o n . s e p a r a t i o n and c l o s u r e o f t h e $ = 0 s t r e a m l i n e a r e shown b a s e d on s u r f a c e f l o w v i s u a l i z a t i o n T e E u l t S . n u t e r f l o w s t r e a m l i n e s ( $ < -0 .20) a r e b e l i e v e d t o b e less i n f l u e n c e d by t h e b i a s and a r e a c c o r d i n g l y shown a s c a l c u l a t e d from LDV r e s u l t s . On t h e p r e s - sure s i d e t h e s t r e a m l i n e s f o l l o w t h e s u r f a c e close l y . I n c o n t r a s t t h e s u c t i o n s i d e s t r e a m l i n e s d i v e r g e r a p i d l y f rom t h e s u r f a c e due t o t h e bound- a r y l a y e r s e p a r a t i o n .

-'

N Ih.4REllS GIVE VALUES 4 OF t d t

PRESSL - . .._ -ESTIMATED I IRE

STREAMLINES ?s2. I

- 8 - 4 4 8 12 O X I 1

Fig. 13 Streamline pattern, high loading

A s w i t h t h e low l o a d i n g c a s e , t h e I& = 0 __ s t r e a m l i n e t h a t l i f t s o f f t h e p r e s s u r e s i d e i s a d i v i d i n g s t r e a m l i n e . No t i m e mean r e c i r c u l a t i o n s w e r e o b s e r v e d i n t h e wake r e g i o n be low t h i s S t ream-

Page 16: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

l i n e , a s p r e v i o u s l y deduced from t h e v e c t o r r r p r e - s e n t a t i o n . s t r e a m l i n e b e h a v i o r i n t h i s r e g i o n was somewhat s c a t t e r e d due t o t h e s u c t i o n s u r f a c e - v e l o c i t y b i a s . However, l a r g e enough v a l u e s d i d p r o v i d e r e a s o n a b l e s t r e a m l i n e p a t t e r n s . F o r e x a m p l e , t h e $ = -0 .02 s t r e a m l i n e t u r n s and p ro - c e e d s u p s t r e a m some d i s t a n c e b e f o r e t u r n i n g toward downs t r eam i n f i n i t y . T h i s i s s t r i k i n g l y s i m i l a r t o t h e b e h a v i o r o b s e r v e d i n t h e low l o a d i n g case and t h a t p r e d i c t e d by Dav i s e t a1.1 ' and S m i t h . 1 6 A l s o , t h e r e g i o n o f l a r g e s t r e a m l i n e t u r n i n g o f t h e n e a r wake i s p r e s e n t u p s t r e a m o f x l t = 6 (compared t o 2 ' f o r low l o a d i n g ) . Downstream o f t h i s l o c a t i o n a l l s t r e a m l i n e s a r e i n t h e general d i r e c t i o n o f t h e o"teT f l o w .

I n sumnary , s t r e a n l i n e p a t t e r n s i n f e r r e d from t i m e mean v e l o c i t y r e s u l t s showed a s i g n i f i c a n t l y more c o m p l i c a t e d , u n s p m e t r i c a l c h a r a c t e r t h a n t h e two eddy p a t t e r n c h a r a c t e r i s t i c o f an un loaded c o n f i g u r a t i o n . The p a t t e r n s a p p e a r t o be g e n e r a t e d by a s t r o n g p r e s s u r e s u r f a c e s h e a r l a y e r i n t e r a c t - i n g w i t h a weake r s u c t i o n s u r f a c e s h e a r l a y e r .

I n t e g r a l Q u a n t i t i e s

T h e d i s p l a c e m e n t a n d momentum t h i c k n e s s (6* and B r e s p e c t i v e l y ) w e r e c a l c u l a t e d from t h e LDV a n d h o t f i l m d a t a u p s t r e a m and downst ream o f t h e t r a i l i n g e d g e u s i n g s r a n d a r d i n c o m p r e s s i b l e f l o w d e f i n i t i o n s . Ups t r eam o f t h e t r a i l i n g edge t h e i n t e g r a t i o n w a s f rom t h e s u r f a c e t o t h e f r e e s t r e a m . Downstream o f t h e t r a i l i n g e d g e , i n t e g r a t i o n as f rom t h e d i v i d i n g s t r e a m l i n e t o t h e l o c a l f r e e - i t r e a m . The n o r m a l i z i n g v e l o c i t y f o r t h e i n t e g r a - t i o n was t h e l o c a l f r e e s t r e a m val i le and t h e i n t e - g r a t i o n l i n e was normal t o t h e t r a i l i n g - e d g e m e t a l

- a n g l e .

D i s p l a c e m e n t T h i c k n e s s - F i g u r e 14 shows t h e d i s p l a c e m e n t t h i c k n e s s d i s t r i b u t i o n a round t h e model and downs t r eam o f t h e t r a i l i n g edge c a l c u - l a t e d from t h e LDV and h o t f i l m p r o f i l e s . The d i s p l a c e m e n t t h i c k n e s s , i s p l o t t e d r e l a t i v e t o t h e model s u r f a c e or t h e d i v i d i n g s t r e a m l i n e .

I DIVIDING STREAMLINE '

- 2

- 4 HIGH LOADING

1 8 4 4 8 12

Fig. 14 Displacement thickness relative to tralling O xll

Y edge and dividing streamline.

A t t h e t o p o f F i g . 14 , t h e low l o a d i n g c a s e shows t h e d i s p l a c e m e n t t h i c k n e s s d e c r e a s e s a long t h e p r e s s u r e s u r f a c e and i n c r e a s e s along t h e suc- t i o n s u r f a c e . This i s due t o t h e o p p o s i t e p r e s s u r e g r a d i e n t s a c t i n g on t h e r e s p e c t i v e boundary l a y e r s . Downstream o f t h e t r a i l i n g edge t h e d i s p l a c e m e n t s u r f a c e s converge f o r 3 t r a i l i n g - e d g e t h i c k n e s s e s b e f o r e becoming n e a r l y p a r a l l e l w i t h a 0 . 7 t - 0 . 8 t s e p a r a t i o n . Convergence is due t o f l o w f i l l i n g t h e wake . The d i v i d i n g s t r e a m l i n e i s o b s e r v e d t o u n d e r g o a r a p i d change be tween t h e two d i s p l a c e m e n t s u r f a c e s over t h e f i r s t two t r a i l i n g - e d g e t h i c k - nesses. I n i t i a l l y , t h e s t r e a m l i n e i s c l o s e t o t h e p r e s s u r e s i d e d i s p l a c e m e n t s u r f a c e , t h e n i t d e v i - a t e s t oward t h e s u c t i o n s i d e d i s p l a c e m e n t s u r f a c e b e f o r e becoming e s s e n t i a l l y p a r a l l e l w i t h t h e prss- sure s i d e . The r a p i d change i n t h i s s t r e a m l i n e i s b e l i e v e d t o be d u e t o p r e s s u r e s i d e f l o w , a t t h e e x p e n s e o f i t s own momentum, e n e r g i z i n g t h e s u c t i o n s i d e by f l u i d e n t r a i n m e n t . T h a t i s , by t u r h l a n t and v o r t e x m i x i n g , slower f l u i d e l e m e n t s on t h e s u c t i o n s i d e a r e exchanged w i t h f a s t e r e l e n e n t s on t h e p r e s s u r e s i d e . Thus i n o rde r t o m a i n t a i n t h e same mass f l o w be tween t h e d i s p l a c e m e n t s u r f a c e s a n d t h e d i v i d i n g s t r e a m l i n e , t h e d i v i d i n g screain- l i n e must m i g r a t e t o w a r d s t h e s u c t i o n s i d e .

R e s u l t s o b t a i n e d h e r e are s i m i l a r t o t h o s e o f t h e R e f . 2 u n l o a d e d p l a t e s t u d y i n t h a t d i s p l a c e - ment s u r f a c e s e p a r a t i o n approached a c o n s t a n t v a l u e o f 0 . 7 t i n t h r e e t r a i l i n g - e d g e t h i c k n e s s e s .

The h i z h l o a d i n g c a s e , shown a t t h e h o t t o m o f F i g . 1 4 , i l l u s t r a t e s t h e d r a m a t i c g rowth o f t h e s u c t i o n s u r f a c e , s e p a r a t e d boundary l a y e r . The s u c t i o n s u r f a c e d i s p l a c e m e n t t h i c k n e s s a t t h e t r a i l i n g edge i s more t h a n 120 p e r c e n t o f t h e t r a i l i n g - e d g e t h i c k n e s s (compared t o 34 p e r c e n t f o r the low l o a d i n g c a s e ) . The pressure s u r f a c e d i s - p l acemen t t h i c k n e s s i s v e r y s i m i l a r t o t h e low l o a d i n g c a s e . A t t h e t r a i l i n g e d g e , t h e t o t a l d i j p l a c e m e n t t h i c k n e s s i s 1 . 4 t . Downs t r ean o f t h e t r a i l i n g e d g e t h e d i s p l a c e m e n t s u r f a c e s began t o c o n v e r g e a t a r a t e much s l o w e r t h a n f o r low load - i n g . Tne d i s p l a c e m e n t Surfaces a r e s t i l l conve rg - i n g a t t h e end o f t h e measurement domai;, and a p p r o a c h i a g a n a s y m p t o t i c value a round 1 . 3 ~ ( n e a r l y d o u b l e t h a t o f t h e low l o a d i n g c a s e ) . The d i v i d i n g s t r e a m l i n e , s i m i l a r t o t h e low l o a d i n g c a s e , m i g r a t e s s i g n i f i c a n t l y from t h e p r e s s u r e s i d e t o t h e s u c t i o n s i d e b u t over a l o n g e r a x i a l d i s t a n c e ( r o u g h l y 3t f o r low and 6 t f o r h i g h l o a d i n g ) . A f t e r f i v e t r a i l i n g - e d g e t h i c k n e s s e s t h e d i v i d i n g s t r e a m l i n e i s e s s e n t i a l l y p a r a l l e l t o t h e p r e s s u r e s i d e d i s p l a c e m e n t s u r f a c e b u t i s s t i l l c o n v e r g i n g toward t h e s u c t i o n s i d e .

F o r low l o a d i n g , t h e e f f e c t i v e a i r f o i l s h a p e i s a m i l d l y t a p e r e d e x t e n s i o n of t h e a i r f o i l s i m i - l a r t o CDA wake o f R e f . 1. The d i s p l a c e m e n t sur- faces d e v i a t e f rom t h e m e t a l angle 8 s t h e f l o w m i g r a t e s t o t h e c a s c a d e e x i t a n g l e . The d i v i d i n g s t r e a m l i n e d e v i a t e s f rom the m e t a l angle by s i x d e g r e e s . For h i g h l o a d i n g , t h e e f f e c t i v e a i r f o i l s h a p e i s d r a m a t i c a l l y d i f f e r e n t . The d i s p i a c e m m t r e g i o n i s much l a r g e r and i n t h i s c a s e , t h e asymp- t o t i c d i r e c t i o n o f t h e d i v i d i n g s t r e a m l i n e d e v i a t e s f rom t h e metal angle by f i f t e e n d e g r e e s . The

15

Page 17: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

e f f e c t o f t h e u p s t r e a m s u c t i o n s u r f a c e s e p a r a t i o n on t h e r e l a t i v e f l o w t u r n i n g i s e v i d e n t i n t h e f i g u r e . Based on t h e d i v i d i n g s t r e a m l i n e s , t h e s e p a r a t i o n causes an a d d i t i o n a l 9 d e g r e e s o f f low d e v i a t i o n ( u s i n g t h e d i v i d i n g s t r e a m l i n e s as an e s t i m a t e o f t h e c a s c a d e e x i t a n g l e ) .

Momentum T h i c k n e s s - The momentum t h i c k n e s s d i s t r i b u t i o n f o r t h e low l o a d i n g c a s e i s shown a t t h e t o p o f F i g . 1 5 i n terms o f n o r m a l i z e d momdntum t h i c k n e s s p o t t e d v e r s u s n o r m a l i z e d a x i a l d i s t a n c e . Hot f i l m d a t a are d i s p l a y e d a s s q u a r e s . The p r e s - s u m s u r f a c e momentum t h i c k n e s s i s seen t o d e c r e a s e t o w a r d t h e t r a i l i n g edge a s t h e s u c t i o n s u r f a c e momentum t h i c k n e s s i n c r e a s e s . T h i s b e h a v i o r i s r e l a t e d t o t h e p r e s s u r e g r a d i e n t h i s t o r y ( i n t h e Same manner as d i s p l a c e m e n t t h i c k n e s s ) . Downstream o f t h e t r a i l i n g edge t h e t o t a l momdntum t h i c k n e s s ( s u c t i o n p l u s p r e s s u r e s i d e ) shows a r a p i d i n c r e a s e f o r 2 - 3 t r a i l i n g edge t h i c k n e s s e s t o a v a l u e e / t = 0.52. T h i s r e g i o n a l s o c o r r e s p o n d s t o t h e a r e a o f r a p i d downward d i s p l a c e m e n t o f t h e d i v i d i n g s t r e a m l i n e . T h i s d i s p l a c e m e n t r e f l e c t s e n e r g i a a - t i o n o f t h e s u c t i o n s i d e f l o w by t h e p r e s s u r e s i d e and f rom t h e momentum t h i c k n e s s d a t a i t can b e i n f e r r e d t h a t s i g n i f i c a n t t o t a l p r e s s u r e 105s o c c u r s d u r i n g t h i s p r o c e s s .

The h i g h l o a d i n g momentum t h i c k n e s s d a t a , g i v e n a t t h e bo t tom o f F i g . 15 , shows s i m i l a r t r e n d s as t h e low l o a d i n g c a s e . The p r e s s u r e sur- f a c e d i s t r i b u t i o n i s o b s e r v e d t o be n e a r l y t h e same as t h e low l o a d i n g c a s e ( a s w a s t h e d i s p l a c e m e n t t h i c k n e s s ) . The s u c t i o n s i d e graws a t a S i m i l a r r a t e t o t h e low l o a d i n g c a s e b u t t o mors t h a n t w i c e i t s v a l u e . Downs t r ean o f t h e t r a i l i n g edge t h e momentum t h i c k n e s s i n c r e a s e s r a p i d l y f o r 6 - 7 t r a i l i n g e d g e t h i c k n e s s e s t o a v a l u e e / t = 0 . 9 ( 7 5 p e r c e n t g r e a t e r t h a n f o r low l o a d i n g ) . This r e g i o n o f i n c r e a s i n g momentum t h i c k n e s s , as i n t h e low l o a d i n g c a s e , i s c o i n c i d e n t w i t h t h e r e g i o n o f d i v i d i n g s t r e a m 1 i n e rn ig ra t i o n .

0.6

0- 0.6

o - LDV

- 8 - 4 0 4 8 12 XJl

Fig. 15. Momentum thickness distribution.

The a s y m p t o t i c v a l u e s of t h e d i s p l a c e m e n t and momentum t h i c k n e s s were used w i t h t h e incompres- s i b l e two-d imens iona l r e l a t i o n g i v e n by L i e b l e i n l e t o c a l c u l a t e t h e mixed o u t t o t a l p r e s s u r e loss

(mass f low a v e r a g e d ) , o t h e r w i s e known a s t h e c a s - c a d e loss c o e f f i c i e n t , w = APt/Qref where a ? , ' i s t h e mass a v e r a g e t o t a l p r e s s u r e l o s s . The e q u a t i o n

ment and momentum t h i c k n e s s , c a s c a d e i n l e t and e x i t f l o w angles, and c a s c a d e geomet ry . F o r t h e low

l o a d i n g case w w a s found t o be 0.0278 and f o r t h e h i g h l o a d i n g c a s e 0 . 0 4 9 7 , Thus t h e h i g h l o a d i n g c a s e t o t a l p r e s s u r e loss i s abou t 80 p e r c e n t g r e a t - e r t h a n t h e low l o a d i n g c a s e .

g i v e n by L i e b l e i n re la tes o t o t h e wake d i s p l a c e - -

C o n c l u s i o n s

The o v e r a l l p roblem a d d r e s s e d i n t h e C u r r e n t s t u d y w a s f l o w s e p a r a t i o n i n t h e t r a i l i n g - e d g e r e g i o n o f compresso r a i r f o i l s . The s p e c i f i c f u c u s o f t h e s t u d y was t o d e l i n e a t e t h e e f f e c t s o f p r e s - sure l o a d i n g , t h e r e b y p r o v i d i n g p h y s i c a l i n s i g h t a 5

w e l l a s e x p e r i m e n t a l d a t a o f use t o code d e v e l o p - ment e f f o r t s . The s t u d y shoved t h a t l o a d i n g e f f e c t s w e r e s i g n i f i c a n t and need t o be c o n s i d e r e d i n t h e n u m e r i c a l mode l ing o f t h e t r a i l i n g - e d g e s e p a r a t e d f l o w f i e l d .

The p r imary e f i e c t o f l o a d i n g i s conc luded t o b e i t s i n f l u e n c e , t h r o u g h d i f f e r e n t p r e s s u r e anii

s t r e n g t h s o f t he boundary l a y e r s a p p r o a c h i n g t h ? t r a i l i n g edge and t h e s t r e n g t h s o f t h e r e s u 1 : i n t s h e a r layers emana t ing from t h e s e p a r a t i o n l o c a - t i o n s . For t h e p r e s e n t low l o a d i n g c a s e , t h e s h a p r f a c t o r s u p s t r e a m o f t h e t r a i l i n g edge were 1.31 and

1 . 7 7 f o r t h e p r e s s u r e and s u c t i o n s u r f a c e s . T h i s

s e p r a t i o n l o c a t i o n s on t h e t r a i l i n g edge and b a s e p r e s s u r e f rom t h e un loaded c a s e . However, t h i s d i f f e r e n c e was s u f f i c i e n t t o cause i n c r e a s e d p r e s - sure s i d e s h e a r layer t u r n i n g inro t h e w a 4 i (by e n t r a i n m e n t ) . T h i s r e s u l t s i n i n c r e a s e d f l o w d e v i - a t i o n from t h e t r a i l i n g - e d g e m e t a l a n g l e and t h u s r e d u c e s a i r f o i l c i r c u l a t i o n .

s u c t i o n s u r f a c e p r e s s u r e g r a d i e n t h i s t o r i e s , on t h e

shape f a c t o r d i f f e r e n c e was n o t s u f f i c i e n t t o a l t e r V'

For t h e h i a h l o a d i n g c a s e t h e s u c t i o n s a r i a c e s e p a r a t i o n l o c a t i o n w a s a l t e r e d by t h e weak bound- a r y l a y e r s t r e n g t h , r e s u l t i n g i n i n t e r m i t t e n t suc- t i o n s u r f a c e s e p a r a t i o n and b a s e p r e s s u r e d e p r e s - s i o n . The l a r g e d i f f e r e n c e i n t h e s h a p e f a c t o r s ( 1 . 2 4 on t h e p r e s s u r e s u r f a c e and 3 . 2 4 on t h e SUC-

t i o n surface) c a u s e d much g r e a t e r p r e s s u r e s i d e f l o w t u r n i n g i n t o t h e wake. T o g e t h e r w i t h t h e s t r e a m l i n e d i s p l a c e m e n t c r e a t e d by t h e s u c t i o n s u r f a c e s e p a r a t i o n , t h i s d r a m a t i c a l l y i n c r e a s e d t h e f l o w d e v i a t i o n f rom t h e metal a n g l e . The r e s u l t i n g e f f e c t i v e s h a p e o f t h e t r a i l i n g e d g e , a s d e f i n e d by d i s p l a c e m e n t s u r f a c e s l o c a t i o n s , was q u i t e d i f f e r - e n t from t h e m i l d l y t a p e r e d e x t e n s i o n o f t h e a i r - f o i l t h a t a p p l i e d t o t h e low l o a d i n g c a s e .

Based on t h e s e f i n d i n g s , i n c r e m e n t a l i n c r e a s e s i n a i r f o i l t u r n i n g f rom t h e low l o a d i n g case t o t h e h i g h l o a d i n g case w i l l p r o b a b l y r e s u l t i n a g r a d u a l i n c r e a s e i n f l o w d e v i a t i o n f rom t h e t r a i l i n g - e d g e m e t a l ang le . T h i s i s p r i m a r i l y d u e t o i n c r e a s i n g l y l a r g e r s h a p e f a c t o r d i f f e r e n c e be tween t h e s u c t i o n and pressure s u r f a c e boundary l a y e r s .

From a compar i son o f previous un loaded and p r e s e n t low l o a d i n g and h i g h l o a d i n g e x p e r i m e n t s ,

-

Page 18: [American Institute of Aeronautics and Astronautics 26th Aerospace Sciences Meeting - Reno,NV,U.S.A. (11 January 1988 - 14 January 1988)] 26th Aerospace Sciences Meeting - Experimental

it is concluded that v o r t e x shedding is a charac- teristic feature of the trailing edge separation process. A Strouhal number based on a lengrh scale equal to the sum of the trailing-edge thickness and boundary layer displacemeat thicknesses was found to correlate widely varying shedding frequencies detected in this and a previous unloaded trailing- edge experiment. For situations where loading c a u s e s separation to occur just upstream of the trailing edge, a s in the present high loading c a s e , the separation displays internittent flow r e v e r s a l . This process is attributed to low surface curva- t u r e , resulting in a sensitivity o f the separation location to random fluctuations in the weak suction surface boundary layer incident on the trailing- edge region. Despite the above un~teady flow fea- tures, a coherent time mean flowfield was found to exist.

Acknowledgements

T h e study reported here was perforaed for Naval Air Systems Command under Contract N00014-83- C-0434. Tne authors wish to acknowledge Raymond P. Shreeve (Naval Postgraduate School), 'lichael J . Werle (UTKC), and Joseph \L. Verdon (UTRC) for t!ieir helpful contributions in the formulation of this research program. Appreciation is also expressed to Josepn E. Garberoglio (Pbh') , David E . Hobbs ( P 6 d ) , Edward H. Greitzer (%IT) and :'alter \L, P r e a z Jr. ('destern N e w England College) for helpful dis- cussions during t!ir c o u r s e of th e invesrigation and review of the final report. The assistance O F iillian P. Parrick (UTRC) in placing a two- c o i i i ~ o n e n c laser velocimetry sysren into operation and Stanley A . Skebe's wind tunnel desion contribu- tions are also gratefully acknowledged. Also, the a u t h o r s wish co acknowledge Charles C. Coffin a n d Keith A . Post for their assistance in conducting the experimen:.

References

1. Hobbs, D.E., Wagner, J.H., Dannenhoffer, J.F., and Dring, R.P., "Experimental Investigation of Compressor Cascade Wakes," AS% Paper 82-GT-299, April 1982.

2 . eaterson, R.W., and Weingold, H.D., "Experimental Investigation of a Simulated Compressor Airfoil Trailing-Edge Flowfield," AIAA Journal, Vol. 21, No. 5, Hay 1985, pp. 768-775.

3. Vatsa, V.N. and Verdon, J.M. , "Viscid/ Inviscid Interaction Analysis of Separated Trailing-Edge Flows," A I M Journal, Vol. 2 3 , April 1985, pp. 481-489.

4 . Barnett, H. and Verdon, J . M . , "Viscid/ Inviscid Interaction Analysis of Subsonic Turbulent Trailing-Edge Flows," AIAA Paper 87-0457, January 1987. To be published in AIAA Journal.

5 . Barnett, M. and Carter, J.E., "Analysis of Turbulent Separated Flows Including Heat Transfer," AIAA Paper 86-0113, January 1986.

6 . Patrick, W.P., "Flovfield Measurements in a Separated and Reattached Flac Plate Turbulent Boundary Layer," NASA Contractor Repor: 4052, March 1987.

7. Hobbs, D.E., and Weingold, H.D., "Develop- ment of Controlled Diffusion Airfoils for Multi- stage Compressor Application," Journal of Engineering for Gas Turbines and Power, Vol. 106, April 1984, pp. 271-278.

8 . Caspar, J.R., Hohbs, D.E., and Davis, R.L., "The Calculation of Two-Dimensional Compressible Potential Flow in Cascades Using Finite Area Techniques," AIAA J o u r n a l , Vol. 18, NO. l . , January 1980.

9. Rouse, H., and Hassan, M . M . , "Cavitation- Free Inlet8 and Contractions," Mechanical F.ngi- neering, March 1949, pp. 213.216.

10. Peacock, R . E . , "Boundary-Layer Suction to Eliminate Corner Separation in Cascade Airfoils," Aeronautical Research Council, R6M No. 3563, London, 1971.

11. Hama, F.R., "An Efficient Tripping Device," Journal of the Aeronautical Sciences, Vo1. 24, March 1957, p. 236-237.

12. McCormick, D.C., Paterson, X . V . , and Veingold, H.D., "Experimental Investigation of Loading Effects on Simulated Compressor Airfoil Trailing-Edge Flowf ields," UTRC Report 87-14, Final Report for NASC Contract Nfl0014-83-C-0434, Hay 1987.

13. Patrick, W.P., "Error Analysis for Benchnark Fluid Dynamic Experiments, Part I: Error Analysis Hethodology and the Quantification of Laser Velocimeter E r r o r S o u r c e s , " Report R85- 151772, United Technologies Research Center, East Hartford, CT 1985.

14, Deutsch, S . and Zierke, W.C., "The Yeasurement o f Boundary Layer on a Compressor Slade in Cascade - Part 2 : Suction Surface Roundary Layers," Presented at the Gas Turbine conference and Exhibition, Anaheim, California, Ma? 31-June 4, 198?, AS,* paper 87-67-249,

15. Roshko, A,, "On the Drag and Sheddi?g Frequency of Two-Dimensional Bluff Rodies," NACA TN 3169, July 1954.

16. Smith, F.T., "Interacting Flow Theory and Trailing Edge Separation-No SCall," Journal of Fluid Mechanics, Vol. 131, pp. 219-249, June 1983.

17. Davis, R.L., Hobbs, D.E., and Weingold, H.D., "Prediction Of Compressor Cascade Performance Using a Navier-Stokes Technique." To be presented et the 33rd ASME International G a s Turbine Conference Amsterdam, The getherland, June 5-9, 1988.

18. Lieblein, S., "Experimental Flow in Tva- Dimensional Cascades," Chap VI, Aerodynamic Design of Axil Flow Compressors, NASA SP-36, PP. 183-226.


Recommended